KR20230084034A - Effective near-infrared absorbing electron donor material and near-infrared sensitive organic electronic device using thereof - Google Patents

Effective near-infrared absorbing electron donor material and near-infrared sensitive organic electronic device using thereof Download PDF

Info

Publication number
KR20230084034A
KR20230084034A KR1020220155444A KR20220155444A KR20230084034A KR 20230084034 A KR20230084034 A KR 20230084034A KR 1020220155444 A KR1020220155444 A KR 1020220155444A KR 20220155444 A KR20220155444 A KR 20220155444A KR 20230084034 A KR20230084034 A KR 20230084034A
Authority
KR
South Korea
Prior art keywords
formula
infrared
alkyl
independently
halogen
Prior art date
Application number
KR1020220155444A
Other languages
Korean (ko)
Inventor
이상규
이행근
문상진
이종철
신원석
송창은
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of KR20230084034A publication Critical patent/KR20230084034A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

The present invention relates to an effective near-infrared absorbing electron donor material and a near-infrared sensitive organic electronic device using the same. The effective near-infrared absorbing electron donor material and a near-infrared sensitive organic electronic device using the same according to the present invention can easily perform solubility adjustment for a solution process and optical-electrical deformation. Accordingly, the present invention can effectively absorb infrared light having a long wavelength and expect a high light absorption degree. In addition, it is expected to form effective crystallinity for an increase in the stacking of molecules and the improvement of electron transfer due to fusion-type great flatness and low steric hindrance effects. In addition, thienopyrazine-based polymer compounds have an increased intermolecular interaction (ICT) effect, thereby obtaining a much stronger infrared absorbing material.

Description

효과적인 근적외선 흡수 전자공여체 물질 및 이를 이용한 근적외선 감응 유기 전자 소자{Effective near-infrared absorbing electron donor material and near-infrared sensitive organic electronic device using thereof}Effective near-infrared absorbing electron donor material and near-infrared sensitive organic electronic device using the same

본 발명은 효과적인 근적외선 흡수 소재 및 이를 이용한 근적외선 감응 유기 전자 소자, 특히 유기 광전변환 소자에 관한 것이다.The present invention relates to an effective near-infrared ray absorbing material and a near-infrared ray-sensitive organic electronic device, particularly an organic photoelectric conversion device using the same.

저밴드갭 소재는 강한 퀴노이드 구조와 전자주개특성을 보이며 현재까지 많이 사용되고 있는 다이피롤로피롤(diketopyrrolopyrrole, DPP), 싸이에노싸이아다이아졸(thienothiadiazole, TTz), 비스벤조싸이아다이아졸(Bisbenzothiadiazole, BBT)등의 소재가 효과적인 근적외선 흡수 소재로 주로 사용된다(비특허문헌, Tian, He; Qu, Sanyin, Chemical Communications. 48 (25): 3039-3051). The low-bandgap material has a strong quinoid structure and electron donor characteristics, and dipyrrolopyrrole (DPP), thienothiadiazole (TTz), and bisbenzothiadiazole ( Bisbenzothiadiazole, BBT) is mainly used as an effective near-infrared absorbing material (non-patent literature, Tian, He; Qu, Sanyin, Chemical Communications . 48 (25): 3039-3051).

하지만 대부분의 적외선 흡수 소재는 적외선 영역에 흡수된 포톤이 전하 캐리어로의 추출과 이동이 어려워 해당 영역의 외부양자효율이 낮다.However, most infrared absorbing materials have low external quantum efficiency in the infrared region because it is difficult for photons absorbed in the infrared region to be extracted and moved to charge carriers.

또한 합성이 까다롭고 높은 HOMO 에너지위치로 인한 산화 안정성이 낮으며 몇몇 소재에는 알킬체인의 도입 및 구조적 변형의 다양성이 부족하여 용액공정 및 광학적-전기적 특성 변화가 어렵다는 단점이 있다.In addition, synthesis is difficult, oxidation stability is low due to high HOMO energy position, and solution processing and optical-electrical property change are difficult due to the lack of introduction of alkyl chains and diversity of structural transformation in some materials.

이를 해결하기 위하여 합성이 간단하고 알킬 및 구조적 변형성이 우수하며 광학적-전기적 특성 변화가 용이하며 효과적인 적외선흡수 스펙트럼을 기대할 수 있는 싸이에노피라진 (Thienopyrazine, TPZ)을 활용한 적외선 흡수 소재로서 전자공여체(electron donor) 물질을 발명하게 되었다.In order to solve this problem, an electron donor ( electron donors were invented.

본 발명의 일 목적은 신규한 근적외선 흡수 소재를 제공하는 데 있다.One object of the present invention is to provide a novel near-infrared ray absorbing material.

본 발명의 다른 목적은 상기 근적외선 흡수 소재를 이용한 근적외선 감응 유기 전자 소자를 제공하는 데 있다.Another object of the present invention is to provide a near-infrared ray sensitive organic electronic device using the near-infrared absorbing material.

상기 목적을 달성하기 위하여,In order to achieve the above purpose,

본 발명은 일 측면에서 싸이에노피라진(TPZ;Thienopyrazine)을 활용한 근적외선 흡수 소재를 제공하며, 구체적으로 전자공여체 물질을 제공한다.In one aspect, the present invention provides a near-infrared ray absorbing material using Thienopyrazine (TPZ), and specifically provides an electron donor material.

또 다른 측면에서,On another aspect,

상기 근적외선 흡수 소재를 이용한 근적외선 감응 유기 소자, 구체적으로 유기 광전변환 소자를 제공한다.A near-infrared ray sensitive organic device using the near-infrared absorbing material, specifically an organic photoelectric conversion device is provided.

본 발명에 따른 근적외선 흡수 소재 및 이를 이용한 근적외선 감응 유기 전자 소자는 용액공정을 위한 용해도 조절 및 광학적-전기적 변형이 쉽다. 이러한 특성으로 인하여 장파장, 적외선 영역의 빛을 효과적으로 흡수하며 높은 광흡수도를 예상 할 수 있다. 또한 융합형태의 우수한 평면성과 낮은 입체장애 효과로 인하여 분자간 쌓임 현상의 증가와 전자 이동 향상을 위한 효과적인 결정성을 형성 할 수 있을 것으로 기대할 수 있다. 뿐만 아니라 본 발명에 따른 싸이에노피라진 기반 고분은, 분자간상호작용 (intermolecular interaction, ICT)효과가 증가하여 훨씬 더 강한 적외선 흡수가 가능하다.The near-infrared ray absorbing material and the near-infrared ray-sensitive organic electronic device using the same according to the present invention are easy to adjust solubility and optical-electrical transformation for a solution process. Due to these characteristics, it can effectively absorb light in the long wavelength and infrared region, and high light absorption can be expected. In addition, it can be expected to form effective crystallinity for increasing intermolecular stacking and improving electron movement due to the excellent planarity and low steric hindrance effect of the fusion form. In addition, the cyenopyrazine-based tombs according to the present invention have an increased intermolecular interaction (ICT) effect, enabling much stronger infrared absorption.

도 1은 일 실시예인 P-1에 대하여 흡수 스펙트럼을 측정한 결과를 나타낸 것이다.
도 2는 일 실시예인 P-2에 대하여 흡수 스펙트럼을 측정한 결과를 나타낸 것이다.
도 3은 일 실시예인 P-3에 대하여 흡수 스펙트럼을 측정한 결과를 나타낸 것이다.
도 4는 일 실시예인 P-4에 대하여 흡수 스펙트럼을 측정한 결과를 나타낸 것이다.
1 shows the result of measuring the absorption spectrum for P-1, which is an example.
Figure 2 shows the result of measuring the absorption spectrum for P-2, which is an embodiment.
Figure 3 shows the result of measuring the absorption spectrum for P-3, which is an embodiment.
Figure 4 shows the result of measuring the absorption spectrum for P-4, which is an embodiment.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

한편, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Meanwhile, the embodiments of the present invention may be modified in various forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

나아가, 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.Furthermore, "include" a certain component throughout the specification means that other components may be further included without excluding other components unless otherwise stated.

