KR20230061883A - Oct 영상에서 망막 단층의 측정 방법 - Google Patents
Oct 영상에서 망막 단층의 측정 방법 Download PDFInfo
- Publication number
- KR20230061883A KR20230061883A KR1020210146594A KR20210146594A KR20230061883A KR 20230061883 A KR20230061883 A KR 20230061883A KR 1020210146594 A KR1020210146594 A KR 1020210146594A KR 20210146594 A KR20210146594 A KR 20210146594A KR 20230061883 A KR20230061883 A KR 20230061883A
- Authority
- KR
- South Korea
- Prior art keywords
- retinal
- image
- tomography
- oct
- boundary
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 210000001525 retina Anatomy 0.000 title claims abstract description 17
- 230000002207 retinal effect Effects 0.000 claims abstract description 132
- 238000003325 tomography Methods 0.000 claims abstract description 80
- 210000004126 nerve fiber Anatomy 0.000 claims abstract description 24
- 238000013528 artificial neural network Methods 0.000 claims description 23
- 238000012549 training Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 5
- 210000004127 vitreous body Anatomy 0.000 claims description 5
- 230000001788 irregular Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000004256 retinal image Effects 0.000 claims 2
- 230000008859 change Effects 0.000 abstract description 7
- 238000012014 optical coherence tomography Methods 0.000 description 85
- 239000010410 layer Substances 0.000 description 37
- 210000003733 optic disk Anatomy 0.000 description 11
- 238000000691 measurement method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000011218 segmentation Effects 0.000 description 5
- 208000010412 Glaucoma Diseases 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 208000003098 Ganglion Cysts Diseases 0.000 description 2
- 208000005400 Synovial Cyst Diseases 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 206010012667 Diabetic glaucoma Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000004402 high myopia Effects 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/1005—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/102—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
- A61B3/1225—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/162—Segmentation; Edge detection involving graph-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/24—Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10101—Optical tomography; Optical coherence tomography [OCT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Signal Processing (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Description
도 2는 본 발명에 따른 망막 단층의 측정 방법에서, 망막 단층을 표시하는 기준 경계선을 검출하기 위한 방법의 일 예를 보여주는 도면.
도 3은 본 발명에 따른 망막 단층의 측정 방법에서 검출된 기준 경계선을 시신경 유두 OCT 영상에 표시한 예들을 보여주는 도면.
도 4는 본 발명에 따른 망막 단층의 측정 방법에서, 기준 경계선이 베이스라인이 되도록 정렬된 OCT 영상의 일 예를 보여주는 도면.
도 5a 및 5b는 심층 신경망을 구성하기 위한 OCT 망막 단면 영상과 레이블 영상의 일 예를 보여주는 도면.
도 6은 망막 단층 분할을 위한 심층 신경망의 훈련 과정을 설명하기 위한 플로우챠트.
도 7은 본 발명에 따라 망막 단층 경계선이 표시된 OCT 영상의 일 예를 보여주는 도면.
도 8은 본 발명에 따라 시신경 유두 주변 둘레의 망막 신경섬유층(RNFL) 두께를 측정하여 나타낸 그래프.
Claims (6)
- 망막의 OCT 단층 영상을 획득하는 S10 단계;
획득된 OCT 영상에서 망막 단층을 표시하는 기준 경계선을 검출하는 S12 단계;상기 검출된 기준 경계선이 베이스라인이 되도록 OCT 영상의 각 컬럼의 상하 위치를 정렬하여 정렬된 OCT 영상을 얻는 S14 단계;
정렬된 OCT 영상으로부터 망막 단층 영역을 예측하는 S20 단계;예측된 망막 단층 영역 사이의 경계선을 산출하는 S22 단계; 및
상기 베이스라인이 다시 상기 기준 경계선이 되도록, 상기 산출된 망막 단층의 경계선의 상하 위치를 각 컬럼별로 정렬하여, 정렬된 경계선이 원래의 OCT 영상의 망막 단층의 경계선의 위치로 복원되도록 하는 S30 단계;를 포함하는 망막 단층의 측정 방법. - 제1항에 있어서, 상기 복원된 망막 단층 경계선이 원래의 OCT 영상에 오버레이되어 사용자에게 디스플레이되는 단계를 더욱 포함하는 망막 단층의 측정 방법.
