KR20230078840A - Bio-recycling complex interior material for vehicles - Google Patents

Bio-recycling complex interior material for vehicles Download PDF

Info

Publication number
KR20230078840A
KR20230078840A KR1020210164742A KR20210164742A KR20230078840A KR 20230078840 A KR20230078840 A KR 20230078840A KR 1020210164742 A KR1020210164742 A KR 1020210164742A KR 20210164742 A KR20210164742 A KR 20210164742A KR 20230078840 A KR20230078840 A KR 20230078840A
Authority
KR
South Korea
Prior art keywords
fibers
felt layer
natural fibers
bio
laminated board
Prior art date
Application number
KR1020210164742A
Other languages
Korean (ko)
Other versions
KR102608212B1 (en
Inventor
채철수
박재형
오경훈
임재욱
Original Assignee
(주)부성티에프시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)부성티에프시 filed Critical (주)부성티에프시
Priority to KR1020210164742A priority Critical patent/KR102608212B1/en
Publication of KR20230078840A publication Critical patent/KR20230078840A/en
Application granted granted Critical
Publication of KR102608212B1 publication Critical patent/KR102608212B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/18Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length in the form of a mat, e.g. sheet moulding compound [SMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/015Natural yarns or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 차량용 내장재의 제조방법에 관한 것으로, 천연섬유 및 재생섬유를 적용하여 친환경적이고, 경량화를 구현하며, 흡음성 및 충격흡수력을 증가시키고, 강성, 파단강도 및 굴곡탄성을 향상시키는 차량용 바이오-재생 복합 내장재 제조방법에 관한 것이다.
본 발명은 「(a) 천연섬유와 합성섬유를 혼합 혼련하여 부직포 펠트층을 형성하는 단계; (b) 상기 부직포 펠트층의 일측면 또는 양측면에 폴리프로필렌계/폴리에틸렌계 복합 필름이 가열압착된 복합 필름층을 형성하여 다층 구조의 적층보드를 제조하는 단계; (c) 상기 적층보드를 가성형금형으로 가열압착하여 예열 및 가성형하는 단계; 및 (d) 상기 예열 및 가성형된 적층보드를 최종성형금형으로 상온압착하여 최종제품형상으로 성형하는 단계; 를 포함하는 차량용 바이오-재생 복합 내장재 제조방법」을 제공한다.
The present invention relates to a method for manufacturing an interior material for a vehicle, which is eco-friendly by applying natural fibers and regenerated fibers, implements light weight, increases sound absorption and shock absorption, and improves stiffness, breaking strength and flexural elasticity. It relates to a method for manufacturing composite interior materials.
The present invention comprises the steps of "(a) mixing and kneading natural fibers and synthetic fibers to form a non-woven felt layer; (b) forming a composite film layer in which a polypropylene-based/polyethylene-based composite film is heated and pressed on one side or both sides of the non-woven felt layer to manufacture a multi-layered laminated board; (c) preheating and shaping the laminated board by heating and pressing it with a temporary mold; and (d) molding the preheated and temporarily molded laminate board into a final product shape by pressing it at room temperature with a final molding mold. It provides a method for manufacturing bio-regenerated composite interior materials for vehicles comprising a.

Description

차량용 바이오-재생 복합 내장재 제조방법{Bio-recycling complex interior material for vehicles}Manufacturing method of bio-recycling complex interior material for vehicles {Bio-recycling complex interior material for vehicles}

본 발명은 차량용 내장재의 제조방법에 관한 것으로, 천연섬유 및 재생섬유를 적용하여 친환경적이고, 경량화를 구현하며, 흡음성 및 충격흡수력을 증가시키고, 강성, 파단강도 및 굴곡탄성을 향상시키는 차량용 바이오-재생 복합 내장재 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an interior material for a vehicle, which is eco-friendly by applying natural fibers and regenerated fibers, realizes light weight, increases sound absorption and shock absorption, and improves stiffness, breaking strength and flexural elasticity. It relates to a method for manufacturing composite interior materials.

최근 건축물, 자동차, 전자부품소재 등 다양한 분야에서 바이오복합소재를 비롯한 친환경 소재를 사용한 제품이 개발되고 있으며, 특히 독일, 영국, 미국 등을 중심으로 자동차 내장재 분야에서 기존 PP계, ABS계 등의 합성수지를 대체할 수 있도록 기계적 강도가 보강된 생분해성 플라스틱(biodegradable plastics), 바이오매스 플라스틱(biomass-based plastics)등의 바이오복합소재의 개발이 활발하게 이루어지고 있다. 특히 유럽과 미국은 자국 내에서 판매되는 모든 자동차부품소재에 생분해성 재료의 사용을 법제화 하는 등 환경 규제를 통해 바이오복합재료의 활용을 증대시키려 하고 있는 실정이다. 자동차에서 주로 바이오복합소재를 사용하는 부품은 헤드라이닝, 도어트림, 차량내부 바닥재, 천장 내장재, 센터페시아 내장재 등으로 특히 천연섬유를 활용한 내장재가 주로 개발되고 있다. Recently, products using eco-friendly materials, including biocomposite materials, are being developed in various fields such as buildings, automobiles, and electronic parts materials. Biocomposite materials such as biodegradable plastics and biomass-based plastics with reinforced mechanical strength have been actively developed to replace plastics. In particular, Europe and the United States are trying to increase the use of biocomposite materials through environmental regulations, such as legalizing the use of biodegradable materials for all automobile parts and materials sold in their countries. Parts that mainly use biocomposite materials in automobiles include headlining, door trim, vehicle interior flooring, ceiling interior materials, and center fascia interior materials. In particular, interior materials using natural fibers are mainly being developed.

또한, 자원의 고갈 및 쓰레기에 의한 환경의 오염이 심화되어 세계적으로 산업 전반적인 저탄소 정책의 확산적용 및 자원의 재생에 관한 요구가 증가하고 있어 재생가능한 재료의 발굴 및 재생소재의 활용에 대한 연구도 활발하게 진행되고 있다. 재생소재는 쓰레기의 배출을 줄여 환경을 보호하는 한편 기존 소재 대비 저렴한 가격에 제작할 수 있어 경제적이다.In addition, as the depletion of resources and pollution of the environment by waste intensify, there is an increasing demand for the spread and application of low-carbon policies throughout the industry worldwide and the recycling of resources. Research on the discovery of renewable materials and the use of recycled materials is also active. it is progressing Recycled materials are economical because they can be produced at a lower price than conventional materials while protecting the environment by reducing the emission of waste.

특히, 섬유공장에서는 100 ton의 합성섬유를 생산할 경우, 약 10 ton의 플리에스터, 나일론 섬유 부산물이 발생하여 전체 재료 대비 약 10%의 합성섬유가 폐기처분 되었다. 이는 매우 심각한 비용적, 환경적 문제점을 야기하여 상기 폴리에스터, 나일론 섬유 부산물은 산업폐기물로 처리되어 폐기물에 의한 환경오염과 처리비용에 따른 처리비용이 발생하여 이의 재활용 방안에 대한 연구가 시급하다.In particular, when producing 100 ton of synthetic fiber in a textile factory, about 10 ton of polyester and nylon fiber by-products were generated, and about 10% of the total amount of synthetic fiber was discarded. This causes very serious cost and environmental problems, and the polyester and nylon fiber by-products are treated as industrial waste, which causes environmental pollution and processing costs due to waste, so research on recycling methods is urgent.

자동차 부품은 운전자의 생명안전에 직결되는 만큼 충분한 기계적 강도를 확보하는 것이 무엇보다 중요하므로, 기존 석유계 플라스틱(PP계, ABS계 등)의 품질, 기능성 및 내구성과 동등한 성능을 가진 제품의 개발이 필수적이며, 식물성 섬유를 포함한 바이오복합소재는 경량성, 기계적 강도의 확보, 비교적 높은 충격강도의 확보, 가공, 조립 및 성형의 용이성 등의 강점을 가진다. As automotive parts are directly related to the driver's life safety, securing sufficient mechanical strength is of utmost importance. Therefore, development of products with performance equivalent to the quality, functionality and durability of existing petroleum-based plastics (PP-based, ABS-based, etc.) is essential. It is essential, and biocomposite materials including vegetable fibers have strengths such as lightness, securing mechanical strength, securing relatively high impact strength, and ease of processing, assembly, and molding.

일반적으로 천연섬유 복합소재는 식물 및 동물에서 유래된 섬유를 포함한 복합섬유로 생분해성 섬유를 지칭한다. 기존에는 천연섬유만을 사용할 경우 기존 석유계 플라스틱의 강도를 발현하기 곤란하므로, 충분한 기계적 강도를 확보하기 위하여 열가소성 폴리프로필렌 섬유와 혼합하여 바이오복합소재로 제작하였다. 보다 자세하게는 기존에는 천연섬유와 합성섬유를 50:50%의 비율로 혼합한 뒤 니들펀칭하여 제조한 천연섬유 펠트 웹 시트(부직포)에 열경화성 수지를 분사 또는 합침하여 합지보드화 하여 제조된 천연섬유/열경화성 바인더를 성형하여 도어트림(Door trim)등 자동차 내장부품으로 성형하였다.In general, natural fiber composite materials refer to biodegradable fibers as composite fibers including fibers derived from plants and animals. In the past, when only natural fibers were used, it was difficult to express the strength of conventional petroleum-based plastics, so in order to secure sufficient mechanical strength, it was mixed with thermoplastic polypropylene fibers to produce a biocomposite material. More specifically, in the past, a natural fiber felt web sheet (non-woven fabric) manufactured by needle punching after mixing natural fiber and synthetic fiber at a ratio of 50:50% is sprayed or impregnated with a thermosetting resin to make a laminated board. The thermosetting binder was molded and molded into automotive interior parts such as door trim.

그러나, 상기와 같이 열경화성 수지를 분사 또는 합침하여 제작한 합지보드는 공극이 다수 형성되어 있는 천연섬유 펠트 웹 시트와 열경화성 수지와 결합력이 약하여 재료층간의 분리가 발생하고 이는 전체적인 내장재의 강도 저하를 가져오게 된다. However, the laminated board manufactured by spraying or impregnating the thermosetting resin as described above has a weak bonding force between the natural fiber felt web sheet and the thermosetting resin having a large number of voids, resulting in separation between the material layers, which reduces the overall strength of the interior material. will come

또한, 천연섬유와 합성섬유의 혼합으로 형성되는 펠트 웹 시트(부직포)는 천연섬유와 합성섬유의 물성 차이로 인하여 재료의 혼합이 균일하게 이루어지기 어렵고 혼합 시 천연섬유의 신율이 부족하여 깊은 단차를 가진 금형작업 시 천연섬유의 신율 부족으로 인하여 부재가 파단되거나 파열되므로, 금형의 형상이 복잡하거나 가장자리, 굴곡이 심한 부분의 성형 시 내장재의 터짐, 찢어짐 및 재료분리 등이 발생하는 문제점이 있었다.In addition, the felt web sheet (non-woven fabric) formed by mixing natural fibers and synthetic fibers is difficult to uniformly mix materials due to the difference in physical properties between natural fibers and synthetic fibers, and the elongation of natural fibers is insufficient during mixing, resulting in deep steps. When working with a mold, the member breaks or ruptures due to the lack of elongation of natural fibers, so there are problems such as bursting, tearing, and material separation of the interior material when forming a mold with a complicated shape or an edge or a severely curved part.

또한, 천연섬유를 적용할 경우 열성형 시 천연섬유의 탄화로 인한 냄새와 자연적인 섬유의 원재료가 가지고 있는 특유의 냄새가 발생하고, 천연섬유의 부패, 세균, 곰팡이의 발생을 억제하기 위한 방부처리를 위하여 사용되는 약품에 의한 유해성분이 방출될 우려가 있어 천연섬유를 적용하는 공정에 어려움이 있었다.In addition, when natural fibers are applied, the smell due to carbonization of natural fibers and the unique odor of raw materials of natural fibers are generated during thermoforming, and preservative treatment is performed to suppress the decay of natural fibers, the occurrence of bacteria and fungi. There was a concern about the release of harmful components by chemicals used for the process of applying natural fibers.

또한, 펠트층과 열경화성 수지를 합침할 때 재료들의 물성 차이로 인하여 재료의 분리가 빈번하게 발생하여 내장재의 전체적인 강도 저하가 발생하며, 열경화성 수지와 펠트층의 연실율 차이로 인하여 충격흡수성 및 흡읍성, 차음성이 저하될 수 있다.In addition, when the felt layer and the thermosetting resin are combined, the separation of the materials occurs frequently due to the difference in physical properties of the materials, resulting in a decrease in the overall strength of the interior material, and the shock absorption and absorption properties due to the difference in elongation between the thermosetting resin and the felt layer. , sound insulation may deteriorate.

또한, 천연섬유/열경화성 바인더를 금형에 가압 압착하는 과정에서 펠트층의 두께가 현저하게 감소되어 굴곡특성을 저하시키는 단점이 있다. In addition, there is a disadvantage in that the thickness of the felt layer is significantly reduced in the process of pressurizing the natural fiber/thermosetting binder into the mold, thereby degrading the bending characteristics.

또한, 천연섬유 중 식물성 섬유는 셀룰로오스(cellulose), 헤미셀룰로오스(hemicellulose), 리그닌(lignin), 펙틴(pectin) 및 왁스(wax)로 이루어져 있는데, 이 중 셀룰로오스(cellulose)를 제외한 헤미셀룰로오스(hemicellulose), 리그닌(lignin), 펙틴(pectin) 및 왁스(wax)는 공정이나 제품의 물성을 저하시키는 불순물에 해당한다. 정밀한 정련과정을 거치지 않은 순도가 낮은 식물성 섬유는 합성섬유와의 부착력을 저하시키고 불순물의 부패로 인하여 전체적인 물성의 저하를 가져온다. 따라서, 식물성 섬유의 품질은 상기 불순물을 충분히 제거하였는지 여부로 결정되고, 우수한 품질의 식물성 섬유를 제조하기 위하여 최적화된 불순물의 처리방법도 추가로 요구된다.In addition, among natural fibers, vegetable fibers are composed of cellulose, hemicellulose, lignin, pectin, and wax. Among them, hemicellulose and lignin excluding cellulose (lignin), pectin (pectin), and wax (wax) correspond to impurities that deteriorate the properties of processes or products. Low-purity vegetable fibers that have not undergone a precise refining process reduce adhesion to synthetic fibers and deteriorate overall physical properties due to corruption of impurities. Therefore, the quality of vegetable fibers is determined by whether or not the impurities are sufficiently removed, and an optimized treatment method for impurities is additionally required to produce vegetable fibers of excellent quality.

1. 등록특허 10-1027989 "천연섬유를 이용한 차량용 내장재"1. Registered Patent No. 10-1027989 "Vehicle interior material using natural fibers" 2. 등록특허 10-1726164 "천연섬유 복합소재를 이용한 자동차의 내장재 제조방법"2. Registered Patent No. 10-1726164 "Manufacturing method of automobile interior materials using natural fiber composite materials" 3. 등록특허 10-1755850 "재활용 섬유를 이용한 자동차 내장재용 흡음재 및 그 제조방법"3. Registered Patent No. 10-1755850 "Sound absorbing material for automobile interior using recycled fiber and its manufacturing method" 4. 등록특허 10-1729083 "자동차 내장재용 바이오 시트"4. Registered Patent No. 10-1729083 "Bio sheet for automobile interior materials"

본 발명은 천연섬유 및 재생섬유를 적용하여 친환경적이고, 경량화를 구현하며 정련된 천연섬유가 적용된 부직포 펠트층과 복합 필름을 가열압착함으로써, 재료의 분리를 방지하고, 경량화를 구현하며, 흡음성 및 충격흡수력을 증가시키고, 강성, 파단강도 및 굴곡탄성을 향상시키는 차량용 바이오-재생 복합 내장재 제조방법을 제공함에 그 목적이 있다.The present invention is environmentally friendly and lightweight by applying natural fibers and regenerated fibers, and heat-presses a nonwoven felt layer and a composite film to which refined natural fibers are applied, thereby preventing separation of materials, realizing weight reduction, sound absorption and impact An object of the present invention is to provide a method for manufacturing a bio-regenerated composite interior material for a vehicle that increases absorbency and improves stiffness, breaking strength and flexural elasticity.

본 발명은 「(a) 천연섬유와 합성섬유를 혼합 혼련하여 부직포 펠트층을 형성하는 단계; (b) 상기 부직포 펠트층의 일측면 또는 양측면에 폴리프로필렌계/폴리에틸렌계 복합 필름이 가열압착된 복합 필름층을 형성하여 다층 구조의 적층보드를 제조하는 단계; (c) 상기 적층보드를 가성형금형으로 가열압착하여 예열 및 가성형하는 단계; 및 (d) 상기 예열 및 가성형된 적층보드를 최종성형금형으로 상온압착하여 최종제품형상으로 성형하는 단계; 를 포함하는 차량용 바이오-재생 복합 내장재 제조방법」을 제공한다.The present invention comprises the steps of "(a) mixing and kneading natural fibers and synthetic fibers to form a non-woven felt layer; (b) forming a composite film layer in which a polypropylene-based/polyethylene-based composite film is heat-compressed on one side or both sides of the non-woven felt layer to manufacture a multi-layered laminated board; (c) preheating and shaping the laminated board by heating and pressing it with a temporary mold; and (d) molding the preheated and temporarily molded laminate board into a final product shape by pressing it at room temperature with a final molding mold. It provides a method for manufacturing bio-regenerated composite interior materials for vehicles comprising a.

상기 부직포 펠트층의 천연섬유는 케냐프 및 아바카 중 어느 하나 이상을 정련하여 적용할 수 있다.Natural fibers of the non-woven felt layer may be applied by refining at least one of Kenyap and Abaca.

또한, 상기 부직포 펠트층의 합성섬유는 섬유공장 공정부산물을 활용하되, 고강력 폴리에스터, 고강력 나일론 중 어느 하나 이상을 포함할 수 있다.In addition, the synthetic fibers of the non-woven felt layer may include at least one of high-tenacity polyester and high-tenacity nylon, while using a by-product of a textile factory process.

또한, 상기 부직포 펠트층의 천연섬유와 합성섬유는 천연섬유 40~50%, 합성섬유 50~60%의 비율로 혼합될 수있다.In addition, natural fibers and synthetic fibers of the non-woven felt layer may be mixed in a ratio of 40 to 50% natural fibers and 50 to 60% synthetic fibers.

또한, 상기 복합 필름층은 200~300 g/m2의 양으로 형성될 수 있다.In addition, the composite film layer may be formed in an amount of 200 to 300 g/m 2 .

또한, 상기 (c)단계에서는 180~200℃의 가열온도로, 120~160초 동안 압착하여 상기 적층보드를 가열압착 할 수 있다.In addition, in the step (c), the laminated board may be heat-compressed by pressing at a heating temperature of 180 to 200 ° C. for 120 to 160 seconds.

본 발명에 따르면 아래의 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

1. 천연섬유 및 재생섬유를 적용하여 친환경적이고, 경제적이다.1. Eco-friendly and economical by applying natural and regenerated fibers.

2. 정련된 천연섬유를 사용하여 합성섬유와의 결합력을 향상시키고, 불순물을 제거하여 천연섬유의 물성을 증가시키며, 혼합 시 부직포 펠트층에 천연섬유가 균일하게 분산되도록 하고, 열적 안정성이 우수하여 가열공정 시 유해한 기체, 냄새 및 변색의 발생을 억제할 수 있다.2. By using refined natural fibers, bonding strength with synthetic fibers is improved, impurities are removed to increase the physical properties of natural fibers, natural fibers are uniformly dispersed in the non-woven felt layer when mixed, and thermal stability is excellent. During the heating process, generation of harmful gas, odor and discoloration can be suppressed.

3. 부직포 펠트층과 복합 필름을 유압 열프레스를 사용하여 가열압착함으로써, 기존의 합성수지 분사 또는 합침으로 제조된 합지보드에 비하여 견고하게 상호 결합되고 일체성이 증가하여 적층구조의 물성이 증가한다.3. By heating and pressing the non-woven felt layer and the composite film using a hydraulic heat press, the physical properties of the laminated structure are increased by being firmly coupled to each other and increasing integrity compared to a laminated board manufactured by conventional spraying or impregnation of synthetic resin.

4. 천연섬유를 적용한 부직포 펠트층과 복합 필름을 가열압착하여 부재의 밀도를 증가킴으로써, 경령화를 구현하면서도 흡읍성 및 충격흡수력을 증가시키고, 부재의 물성이 향상된다.4. By heat-pressing the non-woven felt layer and the composite film to which natural fibers are applied, the density of the member is increased, thereby increasing the absorbency and shock absorption while realizing aging, and improving the physical properties of the member.

5. 열가소성의 폴리프로필렌계/폴리에틸렌계 필름이 적층된 복합 필름을 적용하여 기존 열경화성 수지층에 비하여 부직포 펠트층과의 결합력이 우수하고, 강성, 인장강도, 파단강도 및 굴곡탄성이 증가한다.5. By applying a composite film in which thermoplastic polypropylene-based/polyethylene-based films are laminated, the bonding force with the non-woven felt layer is superior to that of the existing thermosetting resin layer, and the stiffness, tensile strength, breaking strength, and flexural elasticity are increased.

[도 1]은 본 발명 (b)단계 내지 (d)단계 중 어느 하나 이상에서 이용되는 가열압착 프레스 및 상온압착 프레스를 사용한 제조공정 과정을 도시한 것이다.
[도 2]는 본 발명의 폴리프로필렌계/폴리에틸렌계 복합 필름층의 앞면 및 뒷면의 표면 상태를 도시한 것이다.
[Figure 1] shows a manufacturing process using a hot compression press and a room temperature compression press used in any one or more of steps (b) to (d) of the present invention.
[Figure 2] shows the surface state of the front and rear surfaces of the polypropylene-based/polyethylene-based composite film layer of the present invention.

본 발명은 천연섬유와 합성섬유가 혼합 혼련된 부직포 펠트층의 일측 또는 양측면에 폴리프로필렌계/폴리에틸렌계 복합 필름을 가열압착시켜 적층보드를 제조한 뒤, 상기 적층보드를 가열압착하여 가성형하고, 가성형된 적층보드를 상온압착하여 최종제품형상으로 성형하는 공정으로 이루어진다.In the present invention, a laminated board is prepared by heat-pressing a polypropylene/polyethylene-based composite film on one side or both sides of a nonwoven felt layer in which natural fibers and synthetic fibers are mixed and kneaded, and then the laminated board is heated and pressed to form a temporary mold, It consists of a process of pressing the temporarily molded laminated board at room temperature and molding it into a final product shape.

본 발명은 「(a) 천연섬유와 합성섬유를 혼합 혼련하여 부직포 펠트층을 형성하는 단계; (b) 상기 부직포 펠트층의 일측면 또는 양측면에 폴리프로필렌계/폴리에틸렌계 복합 필름이 가열압착된 복합 필름층을 형성하여 다층 구조의 적층보드를 제조하는 단계; (c) 상기 적층보드를 가성형금형으로 가열압착하여 예열 및 가성형하는 단계; 및 (d) 상기 예열 및 가성형된 적층보드를 최종성형금형으로 상온압착하여 최종제품형상으로 성형하는 단계; 를 포함하는 차량용 바이오-재생 복합 내장재 제조방법」을 제공한다.The present invention comprises the steps of "(a) mixing and kneading natural fibers and synthetic fibers to form a non-woven felt layer; (b) forming a composite film layer in which a polypropylene-based/polyethylene-based composite film is heat-compressed on one side or both sides of the non-woven felt layer to manufacture a multi-layered laminated board; (c) preheating and shaping the laminated board by heating and pressing it with a temporary mold; and (d) molding the preheated and temporarily molded laminate board into a final product shape by pressing it at room temperature with a final molding mold. It provides a method for manufacturing bio-regenerated composite interior materials for vehicles comprising a.

이하에서는 본 발명의 각 단계별 공정을 상세히 설명하기로 한다.Hereinafter, each step of the process of the present invention will be described in detail.

1. (a)단계1. Step (a)

(a)단계는 천연섬유와 합성섬유를 혼합 혼련하여 부직포 펠트층을 형성하는 단계이다. 상기 천연섬유는 케냐프 및 아바카 중 어느 하나 이상을 정련하여 적용하며, 상기 합성섬유는 고강력 폴리에스터, 고강력 나일론 중 어느 하나 이상을 포함할 수 있다. 상기 부직포 펠트층의 천연섬유와 합성섬유는 천연섬유 40~50%, 합성섬유 50~60%의 비율로 혼합될 수있다.Step (a) is a step of forming a nonwoven felt layer by mixing and kneading natural fibers and synthetic fibers. The natural fiber is applied by refining at least one of Kenyap and Abaca, and the synthetic fiber may include at least one of high-tenacity polyester and high-tenacity nylon. Natural fibers and synthetic fibers of the non-woven felt layer may be mixed in a ratio of 40 to 50% natural fibers and 50 to 60% synthetic fibers.

상기 부직포 펠트층에 혼합되는 천연섬유는 인장강도 및 탄성률이 높고 저렴하며 가공성이 우수한 식물성 섬유인 케냐프(Kenaf) 또는 아바카(Abaca)를 적용하거나 이를 혼합한 것을 적용하는 것이 바람직하다.Natural fibers mixed in the non-woven felt layer are preferably vegetable fibers such as Kenaf or Abaca, which are inexpensive and have high tensile strength and elastic modulus, and have excellent processability, or a mixture thereof.

케냐프, 아바카 등의 천연 식물섬유는 셀룰로오스 외에 헤미셀룰로오스, 리그닌, 팩틴 및 왁스 등의 불순물로 구성되는데, 셀룰로오스는 섬유의 물성과 셀(cell)의 안정성을 유지시키는 뼈대로, 셀룰로오스 외의 불순물을 제거하지 않을 경우 가열공정 시 천연섬유 탄화에 의한 악취가 발생하고, 천연섬유의 부패, 세균, 곰팡이가 발생할 우려가 있다. 일반적으로는 이를 억제하기 위하여 방부처리를 하는데, 방부제로부터 기인한 유해성분이 발생하고, 방부제 특유의 냄새 및 재료 특유의 냄새가 발생하는 단점이 있다.Natural plant fibers such as Kenyap and abaca are composed of impurities such as hemicellulose, lignin, pectin, and wax in addition to cellulose. Cellulose is a backbone that maintains the physical properties of fibers and cell stability, and removes impurities other than cellulose. If this is not done, there is a risk that odors due to carbonization of natural fibers may occur during the heating process, and corruption of natural fibers, bacteria and mold may occur. In general, preservative treatment is performed to suppress this, but there is a disadvantage in that harmful components resulting from the preservative are generated, and odors peculiar to the preservative and materials are generated.

따라서, 상기 천연섬유는 셀룰로오스 외의 불순물을 제거하여 기계적 특징을 향상시킴과 동시에 냄새를 제거하기 위하여, 케냐프 및 아바카 중 어느 하나 이상을 별도로 정련하여 적용하는 것이 바람직하다.Therefore, it is preferable to separately refine at least one of Kenyap and Abaca in order to remove impurities other than cellulose to improve mechanical properties and at the same time to remove odor.

상기 식물성 천연섬유의 정련과정은 아밀라제 효소 존재하에 70~90℃로 가열하여 정제함으로써, 섬도(fineness, 纖度) 3~4.5데니어로 세섬화시켜 정련하는 것이 바람직하다. 구체적으로, 배치(batch)형 원형 드럼 욕조에 천연섬유 100중량% 대비 아밀라제 효소를 0.1~1중량%(바람직하게는 0.3~0.6중량%) 투입한 후, 70~90℃가 되도록 상온 가열하여 정제할 수 있다. 이에 따라 상기 식물성 천연섬유에 함유되어 있는 리그닌, 팩틴 및 왁스(지질) 등의 불순물이 정제되어 상기 식물성 섬유의 고유섬도가 10~15데니어급에서 3~4.5데니어급으로 세섬화되는 것으로, 상기 부직포 펠트층의 제조시의 단위밀도당의 섬유 결속력을 향상시킬 수 있는 효과가 있다.The scouring process of the vegetable natural fiber is preferably refined by heating to 70 to 90 ° C. in the presence of an amylase enzyme to refine the fineness to a fineness of 3 to 4.5 denier. Specifically, 0.1 to 1% by weight (preferably 0.3 to 0.6% by weight) of amylase enzyme relative to 100% by weight of natural fiber is added to a batch-type circular drum bath, followed by heating at room temperature to 70 to 90 ° C for purification. can do. Accordingly, impurities such as lignin, pectin, and wax (lipid) contained in the vegetable natural fibers are purified, and the intrinsic fineness of the vegetable fibers is reduced from 10 to 15 denier to 3 to 4.5 denier. There is an effect of improving the fiber binding force per unit density at the time of manufacturing the felt layer.

상기와 같이 정련된 케냐프 및 아바카가 적용된 천연섬유는 합성섬유와의 결합력이 우수하고, 섬유 혼합 시 불순물에 의한 엉킴, 걸림, 부착현상이 발생하지 않아 부직포 펠트층에 균일하게 분산될 수 있다. 또한, 정련된 셀룰로오스는 셀(cell)이 안정되어 기계적 강도 및 열적 안정성도 증가하므로, 가열압착 공정 시 섬유의 탄화에 의한 냄새 및 변색이 발생하지 않는다.The natural fibers to which the refined Kenyap and Abaca are applied have excellent bonding strength with synthetic fibers, and can be uniformly dispersed in the nonwoven felt layer because entanglement, jamming, and adhesion due to impurities do not occur when mixing the fibers. In addition, since the refined cellulose has stable cells and increases mechanical strength and thermal stability, odor and discoloration due to carbonization of fibers do not occur during the heat-pressing process.

종합하면, 본 발명에서는 적용된 정련된 천연섬유는 합성섬유와의 결합력을 향상시키고, 불순물을 제거하여 천연섬유의 물성을 증가시키며, 혼합 시 부직포 펠트층에 천연섬유가 균일하게 분산되도록 하고, 열적 안정성이 우수하여 가열공정 시 유해한 기체, 냄새 및 변색의 발생을 억제하는 효과를 가진다.In summary, in the present invention, the applied refined natural fibers improve bonding strength with synthetic fibers, increase the physical properties of natural fibers by removing impurities, ensure that natural fibers are uniformly dispersed in the nonwoven felt layer when mixed, and have thermal stability. This is excellent and has the effect of suppressing the occurrence of harmful gases, odors and discoloration during the heating process.

