KR20230086828A - Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same - Google Patents

Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same Download PDF

Info

Publication number
KR20230086828A
KR20230086828A KR1020210174320A KR20210174320A KR20230086828A KR 20230086828 A KR20230086828 A KR 20230086828A KR 1020210174320 A KR1020210174320 A KR 1020210174320A KR 20210174320 A KR20210174320 A KR 20210174320A KR 20230086828 A KR20230086828 A KR 20230086828A
Authority
KR
South Korea
Prior art keywords
exhaust gas
vacuum carburizing
catalyst
harmful exhaust
vacuum
Prior art date
Application number
KR1020210174320A
Other languages
Korean (ko)
Inventor
정수진
안승균
김재훈
강재규
여권구
Original Assignee
동우에이치에스티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우에이치에스티 주식회사 filed Critical 동우에이치에스티 주식회사
Priority to KR1020210174320A priority Critical patent/KR20230086828A/en
Publication of KR20230086828A publication Critical patent/KR20230086828A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J35/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 진공침탄 유해 배기가스 저감장치 및 이를 이용한 진공침탄 유해 배기가스 저감방법에 관한 것으로서, 진공침탄 공정 상의 진공펌프로부터 배출되어 유입된 배기가스를 500 내지 1500 ℃로 가열시키는 고온분해부; 및 Pt, Pd 및 이들의 합금으로 이루어진 군 중에서 선택되는 하나 이상을 포함하는 촉매가 담지된 촉매 담지체를 포함하며, 상기 고온분해부에서 가열처리를 거친 배기가스가 상기 촉매 담지체와 접하는 고온촉매부;를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 진공침탄 공정 중 진공펌프를 통해 배출되는 배기가스 내 일산화탄소, 질소산화물, 벤젠, THC(Total Hydrocarbon) 등의 유해물질을 획기적으로 저감시킬 수 있다.
The present invention relates to a vacuum carburizing harmful exhaust gas reduction device and a vacuum carburizing harmful exhaust gas reduction method using the same. and a catalyst carrier carrying a catalyst containing at least one selected from the group consisting of Pt, Pd, and alloys thereof, wherein exhaust gas subjected to heat treatment in the high-temperature decomposition unit contacts the catalyst carrier. It is characterized in that it includes; part.
According to the present invention, it is possible to dramatically reduce harmful substances such as carbon monoxide, nitrogen oxides, benzene, and total hydrocarbon (THC) in exhaust gas discharged through a vacuum pump during a vacuum carburizing process.

Description

진공침탄 유해 배기가스 저감장치 및 이를 이용한 진공침탄 유해 배기가스 저감방법{Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same}Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same}

본 발명은 진공침탄 유해 배기가스 저감장치 및 이를 이용한 진공침탄 유해 배기가스 저감방법에 관한 것으로서, 보다 상세하게는 진공침탄 공정 중 진공펌프를 통해 배출되는 배기가스 내 일산화탄소, 질소산화물, 벤젠, THC(Total Hydrocarbon) 등의 유해물질을 고열 및 촉매 처리를 통해 획기적으로 저감시킬 수 있는 진공침탄 유해 배기가스 저감장치 및 이를 이용한 진공침탄 유해 배기가스 저감방법에 관한 것이다.The present invention relates to a vacuum carburizing harmful exhaust gas reduction device and a vacuum carburizing harmful exhaust gas reduction method using the same, and more particularly, carbon monoxide, nitrogen oxides, benzene, THC ( It relates to a vacuum carburizing harmful exhaust gas reduction device that can dramatically reduce harmful substances such as total hydrocarbon) through high heat and catalytic treatment, and a vacuum carburizing harmful exhaust gas reduction method using the same.

최근, 자동차 엔진의 고성능, 고출력화 추세에 맞추어 변속기 부품의 내구성 확보가 큰 과제의 하나로 대두되고 있으며, 변속기의 내구성을 개선하기 위해서는 우선 주요 구성원소인 기어류의 내구성 개선이 선결과제이다.In recent years, securing durability of transmission parts has emerged as one of the major challenges in line with the trend of high-performance and high-output automobile engines.

자동차 변속기 기어나 샤프트 부품의 일반 가스침탄의 경우 열처리분위기 가스내에 산소 존재로 기어 소재내 소입성 증대 원소인 Si, Cr, Mn 원소들과 만나 SiO2, Cr2O3, MnO2와 같은 산화물이 모재 최표면의 입계에편석되어 입계산화를 생성시켜 기어나 샤프트의 굽힘피로강도 및 접촉피로강도를 저하시키는 원인을 제공한다. 이러한 문제를 개선시키기 위해 나온 열처리 공정이 저압 진공침탄 공정이다. In the case of general gas carburizing of automobile transmission gears or shaft parts, due to the presence of oxygen in the gas in the heat treatment atmosphere, Si, Cr, and Mn elements, which are elements that increase hardenability in gear materials, meet, and oxides such as SiO2, Cr2O3, and MnO2 form grain boundaries on the top surface of the base material. It is segregated to produce grain boundary oxidation, which provides a cause of lowering the bending fatigue strength and contact fatigue strength of gears or shafts. A heat treatment process to improve these problems is a low-pressure vacuum carburizing process.

상기 진공침탄 공정은 진공분위기에서 침탄을 실시하고, 고압의 가스(gas)로 소입을 시키는 새로운 열처리 방법으로, 표면이상층이 생성되지 않아 내구성(내피로성 및 내마모성)이 획기적으로 향상되며, 침탄시 이산화탄소 발생이 거의 없고, 퀀칭 매체로 주로 가스를 사용하며, 또한 폐유/폐수처리 등이 거의 없어 친환경적이며, 이물질 제거를 위한 쇼트 등 후공정이 필요없어 생산 시간을 단축시킬 수 있는 새로운 침탄법으로 알려져 있다.The vacuum carburizing process is a new heat treatment method in which carburizing is performed in a vacuum atmosphere and quenching with high-pressure gas, and durability (fatigue resistance and wear resistance) is dramatically improved because an abnormal surface layer is not generated, and when carburizing It is known as a new carburizing method that can shorten production time because there is almost no carbon dioxide generation, gas is mainly used as a quenching medium, and it is eco-friendly because there is almost no waste oil/wastewater treatment. there is.

이러한 진공침탄 공정을 적용할 경우 입계산화층이 제로 수준으로 굽힘피로강도 20% 향상되고 접촉피로강도 또한 30% 이상 개선된다. 특별히 저압 진공침탄은 친환경 열처리 공정으로 처리 전 처리대상물인 기어나 샤프트의 표면적을 계산해 목적 유효경화 깊이를 고려한 탄소 플럭스를 침탄과 확산 과정을 펄스형태로 침탄시키는 공정이다. 그리고 1050도 정도의 고온에서 처리가 가능해 생산성 또한 우수한 열처리 방식이다.When such a vacuum carburizing process is applied, the grain boundary oxide layer is reduced to zero, and the bending fatigue strength is improved by 20% and the contact fatigue strength is also improved by 30% or more. In particular, low-pressure vacuum carburizing is an eco-friendly heat treatment process, which calculates the surface area of the gear or shaft, which is the object to be treated, before processing, and carburizes the carbon flux in consideration of the target effective hardening depth in a pulse-like carburizing and diffusion process. In addition, it is a heat treatment method with excellent productivity as it can be processed at a high temperature of about 1050 degrees.

진공침탄 공정에서는 침탄단계에서 아세틸렌(C2H2)과 확산단계에서는 질소(N2)를 사용하고 진공펌프를 통해 배기하는데 펌프내 합성 오일(에스테르, RCOO-R')과 아세틸렌 봄베에서 일부 나오는 아세톤(CH3OH), 로 내화물 보드에서 함유된 산소 등과 고온 반응하여 유기화학적 열분해를 거쳐 일산화탄소(CO) 질소산화물(NOx) 황산화물(Sox) 희발성 유기 화합물(VOCs)등과 타르, 수트(soot, 입자상물질) 등이 배기가스 중에 존재하므로, 대기환경을 오염시키는 문제가 발생하였다.In the vacuum carburizing process, acetylene (C2H2) in the carburizing step and nitrogen (N2) in the diffusion step are used, and exhausted through a vacuum pump, synthetic oil (ester, RCOO-R') in the pump and acetone (CH3OH) partially coming out of the acetylene cylinder Carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (Sox), volatile organic compounds (VOCs), tar, soot (particulate matter), etc. Since it is present in the exhaust gas, a problem of polluting the atmospheric environment has arisen.

이를 해결하기 위하여, 종래에는 배기가스를 저온상태에서 필터를 통해 타르, 수트 등을 걸러내고 통과하는 유해 배기가스를 Ti 등의 촉매를 사용하여 처리하였으나, 과다의 타르, 수트 발생에 따라 필터가 막히고, 촉매의 피독열화가 가속화되는 등의 문제가 여전히 발생하였다.In order to solve this problem, conventionally, tar, soot, etc. are filtered out of exhaust gas through a filter at a low temperature, and harmful exhaust gases passing through are treated using a catalyst such as Ti, but the filter is clogged due to excessive tar and soot generation. However, problems such as accelerating poisoning and deterioration of the catalyst still occurred.

본 발명은 상기의 문제를 해결하기 위하여 도출된 것으로서, 진공침탄 공정 중 진공펌프를 통해 배출되는 배기가스 내 일산화탄소, 질소산화물, 벤젠, THC(Total Hydrocarbon) 등의 유해물질을 고열 및 촉매 처리를 통해 획기적으로 저감시킴으로써, 안정성 및 효율성을 증진시킬 수 있는 진공침탄 유해 배기가스 저감장치 및 이를 이용한 진공침탄 유해 배기가스 저감방법을 제공하는데 목적이 있다.The present invention was derived to solve the above problems, and harmful substances such as carbon monoxide, nitrogen oxides, benzene, and total hydrocarbon (THC) in exhaust gas discharged through a vacuum pump during the vacuum carburizing process are removed through high heat and catalyst treatment. It is an object to provide a vacuum carburizing harmful exhaust gas reduction device and a vacuum carburizing harmful exhaust gas reduction method using the same, which can improve stability and efficiency by dramatically reducing.

상기한 바와 같은 목적을 달성하기 위하여 본 발명에 따른 진공침탄 유해 배기가스 저감장치는 진공침탄 공정 상의 진공펌프로부터 배출되어 유입된 배기가스를 500 내지 1500 ℃로 가열시키는 고온분해부; 및 Pt, Pd 및 이들의 합금으로 이루어진 군 중에서 선택되는 하나 이상을 포함하는 촉매가 담지된 촉매 담지체를 포함하며, 상기 고온분해부에서 가열처리를 거친 배기가스가 상기 촉매 담지체와 접하는 고온촉매부;를 포함하는 것을 특징으로 한다.In order to achieve the above object, the vacuum carburizing harmful exhaust gas reduction apparatus according to the present invention includes a high-temperature cracking unit for heating the exhaust gas discharged from the vacuum pump in the vacuum carburizing process to 500 to 1500 ° C.; and a catalyst carrier carrying a catalyst containing at least one selected from the group consisting of Pt, Pd, and alloys thereof, wherein exhaust gas subjected to heat treatment in the high-temperature decomposition unit contacts the catalyst carrier. It is characterized in that it includes; part.

상기 고온분해부는 산화분위기 조성을 위하여 공기가 주입될 수 있으며,Air may be injected into the high-temperature decomposition unit to create an oxidizing atmosphere,

상기 주입된 공기와 상기 유입된 배기가스의 부피비는 1 내지 3 : 1 일 수 있으며, 상기 고온분해부 내부의 수소 농도가 4 부피% 이하가 되도록 상기 공기를 주입할 수 있다.The volume ratio between the injected air and the introduced exhaust gas may be 1 to 3:1, and the air may be injected so that the hydrogen concentration inside the high-temperature decomposition unit becomes 4% by volume or less.

상기 촉매담지체는 세라믹 허니컴 담체일 수 있다.The catalyst carrier may be a ceramic honeycomb carrier.

상기 촉매는 La-도핑된 알루미나를 포함하는 촉매지지체에 담지될 수 있으며, 제올라이트를 포함한 촉매향상제를 더 포함할 수 있다.The catalyst may be supported on a catalyst support including La-doped alumina, and may further include a catalyst improver including zeolite.

또 다른 본 발명은 상기 진공침탄 유해 배기가스 저감장치를 이용한 진공침탄 유해 배기가스 저감방법에 있어서, 상기 진공침탄 공정 상의 진공펌프로부터 배출되어 유입된 배기가스가 고온분해부에 유입되는 단계; 상기 고온분해부에 유입되는 배기가스를 500 내지 1500 ℃로 가열시키는 단계; 및 상기 고온분해부에서 가열처리를 거친 배기가스를 상기 고온촉매부로 유입하여 상기 촉매 담지체와 접하는 단계;를 포함하는 것을 특징으로 한다.Another present invention is a vacuum carburizing harmful exhaust gas reduction method using the vacuum carburizing harmful exhaust gas reduction device, comprising: introducing exhaust gas discharged from a vacuum pump in the vacuum carburizing process and introduced into a high-temperature decomposition unit; heating the exhaust gas flowing into the high-temperature decomposition unit to 500 to 1500 °C; and introducing the exhaust gas subjected to heat treatment in the high-temperature decomposition unit into the high-temperature catalyst unit and contacting the catalyst carrier.

상기 고온분해부 내부에 공기를 주입하여 산화분위기 상태에서 상기 유입된 배기가스를 가열할 수 있다.The introduced exhaust gas may be heated in an oxidizing atmosphere by injecting air into the high-temperature decomposition unit.

본 발명에 따르면, 진공침탄 공정 중 진공펌프를 통해 배출되는 배기가스 내 일산화탄소, 질소산화물, 벤젠, THC(Total Hydrocarbon) 등의 유해물질을 고열 및 촉매 처리를 통해 획기적으로 저감시킬 수 있다.According to the present invention, harmful substances such as carbon monoxide, nitrogen oxides, benzene, and total hydrocarbon (THC) in the exhaust gas discharged through the vacuum pump during the vacuum carburizing process can be drastically reduced through high heat and catalytic treatment.

본 발명에 따른 고온분해부에 유입된 배기가스를 고온에서 가열하여 발열반응 및 연소반응을 일으킴으로써, 배기가스 내 탄화수소로 이루어진 물질 및 타르, 수트(soot) 등을 산화시켜 제거가능하고, 나아가 일산화탄소의 산화 역시 동시에 제거 가능해진다.By heating the exhaust gas introduced into the high-temperature cracking unit according to the present invention at a high temperature to cause an exothermic reaction and a combustion reaction, it is possible to oxidize and remove hydrocarbon substances, tar, soot, etc. in the exhaust gas, and furthermore, carbon monoxide Oxidation of can also be removed at the same time.

또한, 500도 이상의 고온으로 가열된 상기 배기가스가 본 발명에 따른 고온촉매부의 촉매 담지체와 접하더라도 내열성이 우수한 세라믹 허니컴 담체로 인해 보다 높은 온도에서도 우수한 촉매 반응성을 유지할 수 있게 된다.In addition, even when the exhaust gas heated to a high temperature of 500 degrees or more comes into contact with the catalyst carrier of the high-temperature catalyst part according to the present invention, excellent catalytic reactivity can be maintained even at a higher temperature due to the ceramic honeycomb carrier having excellent heat resistance.

도 1은 본 발명의 실시예에 따른 진공침탄 유해 배기가스 저감장치를 설명하기 위한 흐름도이다.1 is a flow chart for explaining a vacuum carburizing harmful exhaust gas reduction apparatus according to an embodiment of the present invention.

이하, 본 발명을 실시예를 통해 상세히 설명하기로 한다. 다만, 상기 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, the present invention will be described in detail through examples. However, the above embodiments are intended to be explained in detail to the extent that those skilled in the art can easily practice the invention, which means that the technical spirit and scope of the present invention are limited. I don't.

통상의 고온 침탄처리 공정에서 발생되는 벤트 가스(Vent gas)인 C2H2 및 N2가 진공펌프(120)의 펌프 오일과 반응하면서, 유기화학적 열분해를 거치게 되며, 이때 발생하는 불완전한 일산화탄소(CO), 질소산화물(NOx), 황 산화물(SOx), VOCs (휘발성 유기화합물) 등의 유해물질이 생성된다. 또한 이들 사기 벤트 가스는 아세틸렌 봄베에서 일부 나오는 아세톤(CH3OH), 로 내화물 보드에서 함유된 산소 등과 고온 반응하여 유기화학적 열분해를 거쳐 일산화탄소(CO) 질소산화물(NOx) 황산화물(Sox) 희발성 유기 화합물(VOCs) 등과 타르, 수트 등이 배기가스에 포함되어 배출된다.C 2 H 2 and N 2 , which are vent gases generated in a typical high-temperature carburizing process, react with the pump oil of the vacuum pump 120 and undergo organic chemical pyrolysis, resulting in incomplete carbon monoxide (CO ), nitrogen oxides (NOx), sulfur oxides (SOx), and VOCs (volatile organic compounds). In addition, these fraudulent vent gases react at high temperature with acetone (CH3OH) partially emitted from an acetylene cylinder, oxygen contained in a furnace refractory board, etc., and undergo organic chemical thermal decomposition to generate carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (Sox), and rare organic compounds. (VOCs), tar, soot, etc. are included in the exhaust gas and emitted.

따라서, 본 발명은 상기 진공침탄로(110)를 거쳐 진공펌프(120)를 통해 배출되는 배기가스를 고온분해부(210)에 유입시킨 후 전기히터 또는 가스버너 등을 이용 500 내지 1,500 ℃, 바람직하게는 800 내지 1,000 ℃ 로 가열하게 되면, 배기 가스 내 유해물질이 발열반응 및 연소반응을 일으켜서 배기가스 내 탄화수소로 이루어진 물질 및 타르, 수트(soot) 등이 산화되어 제거되며, 일산화탄소도 함께 산화되어 제거할 수 있다.Therefore, in the present invention, the exhaust gas discharged through the vacuum pump 120 through the vacuum carburizing furnace 110 is introduced into the high-temperature cracking unit 210, and then heated to 500 to 1,500 ° C., preferably using an electric heater or a gas burner. More specifically, when heated to 800 to 1,000 ° C, harmful substances in the exhaust gas cause an exothermic reaction and combustion reaction, so that hydrocarbon substances, tar, soot, etc. in the exhaust gas are oxidized and removed, and carbon monoxide is also oxidized. can be removed

이때, 상기 고온분해부(210)에 공기를 주입시켜 내부를 산화분위기로 조성하게 되면, 완전연소 및 발열반응에 유리해진다. 상기 공기 주입은 진공펌프(120) 전단에 블로우워를 통해 이루어질 수 있다.At this time, when air is injected into the high-temperature decomposition unit 210 to create an oxidizing atmosphere inside, it is advantageous for complete combustion and exothermic reaction. The air injection may be performed through a blower at a front end of the vacuum pump 120 .

상기 공기 주입은 유입된 배기가스 총유량 대비 1 내지 3 : 1인 것이 효율적이다. 또한, 아세틸렌(C2H2) 가스가 분해되어 나오는 배기가스 중에는 수소(H2)농도가 30 부피% 이상으로 높으므로, 산소와 반응시 폭발의 위험성이 있다. 따라서, 상기 공기 주입 후 고온분해부(210) 내부의 수소 농도가 4% 이하가 되도록 공기 주입을 조정하는 것이 바람직하다.It is effective that the air injection is 1 to 3:1 relative to the total flow rate of the introduced exhaust gas. In addition, since the concentration of hydrogen (H 2 ) is as high as 30% by volume or more in the exhaust gas from which acetylene (C 2 H 2 ) gas is decomposed, there is a risk of explosion when reacting with oxygen. Therefore, it is preferable to adjust the air injection so that the hydrogen concentration inside the high-temperature decomposition unit 210 becomes 4% or less after the air injection.

만약, 상기 고온분해부(210)를 거치지 않는다면, 진공펌프(120)에서 배출된 저온 상태의 배기가스가 하기 후술할 고온촉매부(220)의 촉매와 직접 접하게 되며, 이 경우 타르나 수트 등이 촉매에 축적되어 촉매 활성 및 내구성을 급격히 저하시카는 문제가 발생할 수 있다.If it does not pass through the high-temperature decomposition unit 210, the low-temperature exhaust gas discharged from the vacuum pump 120 directly contacts the catalyst of the high-temperature catalyst unit 220, which will be described later. In this case, tar or soot Accumulation in the catalyst may cause a problem of rapidly deteriorating catalyst activity and durability.

다음으로, 상기 고온분해부(210)에서 가열된 배기가스의 일부 또는 전체가 촉매 담지체를 포함하는 고온촉매부(220)로 유입되어 상기 촉매 담지체와 접하게 된다.Next, some or all of the exhaust gas heated in the high-temperature decomposition unit 210 is introduced into the high-temperature catalyst unit 220 including the catalyst supporter and comes into contact with the catalyst supporter.

상기 촉매 담지체는 Pt, Pd 및 이들의 합금으로 이루어진 군 중에서 선택되는 하나 이상의 촉매를 포함하며, 내열성 강화를 위해 상기 촉매담지체는 세라믹 허니컴 담체인 것이 바람직하다. 상기 세라믹 허니컴 담체는 일예로 코디어라이트 재질의 하니컴 담체일 수 있다. The catalyst carrier includes at least one catalyst selected from the group consisting of Pt, Pd, and alloys thereof, and it is preferable that the catalyst carrier is a ceramic honeycomb carrier to enhance heat resistance. The ceramic honeycomb carrier may be, for example, a cordierite honeycomb carrier.

만약, 허니컴 담체가 아닌 구상, 펠렛 타입, 디스크 타입 등의 담체를 사용할 경우, 배기가스의 배압이 상승되어 본 발명의 장치 작동 상에 문제가 발생할 수 있으며, 배기가스 정화 효율이 저감되는 문제가 발생할 수도 있다. 따라서, 허니컴 담체를 사용할 경우 배기가스의 흐름이 보다 원활해지는 장점이 있다.If a carrier such as a spherical, pellet, or disk type instead of a honeycomb carrier is used, the back pressure of the exhaust gas may increase, which may cause problems in the operation of the apparatus of the present invention and reduce the efficiency of exhaust gas purification. may be Therefore, when the honeycomb carrier is used, there is an advantage in that the exhaust gas flows more smoothly.

보다 상세하게는 배압을 최소화하기 위하여, 상기 허니컴 세라믹 담체는 400 cell density에 6 mil 벽두께(400/6 cell/in2)인 것이 바람직하다. 참고, cell densityrk 클수록, 벽두께가 작을수록, 촉매의 체적이 클수록 촉매의 전체 표면적이 커지므로 촉매 효율성이 향상될 수 있으나, 배압이 많이 걸릴 수 있다.More specifically, in order to minimize back pressure, the honeycomb ceramic carrier is preferably 400 cell density and 6 mil wall thickness (400/6 cell/in2). Note, the larger the cell density rk, the smaller the wall thickness, and the larger the volume of the catalyst, the larger the total surface area of the catalyst, so catalyst efficiency can be improved, but back pressure can be high.

상기 촉매는 Pt, Pd 및 이들의 합금으로 이루어진 군 중에서 선택되는 하나 이상의 촉매를 포함할 수 있다. 상기 촉매는 산화촉매로써 타르, 수트, 일산화탄소, HC계 탄화수소 등을 용이하게 산화 시킬 수 있으며, 바람직하게는 Pt/Pd계 촉매로 Pt;Pd=4/1인 것이 바람직하다.The catalyst may include one or more catalysts selected from the group consisting of Pt, Pd, and alloys thereof. The catalyst can easily oxidize tar, soot, carbon monoxide, HC-based hydrocarbons, etc. as an oxidation catalyst, and is preferably a Pt/Pd-based catalyst, Pt;Pd = 4/1.

상기 촉매의 효율을 최대화하기 위하여 촉매의 표면적을 증대시키기 위하여 알루미나 촉매 지지체에 담지될 수 있다. 나아가, 내열성 향상을 위해, 희토류 성분으로 도핑된 합금화한 알루미나 촉매지지체를 사용할 수 있으며, 일 예로 란타늄(La) 도핑된 알루미나 촉매지지체일 수 있다. In order to maximize the efficiency of the catalyst, it may be supported on an alumina catalyst support to increase the surface area of the catalyst. Furthermore, in order to improve heat resistance, an alloyed alumina catalyst support doped with a rare earth component may be used, and for example, an alumina catalyst support doped with lanthanum (La) may be used.

상기 알루미나 촉매지지체를 포함하지 않을 경우, 온도 상승에 따라 급격히 표면적이 감소하여 촉매 성능이 저감될 수 있다. When the alumina catalyst support is not included, the surface area decreases rapidly as the temperature rises, and thus the catalytic performance may be reduced.

또한, 본 발명에 따른 촉매 담지체는 타르, 수트, long chain 탄화수소 등을 저온에서부터 효울적으로 제거하기 위하여, 제올라이트 등의 촉매향상제(Promotor)를 더 포함할 수 있다. In addition, the catalyst carrier according to the present invention may further include a catalyst promoter such as zeolite in order to efficiently remove tar, soot, long chain hydrocarbons, etc. from a low temperature.

이하, 상기 설명한 본 발명에 따른 진공침탄 유해 배기가스 저감장치(100)를 이용한 진공침탄 유해 배기가스 저감방법에 대해 설명하기로 한다.Hereinafter, a vacuum carburizing harmful exhaust gas reduction method using the vacuum carburizing harmful exhaust gas reduction device 100 according to the present invention described above will be described.

먼저, 상기 진공침탄 공정 상의 진공펌프(120)로부터 배출되어 유입된 배기가스가 고온분해부(210)에 유입된다. (S1 단계)First, the exhaust gas discharged and introduced from the vacuum pump 120 in the vacuum carburizing process is introduced into the high-temperature cracking unit 210. (S1 step)

이후, 상기 고온분해부(210)에 유입되는 배기가스를 500 내지 1500 ℃로 가열시킨다. (S2 단계) 가열시키는 방법과 이유에 대해서는 앞서 설명하였으므로 생략한다. 다음으로, 상기 고온분해부(210)에서 가열처리를 거친 배기가스를 상기 고온촉매부(220)로 유입하여 상기 촉매 담지체와 접하여 촉매반응이 일어나도록 한다. (S3 단계) 특별히, 상기 S2 단계 전에 상기 고온분해부(210) 내부에 공기를 주입하여 산화분위기 상태에서 상기 유입된 배기가스를 가열시키는 것이 완전연소 및 발열반응에 유리하다. 상기 공기 주입은 진공펌프(120) 전단에 블로우워를 통해 이루어질 수 있다. 상기 공기 주입은 유입된 배기가스 총유량 대비 1 내지 3 : 1인 것이 효율적이며, 아세틸렌(C2H2) 가스가 분해되어 나오는 배기가스 중에는 수소(H2)농도가 30 부피% 이상으로 높으므로, 산소와 반응 시 폭발의 위험성이 있게 된다. 따라서, 상기 공기 주입으로 고온분해부(210) 내부의 수소 농도가 4% 이하가 되면 폭발의 위험성을 낮출 수 있게 된다.Thereafter, the exhaust gas flowing into the high-temperature decomposition unit 210 is heated to 500 to 1500 °C. (Step S2) Since the heating method and reason have been described above, it is omitted. Next, the exhaust gas subjected to heat treatment in the high-temperature decomposition unit 210 is introduced into the high-temperature catalyst unit 220 and brought into contact with the catalyst carrier to cause a catalytic reaction. (Step S3) In particular, it is advantageous for complete combustion and exothermic reaction to heat the introduced exhaust gas in an oxidizing atmosphere by injecting air into the high-temperature decomposition unit 210 before the step S2. The air injection may be performed through a blower in front of the vacuum pump 120. It is effective that the air injection is 1 to 3: 1 relative to the total flow rate of the introduced exhaust gas, and since the concentration of hydrogen (H 2 ) is as high as 30% by volume or more in the exhaust gas from which acetylene (C2H2) gas is decomposed, oxygen and In case of reaction, there is a risk of explosion. Therefore, when the hydrogen concentration in the high-temperature decomposition unit 210 becomes 4% or less by the air injection, the risk of explosion can be reduced.

<실험 평가><Experiment evaluation>

1. 본 발명에 따른 진공침탄 유해 배기가스 저감장치 제조1. Manufacture of vacuum carburizing harmful exhaust gas reduction device according to the present invention

먼저, 코디어라이트 재질의 허니컴 세라믹 담체를 이용하여 촉매 담지체를 제조하였다. 상기 허니컴 세라믹 담체는 400 cell density에 6 mil 벽두께가 400/6 cell/in2이며, 담체 볼륨은 2L이었다. 다음으로, La doped 알루미나 촉매지지체 350g/L base 및 촉매향상제(Promotor)로 제올라이트 50g/L base를 상기 허니컴 담체에 첨가하였다. 이후 Pt과 Pd을 4:1비율로 9/g/L base로 상기 알루미나 촉매지지체에 함침하여 워시코트를 합성하고, 이를 상기 코디어라이트 세라믹 담체에 코팅하였다. 촉매의 코팅량은 9g/L로 하였으며, 촉매시스템을 구성하기 위하여 스테인레스 스틸을 재료로 하는 고온촉매부를 제조하였다.First, a catalyst carrier was prepared using a cordierite honeycomb ceramic carrier. The honeycomb ceramic carrier had a 400 cell density, a 6 mil wall thickness of 400/6 cell/in2, and a carrier volume of 2 L. Next, 350 g/L base of La doped alumina catalyst support and 50 g/L base of zeolite as a promoter were added to the honeycomb carrier. Thereafter, Pt and Pd were impregnated into the alumina catalyst support at a ratio of 4:1 and 9/g/L base to synthesize a wash coat, which was then coated on the cordierite ceramic support. The coating amount of the catalyst was 9 g/L, and a high-temperature catalyst part made of stainless steel was prepared to construct the catalyst system.

이후, 고온분해부의 배출구와 상기 제조한 고온촉매부의 유입구를 연결하였다.Thereafter, the outlet of the high-temperature decomposition unit and the inlet of the prepared high-temperature catalyst unit were connected.

2. 유해 배기가스 별 농도 측정2. Measurement of the concentration of each harmful exhaust gas

진공침탄부의 진공펌프에서 배출되는 배기가스가 상기 제조한 고온분해부에 유입되도록 연결하였다. 구체적인 진공침탄부의 운영 조건은 다음과 같았다.The exhaust gas discharged from the vacuum pump of the vacuum carburizing unit was connected to flow into the prepared high-temperature decomposition unit. The specific operating conditions of the vacuum carburizing unit were as follows.

1) 진공침탄로 침탄 온도: 980 ℃ 1) Vacuum carburizing furnace carburizing temperature: 980 ℃

2) 진공침탄로 수량: 10기 X Vacuum pump 2기 X MDS 1대 구성 2) Vacuum Carburizing Furnace Quantity: 10 X Vacuum pump 2 X MDS 1

3) 진공 펌프 상시 가동 3) Always running vacuum pump

4) 진공 펌프용 오일: Synthetic oil (Ester oil with additives) / n-phenyl-1-naphthylamine 첨가제 0.1∼0.5 중량%4) Oil for vacuum pump: Synthetic oil (Ester oil with additives) / n-phenyl-1-naphthylamine additive 0.1 to 0.5% by weight

5) 진공펌프 통과 후 배기가스 온도: 25~35℃5) Exhaust gas temperature after passing through the vacuum pump: 25~35℃

상기 진공펌프 통과 후 배출되는 배기가스가 상기 본 발명에 따라 제조한 진공침탄 유해 배기가스 저감장치를 통과한 배기가스(실시예) 및 상기 진공펌프 통과 후 본 발명에 따른 저감장치를 거치지 않은 배기가스(비교예)의 유해물질 별 농도를 측정한 결과는 다음과 같았다. 참고로 유해 물질 별 농도 측정을 위한 진공침탄로 투입가스는 다음과 같았다.Exhaust gas discharged after passing through the vacuum pump passes through the vacuum carburizing harmful exhaust gas reduction device manufactured according to the present invention (Example) and exhaust gas that does not pass through the reduction device according to the present invention after passing through the vacuum pump The results of measuring the concentration of each hazardous substance in (Comparative Example) were as follows. For reference, the gas input to the vacuum carburizing furnace for measuring the concentration of each hazardous substance was as follows.

(1) NOx, SOx, CO 농도 측정 시 : N2를 1,000ℓ/hr 투입 후 대류가열 980 ℃에서 C2H2 4,000ℓ/hr, 30SEC 투입(1) When measuring the concentration of NOx, SOx, and CO: After inputting 1,000 ℓ/hr of N2, supplying 4,000 ℓ/hr of C2H2 at 980 °C and 30 SEC by convection heating

(2) THC 농도 측정 시 : 980 ℃에서 C2H2를 4,000ℓ/hr, 30SEC 투입(2) When measuring THC concentration: 4,000ℓ/hr of C2H2 at 980 ℃, 30SEC input

(3) 벤젠 농도 측정(포집 측정) 시 : 980 ℃에서 C2H2를 4,000ℓ/hr, 60SEC 투입(3) When measuring benzene concentration (collection measurement): 4,000 ℓ/hr of C2H2 at 980 ℃, 60SEC input

3. 유해 배기가스 별 농도 측정 결과3. Results of concentration measurement for each harmful exhaust gas

상기 본 발명에 따라 제조한 진공침탄 유해 배기가스 저감장치를 통과한 배기가스(실시예)에서는 일산화탄소(CO) O ppm, 질소산화물(NOx) 1 ppm, 황산화물(Sox) 1 ppm, THC(Total Hydrocarbon) 80ppm, 벤젠 0 ppm인 것을 확인하였다.In the exhaust gas (Example) that has passed through the vacuum carburizing harmful exhaust gas reduction device manufactured according to the present invention, carbon monoxide (CO) O ppm, nitrogen oxides (NOx) 1 ppm, sulfur oxides (Sox) 1 ppm, THC (Total Hydrocarbon) 80 ppm, benzene 0 ppm was confirmed.

반면, 본 발명에 따른 배기가스 저감장치를 통과하지 않고 진공펌프에서 배출된 배기가스(비교예)의 경우, 일산화탄소(CO) 12600 ppm, 질소산화물(NOx) 290 ppm, 황산화물(Sox) 20 ppm, THC 12900 ppm, 벤젠 9 ppm으로 측정되었다.On the other hand, in the case of the exhaust gas (comparative example) discharged from the vacuum pump without passing through the exhaust gas reduction device according to the present invention, carbon monoxide (CO) 12600 ppm, nitrogen oxides (NOx) 290 ppm, sulfur oxides (Sox) 20 ppm , THC 12900 ppm, benzene 9 ppm.

이를 통해, 본 발명에 따른 진공침탄 유해 배기가스 저감장치를 적용할 경우 배출되는 배기가스 내 유해물질이 크게 저감됨을 확인할 수 있었다.Through this, it was confirmed that when the vacuum carburizing harmful exhaust gas reduction device according to the present invention is applied, harmful substances in exhaust gas discharged are greatly reduced.

100 ; 진공침탄부
110 ; 진공침탄로
120 ; 진공펌프
200 ; 진공침탄 유해 배기가스 저감장치
210 : 고온분해부
220 : 고온촉매부
100; vacuum carburizing part
110; vacuum carburizing furnace
120; vacuum pump
200; Vacuum Carburizing Harmful Exhaust Gas Reduction Device
210: high temperature decomposition part
220: high temperature catalyst

Claims (9)

진공침탄 공정 상의 진공펌프로부터 배출되어 유입된 배기가스를 500 내지 1500 ℃로 가열시키는 고온분해부; 및
Pt, Pd 및 이들의 합금으로 이루어진 군 중에서 선택되는 하나 이상을 포함하는 촉매가 담지된 촉매 담지체를 포함하며, 상기 고온분해부에서 가열처리를 거친 배기가스가 상기 촉매 담지체와 접하는 고온촉매부;를 포함하는 것을 특징으로 하는 진공침탄 유해 배기가스 저감장치.
A high-temperature decomposition unit for heating the exhaust gas discharged from the vacuum pump in the vacuum carburizing process to 500 to 1500 ° C; and
A high-temperature catalyst unit including a catalyst carrier carrying a catalyst containing at least one selected from the group consisting of Pt, Pd, and alloys thereof, wherein exhaust gas subjected to heat treatment in the high-temperature decomposition unit contacts the catalyst carrier A vacuum carburizing harmful exhaust gas reduction device, characterized in that it comprises a.
제1항에 있어서,
상기 고온분해부는 산화분위기 조성을 위하여 공기가 주입되는 것을 특징으로 하는 진공침탄 유해 배기가스 저감장치.
According to claim 1,
The vacuum carburizing harmful exhaust gas reduction device, characterized in that air is injected to the high-temperature decomposition part to create an oxidizing atmosphere.
제2항에 있어서,
상기 주입된 공기와 상기 유입된 배기가스의 부피비는 1 내지 3 : 1 인 것을 특징으로 하는 진공침탄 유해 배기가스 저감장치.
According to claim 2,
Vacuum carburizing harmful exhaust gas reduction device, characterized in that the volume ratio of the injected air and the introduced exhaust gas is 1 to 3: 1.
제1항에 있어서,
상기 고온분해부 내부의 수소 농도가 4 부피% 이하가 되도록 상기 공기를 주입하는 것을 특징으로 하는 진공침탄 유해 배기가스 저감장치.
According to claim 1,
Vacuum carburizing harmful exhaust gas reduction device, characterized in that for injecting the air so that the hydrogen concentration inside the high-temperature cracking unit is 4% by volume or less.
제1항에 있어서,
상기 촉매담지체는 세라믹 허니컴 담체인 것을 특징으로 하는 진공침탄 유해 배기가스 저감장치.
According to claim 1,
The vacuum carburizing harmful exhaust gas reduction device, characterized in that the catalyst support is a ceramic honeycomb carrier.
제1항에 있어서,
상기 촉매는 La-도핑된 알루미나를 포함하는 촉매지지체에 담지되는 것을 특징으로 하는 진공침탄 유해 배기가스 저감장치.
According to claim 1,
The catalyst is a vacuum carburizing harmful exhaust gas reduction device, characterized in that supported on a catalyst support containing La-doped alumina.
제6항에 있어서,
상기 촉매담지체는 제올라이트를 더 포함하는 것을 특징으로 하는 진공침탄 유해 배기가스 저감장치.
According to claim 6,
The vacuum carburizing harmful exhaust gas reduction device, characterized in that the catalyst support further comprises zeolite.
제1항 내지 제7항 중 어느 한 항에 따른 진공침탄 유해 배기가스 저감장치를 이용한 진공침탄 유해 배기가스 저감방법에 있어서,
상기 진공침탄 공정 상의 진공펌프로부터 배출되어 유입된 배기가스가 고온분해부에 유입되는 단계;
상기 고온분해부에 유입되는 배기가스를 500 내지 1500 ℃로 가열시키는 단계; 및
상기 고온분해부에서 가열처리를 거친 배기가스를 상기 고온촉매부로 유입하여 상기 촉매 담지체와 접하는 단계;
를 포함하는 것을 특징으로 하는 진공침탄 유해 배기가스 저감방법.
In the vacuum carburizing harmful exhaust gas reduction method using the vacuum carburizing harmful exhaust gas reduction device according to any one of claims 1 to 7,
Step of introducing the exhaust gas discharged from the vacuum pump in the vacuum carburizing process into the high-temperature cracking unit;
heating the exhaust gas flowing into the high-temperature decomposition unit to 500 to 1500 °C; and
introducing the exhaust gas subjected to heat treatment in the high-temperature decomposition unit into the high-temperature catalyst unit and contacting the catalyst carrier;
Vacuum carburizing harmful exhaust gas reduction method comprising a.
제8항에 있어서,
상기 고온분해부 내부에 공기를 주입하여 산화분위기 상태에서 상기 유입된 배기가스를 가열하는 것을 특징으로 하는 진공침탄 유해 배기가스 저감방법.
According to claim 8,
Vacuum carburizing harmful exhaust gas reduction method, characterized in that by injecting air into the high-temperature cracking unit to heat the introduced exhaust gas in an oxidizing atmosphere.
KR1020210174320A 2021-12-08 2021-12-08 Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same KR20230086828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210174320A KR20230086828A (en) 2021-12-08 2021-12-08 Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210174320A KR20230086828A (en) 2021-12-08 2021-12-08 Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same

Publications (1)

Publication Number Publication Date
KR20230086828A true KR20230086828A (en) 2023-06-16

Family

ID=86948232

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210174320A KR20230086828A (en) 2021-12-08 2021-12-08 Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same

Country Status (1)

Country Link
KR (1) KR20230086828A (en)

Similar Documents

Publication Publication Date Title
CN1159088C (en) Exhaust gas denitration method
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
CN102301101A (en) Device and method for regenerating a particulate filter arranged in the exhaust section of an internal combustion engine
Belokon et al. Environmental assessment of the intermetallic catalysts utilization efficiency for deactivation of the pollutants emitted by electrode production enterprises
JPH06246166A (en) Catalyst for substituting reactant of gas mixture
WO1999002258A1 (en) Selective catalytic reduction for the removal of nitrogen oxides and catalyst body thereof
KR20000022205A (en) Method for purifying effluent gases
EP2452746B1 (en) Particulate combustion catalyst
Chen et al. Deactivation regeneration and poison-resistant catalysts: commercial experience in stationary pollution abatement
KR20230086828A (en) Reducing apparatus of vacuum carburizing harmful exhaust gas and method for reducing vacuum carburizing harmful exhaust gas using the same
KR102390017B1 (en) Catalyst for methane oxidation reaction at low temperature
Watanabe et al. New DOC for light duty diesel DPF system
KR20170019524A (en) Apparatus for removing of nitrogen oxides in exhaust sintering gas and method for removing of nitrogen oxides
KR100824763B1 (en) A method for regenerating catalysts
KR102305781B1 (en) Regeneration system for methane oxidation catalyst and methane oxidation reactor comprising the same
CN116322944A (en) Method for reducing nitrogen dioxide in fixed source exhaust without injection of reducing agent
KR100885682B1 (en) Preparation Method of Carbon Monoxide, Hydrocarbon and Particualte Matter Reduction Catalyst for High-Sulfur Fuel Engine
JP2015054261A (en) Catalyst for co oxidation and method for co oxidation
JPH0663359A (en) Nitrogen oxides purifying method and waste gas treating device
Solov'ev et al. Effect of the Nature of the Oxidizing Agent on Conversion of Finely Dispersed Carbon on Binary Oxide Catalysts
Solov'Ev et al. Oxidation of finely dispersed carbon on coated oxide catalysts
EP0464709B1 (en) Method for cleaning engine exhaust gas
KR101637259B1 (en) Oxidation catalyst
RU2325949C2 (en) Catalyst and method of purifying effluent gases
US3740349A (en) Catalyst for treating combustion exhaust gas

Legal Events

Date Code Title Description
E902 Notification of reason for refusal