- 제1항에 있어서, 상기 망막 단층은 망막 신경섬유층을 포함하고, 상기 복원된 각각의 망막 단층 사이의 경계선 위치로부터 망막 신경섬유층의 두께를 측정하는 S32 단계를 더욱 포함하는 망막 단층의 측정 방법.
- 제1항에 있어서, 상기 기준 경계선은 망막의 유리체와 망막 내측면 사이의 경계선이고, 상기 베이스라인은 망막 단층의 불규칙한 굴곡에 의한 측정 오차를 감소시킬 수 있도록, 기준 경계선을 평탄화하는 기준선인 것인, 망막 단층의 측정 방법.
- 제1항에 있어서, 상기 망막 단층 영역의 예측 및 망막 단층 영역 사이의 경계선 산출은 상기 기준 경계선이 베이스라인으로 정렬된 OCT 영상과 이를 분석한 망막 단층의 경계선 데이터 영상을 이용하여 학습된 심층 신경망에 의하여 수행되는 것인, 망막 단층의 측정 방법.
- 제5항에 있어서, 상기 심층 신경망의 학습은
(i) OCT 망막 단면 영상과 (ii) 상기 OCT 망막 단면 영상에 대하여 작성된 레이블 영상의 훈련 데이터 집합을 입력하는 S50 단계;
입력된 OCT 영상 및 레이블 영상에서, 망막 단층을 표시하는 기준 경계선을 검출하는 S52 단계;
상기 검출된 기준 경계선이 베이스라인이 되도록, OCT 영상 및 레이블 영상의 각 컬럼의 상하 위치를 정렬하는 S54 단계;
OCT 영상과 레이블 영상이 정렬되면, OCT 영상으로부터 망막 단층의 위치를 예측하는 S62 단계;
예측된 망막 단층의 위치와 레이블 영상을 비교하여 예측 오차(Loss)를 계산하는 S64 단계; 및
계산된 예측 오차에 따라 각 단층으로 예측될 가중치를 업데이트하는 S66 단계에 의하여 수행되는 것인, 망막 단층의 측정 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210146594A KR102679828B1 (ko) | 2021-10-29 | 2021-10-29 | Oct 영상에서 망막 단층의 측정 방법 |
EP22201041.5A EP4174767A1 (en) | 2021-10-29 | 2022-10-12 | Method for measuring retinal layer in oct image |
US17/966,607 US20230140083A1 (en) | 2021-10-29 | 2022-10-14 | Method for measuring retinal layer in oct image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210146594A KR102679828B1 (ko) | 2021-10-29 | 2021-10-29 | Oct 영상에서 망막 단층의 측정 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230061883A true KR20230061883A (ko) | 2023-05-09 |
KR102679828B1 KR102679828B1 (ko) | 2024-07-01 |
Family
ID=83691679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210146594A KR102679828B1 (ko) | 2021-10-29 | 2021-10-29 | Oct 영상에서 망막 단층의 측정 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230140083A1 (ko) |
EP (1) | EP4174767A1 (ko) |
KR (1) | KR102679828B1 (ko) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019192215A (ja) * | 2018-02-21 | 2019-10-31 | 株式会社トプコン | 深層学習を用いた網膜層の3d定量解析 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8811745B2 (en) | 2010-01-20 | 2014-08-19 | Duke University | Segmentation and identification of layered structures in images |
KR101323942B1 (ko) | 2011-06-07 | 2013-10-31 | 우도영 | 수상 지지축 설치방법 |
KR101442708B1 (ko) | 2012-11-28 | 2014-09-22 | 주식회사 휴비츠 | 3차원 oct 데이터를 처리하기 위한 광 간섭 단층 촬영장치 |
US10123689B2 (en) | 2015-10-28 | 2018-11-13 | Oregon Health & Science University | Systems and methods for retinal layer segmentation in OCT imaging and OCT angiography |
KR102655229B1 (ko) | 2016-11-10 | 2024-04-08 | 한국전력공사 | 항공장애표시구 |
KR102198395B1 (ko) | 2018-05-08 | 2021-01-06 | 서울대학교산학협력단 | 녹내장 조기진단과 의심영역 표시 방법 및 이를 위한 시스템 |
-
2021
- 2021-10-29 KR KR1020210146594A patent/KR102679828B1/ko active IP Right Grant
-
2022
- 2022-10-12 EP EP22201041.5A patent/EP4174767A1/en not_active Withdrawn
- 2022-10-14 US US17/966,607 patent/US20230140083A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019192215A (ja) * | 2018-02-21 | 2019-10-31 | 株式会社トプコン | 深層学習を用いた網膜層の3d定量解析 |
Non-Patent Citations (1)
Title |
---|
IEEE Transactions on Image Processing, Vol: 27, Issue: 12, December 2018* * |
Also Published As
Publication number | Publication date |
---|---|
US20230140083A1 (en) | 2023-05-04 |
EP4174767A1 (en) | 2023-05-03 |
KR102679828B1 (ko) | 2024-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10094649B2 (en) | Evaluation of optical coherence tomographic data prior to segmentation | |
Bogunović et al. | RETOUCH: The retinal OCT fluid detection and segmentation benchmark and challenge | |
Ghorbel et al. | Automated segmentation of macular layers in OCT images and quantitative evaluation of performances | |
US20220151568A1 (en) | Supervised machine learning based multi-task artificial intelligence classification of retinopathies | |
He et al. | Topology guaranteed segmentation of the human retina from OCT using convolutional neural networks | |
Hassan et al. | Structure tensor graph searches based fully automated grading and 3D profiling of maculopathy from retinal OCT images | |
ter Haar Romeny et al. | Brain-inspired algorithms for retinal image analysis | |
US20210272291A1 (en) | Method and computer program for segmentation of optical coherence tomography images of the retina | |
Marin et al. | Anterior segment optical coherence tomography (AS-OCT) image analysis methods and applications: A systematic review | |
EP3417401B1 (en) | Method for reducing artifacts in oct using machine learning techniques | |
Rabbani et al. | Obtaining thickness maps of corneal layers using the optimal algorithm for intracorneal layer segmentation | |
Marques et al. | Automatic segmentation of the optic nerve head region in optical coherence tomography: A methodological review | |
Bai et al. | Cystoid macular edema segmentation of optical coherence tomography images using fully convolutional neural networks and fully connected CRFs | |
WO2018162690A1 (en) | Method for analyzing avascular regions in optical coherence tomography angiography images | |
Sahoo et al. | Automatic segmentation of accumulated fluid inside the retinal layers from optical coherence tomography images | |
Garcia-Marin et al. | Patch-based CNN for corneal segmentation of AS-OCT images: Effect of the number of classes and image quality upon performance | |
Thanh et al. | A real-time classification of glaucoma from retinal fundus images using AI technology | |
KR102636222B1 (ko) | Oct 영상에서 망막 단층의 분할 방법 | |
KR102679828B1 (ko) | Oct 영상에서 망막 단층의 측정 방법 | |
US20230410293A1 (en) | Quality maps for optical coherence tomography angiography | |
Eladawi et al. | Diabetic retinopathy early detection based on OCT and OCTA feature fusion | |
George et al. | Oct segmentation using convolutional neural network | |
WO2021141976A1 (en) | Methods, systems and computer program products for classifying image data | |
George et al. | Convolutional Neural Network for automatic segmentation of EDI OCT images | |
Zhu et al. | FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20211029 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230926 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240617 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240626 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240626 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |