JP2010153386A5 - - Google Patents

Download PDF

Info

Publication number
JP2010153386A5
JP2010153386A5 JP2010024401A JP2010024401A JP2010153386A5 JP 2010153386 A5 JP2010153386 A5 JP 2010153386A5 JP 2010024401 A JP2010024401 A JP 2010024401A JP 2010024401 A JP2010024401 A JP 2010024401A JP 2010153386 A5 JP2010153386 A5 JP 2010153386A5
Authority
JP
Japan
Prior art keywords
transparent electrode
oxide
layer
electrode film
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010024401A
Other languages
Japanese (ja)
Other versions
JP2010153386A (en
JP5234023B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010024401A priority Critical patent/JP5234023B2/en
Priority claimed from JP2010024401A external-priority patent/JP5234023B2/en
Publication of JP2010153386A publication Critical patent/JP2010153386A/en
Publication of JP2010153386A5 publication Critical patent/JP2010153386A5/ja
Application granted granted Critical
Publication of JP5234023B2 publication Critical patent/JP5234023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

従来材料の低抵抗の酸化物透明電極膜におけるキャリア電子の移動度は、例えばITO膜では約20〜30cm2/Vsecである。酸化インジウム(In23)系などのn型半導体のキャリア電子の移動度は、主に、イオン化不純物散乱や中性不純物散乱などに支配されていると言われている(不純物は、イオンの状態で含まれる不純物をイオン化不純物、周囲に余分な酸素が吸着して中性の状態で含まれる不純物を中性不純物と呼んでいる)。キャリア電子を増大させるために添加する不純物元素の量が多くなると、キャリア電子は、散乱され、その移動度は低下する。 The mobility of carrier electrons in a conventional low-resistance oxide transparent electrode film is, for example, about 20 to 30 cm 2 / Vsec in an ITO film. It is said that the mobility of carrier electrons in n-type semiconductors such as indium oxide (In 2 O 3 ) is mainly governed by ionized impurity scattering, neutral impurity scattering, etc. Impurities contained in the state are called ionized impurities, and impurities contained in the neutral state due to excess oxygen adsorbed around are called neutral impurities). When the amount of the impurity element added to increase the carrier electrons increases, the carrier electrons are scattered and the mobility is lowered.

酸化物透明電極膜としては、チタンを添加した酸化インジウム膜も、従来から知られている。例えば、最も古いものでは、J. L. Vossen の記した文献(RCA Review、1971年32巻、p.289〜296)がある。この文献は、RFスパッタリングによるITO膜の特性の記述が中心であるが、スズ以外の不純物としてTiO2を20モル%添加したIn23膜の作製例が記されている。しかし、この膜の組成は、本発明の膜組成と著しく異なり、当該膜の電気抵抗率(比抵抗)は7.5×10-1Ωcmと著しく高い。 As an oxide transparent electrode film, an indium oxide film to which titanium is added is also conventionally known. For example, the oldest is a document written by JL Vossen (RCA Review, Vol. 32, 1971, pp. 289-296). This document mainly describes the characteristics of the ITO film by RF sputtering, but describes an example of producing an In 2 O 3 film to which 20 mol% of TiO 2 is added as an impurity other than tin. However, the composition of this film is significantly different from that of the present invention, and the electric resistivity (specific resistance) of the film is remarkably high at 7.5 × 10 −1 Ω · cm.

特開平9−209134号公報には、チタンを含む酸化インジウムターゲットと、それからスパッタリング法で作製した膜の特性について記載されている。この公報では、タッチパネル用の高い比抵抗の酸化物透明電極膜を狙っており、実施例では1.0×10-3〜9.4×10-3Ωcmの高い比抵抗のチタンを含む酸化インジウム膜が記されている。また比較例のチタンを含む酸化インジウム膜も、最も比抵抗の低いもので0.6×10-3Ωcmの比抵抗である。何れもかなり高い比抵抗を有している。 Japanese Patent Application Laid-Open No. 9-209134 describes the characteristics of an indium oxide target containing titanium and a film produced therefrom by sputtering. In this publication, an oxide transparent electrode film having a high resistivity for a touch panel is aimed at, and in the embodiment, a titanium having a high resistivity of 1.0 × 10 −3 to 9.4 × 10 −3 Ω · cm is included. An indium oxide film is noted. The indium oxide film containing titanium of the comparative example also has the lowest specific resistance and a specific resistance of 0.6 × 10 −3 Ω · cm. Both have a fairly high specific resistance.

ITOをベースにしてこれにチタンを添加した膜材料に関する特許公報もいくつかある。しかし、スズを含んでいるために本発明の膜とは明らかに区別される。すなわち、酸化インジウム膜中にスズが含まれると、従来から知られているように大量のキャリア電子を放出するため、キャリア電子濃度が高くて、赤外線領域の透過率の低い膜しか得られない。たとえば、特開平9−161542号公報には、タッチパネル用のチタンとスズを添加した酸化インジウム膜が記載されている。しかしこの公報で記されている比抵抗は9.6×10-4Ωcm以上と高くなっている。 There are also several patent publications relating to film materials in which titanium is added to ITO as a base. However, it is clearly distinguished from the film of the present invention because it contains tin. That is, when tin is contained in the indium oxide film, a large amount of carrier electrons are emitted as conventionally known, so that only a film having a high carrier electron concentration and a low transmittance in the infrared region can be obtained. For example, JP-A-9-161542 describes an indium oxide film to which titanium and tin are added for touch panels. However, the specific resistance described in this publication is as high as 9.6 × 10 −4 Ω · cm or more.

