KR20230086588A - 검사 장치 및 검사 방법 - Google Patents

검사 장치 및 검사 방법 Download PDF

Info

Publication number
KR20230086588A
KR20230086588A KR1020220161401A KR20220161401A KR20230086588A KR 20230086588 A KR20230086588 A KR 20230086588A KR 1020220161401 A KR1020220161401 A KR 1020220161401A KR 20220161401 A KR20220161401 A KR 20220161401A KR 20230086588 A KR20230086588 A KR 20230086588A
Authority
KR
South Korea
Prior art keywords
imaging
internal observation
wafer
range
noise
Prior art date
Application number
KR1020220161401A
Other languages
English (en)
Inventor
다케시 사카모토
이쿠 사노
다카마사 요시다
Original Assignee
하마마츠 포토닉스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하마마츠 포토닉스 가부시키가이샤 filed Critical 하마마츠 포토닉스 가부시키가이샤
Publication of KR20230086588A publication Critical patent/KR20230086588A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Dicing (AREA)

Abstract

레이저 가공 장치는 웨이퍼에 대해서 투과성을 가지는 광을 출력하고, 웨이퍼를 전반한 광을 검출하는 것에 의해, 웨이퍼의 내부를 촬상하는 촬상 유닛과, 촬상 유닛을 연직 방향인 Z방향을 따라서 이동시키는 구동 유닛과, 제어부를 구비하고, 제어부는, 웨이퍼의 소정의 촬상 범위에 있어서의 Z방향을 따른 각 촬상 영역이 촬상 가능하게 되는 위치로 촬상 유닛이 순차적으로 이동하도록 구동 유닛을 제어하는 것과, 각 촬상 영역이 촬상되도록 촬상 유닛을 제어하는 것과, 각 촬상 영역에 관한 광을 검출한 촬상 유닛으로부터 출력되는 촬상 화상에 기초하여, 촬상 범위에 대한, 레이저 가공 후의 내부 관찰의 적정을 판정하는 것을 실행하도록 구성되어 있다.

Description

검사 장치 및 검사 방법{INSPECTION DEVICE AND INSPECTION METHOD}
본 발명의 일 양태는, 검사 장치 및 검사 방법에 관한 것이다.
반도체 기판을 구비함과 아울러, 반도체 기판의 기능 소자층이 붙은 면을 이면으로 하는 웨이퍼를 복수의 라인 각각을 따라서 절단하기 위해, 반도체 기판의 표면측으로부터 웨이퍼에 레이저광을 조사하는 것에 의해, 복수의 라인 각각을 따라서 반도체 기판의 내부에 복수 열의 개질(改質) 영역을 형성하는 검사 장치가 알려져 있다. 일본 특허공개 제2017-64746호 공보에 기재된 검사 장치는, 적외선 카메라를 구비하고 있고, 반도체 기판의 내부에 형성된 개질 영역, 기능 소자층에 형성된 가공 데미지 등을 반도체 기판의 표면측으로부터 관찰하는 것이 가능하게 되어 있다. 해당 검사 장치에서는, 예를 들면, 이와 같은 내부 관찰 결과에 기초하여, 가공 후에 있어서의 웨이퍼의 균열 상태가 추정되고, 균열 상태의 추정 결과에 기초하여 가공의 합격 여부(설정한 가공 조건에서 원하는 가공을 행할 수 있는지 여부)가 판정된다.
상술한 바와 같은 내부 관찰에 있어서는, 예를 들면, 내부 관찰에 관한 촬상 화상에 나타내지는 특징점의 특징량에 기초하여, 개질층의 위치나 균열의 위치 등이 추정된다. 여기서, 예를 들면 웨이퍼의 디바이스 패턴에 있어서의 TEG나 막 등의 다양한 구조는, 상술한 특징량의 검출에 영향을 미치는(노이즈가 되는) 경우가 있다. 이 경우, 개질층의 위치나 균열의 위치 등이 적절하게 추정되지 않을 우려가 있다. 특징량의 검출시에 노이즈가 될 수 있는 것으로서는, 상기 디바이스 패턴으로 한정되지 않고, 예를 들면 레이저광의 입사면(표면)에 있어서의 연삭 자국, 웨이퍼의 표면에 부착되어 있는 이물, 또는 관찰 광학계에 부착되어 있는 이물 등이 있다.
본 발명의 일 양태는 상기 실정을 감안하여 이루어진 것으로, 레이저 가공 후의 내부 관찰에 있어서의 노이즈의 영향을 배제하여, 웨이퍼의 가공 상태의 추정 정밀도를 향상시킬 수 있는 검사 장치 및 검사 방법에 관한 것이다.
본 발명의 일 양태에 따른 검사 장치는, 웨이퍼에 대해서 투과성을 가지는 광을 출력하고, 웨이퍼를 전반(傳搬)한 광을 검출하는 것에 의해, 웨이퍼의 내부를 촬상하는 촬상부와, 촬상부를 연직 방향인 Z방향을 따라서 이동시키는 구동부와, 제어부를 구비하고, 제어부는, 웨이퍼의 소정의 촬상 범위에 있어서의 Z방향을 따른 각 촬상 영역이 촬상 가능하게 되는 위치로 촬상부가 순차적으로 이동하도록 구동부를 제어하는 것과, 각 촬상 영역이 촬상되도록 촬상부를 제어하는 것과, 각 촬상 영역에 관한 광을 검출한 촬상부로부터 출력되는 촬상 화상에 기초하여, 촬상 범위에 대한, 레이저 가공 후의 내부 관찰의 적정(適正)을 판정하는 것을 실행하도록 구성되어 있다.
본 발명의 일 양태에 따른 검사 장치에서는, Z방향을 따라서 이동하는 촬상부에 의해서, 웨이퍼의 소정의 촬상 범위에 있어서의 Z방향을 따른 각 촬상 영역이 촬상된다. 그리고, 본 검사 장치에서는, 각 촬상 영역에 관한 촬상 화상에 기초하여, 촬상 범위에 대해서, 레이저 가공 후의 내부 관찰의 적정이 판정된다. 이와 같이, 웨이퍼의 Z방향의 각 촬상 영역의 촬상 화상이 고려되는 것에 의해, Z방향을 따라서, 레이저 가공 후의 내부 관찰에 있어서 노이즈가 될 수 있는 것의 영향을 특정할 수 있다. 그리고, 촬상 범위의 Z방향을 따른 각 영역에 대해서 노이즈가 될 수 있는 것의 영향을 특정한 다음, 촬상 범위에 대해서 내부 관찰의 적정이 판정되는 것에 의해, 내부 관찰에 적합한 촬상 범위인지 여부를 고정밀도로 판정할 수 있다. 이와 같은 구성에 의하면, 레이저 가공 후에 있어서는, 내부 관찰에 적합한 촬상 범위에 있어서 내부 관찰을 행하는 것이 가능하게 되므로, 레이저 가공 후의 내부 관찰에 있어서 노이즈의 영향을 배제하여, 웨이퍼의 가공 상태의 추정 정밀도를 향상시킬 수 있다.
제어부는, 각 촬상 영역에 관한 촬상 화상에 나타내지는 특징점의 특징량에 기초하여, 촬상 범위에 대한 내부 관찰의 적정을 판정해도 된다. 촬상 화상에 나타내지는 특징점의 특징량이 고려되는 것에 의해, 레이저 가공 후의 내부 관찰에 있어서의 특징량의 검출에 주는 영향의 크기가 적절하게 특정되어, 내부 관찰에 적합한 촬상 범위인지 여부를 보다 고정밀도로 판정할 수 있다.
제어부는 각 촬상 영역에 관한 촬상 화상에 나타내지는 특징점 중, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대응하는 범위의 특징점인 가공 범위 특징점의 특징량에 기초하여, 촬상 범위에 대한 내부 관찰의 적정을 판정해도 된다. 이와 같은 구성에 의하면, 레이저 가공 후의 내부 관찰에 있어서의 특징량의 검출에 영향을 줄 가능성이 높은 범위의 특징점(가공 범위 특징점)의 특징량만이 고려되게 되므로, 내부 관찰에 적합한 촬상 범위인지 여부를 보다 고정밀도로 판정할 수 있다.
제어부는, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대해서, 가공 범위 특징점의 특징량과, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량을 비교하고, 상정 특징량에 비해 가공 범위 특징점의 특징량이 작을수록, 촬상 범위가 내부 관찰에 적합하다고 판정해도 된다. 이와 같이, 가공 범위 특징점의 특징량과 레이저 가공에 기인하는 특징점의 특징량(상정 특징량)이 비교되어, 가공 범위 특징점의 특징량이 상대적으로 작아, 레이저 가공 후의 내부 관찰에 있어서의 특징량의 검출에 주는 영향이 작은 경우에, 촬상 범위가 내부 관찰에 적합하다고 판정되는 것에 의해, 내부 관찰에 적합한 촬상 범위인지 여부를 보다 고정밀도로 판정할 수 있다.
제어부는 내부 관찰의 적정을 판정한 판정 결과를 출력하는 것을 더 실행하도록 구성되어 있어도 된다. 이것에 의해, 유저가 판정 결과를 확인할 수 있고, 판정 결과에 기초하여, 유저가 내부 관찰을 행하는 영역을 결정하는 것이 가능하게 된다.
제어부는, 서로 다른 복수의 촬상 범위 각각에 대해서, 내부 관찰의 적정을 판정하고, 레이저 가공 후에 내부 관찰을 행하는 영역에 관한 촬상 범위를 유저가 선택 가능하게 되도록, 복수의 촬상 범위 각각의 판정 결과를 출력해도 된다. 이와 같이, 복수의 촬상 범위 각각에 대해서 내부 관찰의 적정이 판정되고, 각 판정 결과가 출력되는 것에 의해, 유저가 각 판정 결과를 비교하면서 내부 관찰을 행하는 영역을 선택하는 것이 가능하게 된다.
제어부는 유저가 선택한 촬상 범위에 대한, 촬상 화상 및 위치 정보 중 적어도 어느 일방을, 레이저 가공 후의 내부 관찰에 관한 정보로서 기억해도 된다. 이것에 의해, 유저가 선택한 촬상 범위의 정보가, 레이저 가공 후의 내부 관찰에 관한 정보로서 확실하게 등록되고, 유저의 선택 결과를 고려한 촬상 범위(즉, 노이즈의 영향을 받기 어려운 촬상 범위)에서 내부 관찰을 행할 수 있다.
웨이퍼는 레이저가 조사되는 면의 반대측 면에 디바이스 패턴을 가지고 있고, 제어부는, 각 촬상 영역 중 디바이스 패턴을 제외한 촬상 영역에 관한 촬상 화상에 기초하여, 촬상 범위에 대한 내부 관찰의 적정을 판정해도 된다. 디바이스 패턴이 형성된 영역에 대해서는, 촬상 화상에 있어서의 특징점의 특징량이 크게 되지만, 개질층이나 균열이 형성되는 영역으로는 되지 않는다. 그 때문에, 디바이스 패턴이 형성된 영역의 촬상 화상이 제외되고 그 외의 촬상 화상만으로부터 내부 관찰의 적정이 판정되는 것에 의해, 실제로 내부 관찰을 행하는 영역의 촬상 화상에 기초하여, 촬상 범위가 내부 관찰에 적합한지 여부를 보다 고정밀도로 판정할 수 있다.
본 발명의 일 양태에 따른 검사 방법은, 웨이퍼의 내부의 소정의 촬상 범위에 대해서, 연직 방향인 Z방향을 따라서 촬상 영역을 변화시키면서 촬상을 행하는 것과, 각 촬상 영역에 관한 촬상 화상에 기초하여, 촬상 범위에 대한, 레이저 가공 후의 내부 관찰의 적정을 판정하는 것을 포함한다.
본 발명의 일 양태에 의하면, 레이저 가공 후의 내부 관찰에 있어서의 노이즈의 영향을 배제하여, 웨이퍼의 가공 상태의 추정 정밀도를 향상시킬 수 있다.
도 1은 일 실시 형태의 레이저 가공 장치의 구성도이다.
도 2는 일 실시 형태의 웨이퍼의 평면도이다.
도 3은 도 2에 나타내지는 웨이퍼의 일부분의 단면도이다.
도 4는 도 1에 나타내지는 레이저 조사 유닛의 구성도이다.
도 5는 도 1에 나타내지는 검사용 촬상 유닛의 구성도이다.
도 6은 도 1에 나타내지는 얼라인먼트 보정용 촬상 유닛의 구성도이다.
도 7은 도 5에 나타내지는 검사용 촬상 유닛에 의한 촬상 원리를 설명하기 위한 웨이퍼의 단면도, 및 해당 검사용 촬상 유닛에 의한 각 개소에서의 화상이다.
도 8은 도 5에 나타내지는 검사용 촬상 유닛에 의한 촬상 원리를 설명하기 위한 웨이퍼의 단면도, 및 해당 검사용 촬상 유닛에 의한 각 개소에서의 화상이다.
도 9는 반도체 기판의 내부에 형성된 개질 영역 및 균열의 SEM 화상이다.
도 10은 반도체 기판의 내부에 형성된 개질 영역 및 균열의 SEM 화상이다.
도 11은 도 5에 나타내지는 검사용 촬상 유닛에 의한 촬상 원리를 설명하기 위한 광로도, 및 해당 검사용 촬상 유닛에 의한 초점에서의 화상을 나타내는 모식도이다.
도 12는 도 5에 나타내지는 검사용 촬상 유닛에 의한 촬상 원리를 설명하기 위한 광로도, 및 해당 검사용 촬상 유닛에 의한 초점에서의 화상을 나타내는 모식도이다.
도 13은 균열 검출에 대해 설명하는 도면이다.
도 14는 균열 검출에 대해 설명하는 도면이다.
도 15는 타흔(打痕) 검출에 대해 설명하는 도면이다.
도 16은 타흔 검출에 대해 설명하는 도면이다.
도 17은 타흔 검출에 대해 설명하는 도면이다.
도 18은 미러 웨이퍼에 대한 내부 관찰을 설명하는 도면이다.
도 19는 특징량 검출에 있어서의 노이즈 요인을 설명하는 도면이다.
도 20은 웨이퍼의 디바이스 패턴에 대해 설명하는 도면이다.
도 21은 디바이스 패턴의 영향을 받은 특징량 검출을 설명하는 도면이다.
도 22는 내부 관찰의 적정 판정을 설명하는 도면이다.
도 23은 검사 방법의 일례에 따른 플로차트이다.
도 24는 노이즈 판정 처리의 일례를 설명하는 도면이다.
도 25는 노이즈 판정 처리의 일례에 따른 플로차트이다.
도 26은 노이즈 판정 결과의 일례를 나타내는 도면이다.
도 27은 노이즈 판정 처리의 일례를 설명하는 도면이다.
도 28은 노이즈 판정 처리의 일례에 따른 플로차트이다.
도 29는 노이즈 판정 결과의 일례를 나타내는 도면이다.
도 30은 비교예에 따른 BG 자국의 검출예를 설명하는 도면이다.
도 31은 본 실시 형태에 따른 BG 자국의 검출예를 설명하는 도면이다.
도 32는 노이즈 판정 처리의 일례를 설명하는 도면이다.
도 33은 노이즈 판정 처리의 일례에 따른 플로차트이다.
도 34는 노이즈 판정 결과의 일례를 나타내는 도면이다.
이하, 본 발명의 실시 형태에 대해서, 도면을 참조하여 상세하게 설명한다. 또한, 각 도면에 있어서 동일 또는 상당 부분에는 동일 부호를 부여하고, 중복되는 설명을 생략한다.
[레이저 가공 장치의 구성]
도 1에 나타내지는 바와 같이, 레이저 가공 장치(1)는 스테이지(2)와, 레이저 조사 유닛(3)과, 복수의 촬상 유닛(촬상부)(4, 5, 6)과, 구동 유닛(7)(구동부)과, 제어부(8)와, 디스플레이(150)를 구비하고 있다. 레이저 가공 장치(1)는, 대상물(11)에 레이저광(L)을 조사하는 것에 의해, 대상물(11)에 개질 영역(12)을 형성하는 장치이다.
스테이지(2)는, 예를 들면 대상물(11)에 붙여진 필름을 흡착하는 것에 의해, 대상물(11)을 지지하는 흡착 테이블이다. 또한, 도 1에 있어서는 도시를 생략하고 있지만, 도 19에 나타내지는 바와 같이 대상물(11)인 웨이퍼(20)와 스테이지(2)와의 사이에, 웨이퍼(20)를 유지하는 유지 부재(600)가 마련되어 있어도 된다. 스테이지(2)는 X방향 및 Y방향 각각을 따라서 이동 가능하고, Z방향과 평행한 축선을 중심선으로 하여 회전 가능하다. 또한, X방향 및 Y방향은, 서로 수직인 제1 수평 방향 및 제2 수평 방향이며, Z방향은 연직 방향이다.
레이저 조사 유닛(3)은 대상물(11)에 대해서 투과성을 가지는 레이저광(L)을 집광하여 대상물(11)에 조사한다. 스테이지(2)에 지지된 대상물(11)의 내부에 레이저광(L)이 집광되면, 레이저광(L)의 집광점(C)에 대응하는 부분에 있어서 레이저광(L)이 특히 흡수되어, 대상물(11)의 내부에 개질 영역(12)이 형성된다.
개질 영역(12)은 밀도, 굴절률, 기계적 강도, 그 외의 물리적 특성이 주위의 비개질 영역과는 다른 영역이다. 개질 영역(12)으로서는, 예를 들면, 용융 처리 영역, 크랙 영역, 절연 파괴 영역, 굴절률 변화 영역 등이 있다. 개질 영역(12)은 개질 영역(12)으로부터 레이저광(L)의 입사측 및 그 반대측으로 균열이 연장되기 쉽다고 하는 특성을 가지고 있다. 이와 같은 개질 영역(12)의 특성은, 대상물(11)의 절단에 이용된다.
일례로서, 스테이지(2)를 X방향을 따라서 이동시키고, 대상물(11)에 대해서 집광점(C)을 X방향을 따라서 상대적으로 이동시키면, 복수의 개질 스폿(12s)이 X방향을 따라서 1열로 늘어서도록 형성된다. 1개의 개질 스폿(12s)은, 1펄스의 레이저광(L)의 조사에 의해서 형성된다. 1열의 개질 영역(12)은, 1열로 늘어선 복수의 개질 스폿(12s)의 집합이다. 서로 이웃하는 개질 스폿(12s)은, 대상물(11)에 대한 집광점(C)의 상대적인 이동 속도 및 레이저광(L)의 반복 주파수에 의해서, 서로 연결되는 경우도, 서로 떨어지는 경우도 있다.
촬상 유닛(4)은 대상물(11)에 형성된 개질 영역(12), 및 개질 영역(12)으로부터 연장된 균열의 선단을 촬상한다.
촬상 유닛(5) 및 촬상 유닛(6)은, 제어부(8)의 제어하에서, 스테이지(2)에 지지된 대상물(11)을, 대상물(11)을 투과하는 광에 의해 촬상한다. 촬상 유닛(5, 6)이 촬상하는 것에 의해 얻어진 화상은, 일례로서, 레이저광(L)의 조사 위치의 얼라인먼트에 제공된다.
구동 유닛(7)은 레이저 조사 유닛(3) 및 복수의 촬상 유닛(4, 5, 6)을 지지하고 있다. 구동 유닛(7)은 레이저 조사 유닛(3) 및 복수의 촬상 유닛(4, 5, 6)을 Z방향을 따라서 이동시킨다.
제어부(8)는 스테이지(2), 레이저 조사 유닛(3), 복수의 촬상 유닛(4, 5, 6), 및 구동 유닛(7)의 동작을 제어한다. 제어부(8)는 프로세서, 메모리, 스토리지 및 통신 디바이스 등을 포함하는 컴퓨터 장치로서 구성되어 있다. 제어부(8)에서는, 프로세서가, 메모리 등에 읽혀넣어진 소프트웨어(프로그램)를 실행하고, 메모리 및 스토리지에 있어서의 데이터의 읽어냄 및 쓰기, 그리고, 통신 디바이스에 의한 통신을 제어한다.
디스플레이(150)는 유저로부터 정보의 입력을 접수하는 입력부로서의 기능과, 유저에 대해서 정보를 표시하는 표시부로서의 기능을 가지고 있다.
[대상물의 구성]
본 실시 형태의 대상물(11)은, 도 2 및 도 3에 나타내지는 바와 같이, 웨이퍼(20)이다. 웨이퍼(20)는 반도체 기판(21)과, 기능 소자층(22)을 구비하고 있다. 또한, 본 실시 형태에서는, 웨이퍼(20)는 기능 소자층(22)을 가지는 것으로 하여 설명하지만, 웨이퍼(20)는 기능 소자층(22)을 가지고 있어도 가지고 있지 않아도 되며, 베어 웨이퍼여도 된다. 반도체 기판(21)은 이면(21a) 및 표면(21b)을 가지고 있다. 반도체 기판(21)은, 예를 들면, 실리콘 기판이다. 기능 소자층(22)은 반도체 기판(21)의 이면(21a)에 형성되어 있다. 기능 소자층(22)은 이면(21a)을 따라서 2 차원으로 배열된 복수의 기능 소자(22a)를 포함하고 있다. 기능 소자(22a)는, 예를 들면, 포토 다이오드 등의 수광 소자, 레이저 다이오드 등의 발광 소자, 메모리 등의 회로 소자 등이다. 기능 소자(22a)는 복수의 층이 스택되어 3차원적으로 구성되는 경우도 있다. 또한, 반도체 기판(21)에는, 결정 방위를 나타내는 노치(21c)가 마련되어 있지만, 노치(21c)를 대신하여 오리엔테이션 플랫이 마련되어 있어도 된다.
웨이퍼(20)는 복수의 라인(15) 각각을 따라서 기능 소자(22a)마다로 절단된다. 복수의 라인(15)은 웨이퍼(20)의 두께 방향으로부터 본 경우에 복수의 기능 소자(22a) 각각의 사이를 통과하고 있다. 보다 구체적으로는, 라인(15)은 웨이퍼(20)의 두께 방향으로부터 본 경우에 스트리트 영역(23)의 중심(폭 방향에 있어서의 중심)을 통과하고 있다. 스트리트 영역(23)은, 기능 소자층(22)에 있어서, 서로 이웃하는 기능 소자(22a)의 사이를 통과하도록 연재(延在)하고 있다. 본 실시 형태에서는, 복수의 기능 소자(22a)는 이면(21a)을 따라서 매트릭스 모양으로 배열되어 있고, 복수의 라인(15)은 격자 모양으로 설정되어 있다. 또한, 라인(15)은 가상적인 라인이지만, 실제로 그은 라인이어도 된다.
[레이저 조사 유닛의 구성]
도 4에 나타내지는 바와 같이, 레이저 조사 유닛(3)은 광원(31)과, 공간 광 변조기(32)와, 집광 렌즈(33)를 가지고 있다. 광원(31)은, 예를 들면 펄스 발진 방식에 의해서, 레이저광(L)을 출력한다. 공간 광 변조기(32)는 광원(31)으로부터 출력된 레이저광(L)을 변조한다. 공간 광 변조기(32)는 예를 들면 반사형 액정(LCOS: Liquid Crystal on Silicon)의 공간 광 변조기(SLM: Spatial Light Modulator)이다. 집광 렌즈(33)는 공간 광 변조기(32)에 의해서 변조된 레이저광(L)을 집광한다. 또한, 집광 렌즈(33)는 보정환(補正環) 렌즈여도 된다.
본 실시 형태에서는, 레이저 조사 유닛(3)은 복수의 라인(15) 각각을 따라서 반도체 기판(21)의 표면(21b)측으로부터 웨이퍼(20)에 레이저광(L)을 조사하는 것에 의해, 복수의 라인(15) 각각을 따라서 반도체 기판(21)의 내부에 2열의 개질 영역(12a, 12b)을 형성한다. 개질 영역(12a)은 2열의 개질 영역(12a, 12b) 중 이면(21a)에 가장 가까운 개질 영역이다. 개질 영역(12b)은 2열의 개질 영역(12a, 12b) 중, 개질 영역(12a)에 가장 가까운 개질 영역으로서, 표면(21b)에 가장 가까운 개질 영역이다.
2열의 개질 영역(12a, 12b)은, 웨이퍼(20)의 두께 방향(Z방향)에 있어서 서로 이웃하고 있다. 2열의 개질 영역(12a, 12b)은, 반도체 기판(21)에 대해서 2개의 집광점(C1, C2)이 라인(15)을 따라서 상대적으로 이동시켜지는 것에 의해 형성된다. 레이저광(L)은 예를 들면 집광점(C1)에 대해서 집광점(C2)이 진행 방향의 후측이면서 또한 레이저광(L)의 입사측에 위치하도록, 공간 광 변조기(32)에 의해서 변조된다. 또한, 개질 영역의 형성에 관해서는, 단초점이어도 다초점이어도 되며, 1 패스여도 복수 패스여도 된다.
레이저 조사 유닛(3)은 복수의 라인(15) 각각을 따라서 반도체 기판(21)의 표면(21b)측으로부터 웨이퍼(20)에 레이저광(L)을 조사한다. 일례로서, 두께 400㎛의 단결정 실리콘<100>기판인 반도체 기판(21)에 대해, 이면(21a)으로부터 54㎛의 위치 및 128㎛의 위치에 2개의 집광점(C1, C2)을 각각 맞추어, 복수의 라인(15) 각각을 따라서 반도체 기판(21)의 표면(21b)측으로부터 웨이퍼(20)에 레이저광(L)을 조사한다. 이때, 예를 들면 2열의 개질 영역(12a, 12b)에 걸치는 균열(14)이 반도체 기판(21)의 이면(21a)에 이르는 조건으로 하는 경우, 레이저광(L)의 파장은 1099nm, 펄스 폭은 700n초, 반복 주파수는 120kHz로 된다. 또한, 집광점(C1)에 있어서의 레이저광(L)의 출력은 2.7W, 집광점(C2)에 있어서의 레이저광(L)의 출력은 2.7W로 되고, 반도체 기판(21)에 대한 2개의 집광점(C1, C2)의 상대적인 이동 속도는 800mm/초로 된다. 또한, 예를 들면 가공 패스 수가 5로 되는 경우, 상술한 웨이퍼(20)에 대해서, 예를 들면, ZH80(이면(21a)으로부터 328㎛의 위치), ZH69(이면(21a)으로부터 283㎛의 위치), ZH57(이면(21a)으로부터 234㎛의 위치), ZH26(이면(21a)으로부터 107㎛의 위치), ZH12(이면(21a)으로부터 49.2㎛의 위치)가 가공 위치로 되어도 된다. 이 경우, 예를 들면, 레이저광(L)의 파장은 1080nm이고, 펄스 폭은 400nsec이며, 반복 주파수는 100kHz이고, 이동 속도는 490mm/초여도 된다.
[검사용 촬상 유닛의 구성]
도 5에 나타내지는 바와 같이, 촬상 유닛(4)(촬상부)은, 광원(41)과, 미러(42)와, 대물 렌즈(43)와, 광 검출부(44)를 가지고 있다. 촬상 유닛(4)은 웨이퍼(20)에 대해서 투과성을 가지는 광을 출력하고, 웨이퍼(20)를 전반한 광을 검출하는 것에 의해, 웨이퍼(20)의 내부를 촬상한다. 광원(41)은 반도체 기판(21)에 대해서 투과성을 가지는 광(l1)을 출력한다. 광원(41)은, 예를 들면, 할로겐 램프 및 필터에 의해서 구성되어 있고, 근적외 영역의 광(l1)을 출력한다. 광원(41)으로부터 출력된 광(l1)은, 미러(42)에 의해서 반사되어 대물 렌즈(43)를 통과하여, 반도체 기판(21)의 표면(21b)측으로부터 웨이퍼(20)에 조사된다. 이때, 스테이지(2)는, 상술한 바와 같이 2열의 개질 영역(12a, 12b)이 형성된 웨이퍼(20)를 지지하고 있다.
대물 렌즈(43)는 반도체 기판(21)의 이면(21a)에서 반사된 광(l1)을 통과시킨다. 즉, 대물 렌즈(43)는 반도체 기판(21)을 전반한 광(l1)을 통과시킨다. 대물 렌즈(43)의 개구수(NA)는, 예를 들면 0.45 이상이다. 대물 렌즈(43)는 보정환(43a)을 가지고 있다. 보정환(43a)은 예를 들면 대물 렌즈(43)를 구성하는 복수의 렌즈에 있어서의 상호간의 거리를 조정하는 것에 의해, 반도체 기판(21) 내에 있어서 광(l1)에 생기는 수차를 보정한다. 또한, 수차를 보정하는 수단은, 보정환(43a)으로 한정되지 않고, 공간 광 변조기 등의 그 외의 보정 수단이어도 된다. 광 검출부(44)는 대물 렌즈(43) 및 미러(42)를 투과한 광(l1)을 검출한다. 광 검출부(44)는, 예를 들면, InGaAs 카메라에 의해서 구성되어 있고, 근적외 영역의 광(l1)을 검출한다. 또한, 근적외 영역의 광(l1)을 검출(촬상)하는 수단은 InGaAs 카메라로 한정되지 않고, 투과형 공초점(confocal) 현미경 등, 투과형의 촬상을 행하는 것이면 그 외의 촬상 수단이어도 된다.
촬상 유닛(4)은 2열의 개질 영역(12a, 12b) 각각, 및 복수의 균열(14a, 14b, 14c, 14d) 각각의 선단을 촬상할 수 있다(상세에 대해서는, 후술함). 균열(14a)은 개질 영역(12a)으로부터 이면(21a)측으로 연장되는 균열이다. 균열(14b)은 개질 영역(12a)으로부터 표면(21b)측으로 연장되는 균열이다. 균열(14c)은 개질 영역(12b)으로부터 이면(21a)측으로 연장되는 균열이다. 균열(14d)은 개질 영역(12b)으로부터 표면(21b)측으로 연장되는 균열이다.
[얼라인먼트 보정용 촬상 유닛의 구성]
도 6에 나타내지는 바와 같이, 촬상 유닛(5)은 광원(51)과, 미러(52)와, 렌즈(53)와, 광 검출부(54)를 가지고 있다. 광원(51)은 반도체 기판(21)에 대해서 투과성을 가지는 광(I2)을 출력한다. 광원(51)은, 예를 들면, 할로겐 램프 및 필터에 의해서 구성되어 있고, 근적외 영역의 광(I2)을 출력한다. 광원(51)은 촬상 유닛(4)의 광원(41)과 공통화되어 있어도 된다. 광원(51)으로부터 출력된 광(I2)은, 미러(52)에 의해서 반사되어 렌즈(53)를 통과하고, 반도체 기판(21)의 표면(21b)측으로부터 웨이퍼(20)에 조사된다.
렌즈(53)는 반도체 기판(21)의 이면(21a)에서 반사된 광(I2)을 통과시킨다. 즉, 렌즈(53)는 반도체 기판(21)을 전반한 광(I2)을 통과시킨다. 렌즈(53)의 개구수는, 0.3 이하이다. 즉, 촬상 유닛(4)의 대물 렌즈(43)의 개구수는, 렌즈(53)의 개구수보다도 크다. 광 검출부(54)는 렌즈(53) 및 미러(52)를 통과한 광(I2)을 검출한다. 광 검출부(54)는, 예를 들면, InGaAs 카메라에 의해서 구성되어 있고, 근적외 영역의 광(I2)을 검출한다.
촬상 유닛(5)은, 제어부(8)의 제어하에서, 표면(21b)측으로부터 광(I2)을 웨이퍼(20)에 조사함과 아울러, 이면(21a)(기능 소자층(22))측으로부터 되돌아오는 광(I2)을 검출하는 것에 의해, 기능 소자층(22)을 촬상한다. 또한, 촬상 유닛(5)은, 마찬가지로, 제어부(8)의 제어하에서, 표면(21b)측으로부터 광(I2)을 웨이퍼(20)에 조사함과 아울러, 반도체 기판(21)에 있어서의 개질 영역(12a, 12b)의 형성 위치로부터 되돌아오는 광(I2)을 검출하는 것에 의해, 개질 영역(12a, 12b)을 포함하는 영역의 화상을 취득한다. 이들 화상은, 레이저광(L)의 조사 위치의 얼라인먼트에 이용된다. 촬상 유닛(6)은 렌즈(53)가 보다 저배율(예를 들면, 촬상 유닛(5)에 있어서는 6배이며, 촬상 유닛(6)에 있어서는 1.5배)인 점을 제외하고, 촬상 유닛(5)과 마찬가지의 구성을 구비하며, 촬상 유닛(5)과 마찬가지로 얼라인먼트에 이용된다.
[검사용 촬상 유닛에 의한 촬상 원리]
도 5에 나타내지는 촬상 유닛(4)을 이용하여, 도 7에 나타내지는 바와 같이, 2열의 개질 영역(12a, 12b)에 걸치는 균열(14)이 이면(21a)에 이르러 있는 반도체 기판(21)에 대해서, 표면(21b)측으로부터 이면(21a)측을 향하여 초점(F)(대물 렌즈(43)의 초점)을 이동시킨다. 이 경우, 개질 영역(12b)으로부터 표면(21b)측으로 연장되는 균열(14)의 선단(14e)에 표면(21b)측으로부터 초점(F)을 맞추면, 해당 선단(14e)을 확인할 수 있다(도 7에서의 우측의 화상). 그러나, 균열(14) 그 자체, 및 이면(21a)에 이르러 있는 균열(14)의 선단(14e)에 표면(21b)측으로부터 초점(F)을 맞추어도, 그것들을 확인할 수 없다(도 7에서의 좌측의 화상). 또한, 반도체 기판(21)의 이면(21a)에 표면(21b)측으로부터 초점(F)을 맞추면, 기능 소자층(22)을 확인할 수 있다.
또한, 도 5에 나타내지는 촬상 유닛(4)을 이용하여, 도 8에 나타내지는 바와 같이, 2열의 개질 영역(12a, 12b)에 걸치는 균열(14)이 이면(21a)에 이르러 있지 않은 반도체 기판(21)에 대해서, 표면(21b)측으로부터 이면(21a)측을 향하여 초점(F)을 이동시킨다. 이 경우, 개질 영역(12a)으로부터 이면(21a)측으로 연장되는 균열(14)의 선단(14e)에 표면(21b)측으로부터 초점(F)을 맞추어도, 해당 선단(14e)을 확인할 수 없다(도 8에서의 좌측의 화상). 그러나, 이면(21a)에 대해서 표면(21b)과는 반대측의 영역(즉, 이면(21a)에 대해서 기능 소자층(22)측의 영역)에 표면(21b)측으로부터 초점(F)을 맞추어, 이면(21a)에 관해서 초점(F)과 대칭인 가상 초점(Fv)을 해당 선단(14e)에 위치시키면, 해당 선단(14e)을 확인할 수 있다(도 8에서의 우측의 화상). 또한, 가상 초점(Fv)은, 반도체 기판(21)의 굴절률을 고려한 초점(F)과 이면(21a)에 관해서 대칭인 점이다.
이상과 같이 균열(14) 그 자체를 확인할 수 없는 것은, 조명광인 광(l1)의 파장보다도 균열(14)의 폭이 작기 때문이라고 상정된다. 도 9 및 도 10은, 실리콘 기판인 반도체 기판(21)의 내부에 형성된 개질 영역(12) 및 균열(14)의 SEM(Scanning Electron Microscope) 화상이다. 도 9의 (b)는, 도 9의 (a)에 나타내지는 영역(A1)의 확대상, 도 10의 (a)는, 도 9의 (b)에 나타내지는 영역(A2)의 확대상, 도 10의 (b)는, 도 10의 (a)에 나타내지는 영역(A3)의 확대상이다. 이와 같이, 균열(14)의 폭은, 120nm 정도이며, 근적외 영역의 광(l1)의 파장(예를 들면, 1.1~1.2㎛)보다도 작다.
이상을 근거로 하여 상정되는 촬상 원리는, 다음과 같다. 도 11의 (a)에 나타내지는 바와 같이, 공기 중에 초점(F)을 위치시키면, 광(l1)이 되돌아오지 않기 때문에, 검은 화상이 얻어진다(도 11의 (a)에서의 우측의 화상). 도 11의 (b)에 나타내지는 바와 같이, 반도체 기판(21)의 내부에 초점(F)을 위치시키면, 이면(21a)에서 반사된 광(l1)이 되돌아오기 때문에, 흰 화상이 얻어진다(도 11의 (b)에서의 우측의 화상). 도 11의 (c)에 나타내지는 바와 같이, 개질 영역(12)에 표면(21b)측으로부터 초점(F)을 맞추면, 개질 영역(12)에 의해서, 이면(21a)에서 반사되어 되돌아온 광(l1)의 일부에 대해서 흡수, 산란 등이 생기기 때문에, 흰 배경 중에 개질 영역(12)이 검게 비친 화상이 얻어진다(도 11의 (c)에서의 우측의 화상).
도 12의 (a) 및 (b)에 나타내지는 바와 같이, 균열(14)의 선단(14e)에 표면(21b)측으로부터 초점(F)을 맞추면, 예를 들면, 선단(14e) 근방에 생긴 광학적 특이성(응력 집중, 변형, 원자 밀도의 불연속성 등), 선단(14e) 근방에서 생기는 광의 가둠 등에 의해서, 이면(21a)에서 반사되어 되돌아온 광(l1)의 일부에 대해서 산란, 반사, 간섭, 흡수 등이 생기기 때문에, 흰 배경 중에 선단(14e)이 검게 비친 화상이 얻어진다(도 12의 (a) 및 (b)에서의 우측의 화상). 도 12의 (c)에 나타내지는 바와 같이, 균열(14)의 선단(14e) 근방 이외의 부분에 표면(21b)측으로부터 초점(F)을 맞추면, 이면(21a)에서 반사된 광(l1)의 적어도 일부가 되돌아오기 때문에, 흰 화상이 얻어진다(도 12의 (c)에서의 우측의 화상).
[내부 관찰에 있어서의 검출 알고리즘]
상술한 웨이퍼(20)의 내부 관찰에 관해서, 균열(14)을 검출(특정)하는 알고리즘, 및 개질 영역에 관한 타흔을 검출(특정)하는 알고리즘에 대해서, 상세하게 설명한다.
도 13 및 도 14는 균열 검출에 대해 설명하는 도면이다. 도 13에 있어서는, 내부 관찰 결과(웨이퍼(20) 내부의 화상)가 나타내져 있다. 제어부(8)는, 도 13의 (a)에 나타내지는 바와 같은 웨이퍼(20) 내부의 화상에 대해서, 먼저, 직선군(140)을 검출한다. 직선군(140)의 검출에는, 예를 들면 Hough 변환 또는 LSD(Line Segment Detector) 등의 알고리즘이 이용된다. Hough 변환이란, 화상 상의 점에 대해서 그 점을 통과하는 모든 직선을 검출하여 특징점을 보다 많이 통과하는 직선에 가중치 부여하면서 직선을 검출하는 수법이다. LSD란, 화상 내의 휘도값의 구배(勾配)와 각도를 계산하는 것에 의해 선분이 되는 영역을 추정하고, 해당 영역을 직사각형에 근사(近似)시키는 것에 의해 직선을 검출하는 수법이다.
이어서, 제어부(8)는, 도 14에 나타내지는 바와 같이 직선군(140)에 대해 균열선과의 유사도를 산출하는 것에 의해, 직선군(140)으로부터 균열(14)을 검출한다. 균열선은, 도 14의 상부 도면에 나타내지는 바와 같이, 선 상의 휘도값에 대해 Y방향으로 전후가 매우 밝다고 하는 특징을 가진다. 이 때문에, 제어부(8)는, 예를 들면, 검출한 직선군(140)의 모든 화소의 휘도값을, Y방향의 전후와 비교하여, 그 차분이 전후와도 임계값 이상인 화소 수를 유사도의 스코어로 한다. 그리고, 검출한 복수의 직선군(140) 중에서 가장 균열선과의 유사도의 스코어가 높은 것을 그 화상에 있어서의 대표값으로 한다. 대표값이 높을수록, 균열(14)이 존재할 가능성이 높다고 하는 지표가 된다. 제어부(8)는, 복수의 화상에 있어서의 대표값을 비교하는 것에 의해, 상대적으로 스코어가 높은 것을 균열 화상 후보로 한다.
도 15~도 17은 타흔 검출에 대해 설명하는 도면이다. 도 15에 있어서는, 내부 관찰 결과(웨이퍼(20) 내부의 화상)가 나타내져 있다. 제어부(8)는, 도 15의 (a)에 나타내지는 바와 같은 웨이퍼(20)의 내부의 화상에 대해서, 화상 내의 코너(에지 집중)를 키포인트로 하여 검출하고, 그 위치, 크기, 방향을 검출하여 특징점(250)을 검출한다. 이와 같이 하여 특징점을 검출하는 수법으로서는, Eigen, Harris, Fast, SIFT, SURF, STAR, MSER, ORB, AKAZE 등이 알려져 있다.
여기서, 도 16에 나타내지는 바와 같이, 타흔(280)은, 원형이나 직사각형 등의 형태가 일정 간격으로 늘어서기 때문에, 코너로서의 특징이 강하다. 이 때문에, 화상 내의 특징점(250)의 특징량을 집계하는 것에 의해, 타흔(280)을 고정밀도로 검출하는 것이 가능하게 된다. 도 17에 나타내지는 바와 같이, 깊이 방향으로 시프트하여 촬상한 화상마다의 특징량 합계를 비교하면, 개질층마다의 균열 열량(列量)을 나타내는 산(山)의 변화를 확인할 수 있다. 제어부(8)는 해당 변화의 피크를 타흔(280)의 위치로서 추정한다. 이와 같이 특징량을 집계하는 것에 의해서, 타흔 위치뿐만 아니라 펄스 피치를 추정하는 것도 가능하게 된다.
[내부 관찰 위치의 결정 처리]
이하에서는, 내부 관찰 위치의 결정 처리에 대해 상세하게 설명한다. 내부 관찰 위치의 결정 처리는, 개질 영역이 형성되기 전의 웨이퍼(20)(레이저 가공 전의 웨이퍼(20))에 대해서 실시된다. 여기서, 웨이퍼(20)의 절단 등을 목적으로 하여 개질 영역을 형성하는 경우에는, 사전에, 개질 영역의 형성에 관한 가공 조건이 도출된다. 이와 같은 가공 조건은, 레이저 가공 후의 웨이퍼(20)의 내부 관찰 결과에 기초하여 도출된다. 여기서, 웨이퍼(20)의 구조에 따라서는, 적절한 위치에 있어서 내부 관찰이 실시되지 않으면, 레이저 가공 후의 내부 관찰을 고정밀도로 실시할 수 없는 경우가 있다.
도 18은 웨이퍼(20)의 일례인 미러 웨이퍼(520)에 대한 내부 관찰을 설명하는 도면이다. 미러 웨이퍼(520)는 이면(521a)에 기능 소자층을 가지고 있지 않고, 이면(521a)의 스트리트 영역에 디바이스 패턴(상세는 후술)을 가지고 있지 않다. 이제, 미러 웨이퍼(520)의 내부 관찰의 촬상 범위로서, 도 18의 (a)에 나타내지는 바와 같이, 표면(521b)측으로부터 이면(521a)측을 향하여 초점을 이동시켜 촬상되는 직접 관찰 영역과, 이면(521a)에 대해서 표면(521b)과는 반대측의 영역에 표면(521b)측으로부터 초점을 맞추어 이면(521a)에서 반사된 광이 촬상되는 이면 반사 영역이 포함되어 있는 것으로 한다. 도 18의 (b)는, 깊이 방향으로 시프트하여 촬상한 복수의 화상에 있어서의 특징점마다의 특징량을 나타내는 도면이다. 도 18의 (b)에 있어서, 가로축은 특징량, 세로축은 촬상 깊이를 나타내고 있다. 도 18의 (b)에 나타내지는 결과는, 예를 들면, 균열(14)이 이면(521a)에 도달하는 BHC(Bottom side half-cut) 상태가 되도록 미러 웨이퍼(520)가 레이저 가공되었을 경우의 내부 관찰의 결과이다. 도 18의 (b)에 나타내지는 바와 같이, 직접 관찰 영역에 있어서, 이면(521a)측의 개질 영역(SD1)의 특징량 데이터(901), 표면(521b)측의 개질 영역(SD2)의 특징량 데이터(902), 상 균열 선단의 특징량 데이터(910)가 검출되어 있다. 또한, 이면 반사 영역에 있어서, 이면(521a)측의 개질 영역(SD1)의 특징량 데이터(903), 표면(521b)측의 개질 영역(SD2)의 특징량 데이터(904)가 검출되어 있다. 또한, 도 18의 (b) 중의 특징량 데이터의 수치(예를 들면 특징량 데이터(901)의 수치 「396」)는, 집계된 특징량의 합계값을 나타내고 있다. 이와 같이, 디바이스 패턴을 갖지 않고, 또한, 그 외의 노이즈 요인(후술)을 갖지 않은 미러 웨이퍼(520)에 대해서는, 특별히, 내부 관찰 위치를 조정하지 않아도, 내부 관찰 결과로부터 개질 영역 등을 적절하게 특정할 수 있어, 내부 관찰 결과로부터 가공 조건을 적절하게 도출할 수 있다.
한편으로, 특징량 검출에 있어서의 어떠한 노이즈 요인을 가지는 웨이퍼(20)에 대해서는, 적절한 위치에 있어서 내부 관찰이 실시되지 않으면, 레이저 가공 후의 내부 관찰이 고정밀도로 행해지지 않는 경우가 있다. 도 19는 특징량 검출에 있어서의 노이즈 요인을 설명하는 도면이다. 여기서의 노이즈 요인이란, 상술한 특징량에 영향을 주는 요인이다. 도 19에는, 노이즈 요인으로서, 디바이스 패턴(F1), 표면(21b)(입사면)의 노이즈(F2), 표면(21b)에 부착되어 있는 이물(F3), 광 검출부(44)에 부착되어 있는 이물(F4), 스테이지(2)의 표면의 노이즈(F5), 및 유지 부재(600)의 이면의 노이즈(F6)가 예시되어 있다.
도 20은 웨이퍼(20)의 디바이스 패턴(F1)에 대해 설명하는 도면이다. 디바이스 패턴(F1)은 스트리트 영역(23) 상에 배치되어 있고, TEG나 막 등의 다양한 구조를 포함할 수 있다. 도 20에 나타내지는 예에서는, 웨이퍼(20)의 패턴 샷(shot) 내의 하나의 채널(CH1)의 영역에 있어서의 디바이스 패턴(F1)으로서, 「1-A」~「3-F」로 나타내지는 TEG 등의 구조가 나타내져 있다. 이하, 「1-A」~「3-F」로 나타내지는 TEG 등의 구조를, 디바이스 패턴(1-A~3-F)이라고 기재하는 경우가 있다. 또한, 도 20에서는, 격자 모양의 스트리트 영역(23)에 있어서의 일방향(CH1)의 영역의 디바이스 패턴(F1)만을 나타내고 있지만, 직교하는 CH2의 영역에도 마찬가지로 디바이스 패턴(F1)이 존재하고 있어도 된다.
도 21은 디바이스 패턴(F1)의 영향을 받은 특징량 검출을 설명하는 도면이다. 도 21의 (a)는 디바이스 패턴(F1)이 존재하지 않는 위치에 있어서의 내부 관찰 결과(특징량 검출 결과)를 나타내고 있다. 도 21의 (b)~도 21의 (d)는, 각각, 디바이스 패턴(1-A, 1-C, 1-F)(도 20 참조)이 존재하는 위치에 있어서의 내부 관찰 결과(특징량 검출 결과)를 나타내고 있다. 도 21의 (a)~도 21의 (d)에 있어서, 가로축은 특징량, 세로축은 촬상 깊이를 나타내고 있다. 도 21의 (a)~도 21의 (d)에 나타내지는 결과는, 예를 들면, 균열이 이면에 도달하는 BHC(Bottom side half-cut) 상태가 되도록 웨이퍼(20)가 레이저 가공되었을 경우의 내부 관찰의 결과이다.
도 21의 (a)에 나타내지는 바와 같이, 디바이스 패턴(F1)이 존재하지 않는 경우에는, 상술한 미러 웨이퍼(520)에 있어서의 내부 관찰 결과(도 18의 (b) 참조)와 마찬가지로, 직접 관찰 영역에 있어서, 이면(21a)측의 개질 영역(SD1)의 특징량 데이터(901), 표면(21b)측의 개질 영역(SD2)의 특징량 데이터(902), 상 균열 선단의 특징량 데이터(910)가 검출되고, 이면 반사 영역에 있어서, 이면(21a)측의 개질 영역(SD1)의 특징량 데이터(903), 표면(21b)측의 개질 영역(SD2)의 특징량 데이터(904)가 검출되어 있다. 디바이스 패턴(F1)이 존재하지 않기 때문에, 레이저 가공 후의 내부 관찰에 있어서는, 개질 영역의 형성에 관한 특징량만이 검출되어 있다.
한편으로, 도 21의 (b)~도 21의 (d)에 나타내지는 바와 같이, 디바이스 패턴(F1)이 존재하는 경우에는, 디바이스 패턴(F1)의 특징량이 개질 영역의 특징량에 영향을 주어 버린다. 예를 들면, 도 21의 (b)에 나타내지는 디바이스 패턴(1-A)이 존재하는 위치에 있어서의 내부 관찰 결과에서는, 개질 영역(SD1)의 타흔(打痕) 위치 부근에서 디바이스 패턴(1-A)에 의한 특징량 데이터(950, 960)가 검출되어 버리고 있고, 이들 특징량 데이터(950, 960)에 의해서, 개질 영역(SD1)의 타흔 위치가 어긋나(도 21의 (a)에 나타내지는 특징량 데이터(901, 903)로부터 어긋나) 검출되어 버린다. 이 경우 오검출이 된다.
또한, 도 21의 (c)에 나타내지는 디바이스 패턴(1-C)이 존재하는 위치에 있어서의 내부 관찰 결과에서는, 디바이스 패턴(1-C)에 의한 특징량 데이터(970)가 검출되어 있다. 다만, 특징량 데이터(970)의 특징량이, 개질 영역의 특징량 데이터(901) 등의 특징량과 비교하여 충분히 작기 때문에, 이와 같은 경우에는, 디바이스 패턴(1-C)에 의한 특징량 데이터(970)가 검출되어 있어도, 개질 영역의 특징량 데이터(901) 등과 구별할 수 있어, 오검출이 발생하지 않는다.
또한, 도 21의 (d)에 나타내지는 디바이스 패턴(1-F)이 존재하는 위치에 있어서의 내부 관찰 결과에서는, 이면(21a) 부근(개질 영역(SD1)보다도 깊은 위치)에 있어서 디바이스 패턴(1-F)에 의한 특징량 데이터(980)가 검출되어 버리고 있고, 해당 특징량 데이터(980)에 의해서, 개질 영역(SD1)보다도 더 깊은 위치에서 타흔이 검출되어 버린다. 이 경우 오검출이 된다.
이와 같이, 디바이스 패턴(F1)의 종류에 따라서는, 개질 영역의 형성에 관한 특징량의 검출에 영향을 주어, 오검출이 발생해 버리는 경우가 있다. 그 때문에, 디바이스 패턴(F1)을 가지는 웨이퍼(20)에 대해 레이저 가공 후의 내부 관찰을 실시하는 경우에는, 사전에, 오검출이 발생하지 않도록 내부 관찰 위치를 결정할 필요가 있다. 또한, 디바이스 패턴(F1)의 영향을 받지 않도록 내부 관찰 위치를 결정하는 경우에 있어서는, 예를 들면, Z방향 및 XY방향 중 적어도 어느 일방에 있어서 내부 관찰을 행하지 않는 제외 설정을 행하는 것이 생각된다.
도 19에 나타내지는 그 외의 노이즈 요인인, 표면(21b)(입사면)의 노이즈(F2)란, 예를 들면, 표면(21b)에 있어서의 연삭 자국(BG 자국) 또는, 표면(21b)의 막의 얼룩 등에 기인한 노이즈이다. 웨이퍼(20)에 대해서는, 원래 두께로부터 박화할 때에 연삭 장치에 의해서 연삭을 행하지만, 그 때에 연삭 자국이 남는 경우가 있다. 연삭 자국은 웨이퍼(20)의 표면(21b)에 있어서 다양한 형상으로 된다. 그리고, 연삭 자국의 형상에 따라서는, 개질 영역의 형성에 관한 특징량의 검출에 영향을 주어, 오검출이 발생해 버리는 경우가 있다. 그 때문에, 표면(21b)의 노이즈(F2)를 가지는 웨이퍼(20)에 대해 레이저 가공 후의 내부 관찰을 실시하는 경우에는, 사전에, 오검출이 발생하지 않도록 내부 관찰 위치를 결정할 필요가 있다. 또한, 표면(21b)의 노이즈(F2)의 영향을 받지 않도록 내부 관찰 위치를 결정하는 경우에 있어서는, 예를 들면, Z방향 및 XY방향 중 적어도 어느 일방에 있어서 내부 관찰을 행하지 않는 제외 설정을 행하는 것이 생각된다.
도 19에 나타내지는 그 외의 노이즈 요인인, 표면(21b)에 부착되어 있는 이물(F3)이란, 예를 들면, 표면(21b)에 부착되어 있는 먼지 등의 이물이다. 이와 같은 이물(F3)은, 개질 영역의 형성에 관한 특징량의 검출에 영향을 주어 오검출의 요인이 되는 경우가 있다. 그 때문에, 표면(21b)에 이물(F3) 부착되어 있는 웨이퍼(20)에 대해 레이저 가공 후의 내부 관찰을 실시하는 경우에는, 사전에, 오검출이 발생하지 않도록 내부 관찰 위치를 결정할 필요가 있다. 또한, 표면(21b)에 부착되어 있는 이물(F3)의 영향을 받지 않도록 내부 관찰 위치를 결정하는 경우에 있어서는, 예를 들면, Z방향 및 XY방향 중 적어도 어느 일방에 있어서 내부 관찰을 행하지 않는 제외 설정을 행하는 것이 생각된다.
도 19에 나타내지는 그 외의 노이즈 요인인, 광 검출부(44)에 부착되어 있는 이물(F4)이란, 예를 들면, 광 검출부(44)에 부착되어 있는 먼지 등의 이물이다. 이와 같은 이물(F4)은, 개질 영역의 형성에 관한 특징량의 검출에 영향을 주어 오검출의 요인이 되는 경우가 있다. 그 때문에, 광 검출부(44)에 이물(F4)이 부착되어 있는 환경하에서 레이저 가공 후의 내부 관찰을 실시하는 경우에는, 사전에, 오검출이 발생하지 않도록 내부 관찰 위치를 결정할 필요가 있다. 또한, 광 검출부(44)에 부착되어 있는 이물(F4)의 영향을 받지 않도록 내부 관찰 위치를 결정하는 경우에 있어서는, 예를 들면, Z방향에 있어서 내부 관찰을 행하지 않는 제외 설정을 행하는 것이 생각된다.
도 19에 나타내지는 그 외의 노이즈 요인인, 스테이지(2)의 표면의 노이즈(F5)란, 예를 들면, 스테이지(2)의 표면의 포러스 구조에 기인한 노이즈이다. 이와 같은 노이즈(F5)는, 개질 영역의 형성에 관한 특징량의 검출에 영향을 주어 오검출의 요인이 되는 경우가 있다. 그 때문에, 스테이지(2)의 표면의 노이즈(F5)가 있는 환경하에서 레이저 가공 후의 내부 관찰을 실시하는 경우에는, 사전에, 오검출이 발생하지 않도록 내부 관찰 위치를 결정할 필요가 있다. 또한, 스테이지(2)의 표면의 노이즈(F5)의 영향을 받지 않도록 내부 관찰 위치를 결정하는 경우에 있어서는, 예를 들면, Z방향에 있어서 내부 관찰을 행하지 않는 제외 설정을 행하는 것이 생각된다.
도 19에 나타내지는 그 외의 노이즈 요인인, 유지 부재(600)의 이면의 노이즈(F6)란, 예를 들면, 유지 부재(600)의 이면의 엠보스 가공에 기인한 노이즈이다. 이와 같은 노이즈(F6)는, 개질 영역의 형성에 관한 특징량의 검출에 영향을 주어 오검출의 요인이 되는 경우가 있다. 그 때문에, 유지 부재(600)의 이면의 노이즈(F6)가 있는 환경하에서 레이저 가공 후의 내부 관찰을 실시하는 경우에는, 사전에, 오검출이 발생하지 않도록 내부 관찰 위치를 결정할 필요가 있다. 또한, 유지 부재(600)의 이면의 노이즈(F6)의 영향을 받지 않도록 내부 관찰 위치를 결정하는 경우에 있어서는, 예를 들면, Z방향에 있어서 내부 관찰을 행하지 않는 제외 설정을 행하는 것이 생각된다.
다음으로, 상술한 노이즈 요인을 고려하여 내부 관찰 위치를 결정하는 제어부(8)의 처리에 대해 설명한다. 제어부(8)는 내부 관찰 위치를 결정하는 처리를 레이저 가공 전에 실시한다. 즉, 제어부(8)는, 레이저 가공이 실시되기 전의 웨이퍼(20)에 대해서, 내부 관찰 위치를 결정한다. 제어부(8)는 웨이퍼(20)의 소정의 촬상 범위에 있어서의 Z방향을 따른 각 촬상 영역이 촬상 가능하게 되는 위치로 촬상 유닛(4)이 순차적으로 이동하도록 구동 유닛(7)을 제어하는 제1 제어와, 각 촬상 영역이 촬상되도록 촬상 유닛(4)을 제어하는 제2 제어와, 각 촬상 영역에 관한 광을 검출한 촬상 유닛(4)으로부터 출력되는 촬상 화상에 기초하여, 촬상 범위에 대한, 레이저 가공 후의 내부 관찰의 적정을 판정하는 제3 제어와, 내부 관찰의 적정을 판정한 판정 결과를 출력하는 제4 제어를 실행하도록 구성되어 있다.
제1 제어에서는, 제어부(8)는, 먼저, 검사 조건으로서 설정(입력)된 촬상 범위를 나타내는 정보에 기초하여, 촬상 범위의 촬상 개시 위치로 촬상 유닛(4)이 이동하도록 구동 유닛(7)을 제어한다. 보다 구체적으로는, 제어부(8)는, 웨이퍼(20)의 표면(21b)의 하이트(height) 세트 위치 및 이면(21a)의 하이트 세트 위치와, 웨이퍼(20)에 있어서의 Z방향의 좌표 위치와, 촬상 범위를 나타내는 정보에 기초하여, 촬상 개시 위치로 촬상 유닛(4)이 이동하도록 구동 유닛(7)을 제어한다. 여기서의 촬상 범위에는, 표면(21b)측으로부터 이면(21a)측을 향하여 초점을 이동시켜 촬상되는 직접 관찰 영역(예를 들면 도 24 참조)과, 이면(21a)에 대해서 표면(21b)과는 반대측의 영역에 표면(21b)측으로부터 초점을 맞추어 이면(21a)에서 반사된 광이 촬상되는 이면 반사 영역(예를 들면 도 24 참조)이 포함되어 있다. 그리고, 제어부(8)는 촬상 개시 위치로부터 촬상 종료 위치까지 촬상 유닛(4)이 Z방향을 따라서 이동하도록 구동 유닛(7)을 제어한다.
제2 제어에서는, 제어부(8)는, 제1 제어에 의해서 Z방향으로 이동하는 촬상 유닛(4)에 의해서 연속적으로 촬상이 행해져 각 촬상 영역이 촬상되도록, 촬상 유닛(4)을 제어한다. 각 촬상 영역은, 촬상 범위에 포함되는 영역으로, 예를 들면 촬상 유닛(4)의 이동 속도와 촬상 주기에 의해서 정해진다.
제3 제어에서는, 제어부(8)는, 각 촬상 영역에 관한 촬상 화상에 기초하여, 촬상 범위에 대해서, 내부 관찰의 적정을 판정한다. 제어부(8)는, 예를 들면, 각 촬상 영역에 관한 촬상 화상에 나타내지는 특징점의 특징량에 기초하여, 촬상 범위에 대한 내부 관찰의 적정을 판정한다. 제어부(8)는 각 촬상 영역에 관한 촬상 화상에 나타내지는 특징점 중, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대응하는 범위의 특징점인 가공 범위 특징점의 특징량에 기초하여, 촬상 범위에 대한 내부 관찰의 적정을 판정해도 된다. 또한, 제어부(8)는, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대해서, 가공 범위의 특징점의 특징량과, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량을 비교하여, 상정 특징량에 비해 가공 범위 특징점의 특징량이 작을수록, 촬상 범위가 내부 관찰에 적합하다고 판정해도 된다.
도 22는 디바이스 패턴(F1)이 존재하는 위치에 있어서의 내부 관찰의 적정 판정을 설명하는 도면이다. 도 22의 (a)는 디바이스 패턴(1-A)이 존재하는 위치에 있어서의 레이저 가공 전의 내부 관찰 결과이고, 도 22의 (b)는 디바이스 패턴(1-C)이 존재하는 위치에 있어서의 레이저 가공 전의 내부 관찰 결과이며, 도 22의 (c)는 디바이스 패턴(1-F)이 존재하는 위치에 있어서의 레이저 가공 전의 내부 관찰 결과이다. 도 22의 (a)~도 22의 (c)에 있어서, 가로축은 특징량, 세로축은 촬상 깊이를 나타내고 있다.
도 22의 (a)에 나타내지는 예에서는, 디바이스 패턴(1-A)이 존재하는 것에 의해서, 디바이스 패턴(1-A)에 따른 특징량 데이터(950, 960)가 검출되어 있다. 제어부(8)는, 이와 같은 특징량 데이터(950, 960)가 검출되는 경우에 있어서, 먼저, 이들 특징점이, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대응하는 범위의 특징점인 가공 범위 특징점인지 여부를 판정해도 된다. 이제, 특징량 데이터(950, 960)에 관한 특징점이 가공 범위 특징점인 것으로 한다. 이 경우, 제어부(8)는, 가공 범위 특징점의 특징량 데이터(950, 960)와, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량을 비교한다. 도 21의 (b)에 나타내지는 바와 같이, 가공 범위 특징점의 특징량 데이터(950, 960)는, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량(예를 들면 표면(21b)측의 개질 영역(SD2)의 특징량 데이터(902), 및 표면(521b)측의 개질 영역(SD2)의 특징량 데이터(904))과 비교하여 매우 크다. 이 경우, 제어부(8)는 해당 촬상 범위가 내부 관찰에 적합하지 않다고 판정한다. 도 22의 (a)에 나타내지는 예에서는, 제어부(8)는 촬상 범위의 판정 결과를 「×」로 함과 아울러, 내부 관찰의 적정을 나타내는 점수를 「25점」으로 하고 있다.
도 22의 (b)에 나타내지는 예에서는, 디바이스 패턴(1-C)이 존재하는 것에 의해서, 디바이스 패턴(1-C)에 따른 특징량 데이터(970)가 검출되어 있다. 제어부(8)는, 이와 같은 특징량 데이터(970)가 검출되는 경우에 있어서, 먼저, 이들 특징점이, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대응하는 범위의 특징점인 가공 범위 특징점인지 여부를 판정해도 된다. 이제, 특징량 데이터(970)에 관한 특징점이 가공 범위 특징점인 것으로 한다. 이 경우, 제어부(8)는 가공 범위 특징점의 특징량 데이터(970)와, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량을 비교한다. 도 21의 (c)에 나타내지는 바와 같이, 가공 범위 특징점의 특징량 데이터(970)는, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량(예를 들면 표면(21b)측의 개질 영역(SD1)의 특징량 데이터(901), 및 표면(521b)측의 개질 영역(SD1)의 특징량 데이터(903))과 비교하여 매우 작다. 이 경우, 제어부(8)는 해당 촬상 범위가 내부 관찰에 적합하다고 판정한다. 도 22의 (b)에 나타내지는 예에서는, 제어부(8)는 촬상 범위의 판정 결과를 「○」로 함과 아울러, 내부 관찰의 적정을 나타내는 점수를 「90점」으로 하고 있다. 또한, 가공 범위 특징점의 특징량 데이터와, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량이 비교되는 경우에는, 동등한 촬상 깊이끼리에서 비교된다. 예를 들면 도 22의 (c)에 나타내지는 특징량 데이터(970)에 대해서는, 검출된 촬상 깊이가 동등한, 표면(21b)측의 개질 영역(SD1)의 특징량 데이터(901), 및 표면(521b)측의 개질 영역(SD1)의 특징량 데이터(903)(도 21의 (c) 참조)가 비교된다.
도 22의 (c)에 나타내지는 예에서는, 디바이스 패턴(1-F)이 존재하는 것에 의해서, 디바이스 패턴(1-F)에 따른 특징량 데이터(980)가 검출되어 있다. 여기서, 도 22의 (d)에 나타내지는 바와 같이, 디바이스 패턴(1-F)에 따른 특징량 데이터(980)의 Z방향의 위치는, 직접 관찰 영역에 있어서의, 이면(21a)측의 개질 영역(SD1)의 특징량 데이터(901)의 위치, 표면(21b)측의 개질 영역(SD2)의 특징량 데이터(902)의 위치, 및 상 균열 선단의 특징량 데이터(910)의 위치 중 어느 것과도 중첩되어 있지 않다. 또한, 특징량 데이터(980)의 Z방향의 위치는, 이면 반사 영역에 있어서의, 이면(21a)측의 개질 영역(SD1)의 특징량 데이터(903)의 위치, 및 표면(21b)측의 개질 영역(SD2)의 특징량 데이터(904)의 위치 중 어느 것과도 중첩되어 있지 않다. 즉, 특징량 데이터(980)의 특징점이 가공 범위 특징점은 아니다. 이 경우, 특징량 데이터(980)의 특징점이 내부 관찰에 영향을 미치지 않기 때문에, 제어부(8)는 해당 촬상 범위가 내부 관찰에 적합하다고 판정한다. 도 22의 (c)에 나타내지는 예에서는, 제어부(8)는 촬상 범위의 판정 결과를 「○」로 함과 아울러, 내부 관찰의 적정을 나타내는 점수를 「85점」으로 하고 있다. 이와 같이, 제어부(8)는 Z방향에 있어서 디바이스 패턴(F1)이 형성되어 있는 영역을 판정 제외 영역으로 해도 된다. 그리고, 제어부(8)는 촬상 영역 중 판정 제외 영역(여기에서는 디바이스 패턴(F1)이 형성되어 있는 영역)을 제외한 촬상 영역에 관한 촬상 화상만으로부터, 촬상 범위에 대한 내부 관찰의 적정을 판정해도 된다.
제어부(8)는, 서로 다른 복수의 촬상 범위 각각에 대해서, 내부 관찰의 적정을 판정해도 된다. 즉, 예를 들면 도 22의 (a)~도 22의 (c)에 나타내지는 각 촬상 범위(각 디바이스 패턴(1-A~1-F)에 대응한 촬상 범위) 각각에 대해서, 내부 관찰의 적정을 순차적으로 판정해도 된다.
제4 제어에서는, 제어부(8)는 내부 관찰의 적정을 판정한 판정 결과를, 표시 가능한 양태로 디스플레이(150)에 출력한다. 제어부(8)는, 예를 들면 복수의 촬상 범위 각각의 판정 결과를 얻고 있는 경우에는, 레이저 가공 후에 내부 관찰을 행하는 영역에 관한 촬상 범위를 유저가 선택 가능하게 되도록, 복수의 촬상 범위 각각의 판정 결과를 출력한다. 예를 들면, 제어부(8)는, 도 22의 (a)~도 22의 (c)에 나타내지는 바와 같은, 디바이스 패턴(1-A~1-F)의 3개의 판정 결과를 얻고 있는 경우, 각각의 특징량 데이터를 나타내는 도면과, 판정 결과와, 적정을 나타내는 점수가 늘어놓아 표시되도록, 이들 정보를 출력해도 된다.
제어부(8)는 유저가 선택한 촬상 범위에 대한, 촬상 화상 및 위치 정보 중 적어도 어느 일방을, 레이저 가공 후의 내부 관찰에 관한 정보로서 기억한다. 이것에 의해, 같은 웨이퍼(20)에 대해 레이저 가공 후의 내부 관찰이 실시되는 경우에는, 유저가 선택한 촬상 범위에 있어서 내부 관찰이 행해지게 된다.
도 23은 내부 관찰의 위치를 결정하는 검사 방법의 일례에 따른 플로차트이다. 도 23에 나타내지는 바와 같이, 본 검사 방법에서는, 처음에, 레이저 가공 장치(1)가 기동시켜지고(스텝 S1), 웜 업(warm-up)이 행해진다(스텝 S2).
이어서, 촬상 유닛(5, 6)이 제어되는 것에 의해 레이저광(L)의 조사 위치에 관한 웨이퍼 얼라인먼트가 실시됨과 아울러(스텝 S3), 레이저 가공을 행할 때의 가공 깊이(높이)인 Z하이트를 세트하는 하이트 세트 처리가 실시된다(스텝 S4). 하이트 세트 처리에서는, 웨이퍼(20)의 표면(21b)의 하이트 세트 위치가 설정됨과 아울러, 이면(21a)의 하이트 세트 위치가 설정된다. 또한, 웨이퍼 얼라인먼트 및 하이트 세트 처리의 정보에 대해서는, 후술하는 노이즈 판정 처리뿐만 아니라, 스텔스 다이싱 가공 완료된 웨이퍼(20)의 내부 관찰시에도 이용하기 때문에, 내부 관찰 처리를 위해서 정보를 계승해도 된다. 또한, 스텔스 다이싱 가공 완료된 웨이퍼(20)의 처리에서 이미 웨이퍼 얼라인먼트 및 하이트 세트 처리가 완료되어 있는 경우에는, 완료필의 정보를 계승하고, 스텝 S3 및 스텝 S4의 처리를 생략해도 된다. 또한, 스텝 S3 및 스텝 S4의 처리는, 필요에 따라서, 후술하는 노이즈 판정 처리(스텝 S6)에 편입되어도 된다.
이어서, 내부 관찰의 적정을 판정하는 판정 위치(XY방향의 위치)의 지정이 행해진다(스텝 S5). XY방향의 위치는, 예를 들면 스텔스 다이싱의 가공 예정 라인과 연동하고 있어도 된다. 이 경우, 예를 들면 Y방향은 가공 예정 라인마다 인덱스 이동이 행해지고, X방향은 IR카메라 화상을 유저가 보면서 결정되어도 된다. 또한, XY방향의 위치는, 자동 처리에 의해 등간격으로 확인이 행해져도 된다.
이어서, 노이즈 판정 처리(내부 관찰의 적정 판정 처리)가 실시된다(스텝 S6). 노이즈 판정 처리는 내부에 개질 영역이 형성되기 전의 웨이퍼(20)에서 실시된다. 그리고, 촬상 범위를 변경하는 지정 개소 변경이 필요한지 여부가 판정되고(스텝 S7), 필요한 경우에는 판정 위치(XY방향의 위치)의 지정이 다시 행해진다(스텝 S5). 필요하지 않은 경우에는 처리가 완료된다.
다음으로, 상술한 노이즈 판정 처리(스텝 S6)의 상세에 대해서, 도 24~도 34를 참조하여 설명한다. 도 24~도 26은 노이즈 판정 처리의 제1 예의 설명에 관한 도면이다. 도 27~도 29는 노이즈 판정 처리의 제2 예의 설명에 관한 도면이다. 도 30~도 34는 노이즈 판정 처리의 제3 예의 설명에 관한 도면이다.
노이즈 판정 처리의 제1 예에 대해 설명한다. 도 24는 노이즈 판정 처리의 제1 예를 설명하는 도면이다. 도 25는 해당 제1 예에 따른 플로차트이다. 도 26은 해당 제1 예의 노이즈 판정 결과의 일례를 나타내는 도면이다. 제1 예에서는, 도 24에 나타내지는 바와 같이, 디바이스 패턴을 가지는 두께(t=775㎛)의 웨이퍼를 SDBG(Stealth Dicing Before Grinding) 가공하기 위한 레시피(가공 조건)를 내부 관찰에 의해서 도출할 때에, 사전 준비로서, 내부 관찰을 행하는 위치를 결정한다. 제1 예에서는, 처음에, 촬상 범위와 노이즈의 판정 제외 영역을 나타내는 정보가 설정된다. 이제, 도 24에 나타내지는 바와 같이, 촬상 범위가 이면(21a)의 하이트 세트 위치로부터 ±400㎛(즉, 직접 관찰 영역측으로 400㎛, 이면 반사 영역측으로 400㎛)로 설정되고, 노이즈의 판정 제외 영역이 이면(21a)의 하이트 세트 위치로부터 ±20㎛로 설정되는 것으로 한다. 이와 같은 노이즈의 판정 제외 영역은, 예를 들면, 디바이스 패턴이 형성되어 있는 영역을 포함하고, 또한, 내부 관찰을 행하고 싶은 영역(예를 들면, 개질 영역 형성 예정 위치(Va, Vb)의 부근)을 포함하지 않도록 설정된다.
또한, 촬상 범위는 수치가 지정되어 설정되어도 되고, SDBG 등의 가공 방법이나 가공 레시피에 기초하여 자동으로 설정되어도 된다. 또한, 노이즈의 판정 제외 영역은, 수치가 지정되어 설정되어도 되고, 「디바이스 영역」(디바이스 패턴의 영역)과의 설정이 이루어지는 것에 의해서 자동으로 할당되어도 된다.
도 25에 나타내지는 바와 같이, 노이즈 판정 처리의 제1 예에서는, 처음에, 웨이퍼(20)의 표면(21b)의 하이트 세트 위치 및 이면(21a)의 하이트 세트 위치와, 웨이퍼(20)에 있어서의 Z방향의 좌표 위치와, 촬상 범위를 나타내는 정보에 기초하여, 촬상 개시 위치가 산출되고, 촬상 개시 위치로 촬상 유닛(4)이 이동하도록 구동 유닛(7)이 제어된다(스텝 S101). 그리고, 촬상 개시 위치로부터 촬상 종료 위치까지 촬상 유닛(4)이 Z방향을 따라서 이동하면서 반복 촬상이 행해진다(스텝 S102). 제1 예에서는, 촬상 개시 위치로부터 촬상 종료 위치까지, 노이즈의 판정 제외 영역도 포함하여 촬상이 행해진다. 촬상은 예를 들면 디바이스 패턴의 영역에 핀트가 맞춰져, 반복 실시된다.
이어서, 촬상 유닛(4)에 의해서 촬상된 촬상 화상에 기초하여, 내부 관찰에 있어서 노이즈가 될 수 있는 요인이 검출되고(스텝 S103), 검출된 정보에 기초하여, 본 촬상 범위에 있어서의 내부 관찰의 적정의 판정(노이즈 판정)이 실시된다(스텝 S104). 노이즈 판정은 노이즈의 판정 제외 영역인 이면(21a)의 하이트 세트 위치로부터 ±20μ의 범위를 제외하고 실시된다.
그리고, 노이즈 판정 결과가 디스플레이(150)에 표시된다(스텝 S105). 도 26에서는, 가로축에 특징량, 세로축에 촬상 깊이가 나타내지고, 각 촬상 영역의 특징량이 나타내져 있다. 도 26에 나타내지는 노이즈 판정 결과의 예에서는, 노이즈의 판정 제외 영역만 특징량이 크게 되어 있고, 판정 대상의 영역에서는 특징량이 크게 되어 있지 않다. 이 때문에, 도 26에 나타내지는 바와 같이, 노이즈 판정 결과가 「○」(내부 관찰에 적합함)로 판정되어 있다. 또한, 상술한 바와 같이, 제1 예에서는 노이즈의 판정 제외 영역에 대해서 노이즈 판정의 대상으로부터는 제외되어 있지만, 촬상이 행해지고 있다. 이 때문에, 노이즈의 판정 제외 영역의 촬상 화상으로부터 검출되는 특징량에 기초하여, 필요에 따라서, 판정 제외 영역의 변경을 행할 수 있다.
마지막으로, 촬상 화상 및 위치 정보 중 적어도 어느 일방이, 레이저 가공 후의 내부 관찰에 관한 정보로서 등록된다. 또한, 내부 관찰 위치 등의 등록은, 유저의 판단으로 행해져도 되고, 자동으로 행해져도 된다. 또한, 복수의 내부 관찰 위치 등이 등록되어도 된다. 또한, 내부 관찰 위치 등의 정보가 오토 얼라인먼트 등의 데이터와 연결되어, 내부 관찰시에 있어서 등록된 위치로 자동(또는 버튼 조작 등)으로 이동해도 된다.
노이즈 판정 처리의 제2 예에 대해 설명한다. 도 27은 노이즈 판정 처리의 제2 예를 설명하는 도면이다. 도 28은 해당 제2 예에 따른 플로차트이다. 도 29는 해당 제2 예의 노이즈 판정 결과의 일례를 나타내는 도면이다. 제2 예에서는, 도 27에 나타내지는 바와 같이, 디바이스 패턴을 가지는 두께(t=775㎛)의 웨이퍼를 SDBG(Stealth Dicing Before Grinding) 가공하기 위한 레시피(가공 조건)를 내부 관찰에 의해서 도출할 때에, 사전 준비로서, 내부 관찰을 행하는 위치를 결정한다. 제2 예에서는, 처음에, 촬상 범위와 노이즈의 판정 제외 영역을 나타내는 정보가 설정된다. 이제, 도 27에 나타내지는 바와 같이, 촬상 범위가 이면(21a)의 하이트 세트 위치로부터 ±400㎛(즉, 직접 관찰 영역측으로 400㎛, 이면 반사 영역측으로 400㎛)로 설정되고, 노이즈의 판정 제외 영역이 이면(21a)의 하이트 세트 위치로부터 ±20㎛로 설정되는 것으로 한다.
여기서, 상술한 제1 예에서는 노이즈의 판정 제외 영역도 포함하여 촬상 범위로 되어 있던 것에 대해, 제2 예에서는, 노이즈의 판정 제외 영역이 촬상 범위로부터 제외되어 있다. 예를 들면, 디바이스 패턴의 영역이 기지(旣知)로 되어 있는(기지의 노이즈인) 경우 등에 있어서는, 이와 같이 노이즈의 판정 제외 영역을 촬상하지 않는 것에 의해서, 촬상 시간을 단축할 수 있다.
도 28에 나타내지는 바와 같이, 노이즈 판정 처리의 제2 예에서는, 처음에, 웨이퍼(20)의 표면(21b)의 하이트 세트 위치 및 이면(21a)의 하이트 세트 위치와, 웨이퍼(20)에 있어서의 Z방향의 좌표 위치와, 촬상 범위를 나타내는 정보에 기초하여, 촬상 개시 위치가 산출되고, 촬상 개시 위치로 촬상 유닛(4)이 이동하도록 구동 유닛(7)이 제어된다(스텝 S201). 그리고, 촬상 개시 위치로부터 촬상 종료 위치까지 촬상 유닛(4)이 Z방향을 따라서 이동하면서 반복 촬상이 행해진다(스텝 S202). 제2 예에서는, 노이즈의 판정 제외 영역을 제외한 각 영역에 대해서, 촬상 개시 위치로부터 촬상 종료 위치까지 촬상이 행해진다.
이어서, 촬상 유닛(4)에 의해서 촬상된 촬상 화상에 기초하여, 내부 관찰에 있어서 노이즈가 될 수 있는 요인이 검출되고(스텝 S203), 검출된 정보에 기초하여, 본 촬상 범위에 있어서의 내부 관찰의 적정의 판정(노이즈 판정)이 실시된다(스텝 S204). 노이즈 판정은 모든 촬상 영역에 대해서 실시된다.
그리고, 노이즈 판정 결과가 디스플레이(150)에 표시된다(스텝 S205). 도 29에서는, 가로축에 특징량, 세로축에 촬상 깊이가 나타내지고, 각 촬상 영역의 특징량이 나타내져 있다. 제2 예에서는 판정 제외 영역이 촬상되고 있지 않기 때문에, 도 29에 있어서, 판정 제외 영역의 특징량이 나타내져 있지 않다. 도 29에 나타내지는 노이즈 판정 결과의 예에서는, 판정 대상의 영역에서는 특징량이 크게 되어 있지 않기 때문에, 노이즈 판정 결과가 「○」(내부 관찰에 적합함)로 판정되어 있다. 또한, 노이즈 판정 결과에 기초하여, 필요에 따라서, 판정 제외 영역의 변경(주로, 범위를 확장하는 방향의 변경)을 행할 수 있다. 마지막으로, 촬상 화상 및 위치 정보 중 적어도 어느 일방이, 레이저 가공 후의 내부 관찰에 관한 정보로서 등록된다.
노이즈 판정 처리의 제3 예에 대해 설명한다. 제3 예에서는, 노이즈 요인으로서, 디바이스 패턴에 더하여 표면(21b)에 있어서의 연삭 자국(BG 자국)이 문제가 될 수 있는 경우의 노이즈 판정에 대해 설명한다. 예를 들면, 레이저 가공 후에 있어서 균열이 표면(21b)에 도달하는 FC(풀 컷) 가공을 행하는 경우에는, 표면(21b)의 관찰도 행하기 때문에, 연삭 자국(BG 자국)이 노이즈 요인이 될 수 있다. 먼저, 비교예에 따른 BG 자국의 검출예에 대해서, 도 30을 참조하여 설명한다.
도 30의 (a)는 표면(21b)에 형성되어 있는 BG 자국의 일례를 나타내는 도면이다. BG 자국은 가공 예정 라인에 대해서 다양한 방향으로 형성될 수 있다. 예를 들면, BG 자국이 가공 예정 라인에 대해서 수직하거나 비스듬하게 형성되어 있는 영역에서는 BG 자국이 균열 등이라고 오검출되기 어렵지만, BG 자국이 가공 예정 라인에 대해서 수평으로 형성되어 있는 영역에서는 BG 자국이 균열 등이라고 오검출되어 버리는 경우가 있다. 비교예에 따른 BG 자국의 검출 방법에 있어서는, 예를 들면, 촬상 화상에 있어서의 반사율(휘도값)에 기초하여 균열 검출 위치를 결정하고 있다. 도 30의 (b)에 있어서는, XY 평면 각각의 위치에 있어서의 휘도값이 나타내져 있다. 그렇지만, 이와 같은 반사율(휘도값)에 기초하는 검출 방법에서는, 오검출되기 어려운 BG 자국과 오검출되기 쉬운 BG 자국을 적절하게 분리할 수 없는 경우가 있다.
도 31은 본 실시 형태에 따른 BG 자국의 검출예를 설명하는 도면이다. 본 실시 형태에 따른 검출 방법에서는, 웨이퍼면 내(XY 평면 내)에 있어서의 어느 위치의 BG 자국이 노이즈가 되는지를 적절하게 분리할 수 있다. 즉, 도 31의 (a)와 같이 가공 진행 방향에 대해서 수직에 가까운 BG 자국에 대해서는, 도 31의 (b)에 나타내지는 바와 같이 선분(균열이라고 오검출하는 노이즈)으로서 검출하지 않고, 도 31의 (c)와 같이 가공 진행 방향에 대해서 수평에 가까운 BG 자국에 대해서는, 도 31의 (d)에 나타내지는 바와 같이, 선분(700)으로서 검출할 수 있다. 이것에 의해, 선분으로서 검출되어 오검출이 될 수 있는 BG 자국이 존재하는 촬상 범위에 대해서는, 내부 관찰에 적합하지 않다고 판정하는 것이 가능하게 된다.
도 32는 노이즈 판정 처리의 제3 예를 설명하는 도면이다. 도 33은 해당 제3 예에 따른 플로차트이다. 도 34는 해당 제3 예의 노이즈 판정 결과의 일례를 나타내는 도면이다. 제3 예에서는, 도 32에 나타내지는 바와 같이, 디바이스 패턴을 가지는 두께(t=400㎛)의 웨이퍼를 FC(풀 컷) 가공하기 위한 레시피(가공 조건)를 내부 관찰에 의해서 도출할 때에, 사전 준비로서, 내부 관찰을 행하는 위치를 결정한다. 제3 예에서는, 처음에, 촬상 범위와 노이즈의 판정 제외 영역을 나타내는 정보가 설정된다. 이제, 도 32에 나타내지는 바와 같이, 촬상 범위가 이면(21a)의 하이트 세트 위치로부터 ±420㎛(즉, 직접 관찰 영역측으로 420㎛, 이면 반사 영역측으로 420㎛)로 설정되고, 노이즈의 판정 제외 영역이 이면(21a)의 하이트 세트 위치로부터 ±20㎛로 설정되는 것으로 한다. 제3 예에서는, 제2 예와 마찬가지로, 노이즈의 판정 제외 영역이 촬상 범위로부터 제외되어 있다. Z방향에 있어서의 디바이스 패턴의 영역(이면(21a)의 영역)에 대해서는 판정 제외 영역에 포함되어 있다. 한편으로, Z방향에 있어서의 BG 자국의 영역(표면(21b)의 영역)에 대해서는, 가공 후에 균열을 검출하는 영역이기도 하기 때문에, Z방향의 판정 제외 영역에는 포함되어 있지 않고, 촬상 범위에 포함되어 있다.
도 33에 나타내지는 바와 같이, 노이즈 판정 처리의 제3 예에서는, 처음에, 웨이퍼(20)의 표면(21b)의 하이트 세트 위치 및 이면(21a)의 하이트 세트 위치와, 웨이퍼(20)에 있어서의 Z방향의 좌표 위치와, 촬상 범위를 나타내는 정보에 기초하여, 촬상 개시 위치가 산출되고, 촬상 개시 위치로 촬상 유닛(4)이 이동하도록 구동 유닛(7)이 제어된다(스텝 S301). 그리고, 촬상 개시 위치로부터 촬상 종료 위치까지 촬상 유닛(4)이 Z방향을 따라서 이동하면서 반복 촬상이 행해진다(스텝 S302). 제3 예에서는, 노이즈의 판정 제외 영역을 제외한 각 영역에 대해서, 촬상 개시 위치로부터 촬상 종료 위치까지 촬상이 행해진다.
이어서, 촬상 유닛(4)에 의해서 촬상된 촬상 화상에 기초하여, 내부 관찰에 있어서 노이즈가 될 수 있는 요인이 검출되고(스텝 S303), 검출된 정보에 기초하여, 본 촬상 범위에 있어서의 내부 관찰의 적정의 판정(노이즈 판정)이 실시된다(스텝 S304). 노이즈 판정은 모든 촬상 영역에 대해서 실시된다.
도 34의 (a) 및 도 34의 (b)에서는, 가로축에 특징량, 세로축에 촬상 깊이가 나타내지고, 각 촬상 영역의 특징량이 나타내져 있다. 이제, 도 34의 (a)에 나타내지는 바와 같이, 표면(21b)의 부근에 있어서 BG 자국에 관한 특징량 데이터(990)가 검출되어 있는 것으로 한다. 이 경우, 내부 관찰에 있어서 해당 BG 자국에 관한 선분이 균열이라고 오검출될 우려가 있으므로, 노이즈 판정 결과가 「×」(내부 관찰에 적함하지 않음)로 판정된다. 제3 예에서는, 노이즈 판정이 XY 평면에 있어서의 복수 개소에서 실시된다. 즉, 노이즈 판정이 종료한 후에, 도 33에 나타내지는 바와 같이 촬상 범위의 XY위치가 이동하고(스텝 S305), 다시 스텝 S301~스텝 S304의 처리가 실시된다. 이제, 도 34의 (b)에 나타내지는 바와 같이, XY위치가 변경되어 실시된 노이즈 판정에 있어서, BG 자국에 관한 특징량 데이터가 검출되지 않고, 디바이스 패턴에 관한 특징량 데이터(971)만이 검출된 것으로 한다. 도 34의 (b)에 나타내지는 노이즈 판정 결과의 예에서는, 판정 대상의 영역에서는 특징량이 크게 되어 있지 않기 때문에, 노이즈 판정 결과가 「○」(내부 관찰에 적합함)로 판정되어 있다. 또한, 노이즈 판정 결과에 기초하여, 필요에 따라서, 판정 제외 영역의 변경(주로, 범위를 확장하는 방향의 변경)을 행할 수 있다. 마지막으로, 촬상 화상 및 위치 정보 중 적어도 어느 일방이, 레이저 가공 후의 내부 관찰에 관한 정보로서 등록된다. 이상과 같이, 제3 예에서는, XY위치를 변경하면서, 오검출이 발생하지 않는 위치가 탐색되고 있다.
여기서, 상술한 각 노이즈 요인에 대해서는, 디바이스 종류 등에 기초하여, 사전에 노이즈가 될 수 있는 것과 노이즈가 될 수 없는 것이 판별되어 있는 경우가 있다. 예를 들면, 노이즈 요인으로서, 디바이스 패턴에 기인하는 노이즈, BG 자국에 기인하는 노이즈, 및 광 검출부(44)에 부착되어 있는 이물에 기인하는 웨이퍼(20)의 실리콘 내부의 노이즈가 있는 것으로 한다. 이 경우, 디바이스 종류에 따라서는, 디바이스 패턴에 기인하는 노이즈, 및 BG 자국에 기인하는 노이즈의 유무가 사전에 유저가 알고 있는 경우가 있다. 또한, 과거의 실적으로부터, 실리콘 내부의 노이즈가 없는 것이 사전에 유저가 알고 있는 경우가 있다. 이와 같은 경우에, 노이즈 판정이 불필요한 노이즈 요인의 판정 영역에 대해서는 판정이 제외되도록 유저가 지정할 수 있도록, 디스플레이(150)의 GUI(Graphical User Interface)가 설정되어 있어도 된다. 즉, 노이즈 판정의 판정 영역의 조합을, 유저가 GUI에서 지정해도 된다. 예를 들면, 표면이 경면 마무리이며 이면에 디바이스 패턴이 부여되어 있는 웨이퍼에 대해서는, 미리 BG 자국에 기인하는 노이즈의 판정이 불필요하다고 알기 때문에, 디바이스 패턴에 기인하는 노이즈의 판정, 및 실리콘 내부의 노이즈의 판정의 조합으로 실시되도록, 유저가 GUI에서 지정해도 된다. 또한, 미리 실리콘 내부의 노이즈가 생기는 영역을 알고 있는 경우에는, 디바이스 패턴에 기인하는 노이즈의 판정, 및 BG 자국에 기인하는 노이즈의 판정의 조합으로 실시되도록, 유저가 GUI에서 지정해도 된다. 이것에 의해, 노이즈 판정의 속도를 높일 수 있다. 또한, 상술한 3개의 노이즈 판정의 조합 지정뿐만 아니라, 예를 들면, 개질 영역의 부근만 노이즈 판정을 실시하는 것을 지정 가능한 GUI가 설정되어 있어도 된다.
다음으로, 본 실시 형태에 따른 레이저 가공 장치(1)의 작용 효과에 대해 설명한다.
본 실시 형태에 따른 레이저 가공 장치(1)는, 웨이퍼(20)에 대해서 투과성을 가지는 광을 출력하고, 웨이퍼(20)를 전반한 광을 검출하는 것에 의해, 웨이퍼(20)의 내부를 촬상하는 촬상 유닛(4)과, 촬상 유닛(4)을 연직 방향인 Z방향을 따라서 이동시키는 구동 유닛(7)과, 제어부(8)를 구비하고, 제어부(8)는, 웨이퍼(20)의 소정의 촬상 범위에 있어서의 Z방향을 따른 각 촬상 영역이 촬상 가능하게 되는 위치로 촬상 유닛(4)이 순차적으로 이동하도록 구동 유닛(7)을 제어하는 것과, 각 촬상 영역이 촬상되도록 촬상 유닛(4)을 제어하는 것과, 각 촬상 영역에 관한 광을 검출한 촬상 유닛(4)으로부터 출력되는 촬상 화상에 기초하여, 촬상 범위에 대한, 레이저 가공 후의 내부 관찰의 적정을 판정하는 것을 실행하도록 구성되어 있다.
본 실시 형태에 따른 레이저 가공 장치(1)에서는, Z방향을 따라서 이동하는 촬상 유닛(4)에 의해서, 웨이퍼(20)의 소정의 촬상 범위에 있어서의 Z방향을 따른 각 촬상 영역이 촬상된다. 그리고, 본 레이저 가공 장치(1)에서는, 각 촬상 영역에 관한 촬상 화상에 기초하여, 촬상 범위에 대해서, 레이저 가공 후의 내부 관찰의 적정이 판정된다. 이와 같이, 웨이퍼(20)의 Z방향의 각 촬상 영역의 촬상 화상이 고려되는 것에 의해, Z방향을 따라서, 레이저 가공 후의 내부 관찰에 있어서 노이즈가 될 수 있는 것의 영향을 특정할 수 있다. 그리고, 촬상 범위의 Z방향을 따른 각 영역에 대해서 노이즈가 될 수 있는 것의 영향을 특정한 다음, 촬상 범위에 대해서 내부 관찰의 적정이 판정되는 것에 의해, 내부 관찰에 적합한 촬상 범위인지 여부를 고정밀도로 판정할 수 있다. 이와 같은 구성에 의하면, 레이저 가공 후에 있어서는, 내부 관찰에 적합한 촬상 범위에 있어서 내부 관찰을 행하는 것이 가능하게 되므로, 레이저 가공 후의 내부 관찰에 있어서 노이즈의 영향을 배제하여, 웨이퍼의 가공 상태의 추정 정밀도를 향상시킬 수 있다.
제어부(8)는, 각 촬상 영역에 관한 촬상 화상에 나타내지는 특징점의 특징량에 기초하여, 촬상 범위에 대한 내부 관찰의 적정을 판정해도 된다. 촬상 화상에 나타내지는 특징점의 특징량이 고려되는 것에 의해, 레이저 가공 후의 내부 관찰에 있어서의 특징량의 검출에 주는 영향의 크기가 적절하게 특정되고, 내부 관찰에 적합한 촬상 범위인지 여부를 보다 고정밀도로 판정할 수 있다.
제어부(8)는 각 촬상 영역에 관한 촬상 화상에 나타내지는 특징점 중, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대응하는 범위의 특징점인 가공 범위 특징점의 특징량에 기초하여, 촬상 범위에 대한 내부 관찰의 적정을 판정해도 된다. 이와 같은 구성에 의하면, 레이저 가공 후의 내부 관찰에 있어서의 특징량의 검출에 영향을 주는 가능성이 높은 범위의 특징점(가공 범위 특징점)의 특징량만이 고려되게 되므로, 내부 관찰에 적합한 촬상 범위인지 여부를 보다 고정밀도로 판정할 수 있다.
제어부(8)는, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대해서, 가공 범위 특징점의 특징량과, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량을 비교하고, 상정 특징량에 비해 가공 범위 특징점의 특징량이 작을수록, 촬상 범위가 내부 관찰에 적합하다고 판정해도 된다. 이와 같이, 가공 범위 특징점의 특징량과 레이저 가공에 기인하는 특징점의 특징량(상정 특징량)이 비교되고, 가공 범위 특징점의 특징량이 상대적으로 작아, 레이저 가공 후의 내부 관찰에 있어서의 특징량의 검출에 주는 영향이 작은 경우에, 촬상 범위가 내부 관찰에 적합하다고 판정되는 것에 의해, 내부 관찰에 적합한 촬상 범위인지 여부를 보다 고정밀도로 판정할 수 있다.
제어부(8)는 내부 관찰의 적정을 판정한 판정 결과를 출력하는 것을 더 실행하도록 구성되어 있어도 된다. 이것에 의해, 유저가 판정 결과를 확인할 수 있고, 판정 결과에 기초하여, 유저가 내부 관찰을 행하는 영역을 결정하는 것이 가능하게 된다.
제어부(8)는, 서로 다른 복수의 촬상 범위 각각에 대해서, 내부 관찰의 적정을 판정하고, 레이저 가공 후에 내부 관찰을 행하는 영역에 관한 촬상 범위를 유저가 선택 가능하게 되도록, 복수의 촬상 범위 각각의 판정 결과를 출력해도 된다. 이와 같이, 복수의 촬상 범위 각각에 대해서 내부 관찰의 적정이 판정되고, 각 판정 결과가 출력되는 것에 의해, 유저가 각 판정 결과를 비교하면서 내부 관찰을 행하는 영역을 선택하는 것이 가능하게 된다.
제어부(8)는 유저가 선택한 촬상 범위에 대한, 촬상 화상 및 위치 정보 중 적어도 어느 일방을, 레이저 가공 후의 내부 관찰에 관한 정보로서 기억해도 된다. 이것에 의해, 유저가 선택한 촬상 범위의 정보가, 레이저 가공 후의 내부 관찰에 관한 정보로서 확실하게 등록되고, 유저의 선택 결과를 고려한 촬상 범위(즉, 노이즈의 영향을 받기 어려운 촬상 범위)에서 내부 관찰을 행할 수 있다.
웨이퍼(20)는 레이저가 조사되는 면의 반대측 면에 디바이스 패턴을 가지고 있고, 제어부(8)는, 각 촬상 영역 중 디바이스 패턴을 제외한 촬상 영역에 관한 촬상 화상에 기초하여, 촬상 범위에 대한 내부 관찰의 적정을 판정해도 된다. 디바이스 패턴이 형성된 영역에 대해서는, 촬상 화상에 있어서의 특징점의 특징량이 크게 되지만, 개질층이나 균열이 형성되는 영역으로는 되지 않는다. 그 때문에, 디바이스 패턴이 형성된 영역의 촬상 화상이 제외되고 그 외의 촬상 화상만으로부터 내부 관찰의 적정이 판정되는 것에 의해, 실제로 내부 관찰을 행하는 영역의 촬상 화상에 기초하여, 촬상 범위가 내부 관찰에 적합한지 여부를 보다 고정밀도로 판정할 수 있다.
1…레이저 가공 장치(검사 장치) 4…촬상 유닛(촬상부)
7…구동 유닛(구동부) 8…제어부
20…웨이퍼

Claims (9)

  1. 웨이퍼에 대해서 투과성을 가지는 광을 출력하고, 상기 웨이퍼를 전반(傳搬)한 상기 광을 검출하는 것에 의해, 상기 웨이퍼의 내부를 촬상하는 촬상부와,
    상기 촬상부를 연직 방향인 Z방향을 따라서 이동시키는 구동부와,
    제어부를 구비하고,
    상기 제어부는,
    상기 웨이퍼의 소정의 촬상 범위에 있어서의 상기 Z방향을 따른 각 촬상 영역이 촬상 가능하게 되는 위치로 상기 촬상부가 순차적으로 이동하도록 상기 구동부를 제어하는 것과,
    상기 각 촬상 영역이 촬상되도록 상기 촬상부를 제어하는 것과,
    상기 각 촬상 영역에 관한 상기 광을 검출한 상기 촬상부로부터 출력되는 촬상 화상에 기초하여, 상기 촬상 범위에 대한, 레이저 가공 후의 내부 관찰의 적정(適正)을 판정하는 것
    을 실행하도록 구성되어 있는 검사 장치.
  2. 청구항 1에 있어서,
    상기 제어부는, 상기 각 촬상 영역에 관한 상기 촬상 화상에 나타내지는 특징점의 특징량에 기초하여, 상기 촬상 범위에 대한 상기 내부 관찰의 적정을 판정하는 검사 장치.
  3. 청구항 2에 있어서,
    상기 제어부는 상기 각 촬상 영역에 관한 상기 촬상 화상에 나타내지는 특징점 중, 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대응하는 범위의 특징점인 가공 범위 특징점의 특징량에 기초하여, 상기 촬상 범위에 대한 상기 내부 관찰의 적정을 판정하는 검사 장치.
  4. 청구항 3에 있어서,
    상기 제어부는, 상기 레이저 가공 후에 내부 관찰을 행하고 싶은 영역에 대해서, 상기 가공 범위 특징점의 특징량과, 레이저 가공에 기인하는 특징점의 특징량으로서 상정되는 상정 특징량을 비교하고, 상기 상정 특징량에 비해 상기 가공 범위 특징점의 특징량이 작을수록, 상기 촬상 범위가 상기 내부 관찰에 적합하다고 판정하는 검사 장치.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 제어부는 상기 내부 관찰의 적정을 판정한 판정 결과를 출력하는 것을 더 실행하도록 구성되어 있는 검사 장치.
  6. 청구항 5에 있어서,
    상기 제어부는,
    서로 다른 복수의 상기 촬상 범위 각각에 대해서, 상기 내부 관찰의 적정을 판정하고,
    레이저 가공 후에 내부 관찰을 행하는 영역에 관한 상기 촬상 범위를 유저가 선택 가능하게 되도록, 상기 복수의 촬상 범위 각각의 판정 결과를 출력하는 검사 장치.
  7. 청구항 6에 있어서,
    상기 제어부는 유저가 선택한 상기 촬상 범위에 대한, 상기 촬상 화상 및 위치 정보 중 적어도 어느 일방을, 레이저 가공 후의 내부 관찰에 관한 정보로서 기억하는 검사 장치.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
    상기 웨이퍼는 레이저가 조사되는 면의 반대측 면에 디바이스 패턴을 가지고 있고,
    상기 제어부는, 상기 각 촬상 영역 중 상기 디바이스 패턴을 제외한 촬상 영역에 관한 상기 촬상 화상에 기초하여, 상기 촬상 범위에 대한 상기 내부 관찰의 적정을 판정하는 검사 장치.
  9. 웨이퍼의 내부의 소정의 촬상 범위에 대해서, 연직 방향인 Z방향을 따라서 촬상 영역을 변화시키면서 촬상을 행하는 것과,
    각 촬상 영역에 관한 촬상 화상에 기초하여, 상기 촬상 범위에 대한, 레이저 가공 후의 내부 관찰의 적정을 판정하는 것을 포함하는 검사 방법.
KR1020220161401A 2021-12-08 2022-11-28 검사 장치 및 검사 방법 KR20230086588A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021199137A JP2023084815A (ja) 2021-12-08 2021-12-08 検査装置及び検査方法
JPJP-P-2021-199137 2021-12-08

Publications (1)

Publication Number Publication Date
KR20230086588A true KR20230086588A (ko) 2023-06-15

Family

ID=86632013

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220161401A KR20230086588A (ko) 2021-12-08 2022-11-28 검사 장치 및 검사 방법

Country Status (4)

Country Link
JP (1) JP2023084815A (ko)
KR (1) KR20230086588A (ko)
CN (1) CN116242832A (ko)
TW (1) TW202326126A (ko)

Also Published As

Publication number Publication date
JP2023084815A (ja) 2023-06-20
CN116242832A (zh) 2023-06-09
TW202326126A (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
US20230154774A1 (en) Inspection device and inspection method
US20230095941A1 (en) Laser machining device and laser machining method
US12023761B2 (en) Inspection device and inspection method
KR20230086588A (ko) 검사 장치 및 검사 방법
US20230158609A1 (en) Laser processing device and laser processing method
CN114799575A (zh) 观察装置和观察方法
JP7510296B2 (ja) 検査装置及び検査方法
JP7385504B2 (ja) 検査装置及び処理システム
JP7305495B2 (ja) 検査装置及び検査方法
CN114905169A (zh) 观察装置和观察方法
JP7493967B2 (ja) 検査装置及び検査方法
CN114905170A (zh) 观察装置、观察方法和观察对象物
JP7563886B2 (ja) 検査装置及び検査方法
JP7288138B2 (ja) 検体観察装置、検体観察方法
CN116246968A (zh) 检查方法