상기 합성섬유는 고강력 폴리에스터, 고강력 나일론 중 어느 하나 이상을 포함할 수 있다. The synthetic fiber may include at least one of high tenacity polyester and high tenacity nylon.

본 발명은 친환경적 소재의 사용이 기술내용의 핵심으로, 일반적으로 적용되는 열경화성 수지(페놀 수지, 에폭시 수지, 멜라민 수지, 우레아 수지, 알키드 수지, 규소 수지, 폴리우레탄 수지, 아크릴 수지, 아미노 수지 등) 및 글라스 파이버, 미네랄 파이버, 탈크, 탄산칼슘, 카본 파이버 등의 기타 재료는 제조시 유해가스, 유해물질의 발생 가능성이 있어 적용하지 않는다.In the present invention, the use of eco-friendly materials is the core of the technical content, and generally applied thermosetting resins (phenol resins, epoxy resins, melamine resins, urea resins, alkyd resins, silicon resins, polyurethane resins, acrylic resins, amino resins, etc.) And other materials such as glass fiber, mineral fiber, talc, calcium carbonate, and carbon fiber are not applicable due to the possibility of generating harmful gases and harmful substances during manufacturing.

또한, 상기 부직포 펠트층의 합성섬유는 섬유공장 공정부산물을 활용하되, 고강력 폴리에스터, 고강력 나일론 중 어느 하나 이상을 포함할 수 있다.In addition, the synthetic fibers of the non-woven felt layer may include at least one of high-tenacity polyester and high-tenacity nylon, while using a by-product of a textile factory process.

본 발명에서 적용되는 고강력 폴리에스터 및 고강력 나일론의 물성은 하기 [표 1]과 같다.The physical properties of high-tenacity polyester and high-tenacity nylon applied in the present invention are shown in [Table 1].

인장강도tensile strength
(( cNcN // dtexdtex ))
신도Shinto
(%)(%)
비 중importance 공 정process
수분률Moisture rate
(%)(%)
열특성thermal properties
건강도health 습강도wet strength 건습도humidity and dryness 연화softening
온도temperature
용융melting
온도temperature
고강력 high strength 폴리에스터polyester (PET)(PET) 7.8~8.17.8~8.1 5.1~6.75.1~6.7 35~5035 to 50 1.381.38 0.40.4 238~240238~240 255~260255 to 260 고강력 나일론(나일론 66)High tenacity nylon (nylon 66) 8.5~9.08.5 to 9.0 8.5~9.08.5 to 9.0 32~4532~45 1.181.18 4.34.3 230~235230~235 250~260250-260 나일론6nylon 6 4.2~5.64.2~5.6 4.2~5.64.2~5.6 28~4328-43 1.141.14 4.54.5 180180 215~220215 to 220 폴리프로필렌polypropylene 4.0~6.64.0 to 6.6 4.0~6.64.0 to 6.6 30~6030 to 60 0.910.91 00 140~160140 to 160 165~173165~173 폴리에칠렌polyethylene 4.4~7.94.4~7.9 4.4~7.94.4~7.9 8~358 to 35 0.950.95 00 100~115100 to 115 125~135125 to 135

위의 [표 1]은 본 발명에 적용되는 스테이플 섬유(Staple fiber)의 물성으로, 일반적인 합성섬유와 비교하여 인장강도 및 신도가 높고 열적 안정성이 우수하다. 이때, 고강력 폴리에스터 및 고강력 나일론은 융점이 230-240℃ 범위로 형성되어 있어 재료의 혼합시에도 열적 안정성이 우수한 것을 확인 할 수 있다.The above [Table 1] shows the physical properties of staple fibers applied to the present invention, and has high tensile strength and elongation and excellent thermal stability compared to general synthetic fibers. At this time, since the high-strength polyester and the high-tenacity nylon have melting points in the range of 230-240° C., it can be confirmed that the thermal stability is excellent even when the materials are mixed.

천연섬유와 합성섬유의 혼합 혼련 과정은 니들펀칭 공정으로 진행하는 것이 바람직하다. 니들펀칭 공정이란 섬유 혼합체를 복수개의 니들이 수직으로 펀치하여 일체화된 섬유조직을 생성시키는 방법으로서, 니들펀칭 공정을 사용하여 부직포 펠트층의 제조 공정을 간소화시키고, 부직포 펠트층을 소정의 두께로 형성할 수 있어 바람직하다. The mixing and kneading process of natural fibers and synthetic fibers is preferably performed through a needle punching process. The needle punching process is a method of vertically punching a fiber mixture with a plurality of needles to create an integrated fiber structure. The needle punching process simplifies the manufacturing process of the nonwoven felt layer and forms the nonwoven felt layer to a predetermined thickness It is desirable to be able to

또한, 니들펀칭하여 생성된 부직포 펠트층을 복수개 적층하여 부직포 펠트층의 두께를 증가시켜 기존 차량용 내장재에 적용된 부직포 층보다 높은 두께로 부직포 펠트층(다층의 웹)을 형성할 수 있다. In addition, a plurality of nonwoven felt layers produced by needle punching are laminated to increase the thickness of the nonwoven felt layer to form a nonwoven felt layer (multi-layer web) having a higher thickness than the nonwoven fabric layer applied to the existing vehicle interior material.

상기 부직포 펠트층에 적용되는 합성섬유는 65~72 mm 길이로 형성되고, 섬도 1~3 데니어 인것을 사용하는 것이 바람직하다. 일반적인 부직포에 적용되는 섬유는 길이 50~55 mm인 섬유를 사용하지만, 본 발명에서는 65~72 mm 길이의 장섬유를 혼합하여 천연섬유와의 혼련률 및 결합력을 증가시켜 부직포 펠트층의 강도를 증가 시킬 수 있다. The synthetic fiber applied to the nonwoven felt layer is preferably formed in a length of 65 to 72 mm and has a fineness of 1 to 3 denier. Fibers applied to general non-woven fabrics use fibers with a length of 50 to 55 mm, but in the present invention, long fibers with a length of 65 to 72 mm are mixed to increase the kneading rate and bonding force with natural fibers to increase the strength of the non-woven felt layer. can make it

부직포 펠트층의 공정과정을 보다 자세하게 기술하면, 크림프가 없는 섬유화이버를 소재간의 결합력을 높이기 위하여 65 ~ 72 mm의 길이로 절단하여, 해섬기의 해섬 실린더에서 해섬작업을 진행하고, 해섬된 섬유는 분산기에 의해 균일하게 분산 및 혼합되는 혼합/개섬 단계를 거치고, 혼합/개섬된 섬유들은 인장강도나 충격강도 등의 물리적 성질이 향상시키기 위하여 정면기를 거치게 된다. 상기 혼합/개섬한 섬유들은 원통형 실린더형의 카드기를 거치면서 섬유상의 얇은 웹으로 형성되고 이러한 섬유상 얇은 웹을 여러 층으로 겹치는 더블링(doubling) 단계를 거쳐 다층의 웹을 형성한다. 따라서, 상기 다층의 웹은 이송벨트를 타고 가압 로울러를 거쳐 니들펀칭(needle punching) 장치로 이송되고 니들펀칭에 의해 부직포가 제조된다. 니들펀칭 장치에서는 공급되는 부직포 펠트층의 두께 및 밀도를 조절할 수 있으며, 니들펀칭을 통하여 균일한 두께를 가진 부직포 펠트층으로 형성될 수 있다.To describe the process of the non-woven felt layer in more detail, the crimp-free fiber fibers are cut to a length of 65 to 72 mm to increase the bonding strength between materials, and the fibrillation operation is performed in the fibrillation cylinder of the fibrillation machine, and the fibrillated fibers are After a mixing/opening step in which uniform dispersion and mixing is performed by a disperser, the mixed/opened fibers are subjected to a fronting machine to improve physical properties such as tensile strength and impact strength. The mixed/opened fibers are formed into a fibrous thin web while passing through a cylindrical cylindrical carding machine, and a multi-layered web is formed through a doubling step of overlapping these fibrous thin webs in several layers. Therefore, the multi-layered web is transferred to a needle punching device via a pressure roller on a transfer belt, and a nonwoven fabric is manufactured by needle punching. In the needle punching device, the thickness and density of the supplied nonwoven felt layer can be adjusted, and a nonwoven felt layer having a uniform thickness can be formed through needle punching.

상기 부직포 펠트층의 천연섬유와 합성섬유는 천연섬유 40~50%, 합성섬유 50~60%의 비율로 혼합될 수있다. 천연섬유의 생분해성을 저해하지 않으면서 부직포 펠트층의 인장강도, 내마모성 등의 물성을 저해하지 않는 범위에서 천연섬유와 합성섬유는 50 : 50으로 혼합되는 것이 바람직하며, 합성섬유가 최대 60%까지 혼합될 수 있다. 합성섬유의 혼합율이 40% 이하가 되면 부직포 펠트층의 물성이 저하될 수 있다.Natural fibers and synthetic fibers of the non-woven felt layer may be mixed in a ratio of 40 to 50% natural fibers and 50 to 60% synthetic fibers. It is preferable to mix natural fibers and synthetic fibers in a ratio of 50:50, and up to 60% of synthetic fibers, to the extent that the biodegradability of natural fibers is not impaired and the physical properties such as tensile strength and abrasion resistance of the nonwoven felt layer are not impaired. can be mixed. When the mixing ratio of the synthetic fiber is 40% or less, the physical properties of the nonwoven felt layer may deteriorate.

2. (b)단계2. Step (b)

(b)단계는 상기 부직포 펠트층의 일측면 또는 양측면에 폴리프로필렌계/폴리에틸렌계 복합 필름이 가열압착된 복합 필름층을 형성하여 다층 구조의 적층보드를 제조할 수 있다. In step (b), a laminated board having a multi-layer structure may be manufactured by forming a composite film layer obtained by heat-pressing a polypropylene-based/polyethylene-based composite film on one side or both sides of the nonwoven felt layer.

상기 부직포 펠트층에 폴리프로필렌계/폴리에틸렌계 복합 필름을 가열압착하여 적층보드를 형성하는 것이 바람직하다.It is preferable to form a laminated board by heat-pressing a polypropylene-based/polyethylene-based composite film on the non-woven felt layer.

기존의 차량용 내장재에 적용된 부직포/열경화성 수지의 합지보드 형성 공정은 열경화성 수지를 상온에서 분사 또는 합침하여 부직포층과 열경화성 수지를 결합시키는 것으로 재료 간 결합력이 약하여 재료분리, 강도저하 등의 문제점이 발생하였으나 본 발명은 상기 가열압착 공정에 의하여 재료분리를 방지할 수 있다.The process of forming a laminated board of non-woven fabric/thermosetting resin applied to existing vehicle interior materials is to combine the non-woven fabric layer and the thermosetting resin by spraying or impregnating the thermosetting resin at room temperature, and problems such as material separation and strength reduction have occurred due to the weak bonding force between the materials. The present invention can prevent material separation by the heat pressing process.

상기 가열압착 공정은 [도 1]에 도시된 바와 같이 250 ~ 300 ton급 유압 가열 프레스 장비를 사용하여 평판 압축공정을 진행 할 수 있다.As shown in [FIG. 1], the heat compression process may proceed with a flat plate compression process using a 250 to 300 ton hydraulic hot press equipment.

상기 복합 필름층이 상기 부직포 펠트층의 일측면 또는 양측면에 가열압착되어 결합됨으로써, 부직포 펠트층을 보호하고 강도를 향상시킬 수 있다. 상기 복합 필름층이 상기 부직포 펠트층의 일측면 또는 양측에 결합될 수 있으나, 차량의 내부에 부직포 펠트층이 직접 노출될 경우 부직포 펠트층의 파손되거나, 부직포 펠트층이 먼지, 습기 등에 의하여 오염될 가능성이 있으므로 차량의 내부와 직접 접하는 내측에는 복합 필름층을 시공하는 것이 바람직하다.The composite film layer is heat-pressed and bonded to one side or both sides of the non-woven felt layer, thereby protecting the non-woven felt layer and improving strength. The composite film layer may be coupled to one side or both sides of the non-woven felt layer, but if the non-woven felt layer is directly exposed inside the vehicle, the non-woven felt layer may be damaged or the non-woven felt layer may be contaminated by dust, moisture, etc. Since there is a possibility, it is preferable to construct a composite film layer on the inside that is in direct contact with the inside of the vehicle.

상기 복합 필름층은 폴리프로필렌계/폴리에틸렌계 수지가 복합된 것으로, 복합 필름층을 아래 [표 2]에 도시된 실시예와 같이 구성할 수 있다.The composite film layer is a composite of polypropylene-based/polyethylene-based resin, and the composite film layer may be configured as in the example shown in Table 2 below.

항목item 측정값Measures 세부 측정 방법How to measure details 1One 두께
(단면 사진)
thickness
(cross-section photo)
3-Layer : 64.6 ㎛ (폴리프로필렌 층)3-Layer : 64.6 ㎛ (polypropylene layer)
2-Layer : 40.4 ㎛ (폴리에틸렌 층)2-Layer : 40.4 ㎛ (polyethylene layer) 1-Layer : 51.5 ㎛ (폴리프로필렌 층)1-Layer : 51.5 ㎛ (polypropylene layer)

Figure pat00001
Figure pat00001
22 인장강도
/신장율
(MD/TD)
tensile strength
/elongation rate
(MD/TD)
가로width 인장강도: 27.035 kgf/mm2
신율: 25.85%
Tensile strength: 27.035 kgf/mm 2
Elongation: 25.85%
세로length 인장강도: 243.52 kgf/cm2
신율: 766.4%
Tensile strength: 243.52 kgf/cm 2
Elongation: 766.4%

상기 복합 필름층은 물성의 증가 및 재료별 특성의 차이에 의하여 위의 [표 2]에 도시된 것과 같이 총 3개 층으로 구성되는 것이 바람직하다.The composite film layer is preferably composed of a total of three layers as shown in [Table 2] due to the increase in physical properties and the difference in characteristics of each material.

폴리프로필렌(PP)와 폴리에틸렌(PE)는 열가소성 수지로, 둘 다 우수한 상용성을 가지고, 비독성으로 오염가스를 발생시키지 않으며, 화학적으로 안정되고, 내식성, 내약품성이 우수하다. Polypropylene (PP) and polyethylene (PE) are thermoplastic resins, both of which have excellent compatibility, are non-toxic, do not generate polluting gases, are chemically stable, and have excellent corrosion resistance and chemical resistance.

폴리에틸렌(PE)은 유연성, 신장률, 충격 강도가 우수하며, 투과성을 가지며, 폴리프로필렌(PP)은 강도, 경도 및 내열성이 우수한 특성이 있어 폴리프로필렌(PP)와 폴리에틸렌(PE)을 표 2와 같이 적층된 복합구조로 형성할 경우 우수한 연성과 강성을 가지게 된다. 폴리에틸렌(PE)은 폴리프로필렌(PP)에 비하여 강도 및 내열성이 낮으므로, 폴리프로필렌(PP)을 폴리에틸렌(PE)의 상층과 하층에 적층함으로써, 폴리에틸렌(PE)을 보호하도록 구성되는 것이 바람직하다.Polyethylene (PE) has excellent flexibility, elongation, impact strength, and permeability, and polypropylene (PP) has excellent strength, hardness, and heat resistance, so polypropylene (PP) and polyethylene (PE) are classified as shown in Table 2. When formed as a laminated composite structure, it has excellent ductility and rigidity. Since polyethylene (PE) has lower strength and heat resistance than polypropylene (PP), it is preferable to protect the polyethylene (PE) by laminating the polypropylene (PP) on the upper and lower layers of the polyethylene (PE).

상기와 같이 부직포 펠트층과 합성섬유와 복합 필름층의 합성섬유는 모두 열가소성 수지로 형성되어 가열압착에 의한 결합성이 우수하다. 상기 복합 필름층은 열성형시 전체 중량의 20% 이상이 부직포 펠트층의 표면에 용융되어 스며들면서 결합되어 부직포 펠트층과의 결합력을 증가시킴과 동시에 부직포 펠트층의 강도를 증가시켜 전체적으로 적층보드의 인장강도, 굴곡강도를 증가시킬 수 있다.As described above, the non-woven felt layer, the synthetic fibers, and the synthetic fibers of the composite film layer are all formed of thermoplastic resins and have excellent bonding properties by hot pressing. The composite film layer is bonded while melting and permeating the surface of the non-woven felt layer at least 20% of the total weight during thermoforming to increase the bonding strength with the non-woven felt layer and at the same time increase the strength of the non-woven felt layer, thereby increasing the overall laminated board. Tensile strength and flexural strength can be increased.

상기 복합 필름층은 200~300 g/m2의 양으로 형성될 수 있다. 상기 복합 필름층이 200g/m2 미만일 경우 용융접착부의 두께가 충분하지 못하고, 300 g/m2을 초과할 경우 강도의 증가 대비 재료 사용량이 과다하여 중량과 비용이 증가하게 된다.The composite film layer may be formed in an amount of 200 to 300 g/m 2 . When the thickness of the composite film layer is less than 200 g/m 2 , the thickness of the fusion bonded part is not sufficient, and when it exceeds 300 g/m 2 , weight and cost increase due to excessive use of materials compared to increase in strength.

3. (c)단계 및 (d)단계3. Steps (c) and (d)

(c)단계는 상기 적층보드를 가성형금형으로 가열압착하여 예열 및 가성형하고, (d)단계는 상기 예열 및 가성형된 적층보드를 최종성형금형으로 상온압착하여 최종제품형상으로 성형할 수 있다.In step (c), the laminated board is preheated and temporarily molded by heating and pressing the laminated board with a temporary mold, and in step (d), the preheated and temporarily molded laminated board is pressed at room temperature with a final molding mold to form a final product shape. there is.

또한, 상기 (c)단계에서는 예열 및 가성형 작업에서 천연섬유와 합성섬유의 용융점을 고려하여 180~200℃의 가열온도로, 120~160초 동안 압착하여 상기 적층보드를 가열압착하는 것이 바람직하다.In addition, in the step (c), it is preferable to heat-press the laminated board by pressing for 120 to 160 seconds at a heating temperature of 180 to 200 ° C. in consideration of the melting points of natural fibers and synthetic fibers in the preheating and temporary molding operations. .

상기와 같이 가열온도는 천연섬유가 열에 의하여 변형되는 것을 방지하기 위한 것으로 180~200℃의 범위의 비교적 낮은 온도에서 120~160초 동안 가열압착하여 천연섬유의 셀 파괴를 방지하여 내장재의 물성 저하를 방지할 수 있다.As described above, the heating temperature is to prevent natural fibers from being deformed by heat, and heat-compression is performed at a relatively low temperature in the range of 180 to 200 ° C for 120 to 160 seconds to prevent cell destruction of natural fibers, thereby reducing physical properties of interior materials. It can be prevented.

상기 예열 및 가성형 단계 후, 최종제품형상 성형 단계에서는 가성형된 적층보드를 취출하여 최종성형금형으로 이송하여 상온압착함으로써 최종제품을 성형한다.After the preheating and temporary molding steps, in the final product shape forming step, the temporarily formed laminated board is taken out, transferred to a final molding mold, and pressed at room temperature to form a final product.

<실시예><Example>

아래 [표 3]의 시험예에서는 부직포 펠트층의 천연섬유와 합성섬유의 비율이 50:50이고 부직포 펠트층의 양측면에 200 g/m2 중량의 열가소성 폴리프로필렌/폴리에틸렌 필름복합 필름이 적층된 천연섬유 복합소재를 사용하였고 190℃ 에서 1분 10초 동안 가열 압착하였다. 실시예에 따라 제조된 제품의 강도와 경량성을 확인하기 위하여 2종의 시험편 을준비하여 굴곡강도, 파열강도를 측정하여 기존 제품과 비교하였다.In the test example of [Table 3] below, the ratio of natural fibers and synthetic fibers in the non-woven felt layer is 50:50, and thermoplastic polypropylene/polyethylene film composite films of 200 g/m 2 weight are laminated on both sides of the non-woven felt layer. A fiber composite material was used and heat-compressed at 190°C for 1 minute and 10 seconds. In order to confirm the strength and light weight of the product manufactured according to the examples, two types of test specimens were prepared and the flexural strength and burst strength were measured and compared with existing products.

비교예는 일반 부직포이고, 실시예 1은 케냐프와 고강력 나일론이 혼합된 실시예이고, 실시예 2는 아바카와 고강력 폴링에스터가 혼합된 실시예이다.Comparative Example is a general nonwoven fabric, Example 1 is an example in which Kenyap and high-tenacity nylon are mixed, and Example 2 is an example in which abaca and high-tenacity poling ester are mixed.

단 위unit 비교예comparative example 실시예 1Example 1 실시에 2 2 in implementation 중 량 weight g/m2 g/m 2 12001200 12701270 14001400 인장강도
tensile strength
MPa MPa MDMD 1212 MDMD 38.638.6 MDMD 4747
CDCD 1111 CDCD 47.547.5 CDCD 56.856.8 파열강도 bursting strength MPa MPa MDMD 1010 MDMD 21.221.2 MDMD 40.440.4 CDCD 99 CDCD 29.529.5 CDCD 25.225.2 터짐 발생 유무Whether or not there is an explosion 터짐 발생burst occurrence 터짐 없음no bursting 터짐 없음no bursting 가열압착조건 Heat pressing conditions 190℃, 1분10초 190℃, 1 minute 10 seconds 혼합구성비 Mixed Composition Ratio 일반 PP 부직포General PP non-woven fabric 케냐프 50%,
고강력 나일론 45%
Kenyan 50%,
45% high tenacity nylon
아바카 50%
고강력 폴리에스터 50%
Abaca 50%
50% high tenacity polyester

비교예 1과 실시예 1~2 테스트 결과, 본 발명에 따라 제조된 차량용 내장재의 강도가 일반 부직포를 적용한 경우보다 강도가 우수한 것으로 확인되었으며, 터짐도 발생하지 않은 것으로 확인되었다.As a result of the tests of Comparative Example 1 and Examples 1 and 2, it was confirmed that the strength of the vehicle interior material manufactured according to the present invention was superior to that of the case where a general nonwoven fabric was applied, and it was confirmed that no bursting occurred.

본 발명은 위에서 언급한 바와 같이 시험예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하며, 다양한 분야에서 사용 가능하다. 따라서 본 발명의 청구범위는 이전 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.Although the present invention has been described in relation to the test examples as mentioned above, various modifications and variations are possible within the scope without departing from the gist of the present invention, and can be used in various fields. Accordingly, the claims of the present invention include modifications and variations that fall within the true scope of the foregoing invention.

해당 없음Not applicable

Claims (6)

(a) 천연섬유와 합성섬유를 혼합 혼련하여 부직포 펠트층을 형성하는 단계;
(b) 상기 부직포 펠트층의 일측면 또는 양측면에 폴리프로필렌계/폴리에틸렌계 복합 필름이 가열압착된 복합 필름층을 형성하여 다층 구조의 적층보드를 제조하는 단계;
(c) 상기 적층보드를 가성형금형으로 가열압착하여 예열 및 가성형하는 단계; 및
(d) 상기 예열 및 가성형된 적층보드를 최종성형금형으로 상온압착하여 최종제품형상으로 성형하는 단계;
를 포함하는 차량용 바이오-재생 복합 내장재 제조방법.
(a) mixing and kneading natural fibers and synthetic fibers to form a nonwoven felt layer;
(b) forming a composite film layer in which a polypropylene-based/polyethylene-based composite film is heated and pressed on one side or both sides of the non-woven felt layer to manufacture a multi-layered laminated board;
(c) preheating and shaping the laminated board by heating and pressing it with a temporary mold; and
(d) molding the preheated and temporarily molded laminated board into a final product shape by pressing it at room temperature with a final molding mold;
Bio-regeneration composite interior material manufacturing method comprising a.
제1항에서,
상기 부직포 펠트층의 천연섬유는 케냐프 및 아바카 중 어느 하나 이상을 정련하여 적용하는 것을 특징으로 하는 차량용 바이오-재생 복합 내장재 제조방법.
In paragraph 1,
The natural fiber of the non-woven felt layer is a method for manufacturing a bio-regenerated composite interior material for a vehicle, characterized in that at least one of Kenyap and Abaca is refined and applied.
제1항에서,
상기 부직포 펠트층의 합성섬유는 섬유공장 공정부산물을 활용하되,
고강력 폴리에스터, 고강력 나일론 중 어느 하나 이상을 포함하는 것을 특징으로 하는 차량용 바이오-재생 복합 내장재 제조방법.
In paragraph 1,
The synthetic fiber of the non-woven felt layer uses a by-product of the textile factory process,
A method for manufacturing a bio-regenerated composite interior material for a vehicle, characterized in that it comprises at least one of high-strength polyester and high-tenacity nylon.
제1항에서,
상기 부직포 펠트층의 천연섬유와 합성섬유는 천연섬유 40~50%, 합성섬유 50~60%의 비율로 혼합되는 것을 특징으로 하는 차량용 바이오-재생 복합 내장재 제조방법.
In paragraph 1,
Natural fibers and synthetic fibers of the non-woven felt layer are mixed in a ratio of 40 to 50% of natural fibers and 50 to 60% of synthetic fibers.
제1항에서,
상기 복합 필름층은 200~300 g/m2의 양으로 형성되는 것을 특징으로 하는 차량용 바이오-재생 복합 내장재 제조방법.
In paragraph 1,
The composite film layer is a vehicle bio-regeneration composite interior material manufacturing method, characterized in that formed in an amount of 200 ~ 300 g / m 2 .
제1항에서,
(c)단계에서는 180~200℃의 가열온도로, 120~160초 동안 압착하여 상기 적층보드를 가열압착하는 것을 특징으로 하는 차량용 바이오-재생 복합 내장재 제조방법.
In paragraph 1,
In step (c), the bio-regeneration composite interior material manufacturing method for a vehicle, characterized in that the laminated board is heated and pressed by pressing at a heating temperature of 180 to 200 ° C. for 120 to 160 seconds.
KR1020210164742A 2021-11-25 2021-11-25 Bio-recycling complex interior material for vehicles KR102608212B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210164742A KR102608212B1 (en) 2021-11-25 2021-11-25 Bio-recycling complex interior material for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210164742A KR102608212B1 (en) 2021-11-25 2021-11-25 Bio-recycling complex interior material for vehicles

Publications (2)

Publication Number Publication Date
KR20230078840A true KR20230078840A (en) 2023-06-05
KR102608212B1 KR102608212B1 (en) 2023-12-04

Family

ID=86764264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210164742A KR102608212B1 (en) 2021-11-25 2021-11-25 Bio-recycling complex interior material for vehicles

Country Status (1)

Country Link
KR (1) KR102608212B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192897A (en) * 1997-12-26 1999-07-21 Ikeda Bussan Co Ltd Terminal structure of interior member
KR101027989B1 (en) 2010-08-26 2011-04-13 주식회사 세림티티시 Interior materials using natural fibers for vehicle
KR101543600B1 (en) * 2013-12-05 2015-08-11 한일이화 주식회사 Light-weight, multi-layered composite substrate and method of making the same
KR101726164B1 (en) 2015-11-02 2017-04-12 주식회사 서연이화 Method for manufacturing automotive interior material using natural fiber composites
KR101729083B1 (en) 2015-07-21 2017-04-24 한화첨단소재 주식회사 Bio sheet for car interior
KR101755850B1 (en) 2015-10-01 2017-07-07 현대자동차주식회사 Sound absorbent for automobile interior using recycled fiber and method for manufacturing the same
KR20200025284A (en) * 2018-08-30 2020-03-10 주식회사 무진 Fiber composite material for under cover of vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192897A (en) * 1997-12-26 1999-07-21 Ikeda Bussan Co Ltd Terminal structure of interior member
KR101027989B1 (en) 2010-08-26 2011-04-13 주식회사 세림티티시 Interior materials using natural fibers for vehicle
KR101543600B1 (en) * 2013-12-05 2015-08-11 한일이화 주식회사 Light-weight, multi-layered composite substrate and method of making the same
KR101729083B1 (en) 2015-07-21 2017-04-24 한화첨단소재 주식회사 Bio sheet for car interior
KR101755850B1 (en) 2015-10-01 2017-07-07 현대자동차주식회사 Sound absorbent for automobile interior using recycled fiber and method for manufacturing the same
KR101726164B1 (en) 2015-11-02 2017-04-12 주식회사 서연이화 Method for manufacturing automotive interior material using natural fiber composites
KR20200025284A (en) * 2018-08-30 2020-03-10 주식회사 무진 Fiber composite material for under cover of vehicle

Also Published As

Publication number Publication date
KR102608212B1 (en) 2023-12-04

Similar Documents

Publication Publication Date Title
JP4799163B2 (en) Automotive interior board
EP2122054B1 (en) Nonwoven panel and method of construction thereof
EP1851091B1 (en) The member for interior products of motor vehicles with multilayer structure
KR102195500B1 (en) Articles including high melt flow index resins
US20110070794A1 (en) Nonwoven sheet material, panel constructed therefrom and methods of construction thereof
KR101755850B1 (en) Sound absorbent for automobile interior using recycled fiber and method for manufacturing the same
KR20180005235A (en) Lower shielding composition and article providing improved peel strength and methods of use thereof
US20110305878A1 (en) Nonwoven panel and method of construction thereof
US20040235376A1 (en) Vehicle interior trim component containing carbon fibers and method of manufacturing the same
US20150298441A1 (en) Sandwich material
KR101251291B1 (en) Felt material with recycled fiber for the vehicle interiors and method of the same
JP2004284246A (en) Fiber composite resin article and its production method
CN1454772A (en) Sandwiched component and use thereof
KR101069903B1 (en) Laminated body and the process of manufacture of built-in material of car that improves function of absorbing sound
KR101601861B1 (en) Layered felt for car interior substrate and method of producing the same
KR102608212B1 (en) Bio-recycling complex interior material for vehicles
EP3594393B1 (en) Wood fiber-based interior trim component for a vehicle
US20110189911A1 (en) High loft nonwoven sheet material and method of construction thereof
EP2534290A1 (en) High loft nonwoven sheet material and method of construction thereof
KR20160141214A (en) Multi-layered Composites for Car Interior Base Material
JP2004292646A (en) Method for producing reinforcing fiber sheet, reinforcing fiber sheet and application thereof
CN110588090A (en) Composite panel and corresponding method
KR20240063312A (en) Sound absorbing material using regenerated fiber and manufacturing method thereof
KR20240076070A (en) Vehicle Trunk Luggage Covering Mat Using A Single Material And Its Manufacturing Method
KR20200000121A (en) Environmental-friendly Composite For Trunk―Lid Materials Of Vehicle Having Excellent Impact Resistance And Acoustic Performance And Method of Producing Thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant