KR20230084888A - Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor - Google Patents

Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor Download PDF

Info

Publication number
KR20230084888A
KR20230084888A KR1020210173027A KR20210173027A KR20230084888A KR 20230084888 A KR20230084888 A KR 20230084888A KR 1020210173027 A KR1020210173027 A KR 1020210173027A KR 20210173027 A KR20210173027 A KR 20210173027A KR 20230084888 A KR20230084888 A KR 20230084888A
Authority
KR
South Korea
Prior art keywords
type silicon
solar cell
heterojunction solar
less
sputtering target
Prior art date
Application number
KR1020210173027A
Other languages
Korean (ko)
Inventor
윤상원
옥강민
강신혁
문정현
이홍철
박형율
Original Assignee
케이브이머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이브이머티리얼즈 주식회사 filed Critical 케이브이머티리얼즈 주식회사
Priority to KR1020210173027A priority Critical patent/KR20230084888A/en
Priority to CN202211551023.2A priority patent/CN116230785A/en
Publication of KR20230084888A publication Critical patent/KR20230084888A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A heterojunction solar cell may include an electrode layer containing more than 0 wt% and less than 3 wt% of tin oxide, more than 0 wt% and less than 1 wt% of germanium oxide, and more than 96 wt% and less than 100 wt% of indium oxide. The electrode layer may have an average transmittance of 86 % or more and a reflectance of 13.2 % or less for light with a wavelength of 300 to 1200 nm. A sputtering target is used to deposit the electrode layer of the heterojunction solar cell and may include a sintered body containing more than 0 wt% and less than 3 wt% of tin oxide, more than 0 wt% and less than 1 wt% of germanium oxide, and more than 96 wt% and less than 100 wt% of indium oxide, and having an average grain size of 5 micrometers or more. The sputtering target may include one or more phases from In_2O_3, SnO_2, In_4Sn_3O_12, In_1.91Sn_0.05O_3, and In_1.91Sn_0.09O_3.05. Accordingly, a transparent conductive film that can maximize the efficiency of a solar cell can be provided.

Description

이종접합 태양전지, 그 제조방법 및 이에 사용되는 스퍼터링 타겟{Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor} Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor}

본 발명은 태양전지용 산화물 스퍼터링 타겟 및 이를 통해 증착된 이종접합 태양전지의 저반사 전극층에 관한 것으로서 더욱 상세하게는 도펀트를 사용하여 투명전도막의 표면 요철 모양을 제어하여 반사율을 낮추며 기존의 전도도를 유지할수 있는 타겟 및 이를 통해 증착된 이종접합 태양전지의 전극층에 관한 것이다.The present invention relates to an oxide sputtering target for a solar cell and a low-reflection electrode layer of a heterojunction solar cell deposited therethrough. It relates to a target with a surface and an electrode layer of a heterojunction solar cell deposited therethrough.

태양전지는 태양으로부터 받은 빛 에너지를 전기에너지로 바꾸는 발전이다. 전기에너지로 바뀌는 효율을 높이기 위해서는 태양전지에 적용되는 투명전도막의 투과율과 전도도 모두 중요하게 작용한다. 따라서 태양전지에 적용하기 위해서는 태양으로부터 오는 빛을 효과적으로 투과시키는 것이 매우 중요하다. 많은 양의 빛을 광흡수층으로 보내기 위해 투과율을 향상시키는 것도 중요하지만 반사율을 낮추는 것 또한 매우 중요하다. 반사되는 빛이 많으며 투과율이 아무리 좋아도 박막의 투과율 향상에는 한계가 있기 때문이다. A solar cell is a power generation that converts light energy received from the sun into electrical energy. In order to increase the efficiency of conversion into electrical energy, both the transmittance and conductivity of the transparent conductive film applied to the solar cell play an important role. Therefore, it is very important to effectively transmit light from the sun in order to apply it to a solar cell. It is important to improve the transmittance in order to send a large amount of light to the light absorption layer, but it is also very important to lower the reflectance. This is because there is a lot of reflected light and there is a limit to improving the transmittance of the thin film no matter how good the transmittance is.

태양전지의 가장 큰 이슈 중 하나는 효율을 높이는 것이다. 이종접합 태양전지 분야에서는 효율을 높이기 위해 다양한 노력이 이루어지고 있다. 본 발명의 목적은 전극층(TCO층)의 반사율을 낮추어 이종접합 태양전지의 효율 향상에 도움이 되는 전극층을 증착할 수 있는 스퍼터링 타겟 및 이를 통해 성막된 박막에 관한 것이다. 더 상세하게는 기존 태양전지의 전극층에는 사용되지 않던 도펀트를 활용하여 도펀트가 없는 박막에 비해 표면을 거칠게 만들어 반사율을 낮추어 태양전지의 효율을 향상시킬 수 있는 투명전도막을 제공하는 것이다. One of the biggest issues of solar cells is to increase efficiency. In the field of heterojunction solar cells, various efforts have been made to increase efficiency. An object of the present invention relates to a sputtering target capable of depositing an electrode layer that helps to improve the efficiency of a heterojunction solar cell by lowering the reflectance of an electrode layer (TCO layer) and a thin film formed through the sputtering target. More specifically, to provide a transparent conductive film capable of improving the efficiency of a solar cell by lowering the reflectance by making the surface rougher than a thin film without a dopant by utilizing a dopant that has not been used in an electrode layer of a conventional solar cell.

상기한 목적을 달성하기 위하여, 본 개시내용의 제1 측면에 따르면, 0무게% 초과, 3무게% 이하의 산화주석과, 0무게% 초과, 1무게% 이하의 산화게르마늄과, 96무게% 이상, 100무게% 미만의 산화인듐을 포함하는 전극층을 포함하는, 이종접합 태양전지가 제공된다.In order to achieve the above object, according to the first aspect of the present disclosure, more than 0% by weight and less than or equal to 3% by weight of tin oxide, greater than 0% by weight and less than or equal to 1% by weight of germanium oxide, and 96% by weight or more , a heterojunction solar cell is provided, comprising an electrode layer containing less than 100 weight percent indium oxide.

어떠한 실시예들에서, 이종접합 태양전지는, 제1 타입 실리콘 기판과, 상기 제1 타입 실리콘 기판의 전방에 형성되는 제2 타입 실리콘층과, 상기 제1 타입 실리콘 기판의 후방에 형성되는 제1 타입 실리콘층을 추가적으로 포함할 수 있다. In some embodiments, a heterojunction solar cell may include a first type silicon substrate, a second type silicon layer formed in front of the first type silicon substrate, and a first type silicon layer formed in the rear side of the first type silicon substrate. A type silicon layer may be additionally included.

어떠한 실시예들에서, 상기 전극층은, 상기 제2 타입 실리콘층의 전방 및 상기 제1 타입 실리콘층의 후방에 각각 형성될 수 있다.In some embodiments, the electrode layer may be formed on a front side of the second type silicon layer and a rear side of the first type silicon layer, respectively.

어떠한 실시예들에서, 태양전지는, 상기 제1 타입 실리콘 기판, 상기 제1 타입 실리콘층 및 상기 제2 타입 실리콘층은, 각각 n 타입 실리콘 기판, n 타입 실리콘층 및 p 타입 실리콘층이거나, 각각 p 타입 실리콘 기판, p 타입 실리콘층 및 n 타입 실리콘층일 수 있다. In some embodiments, in a solar cell, the first-type silicon substrate, the first-type silicon layer, and the second-type silicon layer are each an n-type silicon substrate, an n-type silicon layer, and a p-type silicon layer, respectively. It may be a p-type silicon substrate, a p-type silicon layer, and an n-type silicon layer.

어떠한 실시예들에서, 상기 전극층은, 300~1200nm 파장의 광에 대하여 86% 이상의 평균 투과율과 13.2% 이하의 반사율을 가질 수 있다. In some embodiments, the electrode layer may have an average transmittance of 86% or more and a reflectance of 13.2% or less for light having a wavelength of 300 to 1200 nm.

본 개시내용의 제2 측면에 따르면, 이종접합 태양전지의 전극층을 증착하는데 사용되고, 0무게% 초과, 3무게% 이하의 산화주석, 0무게% 초과, 1무게% 이하의 산화게르마늄 및 96무게% 이상, 100무게% 미만의 산화인듐을 포함하고, 결정립 크기가 평균 5 마이크로미터 이상인, 소결체를 포함하는, 이종접합 태양전지의 전극층 증착용 스퍼터링 타겟이 제공된다.According to a second aspect of the present disclosure, it is used to deposit an electrode layer of a heterojunction solar cell, and is used to deposit greater than 0 weight percent and less than or equal to 3 weight percent tin oxide, greater than 0 weight percent and less than or equal to 1 weight percent germanium oxide, and 96 weight percent. As described above, a sputtering target for depositing an electrode layer of a heterojunction solar cell including a sintered body containing less than 100% by weight of indium oxide and having an average grain size of 5 micrometers or more is provided.

어떠한 실시예들에서, 스퍼터링 타겟은, In2O3, SnO2, In4Sn3O12, In1.91Sn0.05O3, In1.91Sn0.09O3.05 중 1개 이상의 상을 포함할 수 있다. In certain embodiments, the sputtering target may include one or more phases of In 2 O 3 , SnO 2 , In 4 Sn 3 O 12 , In 1.91 Sn 0.05 O 3 , In 1.91 Sn 0.09 O 3.05 .

어떠한 실시예들에서, 스퍼터링 타겟은, 상기 소결체의 후면에 접합되어 상기 소결체를 지지하는 백킹 플레이트 혹은 백킹 튜브를 더 포함할 수 있다. In some embodiments, the sputtering target may further include a backing plate or backing tube bonded to a rear surface of the sintered body to support the sintered body.

어떠한 실시예들에서, 상기 스퍼터링 타겟은, DC 마그네트론 스퍼터링용 스퍼터링 타겟일 수 있다. In some embodiments, the sputtering target may be a sputtering target for DC magnetron sputtering.

보 개시내용의 제3 측면에 따르면, 전술한 이종접합 태양전지의 전극층 증착용 스퍼터링 타겟을 이용하여 이종접합 태양전지의 전극층을 증착하는 것을 포함하는, 이종접합 태양전지 제조방법이 제공된다.According to a third aspect of the disclosure, a heterojunction solar cell manufacturing method is provided, including depositing an electrode layer of a heterojunction solar cell using the sputtering target for depositing an electrode layer of a heterojunction solar cell.

상기한 구성에 따르면, 기존의 전도도를 유지하면서도 반사율을 낮추어 태양전지의 효율을 극대화시킬 수 있는 투명전도막을 제공할 수 있는 효과가 있다. According to the configuration described above, there is an effect of providing a transparent conductive film capable of maximizing the efficiency of a solar cell by lowering the reflectance while maintaining the existing conductivity.

도 1은 본 개시내용의 실시예들에 따른 이종접합 태양전지의 구조를 개략적으로 보여주는 도면이다.
도 2 및 도 3은 각각 본 개시내용의 일 실시예의 스퍼터링 타겟의 소결체의 결정립과 결정상을 보여주는 도면이다.
도 4 내지 도 7은 본 개시내용의 일 실시예의 투명전도막과 일 비교 실시예의 투명전도막의 특성을 보여주는 도면으로서,
도 4는 비교 실시예의 투명전도막의 면저항 특성을 보여주는 그래프이고,
도 5은 본 개시내용의 실시예와 비교 실시예의 투명전도막의 반사율을 보여주는 그래프이고,
도 6은 비교 실시예의 투명전도막의 박막 표면 3D 이미지이고,
도 7은 본 개시내용의 실시예의 투명전도막의 박막 표면 3D 이미지이다.
1 is a diagram schematically showing the structure of a heterojunction solar cell according to embodiments of the present disclosure.
2 and 3 are views showing crystal grains and crystal phases of a sintered body of a sputtering target according to an embodiment of the present disclosure, respectively.
4 to 7 are views showing characteristics of a transparent conductive film of an embodiment of the present disclosure and a transparent conductive film of a comparative example,
4 is a graph showing sheet resistance characteristics of a transparent conductive film of a comparative example;
5 is a graph showing the reflectance of transparent conductive films of Examples of the present disclosure and Comparative Examples;
6 is a 3D image of the surface of a transparent conductive film of a comparative example;
7 is a 3D image of a thin film surface of a transparent conductive film of an embodiment of the present disclosure.

이하, 첨부 도면을 참조하여 본 개시내용의 실시예들을 상세히 살펴본다. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.

본 발명은 산화게르마늄을 이용하여 투명전도막의 표면 요철 거칠기를 증가시켜 반사율을 낮추면서 산화게르마늄이 없는 박막에 비해서도 투과율을 저하를 나타내지 않는 저반사 투명전도막을 증착하는 것에 관한 것이다. The present invention relates to depositing a low-reflection transparent conductive film using germanium oxide to increase the roughness of the surface of the transparent conductive film, thereby lowering the reflectance and not exhibiting a decrease in transmittance compared to a thin film without germanium oxide.

도 1은 본 개시내용의 일 실시예에 따른 이종접합 태양전지의 구조를 개략적으로 보여주는 도면이다. 1 is a diagram schematically showing the structure of a heterojunction solar cell according to an embodiment of the present disclosure.

이종접합 태양전지의 기본 구조는, 제1 타입 실리콘 기판(10)과, 제2 타입 실리콘층(21)과, 제1 타입 실리콘층(23)과 제1 전극층(31) 및 제2 전극층(33)을 포함할 수 있다. 어떠한 실시예들에서는, 제1 타입 실리콘 기판(10)과 제2 타입 실리콘층(21)의 사이 및/또는 제1 타입 실리콘 기판(10)과 제2 타입 실리콘층(21)의 사이에 각각 제1 보호층(41) 및 제2 보호층(43)이 개재될 수 있다. 또한, 어떠한 실시예들에서는, 제1 금속 그리드 컨택트(51) 및 제2 금속 그리드 콘택트(53)가 형성될 수 있다. 어떠한 실시예들에서, 제1 타입은 n 타입이고, 제2 타입은 p 타입일 수 있다. 그러나, 어떠한 대체 실시예들에서, 제1 타입은 p 타입이고, 제2 타입은 n 타입일 수 있다.The basic structure of a heterojunction solar cell includes a first type silicon substrate 10, a second type silicon layer 21, a first type silicon layer 23, a first electrode layer 31, and a second electrode layer 33. ) may be included. In some embodiments, between the first type silicon substrate 10 and the second type silicon layer 21 and / or between the first type silicon substrate 10 and the second type silicon layer 21, respectively, A first protective layer 41 and a second protective layer 43 may be interposed therebetween. Also, in some embodiments, a first metal grid contact 51 and a second metal grid contact 53 may be formed. In some embodiments, the first type may be an n type and the second type may be a p type. However, in some alternative embodiments, the first type may be of p type and the second type may be of n type.

제1 타입 실리콘 기판(10)은 결정질 실리콘 기판일 수 있다. 제1 타입 실리콘 기판(10)의 전방에는 제2 타입 실리콘층(21)이 형성될 수 있다. 어떠한 실시예들에서, 전방으로부터 광이 입사할 수 있다. 제1 타입 실리콘 기판(10)의 후방에는 제1 타입 실리콘층(23)이 형성될 수 있다. p 타입의 제2 타입 실리콘층(21)은 예컨대 a-Si: H 혹은 a-Si:H에 p-type을 만들 수 있는 물질이 도핑된 물질로 이루어지는 비정질 실리콘층일 수 있다. n 타입의 제1 타입 실리콘층(23)은 예컨대 인이 도핑된 a-Si: H와 같은 물질로 이루어지는 비정질 실리콘층일 수 있다. 제1 보호층(41)은 a-Si: H 혹은 a-Si와 같은 물질로 이루어지는 진성 비정질 실리콘층일 수 있다. 제2 보호층(43)은 a-Si: H 혹은 a-Si와 같은 물질로 이루어지는 진성 비정질 실리콘층일 수 있다. 제2 타입 실리콘층(21)의 전방에는 제1 전극층(31)이 형성될 수 있다. 제1 타입 실리콘층(23)의 후방에는 제2 전극층(33)이 형성될 수 있다. 제1 전극층(31) 및/또는 제2 전극층(33)으로 후술하는 바와 같은 본 개시 내용의 실시예에 따른 저반사 투명전도막이 사용될 수 있다. 제1 전극층(31)의 전방에는 제1 금속 그리드 콘택트(51)가 형성될 수 있다. 제2 전극층(33)의 후방에는 제2 금속 그리드 콘택트(53)가 형성될 수 있다. 이러한 이종접합 태양전지의 구조는 공지된 기술로서 알려져 있으므로, 더 이상의 상세한 설명은 생략한다.The first type silicon substrate 10 may be a crystalline silicon substrate. A second type silicon layer 21 may be formed in front of the first type silicon substrate 10 . In some embodiments, light may be incident from the front. A first type silicon layer 23 may be formed behind the first type silicon substrate 10 . The p-type second type silicon layer 21 may be, for example, an amorphous silicon layer made of a-Si:H or a-Si:H doped with a material capable of forming a p-type. The n-type first-type silicon layer 23 may be, for example, an amorphous silicon layer made of a material such as a-Si:H doped with phosphorus. The first protective layer 41 may be an intrinsic amorphous silicon layer made of a material such as a-Si:H or a-Si. The second passivation layer 43 may be an intrinsic amorphous silicon layer made of a material such as a-Si:H or a-Si. A first electrode layer 31 may be formed in front of the second type silicon layer 21 . A second electrode layer 33 may be formed behind the first type silicon layer 23 . As the first electrode layer 31 and/or the second electrode layer 33 , a low-reflection transparent conductive film according to an embodiment of the present disclosure as described below may be used. A first metal grid contact 51 may be formed in front of the first electrode layer 31 . A second metal grid contact 53 may be formed behind the second electrode layer 33 . Since the structure of such a heterojunction solar cell is known as a known technology, further detailed description is omitted.

도 2 및 도 3은 각각 본 개시내용의 일 실시예의 스퍼터링 타겟의 소결체의 결정립과 결정상을 보여주는 도면이다. 2 and 3 are views showing crystal grains and crystal phases of a sintered body of a sputtering target according to an embodiment of the present disclosure, respectively.

산화인듐 96% 와 산화주석 3%와 게르마늄 1%으로 이루어진 소결체의 결정립 크기를 도 2에 나타내었다. 어떠한 실시예들에서, 산화게르마늄이 포함된 소결체의 1차상의 평균 결정립 크기는 5마이크로미터 이상일 수 있다. The crystal grain size of the sintered body composed of 96% indium oxide, 3% tin oxide, and 1% germanium is shown in FIG. 2 . In some embodiments, the average grain size of the primary phase of the sintered body including germanium oxide may be 5 micrometers or more.

산화인듐 96% 와 산화주석 3%와 게르마늄 1%으로 이루어진 소결체의 결정상을 도 3에 나타내었다. 어떠한 실시예들에서, X-ray를 통해 조사한 산화게르마늄이 포함된 소결체의 결정상은 In2O3, SnO2, In4Sn3O12, (In1.91Sn0.05)O3, In1.91Sn0.09O3.05 중 1개 이상을 포함할 수 있다. 산화게르마늄은 완전고용되어 결정상의 조사에서 검출되지 않을 수 있다.The crystal phase of the sintered body composed of 96% indium oxide, 3% tin oxide, and 1% germanium is shown in FIG. 3 . In some embodiments, the crystal phase of the sintered body containing germanium oxide irradiated through X-rays may include one or more of In2O3, SnO2, In4Sn3O12, (In1.91Sn0.05)O3, and In1.91Sn0.09O3.05. can Germanium oxide is completely dissolved and may not be detected in the examination of the crystal phase.

본 개시내용의 실시예의 스퍼터링 타겟은, 소정의 비율로 각각 함유되어 있는 산화인듐과 산화주석을 기반으로하고 산화게르마늄이 포함된 소결체를 구비함으로써 타겟 자체의 전도성이 있어 DC sputter가 가능하다.The sputtering target of the embodiment of the present disclosure is based on indium oxide and tin oxide contained in a predetermined ratio and has a sintered body containing germanium oxide, so DC sputter is possible because the target itself has conductivity.

즉, 본 발명에 따른 타겟을 이용하면, DC sputter 방식으로 태양전지에 적용되는 투명전도막을 증착시킬 수 있고, 이와 같이 본 발명에 따라 증착되어진 투명전도막은 높은 전도도를 가지게 되어 태양전지 효율을 높이는데 도움을 주는 것이 가능해진다. 본 발명의 실시 예에 따른 타겟은 태양전지에 적용되는 투명전도막을 성막시키기 위한, 예컨대 DC 마그네트론 스퍼터링 장치에 적용되는 스퍼터링 타겟이다. 이러한 산화물 타겟은 소결체 및 백킹 플레이트(backing plate) 혹은 백킹 튜브(backing tube)를 포함하여 형성될 수 있다.That is, when the target according to the present invention is used, a transparent conductive film applied to a solar cell can be deposited in a DC sputter method, and the transparent conductive film deposited according to the present invention has high conductivity, thereby increasing solar cell efficiency. It becomes possible to help A target according to an embodiment of the present invention is a sputtering target applied to, for example, a DC magnetron sputtering device for forming a transparent conductive film applied to a solar cell. Such an oxide target may be formed by including a sintered body and a backing plate or backing tube.

상기 특성을 가지는 투명전도막을 성막하기 위한 소결체는 분말 야금법에 의해 제조될 수 있다. 즉, 산화인듐, 산화주석 그리고 산화게르마늄 분말을 함량비에 맞게 혼합한 후 건식가압성형(cold press), 슬립 캐스팅(slip casting), 필터 프레스(filter press), 정수압 성형(cold isostatic press), 겔 캐스팅(gel casting), 강제침강(centrifugal sedimentation), 자연침강(gravimetric sedimentation) 등의 성형법을 통해 성형한 후 이에 대한 소결을 통해 제조될 수 있다.A sintered body for forming a transparent conductive film having the above characteristics can be produced by a powder metallurgy method. That is, after mixing indium oxide, tin oxide, and germanium oxide powder according to the content ratio, cold press, slip casting, filter press, cold isostatic press, gel After molding through molding methods such as gel casting, centrifugal sedimentation, and gravimetric sedimentation, it may be manufactured through sintering.

전술한 바와 같이, 본 발명의 실시 예에 따른 산화물 타겟은 마그네트론 스퍼터링 장치에 적용될 수 있는데, 일반적으로 마그네트론 스퍼터링은 대면적 산화물 박막 증착에 사용되므로, 본 발명의 실시 예에 따른 소결체는 타일 형태 혹은 튜브 형태로 복수 개 구비될 수 있다. 백킹 플레이트 혹은 백킹 튜브는 하나 또는 복수개의 소결체를 지지하는 역할을 한다. 이를 위해, 백킹 플레이트는 소결체의 후방에 배치되고, 백킹 튜브는 튜브 형태의 소결체 내부에서 본딩재를 매개로 소결체와 접합된다. 이러한 백킹 플레이트 혹은 백킹 튜브는 도전성 및 열전도성이 우수한 구리, 바람직하게는 무산소 구리, 티탄, 스테인리스 스틸로 이루어질 수 있다. 이때, 소결체와 백킹 플레이트 사이에 배치되어 이들을 서로 접합시키는 본딩재는 예컨대, 인듐으로 이루어질 수 있다. 그리고 이러한 본딩재는 페이스트 형태로 이루어져 백킹 플레이트 전면에 도포될 수 있다.As described above, the oxide target according to an embodiment of the present invention can be applied to a magnetron sputtering device. Since magnetron sputtering is generally used for depositing a large-area oxide thin film, the sintered body according to an embodiment of the present invention is tiled or tubed. It may be provided in a plurality of forms. The backing plate or backing tube serves to support one or a plurality of sintered bodies. To this end, the backing plate is disposed behind the sintered body, and the backing tube is bonded to the sintered body via a bonding material inside the tube-shaped sintered body. Such a backing plate or backing tube may be made of copper having excellent conductivity and thermal conductivity, preferably oxygen-free copper, titanium, or stainless steel. At this time, the bonding material disposed between the sintered body and the backing plate to bond them to each other may be made of, for example, indium. In addition, this bonding material may be applied to the entire surface of the backing plate in the form of a paste.

한편, 소결체와 백킹 플레이트를 접합시키기 위해서는 이러한 본딩재를 핫 플레이트, 저항 가열, 고주파, 전기코일 또는 레이저 등의 가열 수단을 발열시켜 용융시킨 후 냉각시킬 수 있는데, 이때, 본딩재 용융을 위해 가해지는 열은 170±10℃로 제어될 수 있다.On the other hand, in order to bond the sintered body and the backing plate, the bonding material may be melted by heating means such as a hot plate, resistance heating, high frequency, electric coil or laser, and then cooled. At this time, the bonding material applied for melting Heat can be controlled at 170±10°C.

도 4 내지 도 7은 본 개시내용의 일 실시예의 투명전도막과 일 비교 실시예의 투명전도막의 특성을 보여주는 도면이다. 4 to 7 are diagrams showing characteristics of a transparent conductive film according to an embodiment of the present disclosure and a transparent conductive film according to a comparative example.

도 4는 비교 실시예의 투명전도막의 면저항 특성을 보여주는 그래프이다. 4 is a graph showing sheet resistance characteristics of the transparent conductive film of Comparative Example.

산화인듐 97%와 산화주석 3% 조성의 스퍼터링 타겟을 사용하여 일 비교 실시예의 투명전도막을 얻었고, 도 2의 본 개시내용의 실시예의 스퍼터링 타겟 (산화인듐 96%와 산화주석 3%와 산화게르마늄 1%가 포함된 스퍼터링 타겟)을 이용하여 본 개시내용의 일 실시예에 따른 투명전도막을 얻고, 이들을 비교하여 도 4 내지 도 7의 결과를 얻었다. A transparent conductive film of a comparative example was obtained using a sputtering target having a composition of 97% indium oxide and 3% tin oxide, and the sputtering target of the embodiment of the present disclosure in FIG. 2 (96% indium oxide, 3% tin oxide, and 1 germanium oxide) %) was used to obtain a transparent conductive film according to an embodiment of the present disclosure, and the results of FIGS. 4 to 7 were obtained by comparing them.

기존의 이종접합 태양전지에 사용되던 전극층은 비교 실시예와 같이 산화인듐과 산화주석으로 이루어졌으며 조성은 산화인듐 97%와 산화주석 3% 이루어져 있다. 같은 조성으로 이루어진 박막도 증착 조건에 따라 박막의 특성이 바뀌게 된다. 특히 증착 시 산소 함량에 따라 박막의 투과율과 면저항의 특성이 바뀌게 된다. 도 4에 도시한 바와 같이, 산소 함량이 지나치게 많아지게 되면 저항이 급격하게 증가하게 되어 투명 전도막으로서의 의미를 가지지 못하기 때문이다. 투명 전도막으로서 의미를 가지는 범위를 선정하기 위해 증착 시 산소 함량을 증가시키며 평가를 진행하였으며, 산소 함량이 2.0% 이상의 범위에서는 저항이 급격하게 증가하게 되는 변곡점이 발생하게 됨을 알아내었다. 따라서 본 개시내용의 실시예들에서는, 전도도가 급격하게 변하는 변곡점이 발생하기 전까지의 구간에서 평가를 진행하였다. The electrode layer used in the conventional heterojunction solar cell was made of indium oxide and tin oxide as in the comparative example, and the composition was composed of 97% indium oxide and 3% tin oxide. Even thin films with the same composition change their properties depending on the deposition conditions. In particular, the properties of the transmittance and sheet resistance of the thin film are changed according to the oxygen content during deposition. As shown in FIG. 4, if the oxygen content is excessively high, the resistance rapidly increases, and thus the transparent conductive film has no meaning. In order to select a range that has meaning as a transparent conductive film, evaluation was conducted while increasing the oxygen content during deposition, and it was found that an inflection point at which the resistance rapidly increased occurred in the range where the oxygen content was 2.0% or more. Therefore, in the embodiments of the present disclosure, the evaluation was performed in the section until the inflection point in which the conductivity rapidly changes.

도 5은 본 개시내용의 실시예와 비교 실시예의 투명전도막의 반사율을 보여주는 그래프이다. 5 is a graph showing the reflectance of transparent conductive films of Examples of the present disclosure and Comparative Examples.

비교 실시예의 스퍼터링 타겟과 본 개시내용의 실시예의 스퍼터링 타겟을 이용하여 산소 함량을 2% 미만에서 산소 투입비를 0.0%에서 2.0%까지 조정하며 박막을 증착한 후 반사율을 측정하였다. 반사율과 투과율은 300~1200nm 구간의 파장에서 측정하였으며 평균값을 사용하여 표 1과 같은 결과를 얻었다.Using the sputtering target of Comparative Example and the sputtering target of Example of the present disclosure, the oxygen content was less than 2% and the oxygen input ratio was adjusted from 0.0% to 2.0% to deposit a thin film, and then the reflectance was measured. Reflectance and transmittance were measured at a wavelength in the range of 300 to 1200 nm, and the results shown in Table 1 were obtained using average values.

Figure pat00001
Figure pat00001

비교 실시예의 타겟을 사용하여 증착된 박막의 반사율은 증착 시 사용한 산소 투입비에 따라 최소 11.1%에서 15.8%로 측정되었다. 또한 동일한 조건에서 산화주석3%에 산화게르마늄이 1% 첨가된 조성의 본 개시내용의 실시예의 타겟을 이용하여 산소 투입비를 조절하며 증착한 박막 반사율은 최소 10.8%에서 13.2%로 나타났다. 투과율이 가장 높은 영역에서의 반사율은 산화게르마늄이 없는 박막에 비해 산화게르마늄이 첨가된 조성의 경우 반사율이 낮아짐을 알 수 있다. 산화게르마늄의 첨가에 의해 박막의 반사율 최소값은 낮아지나 증착 시 투입한 산소량에 따라 산화게르마늄이 첨가되지 않은 조성에 비해 반사율이 높은 구간도 존재하였다. 이를 통해 박막 반사율을 낮추기 위해서는 산화게르마늄이 필요하지만 또한 증착 시 산소 투입량도 매우 중요한 변수임을 알 수 있다. 즉, 산화게르마늄이 첨가된 박막의 반사율을 낮추기 위해서는 최적의 산소 투입량을 찾아야 함을 알 수 있다. 투과율이 가장 높으며 반사율이 가장 낮게 나타나는 산소투입 구간에서의 반사율 그래프를 도 5에 나타내었다. The reflectance of the thin film deposited using the target of the comparative example was measured at a minimum of 11.1% to 15.8% depending on the oxygen input ratio used during deposition. In addition, the reflectance of the thin film deposited while adjusting the oxygen input ratio using the target of the embodiment of the present disclosure having a composition in which 1% of germanium oxide was added to 3% of tin oxide under the same conditions was found to be at least 10.8% to 13.2%. It can be seen that the reflectance in the region with the highest transmittance is lowered in the case of the composition in which germanium oxide is added compared to the thin film without germanium oxide. Although the minimum value of the reflectance of the thin film was lowered by the addition of germanium oxide, there was also a section in which the reflectance was higher than that of the composition without the addition of germanium oxide depending on the amount of oxygen input during deposition. From this, it can be seen that although germanium oxide is required to lower the thin film reflectance, the amount of oxygen input during deposition is also a very important variable. That is, it can be seen that in order to lower the reflectance of the thin film to which germanium oxide is added, an optimal oxygen input amount must be found. 5 shows a reflectance graph in the oxygen input section where the transmittance is the highest and the reflectance is the lowest.

도 6은 비교 실시예의 투명전도막의 박막 표면 3D 이미지이고, 도 7은 본 개시내용의 실시예의 투명전도막의 박막 표면 3D 이미지이다.6 is a thin film surface 3D image of a transparent conductive film of a comparative example, and FIG. 7 is a thin film surface 3D image of a transparent conductive film of an example of the present disclosure.

산화게르마늄이 포함되면서 박막에서의 역할을 알기 위해 박막 표면 거칠기를 측정하였다. 표 2에 나타낸 바와 같이, 산화인듐 97%와 산화주석 3%로 이루어진 박막의 표면 거칠기는 15.941nm였으며 산화인듐96%, 산화주석3% 그리고 산화게르마늄 1%로 이루어진 박막의 표면 거칠기는 20.898nm로 나타났다. The surface roughness of the thin film was measured to find out the role in the thin film while the germanium oxide was included. As shown in Table 2, the surface roughness of the thin film made of 97% indium oxide and 3% tin oxide was 15.941 nm, and the surface roughness of the thin film made of 96% indium oxide, 3% tin oxide, and 1% germanium oxide was 20.898 nm. appear.

Figure pat00002
Figure pat00002

산화게르마늄이 첨가되면서 약 24%정도 표면 거칠기가 증가하였다. 표면의 거칠기가 높으면 입사된 빛을 상대적으로 적게 반사하게 되면서 박막의 반사율이 낮아진 것으로 생각된다. 박막 표면의 거칠기가 증가한 이유는 산화게르마늄이 박막 의 결정립의 크기가 평면 방향으로 커지는 것을 억제하여 형상이 침탑형태로 자라게 되었기 때문으로 추정된다. 이는 도 5 및 도 6의 AFM을 이용한 박막 표면 3D 이미지를 통해 알 수 있었다. As germanium oxide was added, the surface roughness increased by about 24%. If the surface roughness is high, it is thought that the reflectance of the thin film is lowered as the incident light is reflected relatively less. It is presumed that the reason for the increase in the roughness of the thin film surface is that the germanium oxide suppresses the size of the crystal grains of the thin film from increasing in the plane direction, and the shape grows into a needle tower shape. This can be seen through the 3D images of the thin film surface using AFM in FIGS. 5 and 6 .

본 개시내용의 실시예들을 통하여 제작되는 투명전도막은 아르곤 가스와 산소 가스를 직류(DC) 방전에 의해 이온화하여 스퍼터링 타겟에 충돌시켜 튀어나온 물질을 기판에 증착시켜 제작하였다. 좀 더 상세하게는 진공 챔버 내에 스퍼터링 타겟과 기판을 위치시켜 놓고 박막을 제작할 때에는 아르곤 가스와 산소 가스를 적정 부피비로 섞어 투입하며 직류 전압을 인가하며 진행할 수 있으며, 어떠한 실시예들에서, 적용된 직류 방전 전압 밀도는 약 2.6W/㎠이었다. 또한 증착은 In-line 타입의 스퍼터링 설비를 통해 이루어질 수 있다. In-line 스퍼터링 설비는 기판이 이동되며 스퍼터링 타겟 주위에 방전된 플라즈마를 지나며 기판에 증착이 된다. The transparent conductive film fabricated through the embodiments of the present disclosure was fabricated by ionizing argon gas and oxygen gas by direct current (DC) discharge and depositing a material protruding from a sputtering target on a substrate. More specifically, when a thin film is produced by placing a sputtering target and a substrate in a vacuum chamber, argon gas and oxygen gas may be mixed and injected in an appropriate volume ratio and DC voltage may be applied. In some embodiments, DC discharge applied The voltage density was about 2.6 W/cm 2 . Also, deposition may be performed through an in-line type sputtering facility. In the in-line sputtering facility, the substrate is moved and deposited on the substrate while passing the plasma discharged around the sputtering target.

Claims (8)

0무게% 초과, 3무게% 이하의 산화주석과, 0무게% 초과, 1무게% 이하의 산화게르마늄과, 96무게% 이상, 100무게% 미만의 산화인듐을 포함하는 전극층을 포함하는,
이종접합 태양전지.
An electrode layer comprising more than 0 wt% and less than 3 wt% of tin oxide, more than 0 wt% and less than 1 wt% of germanium oxide, and more than 96 wt% and less than 100 wt% of indium oxide,
Heterojunction solar cell.
제1항에 있어서,
제1 타입 실리콘 기판과,
상기 제1 타입 실리콘 기판의 전방에 형성되는 제2 타입 실리콘층과,
상기 제1 타입 실리콘 기판의 후방에 형성되는 제1 타입 실리콘층을 추가적으로 포함하고,
상기 전극층은, 상기 제2 타입 실리콘층의 전방 및 상기 제1 타입 실리콘층의 후방에 각각 형성되고,
상기 제1 타입 실리콘 기판, 상기 제1 타입 실리콘층 및 상기 제2 타입 실리콘층은, 각각 n 타입 실리콘 기판, n 타입 실리콘층 및 p 타입 실리콘층이거나, 각각 p 타입 실리콘 기판, p 타입 실리콘층 및 n 타입 실리콘층이고,
이종접합 태양전지.
According to claim 1,
A first type silicon substrate;
a second type silicon layer formed in front of the first type silicon substrate;
Further comprising a first type silicon layer formed behind the first type silicon substrate,
The electrode layer is formed in front of the second type silicon layer and behind the first type silicon layer, respectively,
The first-type silicon substrate, the first-type silicon layer, and the second-type silicon layer may be an n-type silicon substrate, an n-type silicon layer, and a p-type silicon layer, respectively, or a p-type silicon substrate, a p-type silicon layer, and a p-type silicon layer, respectively. An n-type silicon layer,
Heterojunction solar cell.
제1항에 있어서,
상기 전극층은, 300~1200nm 파장의 광에 대하여 86% 이상의 평균 투과율과 13.2% 이하의 반사율을 갖는,
이종접합 태양전지.
According to claim 1,
The electrode layer has an average transmittance of 86% or more and a reflectance of 13.2% or less for light of a wavelength of 300 to 1200 nm,
Heterojunction solar cell.
이종접합 태양전지의 전극층을 증착하는데 사용되고,
0무게% 초과, 3무게% 이하의 산화주석, 0무게% 초과, 1무게% 이하의 산화게르마늄 및 96무게% 이상, 100무게% 미만의 산화인듐을 포함하고, 결정립 크기가 평균 5 마이크로미터 이상인, 소결체를 포함하는,
이종접합 태양전지의 전극층 증착용 스퍼터링 타겟.
It is used to deposit an electrode layer of a heterojunction solar cell,
It contains more than 0 weight percent and less than 3 weight percent tin oxide, more than 0 weight percent and less than 1 weight percent germanium oxide, and greater than 96 weight percent and less than 100 weight percent indium oxide, and has an average grain size of 5 micrometers or more. , containing a sintered body,
A sputtering target for deposition of an electrode layer of a heterojunction solar cell.
제4항에 있어서,
In2O3, SnO2, In4Sn3O12, In1.91Sn0.05O3, In1.91Sn0.09O3.05 중 1개 이상의 상을 포함하는
이종접합 태양전지의 전극층 증착용 스퍼터링 타겟.
According to claim 4,
In 2 O 3 , SnO 2 , In 4 Sn 3 O 12 , In 1.91 Sn 0.05 O 3 , In 1.91 Sn 0.09 O 3.05
A sputtering target for deposition of electrode layers of heterojunction solar cells.
제4항에 있어서,
상기 소결체의 후면에 접합되어 상기 소결체를 지지하는 백킹 플레이트 혹은 백킹 튜브를 더 포함하는
이종접합 태양전지의 전극층 증착용 스퍼터링 타겟.
According to claim 4,
Further comprising a backing plate or backing tube bonded to the rear surface of the sintered body to support the sintered body
A sputtering target for deposition of an electrode layer of a heterojunction solar cell.
제4항에 있어서,
DC 마그네트론 스퍼터링용 스퍼터링 타겟인,
이종접합 태양전지의 전극층 증착용 스퍼터링 타겟.
According to claim 4,
A sputtering target for DC magnetron sputtering,
A sputtering target for deposition of electrode layers of heterojunction solar cells.
제4항 내지 제7항 중 어느 한 항의 이종접합 태양전지의 전극층 증착용 스퍼터링 타겟을 이용하여 이종접합 태양전지의 전극층을 증착하는 것을 포함하는,
이종접합 태양전지 제조방법.
Including depositing an electrode layer of a heterojunction solar cell using the sputtering target for depositing an electrode layer of a heterojunction solar cell according to any one of claims 4 to 7,
Heterojunction solar cell manufacturing method.
KR1020210173027A 2021-12-06 2021-12-06 Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor KR20230084888A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210173027A KR20230084888A (en) 2021-12-06 2021-12-06 Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor
CN202211551023.2A CN116230785A (en) 2021-12-06 2022-12-05 Heterojunction photovoltaic cell, method of manufacturing the same, and sputtering target therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210173027A KR20230084888A (en) 2021-12-06 2021-12-06 Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor

Publications (1)

Publication Number Publication Date
KR20230084888A true KR20230084888A (en) 2023-06-13

Family

ID=86570429

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210173027A KR20230084888A (en) 2021-12-06 2021-12-06 Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor

Country Status (2)

Country Link
KR (1) KR20230084888A (en)
CN (1) CN116230785A (en)

Also Published As

Publication number Publication date
CN116230785A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP4231967B2 (en) Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same
JP4556407B2 (en) Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector
CN101572279B (en) High mobility textured structure IMO/ZnO composite film grown by sputtering method and application thereof to solar cell
TWI568008B (en) Production method of transparent conductive film and method for manufacturing thin film solar cell
WO2014073329A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
Tohsophon et al. Effect of aluminum and indium co-doping on zinc oxide films prepared by dc magnetron sputtering
AU2011226881A1 (en) Photovoltaic device and method for making
TW201708612A (en) Transparent conductive oxide film, photoelectric conversion element, and method for producing photoelectric conversion element
EP2613327B1 (en) Multilayer transparent electroconductive film and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
JP2004043851A (en) Oxide transparent conductive film and its manufacturing method
JP5234023B2 (en) Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and light detection element
US20150311362A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
JP2010153386A5 (en)
KR20230084888A (en) Heterjunction solar cell, method for fabricating the same, and sputtering target used therefor
JP2012195501A (en) Thin film photoelectric conversion element and solar cell
Yan et al. Gallium‐Doped Zinc Oxide/Tungsten‐Doped Indium Oxide Stacks with Enhanced Lateral Transport Capability for Efficient and Low‐Cost Silicon Heterojunction Solar Cells
JP2014114207A (en) Oxide sintered body, sputtering target using the same and oxide film
EP2437289A2 (en) Photovoltaic device and method for making
JP5563850B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2010103347A (en) Thin film photoelectric converter
JP2012151393A (en) Solar cell module
KR20150104682A (en) Oxide sputtering target
JP5307280B2 (en) Thin film photoelectric conversion element
Wang et al. Stability of transparent conducting oxide films deposited by sputtering for solar cells applications