본 명세서에서 "알킬"은 완전 포화 탄화수소로서 직쇄 또는 분지쇄의 구조 이성질체를 모두 포함하는 치환기로서의 1가의 라디칼을 의미한다. C1-C30알킬이라고 할 때, 탄화수소를 이루는 탄소의 개수가 1 내지 30 범위인 것을 의미한다.In this specification, “alkyl” means a monovalent radical as a substituent containing all structural isomers of straight or branched chain as a completely saturated hydrocarbon. When C1-C30 alkyl, it means that the number of carbon atoms constituting the hydrocarbon ranges from 1 to 30.

본 명세서에서 "할로겐"은 원소주기율표상 7족에 속하는 원소로서 플루오로, 클로로, 브로모, 이오도를 모두 포함하는 치환기로서의 1가의 라디칼을 의미한다.In the present specification, "halogen" is an element belonging to group 7 on the periodic table of elements, and refers to a monovalent radical as a substituent containing all of fluoro, chloro, bromo, and iodo.

본 발명의 일 측면은,One aspect of the present invention,

싸이에노피라진(TPZ;Thienopyrazine)을 활용한 근적외선 흡수 소재를 제공한다.A near-infrared ray absorbing material using thienopyrazine (TPZ) is provided.

상기 흡수 소재는 도너 물질 또는 억셉터 물질일 수 있다.The absorber material may be a donor material or an acceptor material.

본 발명의 일 구체예로서,As one specific example of the present invention,

상기 도너 물질은 하기 화학식 1로 표시되는 반복단위를 포함하는 적외선 흡수 고분자 화합물을 포함한다.The donor material includes an infrared ray absorbing polymer compound including a repeating unit represented by Formula 1 below.

[화학식 1]

Figure pat00001
[Formula 1]
Figure pat00001

상기 화학식 1에서,In Formula 1,

A는 존재하지 않거나 하기 화학식 2 내지 4로부터 선택되는 어느 하나이고,A is not present or is any one selected from Formulas 2 to 4 below,

R1 내지 R4는 각각 독립적으로 수소, 할로겐 또는 C1-C30의 알킬이고,R 1 to R 4 are each independently hydrogen, halogen or C1-C30 alkyl;

[화학식 2]

Figure pat00002
[Formula 2]
Figure pat00002

[화학식 3]

Figure pat00003
[Formula 3]
Figure pat00003

[화학식 4]

Figure pat00004
[Formula 4]
Figure pat00004

여기서, here,

R5a, R5b, R6a, R6b, R7a,및 R7b는 각각 독립적으로,R 5a , R 5b , R 6a , R 6b , R 7a , and R 7b are each independently

수소, C1-C30알킬 또는 할로겐이다.hydrogen, C1-C30 alkyl or halogen.

또 다른 구체예에서, 하기와 같을 수 있다.In another embodiment, it may be as follows.

상기 R1 내지 R4는 각각 독립적으로 수소, 할로겐 또는 C4-C20의 알킬이고;R 1 to R 4 are each independently hydrogen, halogen or C4-C20 alkyl;

상기 R1 내지 R4는 각각 독립적으로 수소, 할로겐 또는 C4-C20의 알킬이고;R 1 to R 4 are each independently hydrogen, halogen or C4-C20 alkyl;

상기 R1 내지 R2는 각각 독립적으로 수소 또는 C4-C20의 알킬이고 및/또는 상기 R3 내지 R4는 각각 할로겐이고;R 1 to R 2 are each independently hydrogen or C4-C20 alkyl and/or R 3 to R 4 are each halogen;

상기 R1 내지 R2는 동일, 및/또는 상기 R3 내지 R4는 동일하다.The R 1 to R 2 are the same, and/or the R 3 to R 4 are the same.

R5a, R5b, R6a, R6b, R7a,및 R7b는 각각 독립적으로 C1-C30알킬 또는 할로겐이고;R 5a , R 5b , R 6a , R 6b , R 7a , and R 7b are each independently C1-C30 alkyl or halogen;

R5a, R5b, R6a, R6b, R7a,및 R7b는 각각 독립적으로 C4-C20알킬 또는 할로겐이이다.R 5a , R 5b , R 6a , R 6b , R 7a , and R 7b are each independently C4-C20 alkyl or halogen.

본 발명의 다른 구체예에서,In another embodiment of the invention,

상기 화학식 1의 고분자 화합물은,The polymer compound of Formula 1,

A는 존재하지 않는 것일 수 있으며, 이때A may not exist, in which case

R1 내지 R4는 각각 독립적으로 C1-C30의 알킬, 또는 C1-C20의 알킬일 수 있다.R 1 to R 4 may each independently be C1-C30 alkyl or C1-C20 alkyl.

이 때, R1 내지 R2는 동일 및/또는 R3 내지 R4는 동일할 수 있다.At this time, R 1 to R 2 may be the same and/or R 3 to R 4 may be the same.

본 발명의 다른 구체예에서,In another embodiment of the invention,

상기 화학식 1의 고분자 화합물은,The polymer compound of Formula 1,

A는 화학식 2이며, 이때A is Formula 2, wherein

R1 내지 R4는 각각 독립적으로 C1-C30의 알킬, 또는 C4-C20의 알킬 일 수 있고, 이 때, R1 내지 R2는 동일 및/또는 R3 내지 R4는 동일할 수 있으며,R 1 to R 4 may each independently be C1-C30 alkyl or C4-C20 alkyl, wherein R 1 to R 2 may be the same and/or R 3 to R 4 may be the same,

R5a 및 R5b 은 각각 할로겐일 수 있고, R5a 및 R5b 은 동일할 수 있다. R5a and R5b may each be halogen, R 5a and R 5b may be the same.

본 발명의 다른 구체예에서,In another embodiment of the invention,

상기 화학식 1의 고분자 화합물은,The polymer compound of Formula 1,

A는 화학식 3이며, 이때A is Formula 3, wherein

R1 내지 R2는 각각 독립적으로 C1-C30의 알킬, 또는 C4-C20의 알킬이고,R 1 to R 2 are each independently C1-C30 alkyl or C4-C20 alkyl;

이때 R1 내지 R2는 동일할 수 있고,In this case, R 1 to R 2 may be the same,

R3 내지 R4는 각각 수소이고,R 3 to R 4 are each hydrogen;

R6a 및 R6b은 각각 C1-C30의 알킬, 또는 C4-C20의 알킬일 수 있으며,R 6a and R 6b may each be C1-C30 alkyl or C4-C20 alkyl;

이때 R6a 및 R6b은 동일할 수 있다.In this case, R 6a and R 6b may be the same.

본 발명의 다른 구체예에서,In another embodiment of the invention,

상기 화학식 1의 고분자 화합물은,The polymer compound of Formula 1,

A는 화학식 4이며,A is Formula 4,

R1 내지 R2는 각각 독립적으로 할로겐이고, 이때 R1 내지 R2는 동일할 수 있고,R 1 to R 2 are each independently halogen, wherein R 1 to R 2 may be the same;

R3 내지 R4는 각각 독립적으로 수소이고,R 3 to R 4 are each independently hydrogen;

R7a 및 R7b은 각각 독립적으로 C1-C30의 알킬, 또는 C4-C20의 알킬이고, 이때 R7a 및 R7b은 동일할 수 있다.R 7a and R 7b are each independently C1-C30 alkyl or C4-C20 alkyl, wherein R 7a and R 7b may be the same.

본 발명의 다른 구체예에서,In another embodiment of the invention,

상기 화학식 1의 고분자 화합물은, 하기에서 선택되는 것일 수 있다.The polymer compound represented by Chemical Formula 1 may be selected from the following.

Figure pat00005
,
Figure pat00006
,
Figure pat00005
,
Figure pat00006
,

Figure pat00007
,
Figure pat00008
Figure pat00007
,
Figure pat00008

본 발명은 다른 측면에서,In another aspect of the present invention,

본 발명에 따른 고분자 화합물의 제조방법을 제공한다.A method for preparing a polymer compound according to the present invention is provided.

일 구체예에서,In one embodiment,

하기의 화학식 1A로 표시되는 단량체 및 화학식 1C로 표시되는 단량체의 중합 단계를 포함하는, 상기 화학식 1에 따른 고분자 화합물의 제조방법을 제공한다.Provided is a method for preparing a polymer compound according to Formula 1, including polymerization of a monomer represented by Formula 1A and a monomer represented by Formula 1C.

[화학식 1A]

Figure pat00009
[Formula 1A]
Figure pat00009

[화학식 1C] X2-A-X2 [Formula 1C] X 2 -AX 2

여기서, X1은 할로겐이고, X2는 Me3Sn이고,wherein X 1 is halogen, X2 is Me 3 Sn,

A, R1 내지 R4는 화학식 1에 대하여 앞서 정의한 바와 같다.A, R 1 to R 4 are as defined above with respect to Formula 1.

바람직하게,Preferably,

A는 존재하지 않거나, 화학식 2일 수 있으며,A may not exist or may be Formula 2,

A가 존재하지 않는 경우, 화학식 1C에 따른 단량체는 중합체에 기여하지 않는다.When A is absent, the monomer according to Formula 1C does not contribute to the polymer.

다른 구체예에서,In another embodiment,

하기의 화학식 1A로 표시되는 단량체 및 화학식 1C로 표시되는 단량체의 중합 단계를 포함하는, 상기 화학식 1에 따른 고분자 화합물의 제조방법을 제공한다.Provided is a method for preparing a polymer compound according to Formula 1, including polymerization of a monomer represented by Formula 1A and a monomer represented by Formula 1C.

[화학식 1A]

Figure pat00010
[Formula 1A]
Figure pat00010

[화학식 1C] X2-A-X2 [Formula 1C] X 2 -AX 2

여기서, X1은 Me3Sn이고, X2는 할로겐이고,Here, X 1 is Me 3 Sn, X 2 is halogen,

A, R1 내지 R4는 제1항에서 정의한 바와 같으며,A, R 1 to R 4 are as defined in claim 1,

바람직하게 A는 화학식 3일 수 있다.Preferably, A may be of Formula 3.

또 다른 구체예에서,In another embodiment,

하기의 화학식 1D로 표시되는 단량체 및 화학식 1E로 표시되는 단량체의 중합 단계를 포함하는, 상기 화학식 1에 따른 고분자 화합물의 제조방법을 제공한다.A method for producing a polymer compound according to Chemical Formula 1, including polymerization of a monomer represented by Chemical Formula 1D and a monomer represented by Chemical Formula 1E, is provided.

[화학식 1D]

Figure pat00011
[Formula 1D]
Figure pat00011

[화학식 1E]

Figure pat00012
[Formula 1E]
Figure pat00012

여기서, X3은 할로겐이고, X4는 -SnMe3이고,wherein X 3 is halogen, X 4 is -SnMe 3 ,

R1 내지 R4는 제1항에서 정의한 바와 같으며,R 1 to R 4 are as defined in claim 1,

바람직하게 A는 화학식 4일 수 있다.Preferably, A may be of Formula 4.

상기 고분자 화합물은 1,000 내지 200,000의 중량평균분자량을 가진다.The polymer compound has a weight average molecular weight of 1,000 to 200,000.

이하, 본 발명을 실시예 및 실험예를 통해 상세히 설명한다.Hereinafter, the present invention will be described in detail through Examples and Experimental Examples.

단, 후술하는 실시예 및 실험예는 본 발명을 일 측면에서 구체적으로 예시하는 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.However, the examples and experimental examples to be described later are only to specifically illustrate the present invention in one aspect, but the present invention is not limited thereto.

<< 실시예Example 1> P-1 고분자 중합체의 제조 1> Preparation of P-1 High Polymer

1-1. 5,7-비스(5-브로모싸이오펜-2-일)-2,3-비스(2-에틸헥실)싸이에노[3,4-b]피라진 (5,7-bis(5-bromothiophen-2-yl)-2,3-bis(2-ethylhexyl)thieno[3,4-b]pyrazine)의 합성1-1. 5,7-bis (5-bromothiophen-2-yl) -2,3-bis (2-ethylhexyl) thieno [3,4-b] pyrazine (5,7-bis (5-bromothiophen Synthesis of -2-yl)-2,3-bis(2-ethylhexyl)thieno[3,4-b]pyrazine)

[반응식 1-1][Scheme 1-1]

Figure pat00013
Figure pat00013

아르곤 분위기의 플라스크에 15 ml의 무수 테트라하이드로퓨란(THF,tetrahydrofurane)에 0.6 g (1.1 mmol)의 2,3-비스(2-에틸헥실)-5,7-다이(싸이오펜-2-닐)싸이오[3,4-b]피라진 (2,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)thieno[3,4-b]pyrazine)을 넣고 -78℃로 온도를 낮춘다. 2.0몰(M)농도의 리튬 다이아이소프로필아마이드 솔루션 (lithium diisopropylamide solution, LDA solution 2.0 M in THF/heptane/ethylbenzene) 1.5 mL (2.8 mmol)을 넣고 30분 교반해준 후, 다시 -78℃에서 엔-브로모썩신이마이드 (N-bromosuccinimide, NBS)를 672 mg (2.7 mmol)을 넣고 상온에서 1시간 교반한다. 이 후 물을 넣어 반응을 종결시킨 뒤 메틸렌클로라이드를 용매로 유기층을 추출한다. 유기층을 무수 황산마그네슘(MgSO4)로 탈수시킨 후 회전 농축기를 사용하여 용매를 제거하고 잔류물을 헥산:메틸렌클로라이드(1:1) 용매 이동상으로 사용한 컬럼크로마토그래피를 통하여 순수한 5,7-비스(5-브로모싸이오펜-2-일)-2,3-비스(2-에틸헥실)싸이에노[3,4-b]피라진 (5,7-bis(5-bromothiophen-2-yl)-2,3-bis(2-ethylhexyl)thieno[3,4-b]pyrazine) 200mg (25%)을 얻었다.0.6 g (1.1 mmol) of 2,3-bis (2-ethylhexyl) -5,7-di (thiophen-2-yl) in 15 ml of anhydrous tetrahydrofurane (THF) in an argon atmosphere flask. Add thio[3,4-b]pyrazine (2,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)thieno[3,4-b]pyrazine) to -78℃. lower the temperature After adding 1.5 mL (2.8 mmol) of lithium diisopropylamide solution (LDA solution 2.0 M in THF/heptane/ethylbenzene) at a concentration of 2.0 mol (M) and stirring for 30 minutes, again at -78 ℃ N- After adding 672 mg (2.7 mmol) of N-bromosuccinimide (NBS), the mixture was stirred at room temperature for 1 hour. Thereafter, water was added to terminate the reaction, and the organic layer was extracted using methylene chloride as a solvent. After the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO 4 ), the solvent was removed using a rotary evaporator, and the residue was purified through column chromatography using hexane:methylene chloride (1:1) as a solvent mobile phase to obtain pure 5,7-bis ( 5-bromothiophen-2-yl) -2,3-bis (2-ethylhexyl) thieno [3,4-b] pyrazine (5,7-bis (5-bromothiophen-2-yl) - 2,3-bis(2-ethylhexyl)thieno[3,4-b]pyrazine) 200mg (25%) was obtained.

1-2. P-1 고분자 중합체의 제조1-2. Preparation of P-1 High Polymer

[반응식 1-2][Scheme 1-2]

Figure pat00014
Figure pat00014

화합물 4,8-비스(5-(2-에틸헥실)-싸이오펜-2-닐)-벤조[1,2-b:4,5 b']다이싸이오펜-2,6-다이닐)비스(트리메틸스텐) (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5 b']dithiophene-2,6-diyl)bis(trimethylstannane) 53.5 mg (0.05 mmol), 5,7-비스(5-브로모싸이오펜-2-닐)-2,3-비스(2-에틸헥실)싸이에노[3,4-b]피라진 (5,7-bis(5-bromothiophen-2-yl)-2,3-bis(2-ethylhexyl)thieno[3,4-b]pyrazine) 40.4 mg (0.05 mmol)과 팔라듐 촉매로 테트라키스(트리페닐포스핀)팔라듐 (Pd(PPh3)4, Tetrakis(triphenylphosphine)palladium(0)) 2.7 mg(4 mol%)을 글로브박스에서 반응 튜브에 넣고 마개를 막는다. 주사기를 사용하여 무수 톨루엔(Toluene) 0.8 ml와 무수 디메틸포름이마이드 (DMF) 0.2 mL를 주입하고, 용매를 10분동안 아르곤 분위기에서 퍼징(purging) 시킨 후 반응기에서 110℃ 3시간 동안 반응을 시킨다. 반응액을 메탄올 50 mL에 침전시킨 후 필터를 통하여 침전된 고체를 회수한다. 회수된 침전물을 Soxhlet thimble에 통과하여 여과한 후 메탄올, 아세톤, 헥산, 메틸렌클로라이드, 클로로폼 용매로 각각 Soxhlet 추출한다. 클로로포름 Soxhlet 추출된 용액을 농축시키고 메탄올에 침전시킨 후 건조하여 고분자 중합체를 얻었다. 상기 중합체 수득률 = 53%, 30 mg.Compound 4,8-bis(5-(2-ethylhexyl)-thiophen-2-yl)-benzo[1,2-b:4,5 b']dithiophene-2,6-dinyl)bis (trimethylsten) (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5 b']dithiophene-2,6-diyl)bis(trimethylstannane) 53.5 mg (0.05 mmol), 5,7-bis (5-bromothiophen-2-yl) -2,3-bis (2-ethylhexyl) thieno [3,4-b] pyrazine (5, 40.4 mg (0.05 mmol) of 7-bis(5-bromothiophen-2-yl)-2,3-bis(2-ethylhexyl)thieno[3,4-b]pyrazine) and tetrakis(triphenylphosphine) with a palladium catalyst ) Put 2.7 mg (4 mol%) of palladium (Pd(PPh 3 ) 4 , Tetrakis(triphenylphosphine)palladium(0)) into a reaction tube in a glove box and close the stopper. Using a syringe, inject 0.8 ml of anhydrous toluene and 0.2 ml of anhydrous dimethylformimide (DMF), purging the solvent in an argon atmosphere for 10 minutes, and then reacting in a reactor at 110 ° C for 3 hours. . After precipitating the reaction solution in 50 mL of methanol, the precipitated solid is recovered through a filter. The recovered precipitate was filtered through a Soxhlet thimble, followed by Soxhlet extraction with methanol, acetone, hexane, methylene chloride, and chloroform solvents. The chloroform Soxhlet-extracted solution was concentrated, precipitated in methanol, and dried to obtain a high-molecular weight polymer. The polymer yield = 53%, 30 mg.

<< 실시예Example 2> P-2 고분자 중합체의 제조 2> Preparation of P-2 High Polymer

[반응식 2][Scheme 2]

Figure pat00015
Figure pat00015

화합물 5,7-bis(5-브로모-3-헥실싸이오펜-2-닐)-2,3-bis(2-에틸헥실)싸이에노[3,4-b]피라진 85.1 mg (0.1 mmol), 헥실메틸다이틴 (hexylmethylditin) 36.1 mg (0.11 mmol), 포타시움 아세테이트 (potassium acetate) 63.7 mg (0.65 mmol)과 팔라듐 촉매로 테트라키스(트리페닐포스핀)팔라듐 (Pd(PPh3)4, Tetrakis(triphenylphosphine)palladium(0)) 4.6 mg(4 mol%)을 글로브박스에서 반응 튜브에 넣고 마개를 막는다. 주사기를 사용하여 무수 톨루엔(Toluene) 2 mL 를 주입하고, 용매를 10분동안 아르곤 분위기에서 퍼징(purging) 시킨 후 반응기에서 110℃ 36시간 동안 반응을 시킨다. 반응액을 메탄올 50 mL에 침전시킨 후 필터를 통하여 침전된 고체를 회수한다. 회수된 침전물을 Soxhlet thimble에 통과하여 여과한 후 메탄올, 아세톤, 헥산, 메틸렌클로라이드, 클로로폼 용매로 각각 Soxhlet 추출한다. 클로로포름 Soxhlet 추출된 용액을 농축시키고 메탄올에 침전시킨 후 건조하여 고분자 중합체를 얻었다. 상기 중합체 수득률 = 29%, 25 mg.Compound 5,7-bis (5-bromo-3-hexylthiophen-2-yl) -2,3-bis (2-ethylhexyl) thieno [3,4-b] pyrazine 85.1 mg (0.1 mmol ), hexylmethylditin (hexylmethylditin) 36.1 mg (0.11 mmol), potassium acetate (potassium acetate) 63.7 mg (0.65 mmol) and tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 , Tetrakis (triphenylphosphine) palladium (0)) 4.6 mg (4 mol%) was put in a reaction tube in a glove box and the stopper was closed. 2 mL of anhydrous toluene was injected using a syringe, and the solvent was purged in an argon atmosphere for 10 minutes, followed by reaction in a reactor at 110° C. for 36 hours. After precipitating the reaction solution in 50 mL of methanol, the precipitated solid is recovered through a filter. The recovered precipitate was filtered through a Soxhlet thimble, followed by Soxhlet extraction with methanol, acetone, hexane, methylene chloride, and chloroform solvents. The chloroform Soxhlet-extracted solution was concentrated, precipitated in methanol, and dried to obtain a high-molecular weight polymer. The polymer yield = 29%, 25 mg.

<< 실시예Example 3> P-3 고분자 중합체의 제조 3> Preparation of P-3 High Polymer

3-1. 2,3-비스(2-에틸헥살)-5,7-비스(3-헥실-5-(트리메틸스테닐)싸이오펜-2-일)싸이에노[3,4-b]피라진 (2,3-bis(2-ethylhexyl)-5,7-bis(3-hexyl-5-(trimethylstannyl)thiophen-2-yl)thieno[3,4-b]pyrazine)의 합성3-1. 2,3-bis (2-ethylhexal) -5,7-bis (3-hexyl-5- (trimethylstenyl) thiophen-2-yl) thieno [3,4-b] pyrazine (2, Synthesis of 3-bis(2-ethylhexyl)-5,7-bis(3-hexyl-5-(trimethylstannyl)thiophen-2-yl)thieno[3,4-b]pyrazine)

[반응식 3-1][Scheme 3-1]

Figure pat00016
Figure pat00016

250 mg의 2,3-비스(2-에틸헥실)-5,7-비스(3-헥실싸이오펜-2-닐)싸이오펜[3,4-b]피라진 (2,3-bis(2-ethylhexyl)-5,7-bis(3-hexylthiophen-2-yl)thieno[3,4-b]pyrazine)을 5 mL의 테트라하이드로퓨란(THF,tetrahydrofurane)로 녹인 후, -78℃로 온도를 낮춘다. 2.0몰(M) 리튬 다이아이소프로필아마이드 솔루션 (lithium diisopropylamide solution, LDA solution 2.0 M in THF/heptane/ethylbenzene) 0.42 mL (0.82 mmol)을 넣고 30분 교반해준 후, 다시 -78℃에서 1몰(M) 농도의 트리메틸틴클로라이드 솔루션 (Trimethyltin chloride solution 1.0 M in THF)을 1.1 mL (1.08 mmol)을 넣고 상온에서 1.5 시간 교반한다. 이 후 물을 넣어 반응을 종결시킨 뒤 에틸아세테이트를 용매로 유기층을 추출한다. 유기층을 무수 황산마그네슘(MgSO4)로 탈수시킨 후 회전 농축기를 사용하여 용매를 제거한다. 클로로포름과 에탄올을 이용한 재결정을 통하여 순수한 보라색 결정 고체 2,3-비스(2-에틸헥실)-5,7-비스(3-헥실-5-(트리메틸스테닐)싸이오펜-2-일)싸이에노[3,4-b]피라진 (2,3-bis(2-ethylhexyl)-5,7-bis(3-hexyl-5-(trimethylstannyl)thiophen-2-yl)thieno[3,4-b]pyrazine) 130 mg (35%)을 얻었다. 250 mg of 2,3-bis(2-ethylhexyl)-5,7-bis(3-hexylthiophen-2-yl)thiophene[3,4-b]pyrazine (2,3-bis(2- After dissolving ethylhexyl) -5,7-bis (3-hexylthiophen-2-yl) thieno [3,4-b] pyrazine) with 5 mL of tetrahydrofuran (THF, tetrahydrofurane), the temperature is lowered to -78 ° C. . 2.0 mole (M) lithium diisopropylamide solution (lithium diisopropylamide solution, LDA solution 2.0 M in THF/heptane/ethylbenzene) 0.42 mL (0.82 mmol) was added, stirred for 30 minutes, and then 1 mole (M) at -78 ° C again. ) concentration of trimethyltin chloride solution (Trimethyltin chloride solution 1.0 M in THF) into 1.1 mL (1.08 mmol) and stir at room temperature for 1.5 hours. Thereafter, water was added to terminate the reaction, and the organic layer was extracted using ethyl acetate as a solvent. After the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO 4 ), the solvent was removed using a rotary evaporator. Through recrystallization using chloroform and ethanol, pure purple crystalline solid 2,3-bis(2-ethylhexyl)-5,7-bis(3-hexyl-5-(trimethylstenyl)thiophen-2-yl) between No[3,4-b]pyrazine (2,3-bis(2-ethylhexyl)-5,7-bis(3-hexyl-5-(trimethylstannyl)thiophen-2-yl)thieno[3,4-b] pyrazine) to obtain 130 mg (35%).

3-2. P-3 고분자 중합체의 제조3-2. Preparation of P-3 polymer polymer

[반응식 3-2][Scheme 3-2]

Figure pat00017
Figure pat00017

화합물 2,3-비스(2-에틸헥실)-5,7-비스(3-헥실-5-(트리메틸스테닐)싸이오펜-2-일)싸이에노[3,4-b]피라진 (2,3-bis(2-ethylhexyl)-5,7-bis(3-hexyl-5-(trimethylstannyl)thiophen-2-yl)thieno[3,4-b]pyrazine) 110 mg (0.1 mmol), 4,7-다이브로모-5,6-다이플로로벤젠[c][1,2,5]싸이아다이아졸 (4,7-dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole) 35.6 mg (0.1 mmol)과 팔라듐 촉매로 트리스(다이벤질리덴아세톤)다이팔라듐(0) (Pd2(dba)3, Tris(dibenzylideneacetone)dipalladium(0)) 4.5 mg(5 mol%)과 리간드 트리(o-톨릴)포스핀 (P(o-tol)3, Tri(o-tolyl)phosphine) 3.5 mg (10 mol%)을 글로브박스에서 반응 튜브에 넣고 마개를 막는다. 주사기를 사용하여 무수 클로로벤젠(CB) 0.5 mL 를 주입하고, 용매를 10분동안 아르곤 분위기에서 퍼징(purging) 시킨 후 반응기에서 110℃ 36시간 동안 반응을 시킨다. 반응액을 메탄올 50 mL에 침전시킨 후 필터를 통하여 침전된 고체를 회수한다. 회수된 침전물을 Soxhlet thimble에 통과하여 여과한 후 메탄올, 아세톤, 헥산, 메틸렌클로라이드, 클로로폼 용매로 각각 Soxhlet 추출한다. 클로로포름 Soxhlet 추출된 용액을 농축시키고 메탄올에 침전시킨 후 건조하여 고분자 중합체를 얻었다. 상기 중합체 수득률 = 22%, 20 mg. Compound 2,3-bis (2-ethylhexyl) -5,7-bis (3-hexyl-5- (trimethylstenyl) thiophen-2-yl) thieno [3,4-b] pyrazine (2 ,3-bis(2-ethylhexyl)-5,7-bis(3-hexyl-5-(trimethylstannyl)thiophen-2-yl)thieno[3,4-b]pyrazine) 110 mg (0.1 mmol), 4, 7-dibromo-5,6-difluorobenzene [c][1,2,5]thiadiazole (4,7-dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole ) 35.6 mg (0.1 mmol) and 4.5 mg (5 mol%) of tris(dibenzylideneacetone)dipalladium(0) (Pd 2 (dba) 3 , Tris(dibenzylideneacetone)dipalladium(0)) as a palladium catalyst and ligand 3.5 mg (10 mol%) of tri(o-tolyl)phosphine (P(o-tol) 3 , Tri(o-tolyl)phosphine) was put into a reaction tube in a glovebox and the stopper was closed. 0.5 mL of anhydrous chlorobenzene (CB) was injected using a syringe, and the solvent was purged in an argon atmosphere for 10 minutes, followed by reaction in a reactor at 110° C. for 36 hours. After precipitating the reaction solution in 50 mL of methanol, the precipitated solid is recovered through a filter. The recovered precipitate was filtered through a Soxhlet thimble, followed by Soxhlet extraction with methanol, acetone, hexane, methylene chloride, and chloroform solvents. The chloroform Soxhlet-extracted solution was concentrated, precipitated in methanol, and dried to obtain a high-molecular weight polymer. The polymer yield = 22%, 20 mg.

<< 실시예Example 4> P-4 고분자 중합체의 제조 4> Preparation of P-4 polymer polymer

4-1. 5,7-다이브로모-2,3-다이클로로[3,4-b]피라진 (5,7-dibromo-2,3-dichlorothieno[3,4-b]pyrazine)의 합성4-1. Synthesis of 5,7-dibromo-2,3-dichloro[3,4-b]pyrazine

[반응식 4-1][Scheme 4-1]

Figure pat00018
Figure pat00018

아르곤 분위기 에서 1g (3.1 mmol)의 5,7-다이브로모싸이에노[3,4-b]피라진-2,3(1H,4H)-다이온 (5,7-dibromothieno[3,4-b]pyrazine-2,3(1H,4H)-dione)을 20 mL의 클로로포름 (CF)에 녹인 후, 0 oC의 온도에서 염화티오닐 (thionyl chloride) 1.6g과 디메틸포름이마이드 (DMF) 0.5mL를 주입 후, 환류, 교반시킨다. 약 2시간후, 물로 반응을 종료하고 클로로포름으로 유기층을 추출한다. 유기층을 무수 황산마그네슘(MgSO4)로 탈수시킨 후 회전 농축기를 사용하여 용매를 제거하고 잔류물을 헥산:메틸렌클로라이드(2:1) 용매 이동상으로 사용한 컬럼크로마토그래피를 통하여 순수한 5,7-다이브로모-2,3-다이클로로[3,4-b]피라진 (5,7-dibromo-2,3-dichlorothieno[3,4-b]pyrazine) 380 mg (33%)를 획득했다.In an argon atmosphere, 1 g (3.1 mmol) of 5,7-dibromothieno[3,4-b]pyrazine-2,3(1H,4H)-dione (5,7-dibromothieno[3,4-b After dissolving ]pyrazine-2,3(1H,4H)-dione) in 20 mL of chloroform (CF), 1.6 g of thionyl chloride and 0.5 g of dimethylformimide (DMF) at 0 o C. After injecting mL, reflux and stir. After about 2 hours, the reaction was terminated with water, and the organic layer was extracted with chloroform. After the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO 4 ), the solvent was removed using a rotary evaporator, and the residue was purified through column chromatography using hexane:methylene chloride (2:1) as a solvent mobile phase to obtain pure 5,7-dibromo. Obtained 380 mg (33%) of -2,3-dichloro[3,4-b]pyrazine (5,7-dibromo-2,3-dichlorothieno[3,4-b]pyrazine).