特開平7―54132号公報には、焼結体の密度を上げるために50〜500ppmのTiを添加したITO焼結体ターゲット(SnO2量10質量%)が記されており、このターゲットを用い、100〜300℃の基板加熱を行いながらスパッタリングで作製した1.7〜2.9×10-4Ωcmの低抵抗の酸化物電極膜が記されている。しかし、この膜のキャリア電子濃度と移動度、赤外線領域の透過特性についての記載はなく、ITOベースの材料であるため、キャリア電子発生に寄与する添加元素のほとんどはスズであり、従来のITO並に高いキャリア電子濃度のため、赤外線の透過率は低いものと判断される。 Japanese Patent Application Laid-Open No. 7-54132 describes an ITO sintered body target (SnO 2 content 10 mass%) to which 50 to 500 ppm of Ti is added in order to increase the density of the sintered body. The oxide electrode film having a low resistance of 1.7 to 2.9 × 10 −4 Ω · cm produced by sputtering while heating the substrate at 100 to 300 ° C. is described. However, there is no description about the carrier electron concentration and mobility of this film, and the transmission characteristics in the infrared region, and since it is an ITO-based material, most of the additive element contributing to the generation of carrier electrons is tin, which is comparable to conventional ITO. Because of the high carrier electron concentration, the infrared transmittance is judged to be low.

すなわち、本発明の第1の特徴による酸化物透明電極膜は、酸化インジウムを主成分とし、チタンを含有し、150℃以上350℃以下に加熱された基板上に成膜された酸化物透明導電膜であって、酸化インジウムのインジウムがチタンに、チタン/インジウムの原子数比で0.003〜0.120の割合で、置換され、酸化インジウムは結晶質であり、酸化物透明電極膜の比抵抗が5.7×10-4Ωcm以下であり、ホール効果測定によるキャリア電子濃度が5.5×1020cm-3以下であり、かつホール効果測定によるキャリア電子の移動度が40cm2/Vsec以上であることを特徴とする。なお、当該酸化物透明電極膜は、チタンを含有する酸化インジウムからなるということもできる。 That is, the oxide transparent electrode film according to the first feature of the present invention is a transparent oxide conductive film formed on a substrate containing indium oxide as a main component, titanium, and heated to 150 ° C. or higher and 350 ° C. or lower. Indium oxide indium is replaced by titanium at a titanium / indium atomic ratio of 0.003 to 0.120, the indium oxide is crystalline, and the ratio of the oxide transparent electrode film The resistance is 5.7 × 10 −4 Ω · cm or less, the carrier electron concentration by Hall effect measurement is 5.5 × 10 20 cm −3 or less, and the mobility of carrier electrons by Hall effect measurement is 40 cm 2. / Vsec or more. It can also be said that the oxide transparent electrode film is made of indium oxide containing titanium.

チタン/インジウムの原子数比で0.003〜0.050の割合で、かつ酸化物透明電極膜の比抵抗が4.0×10-4Ωcm以下であることがさらに好ましい。 More preferably, the titanium / indium atomic ratio is 0.003 to 0.050, and the specific resistance of the oxide transparent electrode film is 4.0 × 10 −4 Ω · cm or less.

その結果、酸化インジウムを主成分とし、該酸化インジウムのインジウムをチタンに、チタン/インジウム原子数比で0.003〜0.120の割合で置換した結晶性の酸化物透明電極膜を作製すると、キャリア電子濃度が5.5×1020cm-3以下と従来のITO
膜より低く、かつ比抵抗が1.9〜5.7×10-4Ωcmの低電気抵抗率を実現できる。
As a result, a crystalline oxide transparent electrode film in which indium oxide is the main component and indium in the indium oxide is replaced with titanium at a ratio of 0.003 to 0.120 in terms of the number of titanium / indium atoms, Conventional electron ITO with carrier electron concentration of 5.5 × 10 20 cm −3 or less
A low electrical resistivity with a specific resistance of 1.9 to 5.7 × 10 −4 Ω · cm can be realized.

さらに好ましくは、酸化インジウムを主成分とし、該酸化インジウムのインジウムをチタンに、チタン/インジウム原子数比で0.003〜0.050の割合で置換した酸化物透明電極膜を作製すると、キャリア電子濃度が5.5×1020cm-3以下と従来のITO膜より低く、かつ、比抵抗が1.9〜4.0×10-4Ωcmの低電気抵抗率を実現できる。 More preferably, when an oxide transparent electrode film in which indium oxide is a main component and indium in the indium oxide is substituted with titanium in a ratio of 0.003 to 0.050 in terms of the number ratio of titanium / indium is carrier electrons, A low electrical resistivity with a concentration of 5.5 × 10 20 cm −3 or less, which is lower than that of a conventional ITO film, and a specific resistance of 1.9 to 4.0 × 10 −4 Ω · cm can be realized.

また、本発明の酸化物透明電極膜は、キャリア電子濃度が従来の酸化物透明電極膜より低いが、キャリア電子の移動度が40cm2/Vsec以上であり、作製条件によっては60cm2/Vsec以上や70cm2/Vsec以上の膜も実現でき、従来の低抵抗酸化物透明電極膜の移動度(例えばITO膜では約20〜30cm2/Vsec)と比べて極めて大きいため、電気抵抗率は従来の低抵抗酸化物透明電極膜と同程度に低くなる。したがって、本発明の酸化物透明電極膜は、低いキャリア電子濃度の状態で、高い移動度を示す材料であるため、可視光のみならず赤外線の透過率も高く、かつ、前述のような低電気伝導率を実現できるのである。 Further, the oxide transparent electrode film of the present invention has a carrier electron concentration lower than that of the conventional oxide transparent electrode film, but the mobility of carrier electrons is 40 cm 2 / Vsec or more, and depending on the production conditions, 60 cm 2 / Vsec or more. Also, a film having a thickness of 70 cm 2 / Vsec or more can be realized, and the electric resistivity is higher than that of a conventional low resistance oxide transparent electrode film (for example, about 20 to 30 cm 2 / Vsec for an ITO film). It becomes as low as a low resistance oxide transparent electrode film. Therefore, since the transparent oxide electrode film of the present invention is a material exhibiting high mobility in a low carrier electron concentration state, it has high transmittance of not only visible light but also infrared light, and has a low electric power as described above. Conductivity can be realized.

ところで、J. L. Vossen の記した文献(RCA Review、1971年32巻、p.289〜296)におけるTiO2を20モル%添加したIn23膜の組成は、本発明の組成と大きく異なるし、当該膜の電気抵抗率は7.5×10-1Ωcmと著しく高く、本発明の膜の電気抵抗率とは明らかに異なる。 By the way, the composition of the In 2 O 3 film to which 20 mol% of TiO 2 is added in the literature written by JL Vossen (RCA Review, 1971 Volume 32, p.289-296) is greatly different from the composition of the present invention. The electric resistivity of the film is as high as 7.5 × 10 −1 Ω · cm, which is clearly different from the electric resistivity of the film of the present invention.

さらに、特開平9−209134号公報における膜の比抵抗は、1.0×10-3〜9.4×10-3Ωcmと高く、その比較例に0.6×10-3Ωcmの比抵抗があるが、何れも本発明の膜の比抵抗より高い。 Moreover, the specific resistance of the membrane in JP-9-209134 Patent Publication, as high as 1.0 × 10 -3 ~9.4 × 10 -3 Ω · cm, 0.6 × 10 -3 Ω · to the comparative example Although there is a specific resistance of cm, both are higher than the specific resistance of the film of the present invention.

さらに、特開平9−161542号公報の酸化インジウム膜の比抵抗は9.6×10-4 Ω・cm以上と高く、本発明における5.7×10-4 Ω・cm以下の膜とは明らかに異なる。 Furthermore, the specific resistance of the indium oxide film disclosed in Japanese Patent Application Laid-Open No. 9-161542 is as high as 9.6 × 10 −4 Ω · cm or more, which is clearly the film of 5.7 × 10 −4 Ω · cm or less in the present invention. Different.

さらに、特開平7―54132号公報に記載された1.7〜2.9×10-4Ωcmの低抵抗の酸化物透明電極膜は、ITOベースの材料であるためキャリア電子発生に寄与する添加元素のほとんどはスズであり、赤外線の透過率は低いものと判断され、本発明の膜とは特性が明らかに異なる。 Furthermore, the low-resistance oxide transparent electrode film of 1.7 to 2.9 × 10 −4 Ω · cm described in JP-A-7-54132 contributes to generation of carrier electrons because it is an ITO-based material. Most of the additive elements to be added are tin, and it is judged that infrared transmittance is low, and the characteristics are clearly different from the film of the present invention.

以上に述べたように、可視光領域だけでなく赤外線領域でも透過率が高く、しかも5.7×10-4Ωcm以下の低抵抗の酸化物透明電極膜は、酸化インジウムにチタンを、本発明の組成範囲で含有させることによって容易に実現することが可能となったが、それだけでは難しく、適当なスパッタリング条件で成膜して作製する必要がある。特に、スパッタリング成膜中の成膜ガス中酸素量や、ガス圧、基板温度を最適にすることが必要不可欠である。 As described above, an oxide transparent electrode film having high transmittance in the infrared region as well as the visible light region and having a low resistance of 5.7 × 10 −4 Ω · cm or less is composed of titanium as indium oxide, Although it has become possible to easily realize it by containing it in the composition range of the present invention, it is difficult by itself, and it is necessary to form a film under suitable sputtering conditions. In particular, it is essential to optimize the amount of oxygen in the deposition gas, the gas pressure, and the substrate temperature during sputtering deposition.

Figure 2010153386
Figure 2010153386

(電気特性)
表1から明らかなように、本発明のTi/In原子数比が0.003〜0.120のチタンを含む酸化インジウムの酸化物透明電極膜は、キャリア電子濃度が5.5×1020cm-3以下と低いが、比抵抗が5.7×10-4Ωcm以下と非常に低い電気抵抗率を有していた。キャリア電子の移動度は41cm2/Vsec以上と高く、これによって低電気抵抗率が実現しているといえる。
(Electrical characteristics)
As is apparent from Table 1, the indium oxide transparent electrode film of indium oxide containing titanium having a Ti / In atomic ratio of 0.003 to 0.120 according to the present invention has a carrier electron concentration of 5.5 × 10 20 cm. Although the resistivity was as low as −3 or less, the resistivity was 5.7 × 10 −4 Ω · cm or less, which was very low. The mobility of carrier electrons is as high as 41 cm 2 / Vsec or more, and it can be said that low electrical resistivity is realized.

また、本発明のTi/In原子数比が0.003〜0.050のチタンを含む酸化インジウムの酸化物透明電極膜(実施例1〜9)は、キャリア電子濃度が4.5×1020cm-3以下と低いが、比抵抗が4.0×10-4Ωcm以下の低電気抵抗率を有していた。表1には記していないが、Ti/In原子数比が、0.0030.050のチタンを含む酸化インジウムの酸化物透明電極膜でも成膜ガス中酸素量を2〜3%に増加させることによって比抵抗が4.0×10-4〜5.5×10-4Ωcmの酸化物透明電極膜が作製できることがわかった。これらの膜は、同様にキャリア電子濃度が低いため赤外域の透過率が高かった。 Further, the oxide transparent electrode film of indium oxide containing titanium having a Ti / In atomic ratio of 0.003 to 0.050 according to the present invention (Examples 1 to 9) has a carrier electron concentration of 4.5 × 10 20. Although it was as low as cm −3 or less, it had a low electrical resistivity of 4.0 × 10 −4 Ω · cm or less. Although not shown in Table 1, even in the oxide transparent electrode film of indium oxide containing titanium having a Ti / In atomic ratio of 0.003 to 0.050, the oxygen amount in the deposition gas is increased to 2 to 3%. As a result, it was found that an oxide transparent electrode film having a specific resistance of 4.0 × 10 −4 to 5.5 × 10 −4 Ω · cm can be produced. Similarly, these films had high transmittance in the infrared region due to the low carrier electron concentration.

Figure 2010153386
Figure 2010153386

(電気特性)
表2から明らかなように、従来のITO膜では比抵抗は2.4×10-4Ωcm以下で低いが、キャリア電子濃度が1.1×1021cm-3以上と高い。
(Electrical characteristics)
As is apparent from Table 2, the specific resistivity of the conventional ITO film is as low as 2.4 × 10 −4 Ω · cm or less, but the carrier electron concentration is as high as 1.1 × 10 21 cm −3 or more.

(電気特性)
実施例と同様の評価を実施したところ、比抵抗は2.2×10-4Ωcmで、キャリア電子濃度は1.2×1021cm-3でキャリア移動度は23cm2/Vsecである。
(Electrical characteristics)
When the same evaluation as in the example was performed, the specific resistance was 2.2 × 10 −4 Ω · cm, the carrier electron concentration was 1.2 × 10 21 cm −3 , and the carrier mobility was 23 cm 2 / Vsec. .

Figure 2010153386
Figure 2010153386

(電気特性)
表3から明らかなように、本発明の実施例13〜15のチタンを含む酸化インジウムの酸化物透明電極膜、参考例1〜6のチタンおよびタングステンを含む酸化インジウムの酸化物透明電極膜は、基板温度を150℃の低温加熱でスパッタリング成膜したにも関わらず、比抵抗が4.5×10-4Ωcm以下の低電気抵抗率を有している。これは、表3に示すように電子移動度が高いからである。
(Electrical characteristics)
As is clear from Table 3, the oxide transparent electrode film of indium oxide containing titanium of Examples 13 to 15 of the present invention, the oxide transparent electrode film of indium oxide containing titanium and tungsten of Reference Examples 1 to 6, Although the substrate temperature is sputtered by low-temperature heating at 150 ° C., the specific resistance is as low as 4.5 × 10 −4 Ω · cm or less. This is because the electron mobility is high as shown in Table 3.

比較例5〜7の膜は、キャリア電子の濃度が低く、赤外線領域でも透過率の高いが、比抵抗が5.3〜5.9×10-4Ωcmと、実施例13〜15、参考例1〜6の膜と比べて高い。この原因は、キャリア電子の移動度が、28〜32cm2/Vsecと、実施例13〜15、参考例1〜6の膜と比べて低いことによる。膜の結晶性をX線回折測定と走査型電子顕微鏡による膜組織観察から評価したところ、実施例13〜15、参考例1〜6の膜は比較例5〜7の膜と較べて、グレインサイズが大きく、X線回折ピークの半値幅が小さいことから、タングステンのみドープされた比較例5〜7の膜より結晶性が優れていることがわかった。このように実施例13〜15、参考例1〜6の膜は結晶性が優れているので、移動度が高いと考えられる。よって、従来のタングステンを含む酸化インジウム薄膜に比べて、本発明のチタンを含む酸化インジウム薄膜あるいはタングステンおよびチタンを含む酸化インジウム薄膜は、150℃の低温基板加熱成膜でも、低抵抗で可視光および赤外線の透過率の高い膜が得られる。酸化物透明電極膜のスパッタリングによる製造では、基板温度が低いほど、加熱時間の短縮、基板加熱電力の軽減が実現でき、製造コストの低減と生産性を上げることができる。よって産業上極めて有用な材料といえる。 Although the film | membrane of Comparative Examples 5-7 has a low density | concentration of a carrier electron and high transmittance | permeability also in an infrared region, specific resistance is 5.3-5.9 * 10 < -4 > ohm * cm, Examples 13-15, Higher than the films of Reference Examples 1-6. This is because the mobility of carrier electrons is 28 to 32 cm 2 / Vsec, which is lower than the films of Examples 13 to 15 and Reference Examples 1 to 6. When the crystallinity of the film was evaluated from X-ray diffraction measurement and film structure observation with a scanning electron microscope, the films of Examples 13 to 15 and Reference Examples 1 to 6 had a grain size as compared with the films of Comparative Examples 5 to 7. Since the half width of the X-ray diffraction peak is small, it was found that the crystallinity is superior to the films of Comparative Examples 5 to 7 doped with only tungsten. Thus, since the film | membrane of Examples 13-15 and Reference Examples 1-6 is excellent in crystallinity, it is thought that mobility is high. Therefore, in comparison with the conventional indium oxide thin film containing tungsten, the indium oxide thin film containing titanium or the indium oxide thin film containing tungsten and titanium of the present invention has low resistance and visible light even at low temperature substrate heating at 150 ° C. A film having a high infrared transmittance can be obtained. In the production of the oxide transparent electrode film by sputtering, the lower the substrate temperature, the shorter the heating time and the less the substrate heating power can be realized, and the production cost and productivity can be increased. Therefore, it can be said that it is a very useful material in industry.

(比較例8)
実施例1と同様の製造条件で、原料の配合比のみ変えて作製したターゲットから、実施例1と同じ条件で、チタン/インジウムの原子数比が0.130の割合の酸化物透明電極膜を得た。その結果、6.5×10-4〜7.5×10-4Ωcmの比抵抗を示し、5.7×10-4Ωcm以下の比抵抗の膜は実現しなかった。
(Comparative Example 8)
An oxide transparent electrode film having a titanium / indium atomic ratio of 0.130 under the same conditions as in Example 1 from a target prepared by changing only the mixing ratio of the raw materials under the same production conditions as in Example 1. Obtained. As a result, a film having a specific resistance of 6.5 × 10 −4 to 7.5 × 10 −4 Ω · cm and a specific resistance of 5.7 × 10 −4 Ω · cm or less was not realized.

(比較例9)
実施例1と同様の製造条件で、原料の配合比のみ変えて作製したターゲットから、実施例1と同じ条件で、チタン/インジウムの原子数比が0.002の割合の酸化物透明電極膜を得た。その結果、6.0×10-4〜1.2×10-3Ωcmの比抵抗を示し、5.7×10-4Ωcm以下の比抵抗の膜は実現しなかった。
(Comparative Example 9)
An oxide transparent electrode film having a titanium / indium atomic ratio of 0.002 under the same conditions as in Example 1 from a target prepared by changing only the mixing ratio of raw materials under the same manufacturing conditions as in Example 1. Obtained. As a result, a specific resistance of 6.0 × 10 −4 to 1.2 × 10 −3 Ω · cm was exhibited, and a film having a specific resistance of 5.7 × 10 −4 Ω · cm or less was not realized.

Figure 2010153386
Figure 2010153386

太陽電池の作製
(実施例16)
以下、本発明の実施例について図面を参照して説明する。図6は本発明の一実施例を示す略示断面図である。ガラス基板(12)上に直流マグネトロンスパッタ法で、実施例5の酸化物透明電極膜(11)を、実施例5と同じ成膜条件で500nm程度の厚さに形成した。その上に直流マグネトロンスパッタ法で、ZnOターゲットを使用し、スパッタガスとしてArを用い、窓層(10)としてZnO薄膜を膜厚150nm程度の厚さに形成した。その上にヘテロpn接合を形成するため、半導体中間層(9)としてCdS薄膜を溶液析出法で、CdI2、NH4Cl2、NH3、チオ尿素の混合溶液を用いて、50nm程度の厚さに形成した。その上にp型半導体の光吸収層(8)としてCuInSe2薄膜を真空蒸着法で2〜3μmの厚さに形成した。その上に裏側金属電極(7)としてAu膜を真空蒸着法で1μm程度の厚さに形成した。これらの太陽電池のAM1.5(100mW
/cm2)の照射光を酸化物透明電極膜側から照射して特性を調べたところ、変換効率は12%であった。
Production of solar cell (Example 16)
Embodiments of the present invention will be described below with reference to the drawings. FIG. 6 is a schematic sectional view showing an embodiment of the present invention. On the glass substrate (12), the oxide transparent electrode film (11) of Example 5 was formed to a thickness of about 500 nm under the same film formation conditions as in Example 5 by DC magnetron sputtering. A ZnO target was used thereon, a ZnO target was used, Ar was used as the sputtering gas, and a ZnO thin film having a thickness of about 150 nm was formed as the window layer (10). To form a hetero pn junction thereon, a solution precipitation method CdS thin film as a semiconductor having an intermediate layer (9), CdI 2, NH 4 Cl 2, NH 3, using a mixed solution of thiourea, of about 50nm Formed to a thickness. On top of this, a CuInSe 2 thin film was formed to a thickness of 2 to 3 μm by vacuum deposition as a p-type semiconductor light absorption layer (8). An Au film was formed thereon as a back metal electrode (7) to a thickness of about 1 μm by vacuum deposition. These solar cells AM1.5 (100 mW
/ Cm 2 ) was irradiated from the oxide transparent electrode film side and the characteristics were examined. The conversion efficiency was 12%.

光検出素子の作製
(実施例20、比較例18)
検知材料層として、EuとSmをドープしたCaS材料を用いた光検出素子の作製例を以下に記す。図8は、実施例20の光検出素子の構成を示す模式断面図である。ガラス基板(14)上に実施例5のチタンをドープした酸化インジウム薄膜を、光入射側の透明電極(15)として、スパッタリング法で200nmほど形成する。その上にEu23とSm23を200ppm添加したCaSの焼結体ペレットを用いて、電子ビーム蒸着法により基板温度500℃にて、1μmほどのEuとSmをドープしたCaSの光検知材料層(16)を形成した。最後に、光検知材料層(16)の上に裏面電極(17)としてアルミニウム膜をスパッタリング法で形成した。
Production of photodetection element (Example 20, Comparative Example 18)
An example of manufacturing a light detection element using a CaS material doped with Eu and Sm as the detection material layer will be described below. FIG. 8 is a schematic cross-sectional view showing the configuration of the photodetecting element of Example 20. The indium oxide thin film doped with titanium of Example 5 is formed on the glass substrate (14) as a transparent electrode (15) on the light incident side by sputtering to a thickness of about 200 nm. A CaS light doped with about 1 μm of Eu and Sm at a substrate temperature of 500 ° C. by electron beam evaporation using a sintered pellet of CaS added with 200 ppm of Eu 2 O 3 and Sm 2 O 3 thereon. A sensing material layer (16) was formed. Finally, an aluminum film was formed as a back electrode (17) on the photodetecting material layer (16) by a sputtering method.

1 ガラス基板
2 表側(受光部側)透明電極膜
3 p型アモルファスシリコン膜
4 不純物を含まないアモルファスシリコン膜
5 n型アモルファスシリコン膜
6 裏側透明電極
7 裏側金属電極
8 光吸収層
9 半導体の中間層
10 窓層
11 酸化物透明電極膜
12 ガラス基板
13 下部電極
14 ガラス基板
15 光入射側の透明電極
16 光検知材料層
17 裏面電極
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Front side (light-receiving part side) Transparent electrode film 3 P-type amorphous silicon film 4 Amorphous silicon film not containing impurities 5 N-type amorphous silicon film 6 Back side transparent electrode 7 Back side metal electrode 8 Light absorption layer 9 Semiconductor intermediate layer DESCRIPTION OF SYMBOLS 10 Window layer 11 Oxide transparent electrode film 12 Glass substrate 13 Lower electrode 14 Glass substrate 15 Light-incident side transparent electrode 16 Photodetection material layer 17 Back electrode

Claims (17)

酸化インジウムを主成分とし、チタンを含有し、150℃以上350℃以下に加熱された基板上に成膜された酸化物透明導電膜であって、酸化インジウムのインジウムがチタンに、チタン/インジウムの原子数比で0.003〜0.120の割合で、置換され、酸化インジウムは結晶質であり、酸化物透明電極膜の比抵抗が5.7×10-4Ωcm以下であり、ホール測定効果によるキャリア電子濃度が5.5×10 20 cm -3以下であり、かつホール効果測定によるキャリア電子の移動度が40cm2/Vsec以上であることを特徴とする酸化物透明電極膜。 An oxide transparent conductive film formed on a substrate containing indium oxide as a main component and containing titanium and heated to 150 ° C. or higher and 350 ° C. or lower, wherein indium oxide indium is titanium, titanium / indium The indium oxide is substituted at an atomic ratio of 0.003 to 0.120, the indium oxide is crystalline, and the specific resistance of the oxide transparent electrode film is 5.7 × 10 −4 Ω · cm or less. A transparent oxide electrode film characterized in that a carrier electron concentration by a measurement effect is 5.5 × 10 20 cm −3 or less and a carrier electron mobility by a Hall effect measurement is 40 cm 2 / Vsec or more. チタン/インジウムの原子数比で0.003〜0.050の割合で、かつ酸化物透明電極膜の比抵抗が4.0×10-4Ωcm以下であることを特徴とする請求項1に記載の酸化物透明電極膜。 The titanium / indium atomic ratio is 0.003 to 0.050, and the specific resistance of the oxide transparent electrode film is 4.0 × 10 −4 Ω · cm or less. The oxide transparent electrode film described in 1. 波長1000〜1400nmにおける平均光透過率が60%以上であることを特徴とする請求項1または2に記載の酸化物透明電極膜。   3. The oxide transparent electrode film according to claim 1, wherein an average light transmittance at a wavelength of 1000 to 1400 nm is 60% or more. ホール効果測定によるキャリア電子濃度が4.0×1020cm-3以下であることを特徴とする請求項1〜3のいずれかに記載の酸化物透明電極膜。 4. The oxide transparent electrode film according to claim 1, wherein a carrier electron concentration by Hall effect measurement is 4.0 × 10 20 cm −3 or less. ホール効果測定によるキャリア電子の移動度が60cm2/Vsec以上であることを特徴とする請求項1〜4のいずれかに記載の酸化物透明電極膜。 5. The oxide transparent electrode film according to claim 1, wherein the mobility of carrier electrons by Hall effect measurement is 60 cm 2 / Vsec or more. ホール効果測定によるキャリア電子の移動度が70cm2/Vsec以上であることを特徴とする請求項5記載の酸化物透明電極膜。 6. The oxide transparent electrode film according to claim 5, wherein the mobility of carrier electrons by Hall effect measurement is 70 cm 2 / Vsec or more. 構成元素が実質的にインジウム、チタン、酸素である酸化物焼結体から作製されたスパッタリングターゲットを使って、基板温度を150℃以上350℃以下とし、スパッタガスに酸素を0.25%以上4%以下含むアルゴンと酸素の混合ガスを使用して、スパッタリング法で成膜することを特徴とする請求項1〜6のいずれかに記載の酸化物透明電極膜の製造方法。   Using a sputtering target made of an oxide sintered body whose constituent elements are substantially indium, titanium, and oxygen, the substrate temperature is set to 150 ° C. to 350 ° C., and oxygen is added to the sputtering gas by 0.25% or more 4 The method for producing an oxide transparent electrode film according to claim 1, wherein a film is formed by a sputtering method using a mixed gas of argon and oxygen that is contained in an amount of not more than%. 透明基板の上に請求項1〜6のいずれかに記載の酸化物透明電極膜を形成した透明導電性基材。   The transparent conductive base material which formed the oxide transparent electrode film in any one of Claims 1-6 on the transparent substrate. 波長1000〜1400nmにおける平均光透過率が60%以上であり、表面抵抗が30Ω/□以下であることを特徴とする請求項8に記載の透明導電性基材。   9. The transparent conductive substrate according to claim 8, wherein an average light transmittance at a wavelength of 1000 to 1400 nm is 60% or more, and a surface resistance is 30 Ω / □ or less. 請求項1〜6のいずれかに記載の酸化物透明電極膜を用いたことを特徴とする太陽電池。   A solar cell using the oxide transparent electrode film according to claim 1. 電極層を設けた基板または電極性を備えた金属基板上に、p型半導体の光吸収層、その上にn型半導体の中間層、その上に半導体の窓層、その上にn型の透明電極層を順次積層した構造の太陽電池において、該透明電極層に請求項1〜6のいずれかに記載の酸化物透明電極膜を用いることを特徴とする太陽電池。   On a substrate provided with an electrode layer or a metal substrate having electrode properties, a p-type semiconductor light absorbing layer, an n-type semiconductor intermediate layer thereon, a semiconductor window layer thereon, and an n-type transparent layer thereon The solar cell of the structure which laminated | stacked the electrode layer sequentially WHEREIN: The solar cell characterized by using the oxide transparent electrode film in any one of Claims 1-6 for this transparent electrode layer. 透明性基板上に透明電極層、その上に半導体の窓層、その上にn型の半導体の中間層、その上にp型の半導体の光吸収層を順次積層した構造の太陽電池において、該透明電極層に請求項1〜6のいずれかに記載の酸化物透明電極膜を用いることを特徴とする太陽電池。   In a solar cell having a structure in which a transparent electrode layer on a transparent substrate, a semiconductor window layer thereon, an n-type semiconductor intermediate layer thereon, and a p-type semiconductor light absorption layer thereon are sequentially laminated, A solar cell using the oxide transparent electrode film according to claim 1 for the transparent electrode layer. 光吸収層が、CuInSe2、CuInS2、CuGaSe2、CuGaS2およびこれらの固溶体、およびCdTeから選ばれる少なくとも一つである請求項11または12に記載の太陽電池。 Light absorbing layer, CuInSe 2, CuInS 2, CuGaSe 2, CuGaS 2 and a solar cell according to claim 11 or 12 of these solid solutions, and at least one selected from CdTe. 中間層が、溶液析出のCdS層または(Cd,Zn)S層である請求項11〜13のいずれかに記載の太陽電池。   The solar cell according to claim 11, wherein the intermediate layer is a solution-deposited CdS layer or a (Cd, Zn) S layer. 窓層が、ZnOあるいは(Zn,Mg)Oである請求項11〜14のいずれかに記載の太陽電池。   The solar cell according to claim 11, wherein the window layer is ZnO or (Zn, Mg) O. 一対の電極と、該電極間に狭持された光検知材料層とを有する光検出素子において、該電極のうち少なくとも一方に、請求項1から6のいずれかに記載の酸化物透明電極膜を用いることを特徴とする光検出素子。   A photodetecting element having a pair of electrodes and a photodetecting material layer sandwiched between the electrodes, wherein the oxide transparent electrode film according to any one of claims 1 to 6 is formed on at least one of the electrodes. A photodetecting element characterized by being used. 前記光検知材料層が赤外線検知材料層であることを特徴とする請求項16に記載の光検出素子。   The light detection element according to claim 16, wherein the light detection material layer is an infrared detection material layer.
JP2010024401A 2002-10-04 2010-02-05 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and light detection element Expired - Fee Related JP5234023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024401A JP5234023B2 (en) 2002-10-04 2010-02-05 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and light detection element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002292434 2002-10-04
JP2002292434 2002-10-04
JP2002359975 2002-12-11
JP2002359975 2002-12-11
JP2010024401A JP5234023B2 (en) 2002-10-04 2010-02-05 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and light detection element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003324825A Division JP4556407B2 (en) 2002-10-04 2003-09-17 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector

Publications (3)

Publication Number Publication Date
JP2010153386A JP2010153386A (en) 2010-07-08
JP2010153386A5 true JP2010153386A5 (en) 2010-09-30
JP5234023B2 JP5234023B2 (en) 2013-07-10

Family

ID=42572211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024401A Expired - Fee Related JP5234023B2 (en) 2002-10-04 2010-02-05 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and light detection element

Country Status (1)

Country Link
JP (1) JP5234023B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968414B1 (en) * 2010-12-06 2013-07-05 Saint Gobain ELECTROCHEMICAL DIPOSITIVE WITH ELECTRONICALLY CONTROLLED OPTICAL AND / OR ENERGY TRANSMISSION PROPERTIES
KR101317803B1 (en) 2011-01-28 2013-10-15 삼성코닝정밀소재 주식회사 Liquid Crystal Display Device, Organic Light Emitting Diode and Touch Screen Having Phase-Transition Indium Tin Oxide Transparent Conductive Film As Electrode
JP2015072939A (en) * 2013-10-01 2015-04-16 長州産業株式会社 Optical power generation element
JP2020076850A (en) * 2018-11-07 2020-05-21 日本電気硝子株式会社 Band-pass filter and method of manufacturing the same
CN115074666B (en) * 2022-06-13 2023-11-03 桂林电子科技大学 Preparation method of multilayer composite ITO film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309511A (en) * 1989-05-24 1990-12-25 Showa Denko Kk Transparent conductive film
JPH0843840A (en) * 1994-07-27 1996-02-16 Toppan Printing Co Ltd Electrode plate for display device
JPH09199741A (en) * 1996-01-16 1997-07-31 Matsushita Electric Ind Co Ltd Thin film solar cell
JPH09282945A (en) * 1996-04-16 1997-10-31 Idemitsu Kosan Co Ltd Transparent conductive film and manufacture thereof
JP3911957B2 (en) * 2000-04-25 2007-05-09 松下電工株式会社 High-sensitivity infrared detection element and manufacturing method thereof
JP2002050231A (en) * 2000-08-04 2002-02-15 Geomatec Co Ltd Transparent conductive film, its manufacturing method and its application

Similar Documents

Publication Publication Date Title
JP4556407B2 (en) Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector
JP5510849B2 (en) Oxide transparent conductive film, and photoelectric conversion element and photodetection element using the same
Sinha et al. A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters
Lee et al. Transparent and flexible amorphous In-Si-O films for flexible organic solar cells
JP6955915B2 (en) Solar cell module and its manufacturing method
JP5445395B2 (en) Method for producing transparent conductive film and method for producing thin film solar cell
Yang et al. Modulation of oxygen in NiO: Cu films toward a physical insight of NiO: Cu/c-Si heterojunction solar cells
Park et al. Effects of deposition temperature on characteristics of Ga-doped ZnO film prepared by highly efficient cylindrical rotating magnetron sputtering for organic solar cells
JP2007273455A (en) Oxide film transparent conductive film, and transparent conductive base material, thin film transistor substrate, photoelectric conversion element and photo detector using the same
JP5673236B2 (en) Thin film solar cell and manufacturing method thereof
JP2010153386A5 (en)
Paul et al. Al-diffused zno transparent conducting oxide thin films for cadmium telluride superstrate solar cells: A comprehensive study
JP5234023B2 (en) Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and light detection element
Tong et al. Effects of annealing temperature and atmosphere on performances of Zn0. 9Mg0. 1O buffer layers for CIGS solar cell
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
US20130327387A1 (en) Se OR S BASED THIN FILM SOLAR CELL AND METHOD FOR FABRICATING THE SAME
JP2014096598A (en) Thin film solar cell
Kohan et al. Plasma assisted vapor solid deposition of Co 3 O 4 tapered nanorods for energy applications
Yan et al. Gallium‐Doped Zinc Oxide/Tungsten‐Doped Indium Oxide Stacks with Enhanced Lateral Transport Capability for Efficient and Low‐Cost Silicon Heterojunction Solar Cells
JP5405923B2 (en) Photoelectric conversion element and manufacturing method thereof
KR101971398B1 (en) Bifacial CdS/CdTe thin film solar cell and method for the same
JP5468217B2 (en) Thin film solar cell
Chevva et al. Precursor Molarity Influence on Sprayed Mo-doped ZnO Films for solar cells
KR20150048304A (en) Solar cell including a transparent electrode having multilayer structure
Liang et al. Journal of Materiomics