4-2. P-4 고분자 중합체의 제조4-2. Preparation of P-4 polymer polymer

[반응식 4-2][Scheme 4-2]

Figure pat00019
Figure pat00019

화합물 2,5-비스(2-에틸헥실)-3,6-비스(5-(트리메틸스테닐)싸이오펜-2-닐)-2,5-다이하이드로피롤[3,4-c]피롤로-1,4-다이온 (2,5-bis(2-ethylhexyl)-3,6-bis(5-(trimethylstannyl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) 58.6 mg (0.068 mmol), 5,7-다이브로모-2,3-디이클로로[3,4-b]피라진 (5,7-dibromo-2,3-dichlorothieno[3,4-b]pyrazine) 25 mg (0.068 mmol)과 팔라듐 촉매로 트리스(다이벤질리덴아세톤)다이팔라듐(0) (Pd2(dba)3, Tris(dibenzylideneacetone)dipalladium(0)) 3.15 mg(5 mol%)과 리간드 트리(o-톨릴)포스핀 (P(o-tol)3, Tri(o-tolyl)phosphine) 2.43 mg (10 mol%)을 글로브박스에서 반응 튜브에 넣고 마개를 막는다. 주사기를 사용하여 무수 클로로벤젠(CB) 0.4 mL 를 주입하고, 용매를 10분동안 아르곤 분위기에서 퍼징(purging) 시킨 후 반응기에서 105℃ 2시간 동안 반응을 시킨다. 반응액을 메탄올 50 mL에 침전시킨 후 필터를 통하여 침전된 고체를 회수한다. 회수된 침전물을 Soxhlet thimble에 통과하여 여과한 후 메탄올, 아세톤, 헥산, 메틸렌클로라이드, 클로로폼 용매로 각각 Soxhlet 추출한다. 클로로포름 Soxhlet 추출된 용액을 농축시키고 메탄올에 침전시킨 후 건조하여 고분자 중합체를 얻었다. 상기 중합체 수득률 = 27%, 14 mg.Compound 2,5-bis(2-ethylhexyl)-3,6-bis(5-(trimethylstenyl)thiophen-2-yl)-2,5-dihydropyrrole[3,4-c]pyrrolo -1,4-dione (2,5-bis(2-ethylhexyl)-3,6-bis(5-(trimethylstannyl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole -1,4-dione) 58.6 mg (0.068 mmol), 5,7-dibromo-2,3-dichloro[3,4-b]pyrazine (5,7-dibromo-2,3-dichlorothieno[3, 4- b ] pyrazine) 25 mg ( 0.068 mmol) and 3.15 mg (5 mol%) and ligand tri(o-tolyl)phosphine (P(o-tol) 3 , Tri(o-tolyl)phosphine) 2.43 mg (10 mol%) were put into a reaction tube in a glovebox and the stopper was closed. 0.4 mL of anhydrous chlorobenzene (CB) was injected using a syringe, and the solvent was purged in an argon atmosphere for 10 minutes, followed by reaction in a reactor at 105° C. for 2 hours. After precipitating the reaction solution in 50 mL of methanol, the precipitated solid is recovered through a filter. The recovered precipitate was filtered through a Soxhlet thimble, followed by Soxhlet extraction with methanol, acetone, hexane, methylene chloride, and chloroform solvents. The chloroform Soxhlet-extracted solution was concentrated, precipitated in methanol, and dried to obtain a high-molecular weight polymer. The polymer yield = 27%, 14 mg.

<< 실험예Experimental example 1> 광학적-전기적 특성 분석 1> Optical-electrical characterization

본 발명의 실시예에 따른 소재의 광학적-전기적 특성을 분석하였으며, 그 결과는 하기 표 1과 같다.The optical-electrical properties of the material according to the embodiment of the present invention were analyzed, and the results are shown in Table 1 below.

제조된 유기반도체 화합물의 광흡수 특성 및 전기화학적 특성을 확인하기 위하여 광흡수 스펙트럼을 측정하여 도 1에 나타내었고 최대흡수파장(λmax) 및 λedge은 표 1에 나타내었다. 또한, 순환전압전류법(Cyclic Voltammertry)으로 측정하여 제조된 유기반도체 화합물들의 HOMO와 LUMO 레벨을 구하였다. 페로센/페로세늄 레독스 시스템(Ferrocene/Ferrocenium redox system) (-4.8 eV)을 기준(Reference)으로 고체 필름상태에서 측정하였고 수행하였으며 그 결과를 표 1에 나타내었다.In order to confirm the light absorption characteristics and electrochemical characteristics of the prepared organic semiconductor compound, the light absorption spectrum was measured and shown in FIG. 1, and the maximum absorption wavelength (λmax) and λedge are shown in Table 1. In addition, the HOMO and LUMO levels of the prepared organic semiconductor compounds were measured by cyclic voltammetry. The ferrocene/ferrocenium redox system (-4.8 eV) was measured and performed in the solid film state as a reference, and the results are shown in Table 1.

실시예Example λmax [nm] λmax [nm] 광학밴드갭 [eV]Optical band gap [eV] 에너지 레벨 [eV]Energy level [eV] SolutionSolution FilmFilm HOMOHOMO LUMOLUMO 1One 710710 750750 1.681.68 -5.30-5.30 -3.60-3.60 22 630630 656, 706656, 706 1.441.44 -5.02-5.02 -3.97-3.97 33 656656 737, 812737, 812 1.331.33 -5.42-5.42 -4.09-4.09 44 12001200 14001400 0.880.88 -5.50-5.50 -4.62-4.62

본 발명에 따른 화합물이 근적외선 영역에서 우수한 흡수율을 가짐을 알 수 있다.It can be seen that the compound according to the present invention has an excellent absorption rate in the near infrared region.

TPz 가 도입된 소재의 경우 강한 분자상호작용을 통해 장파장 흡수가 가능하며 높은 결정 특성으로 인해 필름상에서 흡수 파장이 크게 장파장으로 이동하는 특성을 관찰할 수 있다. 특히 DPP 유닛을 도입한 P-4의 경우 강한 평면성 유도로 인해 밴드갭이 1eV 이하로 감소하고 필름에서 1400nm까지 흡수 파장이 증가하는 것을 확인할 수 있다. In the case of materials introduced with TPz, long-wavelength absorption is possible through strong molecular interactions, and the absorption wavelength shifts to long-wavelengths on the film due to its high crystallinity. In particular, in the case of P-4 with the introduction of the DPP unit, it can be seen that the band gap decreases to less than 1 eV and the absorption wavelength increases to 1400 nm in the film due to strong planarity induction.

<< 실험예Experimental Example 2> 태양전지 특성 분석 2> Analysis of solar cell characteristics

본 발명의 실시예에 따른 소재의 태양전지 특성을 분석하였으며, 그 결과는 하기 표 2와 같다.The solar cell characteristics of the material according to the embodiment of the present invention were analyzed, and the results are shown in Table 2 below.

투명전극(제 1전극)인 ITO (Indium Tin Oxide)가 코팅된 유기 기판을 세척용액이 포함된 탈이온수에 담궈, 초음파 세척기에 15분간 세척하고, 다시 탈이온수, 아세톤, IPA로 각각 3번씩 세정한 뒤, 130℃의 오븐에서 5시간 건조시켰다. 상기와 같이 세척된 ITO 유리 기판은 15분 자외선/오존 처리를 한 뒤, 30 nm 두께를 갖는 ZnO·NPs를 ITO 기판 상에 스핀 코팅하였다. 그리고 ZnO·NPs이 도포된 기판은 핫플레이트 상에서 100℃로 10분간 열처리하였다. ZnO·NPs층상에 O.4wt% poly(ethyleneimine)-ethoxylated(PEIE) 용액을 3 nm 두께가 되도록 스핀코팅으로 도포하였다.An organic substrate coated with ITO (Indium Tin Oxide), a transparent electrode (first electrode), is immersed in deionized water containing a cleaning solution, washed in an ultrasonic cleaner for 15 minutes, and washed three times each with deionized water, acetone, and IPA. After that, it was dried in an oven at 130° C. for 5 hours. The ITO glass substrate washed as described above was subjected to UV/ozone treatment for 15 minutes, and then ZnO·NPs having a thickness of 30 nm were spin-coated on the ITO substrate. Then, the substrate coated with ZnO NPs was heat treated at 100° C. for 10 minutes on a hot plate. A 0.4 wt% poly(ethyleneimine)-ethoxylated (PEIE) solution was applied on the ZnO·NPs layer by spin coating to a thickness of 3 nm.

그리고 광활성층을 도포하기 위하여 아르곤으로 충진된 글로브 박스로 소자를 옮겼다. 광활성층은 상기 표1 내지 표3에 기재된 본 발명의 중합체인 실시예 또는 비교예와 Y6 무게비 1:1.2의 비율로 조합하고, 자일렌 용매에 녹여 용액을 제조하고 0.45 ㎛ (PTFE) 실린지 필터(syringe filter)를 통해 필터링한 유기 반도체 용액으로 스핀코팅 방법을 통하여 100nm 두께로 PEIE층 위에 도포하여 제조하였다.Then, the device was transferred to a glove box filled with argon to apply the photoactive layer. The photoactive layer was prepared by combining Examples or Comparative Examples, which are the polymers of the present invention described in Tables 1 to 3 above, in a weight ratio of Y6 at a ratio of 1: 1.2, dissolved in a xylene solvent to prepare a solution, and a 0.45 μm (PTFE) syringe filter An organic semiconductor solution filtered through a syringe filter was coated on the PEIE layer to a thickness of 100 nm through a spin coating method.

얻어진 소자 구조체를 열증착기 내 3 X 10-6torr진공 하에서 광활성층 상에 10 nm 두께의 MoO3, 최상부 전극으로써 100 nm 두께의 Ag 전극을 증착하여 유기 태양 전지를 완성하였다.The obtained device structure was deposited on the photoactive layer in a thermal evaporator under a vacuum of 3 X 10-6 torr, with MoO3 having a thickness of 10 nm and an Ag electrode having a thickness of 100 nm as the uppermost electrode, thereby completing an organic solar cell.

제작된 각 유기 태양 전지의 전기 특성인 개방전압(Voc), 단락전류(Jsc), FF(Fill Factor) 및 PCE(Power Conversion Efficiency)을 하기 표4에 나타내었다.The open circuit voltage (Voc), short circuit current (Jsc), FF (Fill Factor), and PCE (Power Conversion Efficiency), which are electrical characteristics of each fabricated organic solar cell, are shown in Table 4 below.

상기 방법으로 제조된 유기 태양 전지 각각의 광전셀 전류 밀도-전압 (J-V) 특성은 Newport 1000W solar simulator에 의해 100 mW/㎠ (AM 1.5 G)로써 태양광을 모사한 조명하에서 측정하였다. 전기적 데이터를 Keithley 236 source-measure unit를 이용하여 기록하고, 모든 특성을 실온 대기환경 하에서 수행하였다. 조도를 NREL(National Renewable Energy Labortary)에서 보정된 PV measurements Inc. 의 표준 Si 포토다이오드 검출기에 의해 보정하였다. IPCE(incident photon-to-current conversion efficiency)를 광원으로써 제논 램프를 구비한 300 내지 1000 nm (PV measurement Inc.) 범위의 파장 함수로써 측정하고 실리콘 표준 포토다이오드를 이용하여 보정하였다. 박막의 두께는 KLA Tencor Alpha-step IQ surface profilometer로 정확도 ± 1 nm로 측정하였다.The photovoltaic cell current density-voltage (J-V) characteristics of each of the organic solar cells prepared by the above method were measured using a Newport 1000W solar simulator under illumination simulating sunlight at 100 mW/cm 2 (AM 1.5 G). Electrical data were recorded using a Keithley 236 source-measure unit, and all characteristics were performed under room temperature atmospheric conditions. PV measurements Inc. was calibrated by a standard Si photodiode detector of . Incident photon-to-current conversion efficiency (IPCE) was measured as a function of wavelength in the range of 300 to 1000 nm (PV measurement Inc.) equipped with a xenon lamp as a light source and calibrated using a silicon standard photodiode. The thickness of the thin film was measured with a KLA Tencor Alpha-step IQ surface profilometer with an accuracy of ± 1 nm.

그 결과를 하기 표2에 정리하였다. 즉, 개방전압(open circuit voltage, Voc), 단락전류밀도(short-circuit current density, JSC), 충진율(fill factor, FF), 및 광전변환효율(power conversion efficiency, PCE)의 광전 파라미터(photovoltaic parameter)들을 하기에 정리하였다. 상기 광전 파라미터 중, 필 팩터 및 광전변환효율은 하기 식1 및 식2에 의해 산출되었다.The results are summarized in Table 2 below. That is, the photovoltaic parameters of open circuit voltage (Voc), short-circuit current density (JSC), fill factor (FF), and power conversion efficiency (PCE) ) were arranged to do so. Among the photoelectric parameters, the fill factor and photoelectric conversion efficiency were calculated using the following formulas 1 and 2.

[식1][Equation 1]

필 팩터 = (Vmp× Imp)/(Voc× JSC)Fill Factor = (Vmp×Imp)/(Voc×JSC)

(상기 식1에서, Vmp는 최대 전력점에서 전압값이고, Imp는 전류밀도이고, Voc는 개방전압이고, JSC는 단락전류밀도이다.)(In Equation 1 above, Vmp is the voltage value at the maximum power point, Imp is the current density, Voc is the open circuit voltage, and JSC is the short circuit current density.)

[식2][Equation 2]

광전변환효율 = (필 팩터) × (JSC× Voc)/100Photoelectric Conversion Efficiency = (Fill Factor) × (JSC × Voc)/100

(상기 식2에서, JSC는 단락전류밀도이고, Voc는 개방전압이다.)(In Equation 2 above, JSC is the short-circuit current density, and Voc is the open-circuit voltage.)

실시예Example 전자공여체: 전자수용체electron donor: electron acceptor Voc [V]Voc [V] Jsc [mA/cm2]Jsc [mA/cm 2 ] FF [%]FF [%] PCE [%]PCE [%] 1One P-1: Y6P-1: Y6 0.730.73 8.818.81 33.5633.56 2.102.10 22 P-2: Y6P-2: Y6 0.30.3 11.5311.53 38.4838.48 1.341.34 33 P-3: Y6P-3: Y6 0.510.51 7.447.44 3434 1.011.01 44

본 발명에 따른 화합물이 근적외선 영역에서 우수한 흡수율을 가질 뿐 아니라, 유기 태양전지로서 우수한 특성을 가짐을 확인할 수 있다.P-2의 경우 작은 억셉터와의 에너지 밴드갭으로 인해 가장 작은 개방전압을 보였으며 싸이오펜이 치환된 BDT(benzodithiophene)이 도입된 P-1의 경우 가장 높은 개방전압을 보여주었다. P-2에서 가장 높은 전류 밀도가 관찰되는 것으로 보아 TPz 자체의 전하 이동 특성이 우수함을 확인할 수 있다. P-4의 경우 DPP로 인한 강한 평면성으로 밴드갭이 줄어들면서 적용한 Y6와 밴드갭 불일치로 인해 전하 분리가 원활하지 않아 특성을 관찰할 수 없었다. It can be confirmed that the compound according to the present invention not only has an excellent absorption rate in the near-infrared region, but also has excellent characteristics as an organic solar cell. and P-1, in which thiophene-substituted BDT (benzodithiophene) was introduced, showed the highest open-circuit voltage. As the highest current density is observed at P-2, it can be confirmed that TPz itself has excellent charge transfer characteristics. In the case of P-4, the band gap was reduced due to the strong planarity due to DPP, and the charge separation was not smooth due to the mismatch between the applied Y6 and the band gap, so the characteristics could not be observed.

Claims (12)

하기 화학식 1로 표시되는 반복단위를 포함하는 적외선 흡수 고분자 화합물:
[화학식 1]
Figure pat00020

상기 화학식 1에서,
A는 존재하지 않거나 하기 화학식 2 내지 4로부터 선택되는 어느 하나이고,
R1 내지 R4는 각각 독립적으로 수소, 할로겐 또는 C1-C30의 알킬이고,
[화학식 2]
Figure pat00021

[화학식 3]
Figure pat00022

[화학식 4]
Figure pat00023

여기서,
R5a, R5b, R6a, R6b, R7a,및 R7b는 각각 독립적으로,
수소, C1-C30알킬 또는 할로겐이다.
An infrared ray absorbing polymer compound containing a repeating unit represented by Formula 1 below:
[Formula 1]
Figure pat00020

In Formula 1,
A is not present or is any one selected from Formulas 2 to 4 below,
R 1 to R 4 are each independently hydrogen, halogen or C1-C30 alkyl;
[Formula 2]
Figure pat00021

[Formula 3]
Figure pat00022

[Formula 4]
Figure pat00023

here,
R 5a , R 5b , R 6a , R 6b , R 7a , and R 7b are each independently
hydrogen, C1-C30 alkyl or halogen.
제1항에 있어서,
A는 존재하지 않고,
R1 내지 R4는 각각 독립적으로 C1-C30의 알킬인, 고분자 화합물.
According to claim 1,
A does not exist,
R 1 to R 4 are each independently a C1-C30 alkyl, a polymeric compound.
제1항에 있어서,
A는 화학식 2이며,
R1 내지 R4는 각각 독립적으로 C1-C30의 알킬이고,
R5a 및 R5b 은 각각 독립적으로 할로겐인, 고분자 화합물.
According to claim 1,
A is Formula 2,
R 1 to R 4 are each independently C1-C30 alkyl;
R5a and R5b are each independently a halogen, a high molecular compound.
제1항에 있어서,
A는 화학식 3이며,
R1 내지 R2는 각각 독립적으로 C1-C30의 알킬이고,
R3 내지 R4는 각각 독립적으로 수소이고,
R6a 및 R6b 은 각각 독립적으로 C1-C30의 알킬인, 고분자 화합물.
According to claim 1,
A is Formula 3,
R 1 to R 2 are each independently C1-C30 alkyl;
R 3 to R 4 are each independently hydrogen;
R 6a and R 6b are each independently a C1-C30 alkyl, a polymeric compound.
제1항에 있어서,
A는 화학식 4이며,
R1 내지 R2는 각각 독립적으로 할로겐이고,
R3 내지 R4는 각각 독립적으로 수소이고,
R7a 및 R7b 은 각각 독립적으로 C1-C30의 알킬인, 고분자 화합물.
According to claim 1,
A is Formula 4,
R 1 to R 2 are each independently halogen;
R 3 to R 4 are each independently hydrogen;
R 7a and R 7b are each independently a C1-C30 alkyl, a polymeric compound.
제1항에 있어서,
상기 화학식 1은,
하기 화학식으로부터 선택되는, 고분자 화합물:
Figure pat00024
,
Figure pat00025
,
Figure pat00026
,
Figure pat00027
.
According to claim 1,
Formula 1 above,
A polymeric compound selected from the following formula:
Figure pat00024
,
Figure pat00025
,
Figure pat00026
,
Figure pat00027
.
제1항에 있어서,
상기 고분자 화합물은 1,000 내지 200,000의 중량평균분자량을 갖는, 고분자 화합물.
According to claim 1,
The polymer compound has a weight average molecular weight of 1,000 to 200,000, the polymer compound.
제1항의 고분자 화합물을 도너 물질로 포함하는, 적외선 감응 유기 광활성층.
An infrared-sensitive organic photoactive layer comprising the polymer compound of claim 1 as a donor material.
제7항의 유기 광활성층을 포함하는, 적외선 감응 유기 광전변환 소자.
An infrared-sensitive organic photoelectric conversion device comprising the organic photoactive layer of claim 7.
제7항의 유기 광활성층을 포함하는, 적외선 감응 유기 태양전지.
An infrared-sensitive organic solar cell comprising the organic photoactive layer of claim 7.
하기의 화학식 1A로 표시되는 단량체 및 화학식 1C로 표시되는 단량체의 중합 단계를 포함하는, 제1항의 고분자 화합물의 제조방법:
[화학식 1A]
Figure pat00028

[화학식 1C] X2-A-X2
여기서, X1은 할로겐이고, X2는 -SnMe3이고,
A, R1 내지 R4는 제1항에서 정의한 바와 같다.
A method for producing the polymer compound of claim 1, comprising polymerization of a monomer represented by Formula 1A and a monomer represented by Formula 1C:
[Formula 1A]
Figure pat00028

[Formula 1C] X 2 -AX 2
wherein X 1 is halogen, X2 is -SnMe 3 ,
A, R 1 to R 4 are as defined in claim 1.
하기의 화학식 1D로 표시되는 단량체 및 화학식 1E로 표시되는 단량체의 중합 단계를 포함하는, 제1항에 따른 고분자 화합물의 제조방법을 제공한다.

[화학식 1D]
Figure pat00029

[화학식 1E]
Figure pat00030

여기서, X3은 할로겐이고, X4는 -SnMe3이고,
R1 내지 R4는 제1항에서 정의한 바와 같으며,
바람직하게 A는 화학식 4일 수 있다.
Provided is a method for preparing the polymer compound according to claim 1, comprising polymerization of a monomer represented by Formula 1D and a monomer represented by Formula 1E.

[Formula 1D]
Figure pat00029

[Formula 1E]
Figure pat00030

wherein X 3 is halogen, X 4 is -SnMe 3 ,
R 1 to R 4 are as defined in claim 1,
Preferably, A may be of Formula 4.
KR1020220155444A 2021-11-30 2022-11-18 Effective near-infrared absorbing electron donor material and near-infrared sensitive organic electronic device using thereof KR20230084034A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210168034 2021-11-30
KR20210168034 2021-11-30

Publications (1)

Publication Number Publication Date
KR20230084034A true KR20230084034A (en) 2023-06-12

Family

ID=86770269

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020220155419A KR102701909B1 (en) 2021-11-30 2022-11-18 Effective near-infrared absorbing electron acceptor material and near-infrared sensitive organic electronic device using thereof
KR1020220155444A KR20230084034A (en) 2021-11-30 2022-11-18 Effective near-infrared absorbing electron donor material and near-infrared sensitive organic electronic device using thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020220155419A KR102701909B1 (en) 2021-11-30 2022-11-18 Effective near-infrared absorbing electron acceptor material and near-infrared sensitive organic electronic device using thereof

Country Status (1)

Country Link
KR (2) KR102701909B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608333B (en) * 2020-12-29 2022-10-25 华南理工大学 Micromolecules based on dithiadiazole carbazole derivatives, synthetic method thereof and application of micromolecules in organic photoelectric devices
CN112920204A (en) * 2021-02-08 2021-06-08 中国科学院化学研究所 Electron acceptor organic solar cell material based on thiadiazole quinoxaline structure and preparation method and application thereof

Also Published As

Publication number Publication date
KR20230084033A (en) 2023-06-12
KR102701909B1 (en) 2024-09-02

Similar Documents

Publication Publication Date Title
JP6017836B2 (en) Electron donor polymer and solar cell including the same
EP3018160B1 (en) Copolymer and organic solar cell comprising same
KR102291239B1 (en) N-type organic semiconducting compounds, manufacturing method thereof, and organic photovoltaics containing the same
US11713371B2 (en) Polar functional group-partially introduced polymer, preparation method therefor, and organic electronic element containing same
EP2697283A1 (en) Semiconducting polymers
KR20130048175A (en) Organic semiconductor compound, process for producing the organic semiconductor compound and organic solar cells using the same
KR102446165B1 (en) Compound containing aryloxy akyl group and organic electronic device using them
KR102508587B1 (en) Polymer and organic solar cell comprising the same
JP2014003255A (en) Organic thin film and photoelectric conversion element using the same
JP6963891B2 (en) A novel polymer, a method for producing the same, and an organic photoelectronic device containing the new polymer.
KR20230084034A (en) Effective near-infrared absorbing electron donor material and near-infrared sensitive organic electronic device using thereof
KR102194466B1 (en) Organic semiconductor compounds comprising caffeine and Organic solar cell comprising the same
KR102594843B1 (en) Copolymer and electronic device comprising the same
KR102491798B1 (en) Polymer and organic solar cell comprising the same
KR101400077B1 (en) new polymer process for producing the polymer and organic optoelectronic devices using the same
KR20200041796A (en) Novel compound and organic electronic device using them
KR20200045318A (en) Novel polymer and organic electronic device containing the same
KR102695113B1 (en) Novel compound and organic electronic device using them
KR102691799B1 (en) Novel organic semiconductor compound and organic electronic device using the same
KR20200003710A (en) Polymer and organic solar cell comprising the same
KR102389528B1 (en) Organic semiconducting compounds, and organic electronic device ing the same
KR102082222B1 (en) polymer with partially polar functional group, method for producing the same and organic electronic device using the same
JP2013084919A (en) Photoelectric conversion device
KR102310582B1 (en) Organic semiconducting compounds, and organic electronic device ing the same
KR102457457B1 (en) Conjugated polymer for all-polymer solar cell, active layer composition for all-polymer solar cell comprising thereof, and uses thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal