KR20230054218A - Method for culturing a cell expressing a protein - Google Patents

Method for culturing a cell expressing a protein Download PDF

Info

Publication number
KR20230054218A
KR20230054218A KR1020210179185A KR20210179185A KR20230054218A KR 20230054218 A KR20230054218 A KR 20230054218A KR 1020210179185 A KR1020210179185 A KR 1020210179185A KR 20210179185 A KR20210179185 A KR 20210179185A KR 20230054218 A KR20230054218 A KR 20230054218A
Authority
KR
South Korea
Prior art keywords
culture
cell line
culture medium
culturing
cells
Prior art date
Application number
KR1020210179185A
Other languages
Korean (ko)
Other versions
KR102553935B1 (en
Inventor
정오석
오후근
김석천
김판겸
안혜빈
최우영
Original Assignee
에스케이바이오사이언스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이바이오사이언스(주) filed Critical 에스케이바이오사이언스(주)
Publication of KR20230054218A publication Critical patent/KR20230054218A/en
Application granted granted Critical
Publication of KR102553935B1 publication Critical patent/KR102553935B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0681Cells of the genital tract; Non-germinal cells from gonads
    • C12N5/0682Cells of the female genital tract, e.g. endometrium; Non-germinal cells from ovaries, e.g. ovarian follicle cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/10Centrifuges combined with other apparatus, e.g. electrostatic separators; Sets or systems of several centrifuges
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6068Other bacterial proteins, e.g. OMP
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/62Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
    • A61K2039/627Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/32Amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20051Methods of production or purification of viral material
    • C12N2770/20052Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Communicable Diseases (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Reproductive Health (AREA)
  • Cell Biology (AREA)

Abstract

The present invention relates to a method for culturing a cell line expressing a target protein, which is a polypeptide represented by the amino acid sequence shown in SEQ ID NO: 1 or a polypeptide having at least 75% sequence homology thereto. More specifically, the present invention provides a culture method comprises a step of culturing the cell line expressing the protein, wherein the step of culturing the cell line includes adjustment of the pH of a culture medium. In addition, the culture method of the target protein according to the present invention can be used to mass-produce the target protein while reducing the production cost of the target protein.

Description

단백질을 발현하는 세포의 배양 방법{METHOD FOR CULTURING A CELL EXPRESSING A PROTEIN}Culturing method of cell expressing protein {METHOD FOR CULTURING A CELL EXPRESSING A PROTEIN}

본 발명은 목적 단백질을 대량 생산하면서도 생산 비용을 절감할 수 있는 단백질을 발현하는 세포주의 배양 방법으로서, 특히, SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) 감염을 예방하고/하거나 감염시 발현되는 증상을 완화하는 목적으로 사용되는 백신의 항원 단백질을 발현하는 세포주의 배양 방법에 관한 것이다.The present invention is a method for culturing a cell line expressing a protein capable of mass-producing a target protein while reducing production costs, and in particular, prevents and/or infects SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) infection. It relates to a method for culturing a cell line expressing an antigenic protein of a vaccine used for the purpose of alleviating symptoms expressed at the time of application.

2019년 12월 이후 팬데믹 감염이 보고된 SARS-CoV-2 바이러스는 Coronaviridae family, Betacoronavirus genus Sarbecovirus subgenus에 속하는 바이러스로서, 바이러스 표면의 삼량체 (trimer) 당단백질 (즉, 스파이크 (Spike) 단백질) 상단의 수용체 결합 도메인 (Receptor Binding Domain, RBD)이 인체 세포 표면의 ACE2 수용체 단백질에 결합함으로써 감염을 일으키는 것으로 알려져 있다. 스파이크 당단백질 단량체 (monomer)는 숙주세포 단백질 분해효소 (protease)에 의하여 S1 서브유닛 및 S2 서브유닛으로 분리된다. The SARS-CoV-2 virus, which has been reported as a pandemic infection since December 2019, is a virus belonging to the Coronaviridae family, Betacoronavirus genus Sarbecovirus subgenus. It is known that the Receptor Binding Domain (RBD) of B. binds to the ACE2 receptor protein on the surface of human cells to cause infection. Spike glycoprotein monomers are separated into S1 subunits and S2 subunits by host cell proteases.

상기 SARS-CoV-2 바이러스 감염의 주된 전파경로는 감염자의 비말과의 밀접접촉인 것으로 알려져 있다. 그러나, 감염자와 직접 접촉하거나 또는 감염자의 비말 등에 의하여 오염된 물품과 같은 매개체를 만진 후, 손을 씻지 않은 채 눈, 코, 입 등을 만짐으로써 바이러스 전파가 이루어질 수도 있다고 알려져 있다. It is known that the main transmission route of the SARS-CoV-2 virus infection is close contact with droplets of an infected person. However, it is known that the virus may be transmitted by direct contact with an infected person or by touching a medium such as an item contaminated by droplets of an infected person and then touching eyes, nose, mouth, etc. without washing hands.

한편, 2020년 SARS-CoV-2 바이러스 감염으로 인한 사회·경제적 피해가 심화되면서 미국, 유럽 등 다양한 국가에서 SARS-CoV-2 바이러스 감염에 따른 증세를 완화하는 효과를 갖는 백신 사용에 대한 긴급승인과 함께 전세계적으로 여러 국가에서 백신 접종이 개시되었다. 그러나, 상기 백신을 접종하였더라도 백신 접종자에서의 SARS-CoV-2 바이러스 감염을 원천 차단하지는 못한다. Meanwhile, as the social and economic damage caused by the SARS-CoV-2 virus infection intensified in 2020, emergency approval and approval for the use of vaccines that have the effect of alleviating the symptoms of SARS-CoV-2 virus infection in various countries such as the United States and Europe Together, vaccinations have been initiated in many countries around the world. However, even if the vaccine is vaccinated, SARS-CoV-2 virus infection in the vaccinated person cannot be prevented from the source.

더욱이, 알파변이, 베타 변이, 감마 변이, 엡실론 변이, 델타변이, 카파변이, 에타변이와 같은 SARS-CoV-2 바이러스 변이가 계속 보고되고 있으며, 백신 접종자에서의 이러한 변이된 SARS-CoV-2 바이러스 감염이 계속적으로 발생하고 있다. 따라서, 체내 유효 항체 수치를 유지하기 위한 목적으로 백신 접종자를 대상으로 한 추가 백신 접종이 권고되고 있는 실정이다. 나아가, 각국 정부는 SARS-CoV-2 감염이 사회·경제에 미치는 영향을 고려하여 SARS-CoV-2 백신 접종 대상을 청소년 층까지 확대하고 있는바, SARS-CoV-2 감염 예방 백신 및 상기 백신에 사용될 수 있는 항원 단백질 생산 수요가 급증하고 있다. 식물에서 목적 단백질을 대량 생산하는 방법에 대해서는 이미 공지되어 있으나(공개특허 제10-2021-0117808호), 동물성 세포에서 목적 단백질을 대량 생산하는 방법에 대해서는 아직 연구가 부족한 실정이다. 따라서, 단기간 내 동물성 세포에서 백신 항원 단백질을 대량생산할 수 있는 제조 방법의 개발이 요구된다. Moreover, SARS-CoV-2 virus mutations such as alpha mutation, beta mutation, gamma mutation, epsilon mutation, delta mutation, kappa mutation, and eta mutation continue to be reported, and these mutated SARS-CoV-2 viruses in vaccinated persons Infections continue to occur. Therefore, for the purpose of maintaining an effective antibody level in the body, additional vaccination for vaccinated persons is recommended. Furthermore, governments of each country are expanding the target of SARS-CoV-2 vaccination to adolescents in consideration of the social and economic impact of SARS-CoV-2 infection. Demand for the production of antigenic proteins that can be used is rapidly increasing. A method for mass-producing a target protein in plants is already known (Patent Publication No. 10-2021-0117808), but research on a method for mass-producing a target protein in animal cells is still lacking. Therefore, it is required to develop a production method capable of mass-producing vaccine antigen proteins in animal cells in a short period of time.

(특허문헌 1) 공개특허 제10-2021-0117808호(Patent Document 1) Patent Publication No. 10-2021-0117808

본 발명자들은 백신의 항원 단백질의 생산효율을 증가시키는 방법에 대한 연구를 진행하던 중, 바이오리액터에서 목적 단백질을 발현하는 세포주를 배양하는 과정에서 배양액의 pH를 일정 수치 이하로 조절함으로써 배양 안정성 및 세포의 단백질 발현 효율을 증가시켜 생산단가를 절감할 수 있으며, 상기 배양액으로 투입되는 기체 분사 속도를 조절하면 배양가능한 배양액 부피를 스케일업하고 배양액에서의 거품이 형성되는 것을 억제하는 게 가능하게 되므로, 목적 단백질의 생산성을 향상시킬 수 있다는 점을 발견하여 본 발명을 완성하였다. While conducting research on a method for increasing the production efficiency of vaccine antigen proteins, the present inventors, in the process of culturing a cell line expressing a target protein in a bioreactor, adjusted the pH of the culture medium to a certain value or less to improve culture stability and cell growth. It is possible to reduce the production cost by increasing the protein expression efficiency of the culture medium, and adjusting the injection speed of the gas introduced into the culture medium makes it possible to scale up the culture medium volume and suppress the formation of bubbles in the culture medium. The present invention was completed by finding that the productivity of proteins can be improved.

본 출원에 의해 개시되는 기술의 일 양태에 따르면, 목적 단백질을 발현하는 세포주의 배양 방법으로서, 상기 단백질을 발현하는 세포주를 배양하는 단계를 포함하며, 상기 세포주를 배양하는 단계는 배양액의 pH를 조절하는 것을 포함하는, 배양 방법을 제공한다. According to one aspect of the technology disclosed by the present application, a method for culturing a cell line expressing a target protein includes culturing the cell line expressing the protein, wherein the culturing the cell line adjusts the pH of the culture medium It provides a culture method comprising doing.

또한, 본 출원에 의해 개시되는 기술의 일 양태에 따르면, 상기 세포주를 배양하는 단계는 배양액으로 투입되는 기체 분사 속도의 조절을 통해 배양액 부피 스케일업 및 배양액에서의 거품 형성 억제를 가능케 할 수 있다. In addition, according to one aspect of the technology disclosed by the present application, the step of culturing the cell line may enable scaling-up of the volume of the culture medium and inhibition of foam formation in the culture medium by adjusting the injection rate of gas introduced into the culture medium.

본 발명에 따른 단백질을 발현하는 세포주의 배양 방법은 단백질의 생산 단가를 절감하면서도, 상기 단백질을 대량생산하는데 사용될 수 있다.The method for culturing a cell line expressing a protein according to the present invention can be used to mass-produce the protein while reducing the production cost of the protein.

도 1은 서열번호 1의 단백질을 코딩하는 염기서열을 포함하는 벡터의 구조를 나타낸 것이다.
도 2는 바이오리액터 내 배양액의 pH 상단값을 pH 7.25로 한 경우의 배양액 내 용존산소량 (DO), pH, 산소 유량 및 이산화탄소 유량 변화를 나타낸다.
도 3은 바이오리액터 내 배양액의 pH 상단값을 pH 7.1로 낮춘 경우의 배양액 내 DO, pH, 산소 유량 및 이산화탄소 유량 변화와 배양 기간 중 누적 탄산수소나트륨 사용량 추이를 나타낸다.
도 4는 바이오리액터 내 배양액의 pH 상단값을 각각 6.8, 6.99, 7.0 또는 7.2로 변화시켰을 때 배양액 내 젖산 생성량의 변화를 나타낸다.
Figure 1 shows the structure of a vector containing a nucleotide sequence encoding the protein of SEQ ID NO: 1.
FIG. 2 shows changes in dissolved oxygen (DO), pH, oxygen flow rate, and carbon dioxide flow rate in the culture solution when the upper pH value of the culture solution in the bioreactor was set to pH 7.25.
3 shows changes in DO, pH, oxygen flow rate, and carbon dioxide flow rate in the culture medium when the upper pH value of the culture medium in the bioreactor was lowered to pH 7.1, and the trend of the accumulated sodium bicarbonate consumption during the cultivation period.
Figure 4 shows the change in the amount of lactic acid produced in the culture medium when the upper pH value of the culture medium in the bioreactor is changed to 6.8, 6.99, 7.0 or 7.2, respectively.

이하, 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 일 측면은, 목적 단백질을 발현하는 세포주의 배양 방법으로서, 상기 단백질을 발현하는 세포주를 배양하는 단계를 포함하며, 상기 세포주를 배양하는 단계는 배양액의 pH를 조절하는 것을 포함하는, 배양 방법을 제공한다. One aspect of the present invention is a method for culturing a cell line expressing a protein of interest, comprising culturing the cell line expressing the protein, wherein culturing the cell line comprises adjusting the pH of the culture medium. provides a way

상기 "목적 단백질"은 세포가 발현 가능한 모든 종류의 외래 산물 단백질이다. 대표적으로, 인슐린, 사이토카인(인터루킨, 종양괴사인자, 인터페론, 콜로니자극인자, 케모카인 등등), 에리트로포이에틴, 항원, 항체, 항체 단편, 구조 단백질, 조절단백질, 전사인자, 독소 단백질, 호르몬, 호르몬 유사체, 효소, 효소 저해제, 수송단백질, 리셉터 (예컨대, 티로신 키나아제 수용체 등), 리셉터의 단편, 생체방어 유도물질, 저장단백질, 이동단백질(movement protein), 익스플로이티브 프로틴(exploitive protein), 리포터 단백질, 성장 인자 등이 있으며, 이러한 목적 단백질은 세포주에서의 발현을 위한 벡터에 상기 목적 단백질을 코딩하는 유전자를 삽입할 수 있도록 하는 제한 효소 인지 또는 절단 부위가 도입되어 있는 핵산 서열인 "클로닝 부위"를 포함할 수 있다. The "target protein" is any kind of exogenous product protein that can be expressed by cells. Typically, insulin, cytokine (interleukin, tumor necrosis factor, interferon, colony stimulating factor, chemokine, etc.), erythropoietin, antigen, antibody, antibody fragment, structural protein, regulatory protein, transcription factor, toxin protein, hormone, hormone Analogs, enzymes, enzyme inhibitors, transport proteins, receptors (e.g., tyrosine kinase receptors, etc.), fragments of receptors, biological defense inducers, storage proteins, movement proteins, exploitive proteins, reporter proteins, growth factors, etc., and such a target protein includes a "cloning site", which is a nucleic acid sequence into which a restriction enzyme recognition or cleavage site is introduced to allow insertion of the gene encoding the target protein into a vector for expression in a cell line. can do.

본 발명에서 상기 목적 단백질은 국제특허공보 제2021-163438호의 청구항 1에 기재된 폴리펩타이드 중 하나이거나, 국제특허공보 제2019-169120호, 미국 특허공보 제9630994호, 국제특허공보 제2021-163481호, 국제특허공보 제2021-163438호, 또는 국제출원번호 제PCT/US2021/037341호의 명세서에 개시된 폴리펩타이드 중 하나일 수 있다. 바람직하게는, 상기 목적 단백질은 국제특허공보 제2021-163438호에 개시된 서열번호 7, 29, 30, 31, 또는 39로 표시되는 아미노산 서열을 갖는 폴리펩타이드일 수 있다. In the present invention, the target protein is one of the polypeptides described in claim 1 of International Patent Publication No. 2021-163438, International Patent Publication No. 2019-169120, US Patent Publication No. 9630994, International Patent Publication No. 2021-163481, It may be one of the polypeptides disclosed in the specification of International Patent Publication No. 2021-163438 or International Application No. PCT/US2021/037341. Preferably, the target protein may be a polypeptide having an amino acid sequence represented by SEQ ID NO: 7, 29, 30, 31, or 39 disclosed in International Patent Publication No. 2021-163438.

본 발명의 일 구체예에서, 상기 목적 단백질은 서열번호 1로 표시되는 아미노산 서열로 이루어진 폴리펩타이드이거나, 상기 서열번호 1로 표시되는 아미노산 서열과 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 서열 상동성을 갖는 폴리펩타이드일 수 있다. 상기 목적 단백질은 서열번호 2로 표시되는 염기서열로 이루어진 유전자에 의해 코딩되거나, 상기 서열번호 2로 표시되는 염기서열과 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 서열 상동성을 갖는 염기 서열에 의하여 코딩될 수 있다. In one embodiment of the present invention, the target protein is a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1, or 70% or more, 75% or more, 80% or more, 85% or more of the amino acid sequence represented by SEQ ID NO: 1 At least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence homology. there is. The target protein is encoded by a gene consisting of the nucleotide sequence represented by SEQ ID NO: 2, or 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of the nucleotide sequence represented by SEQ ID NO: 2, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more or 99% or more sequence homology can be encoded by a base sequence.

상기 목적 단백질을 생산하는 세포주는 서열번호 1로 표시되는 아미노산 서열로 표시되는 폴리펩타이드 또는 이와 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 서열 상동성을 갖는 폴리펩타이드를 코딩하는 유전자를 포함하는 발현 벡터를 갖는 세포주일 수 있다. 본 발명의 일 구체예에서, 상기 발현 벡터는 플라스미드 벡터일 수 있으나, 세포에 서열번호 1로 표시되는 아미노산 서열로 표시되는 폴리펩타이드 또는 이와 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 서열 상동성을 갖는 폴리펩타이드를 코딩하는 유전자를 형질감염하기에 적합한 벡터라면 제한없이 사용될 수 있다. The cell line producing the target protein is a polypeptide represented by the amino acid sequence represented by SEQ ID NO: 1 or more than 70%, more than 75%, more than 80%, more than 85%, more than 90%, more than 91%, more than 92% , It may be a cell line having an expression vector containing a gene encoding a polypeptide having at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence homology. . In one embodiment of the present invention, the expression vector may be a plasmid vector, but the polypeptide represented by the amino acid sequence represented by SEQ ID NO: 1 or 70% or more, 75% or more, 80% or more, 85% or more , which encodes a polypeptide having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence homology Any vector suitable for transfecting a gene may be used without limitation.

한편, 본 발명에서 서열번호 1로 표시되는 아미노산 서열로 표시되는 단백질을 코딩하는 유전자를 포함하는 발현 벡터는 서열번호 3으로 표시되는 DNA 서열을 가질 수 있다.Meanwhile, in the present invention, an expression vector including a gene encoding a protein represented by the amino acid sequence represented by SEQ ID NO: 1 may have a DNA sequence represented by SEQ ID NO: 3.

본 발명에서 사용된 용어, "벡터"는 숙주세포에 도입되어 숙주세포 유전체 내로 재조합 및 삽입될 수 있거나, 또는 에피좀 (episome)으로 자발적으로 복제될 수 있는 뉴클레오티드 서열을 포함하는 핵산 수단을 말한다. 적합한 발현 벡터는 프로모터, 개시코돈, 종결코돈, 폴리아데닐화 신호 및 인핸서 같은 발현 조절 요소 (element) 외에도 막 표적화 또는 분비를 위한 신호서열 또는 리더서열을 포함하며, 목적에 따라 다양하게 제조될 수 있다. 개시코돈 및 종결코돈을 표적 단백질을 암호화하는 유전자 작제물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 암호화 서열과 인프레임 (in frame)에 있어야 한다.As used herein, the term "vector" refers to a nucleic acid means comprising a nucleotide sequence that can be introduced into a host cell and recombined and inserted into the genome of the host cell, or can be spontaneously replicated as an episome. Suitable expression vectors include expression control elements such as promoters, initiation codons, stop codons, polyadenylation signals and enhancers, as well as signal sequences or leader sequences for membrane targeting or secretion, and can be prepared in various ways depending on the purpose. . When a genetic construct encoding a target protein is administered, the initiation codon and stop codon must be functional in the subject and must be in frame with the coding sequence.

본 발명의 일 구체예에 따른 폴리뉴클레오티드 또는 벡터는 게놈 외부의 독립적 분자, 구체적으로는 복제할 수 있는 분자로서 유전적으로 변형된 숙주세포 또는 비-인간 숙주개체 내에 존재할 수 있거나, 또는 숙주세포 또는 비-인간 숙주개체의 게놈으로 안정적으로 삽입될 수 있다.The polynucleotide or vector according to one embodiment of the present invention is an independent molecule outside the genome, specifically a molecule capable of replicating, and may exist in a genetically modified host cell or non-human host organism, or may be present in a host cell or non-human host cell. -Can be stably integrated into the genome of human host organisms.

본 발명의 일 구체예에 따른 목적 단백질을 발현하는 세포주의 숙주세포는 진핵세포이다. 상기 진핵세포는 진균세포 (fungus), 식물세포 또는 동물세포를 포함한다. 진균세포의 예로는 효모, 구체적으로는 사카로마이세스 속 (Saccharomyces sp.)의 효모, 더욱 구체적으로는 사카로마이세스 세레비지애 (S. cerevisiae)일 수 있다. 또한, 동물세포의 예로는 곤충세포 또는 포유동물 세포가 있고, 구체적인 동물세포의 예로는 HEK293, 293T, NSO, 중국 햄스터 난소 세포 (CHO), MDCK, U2-OSHela, NIH3T3, MOLT-4, Jurkat, PC-12, PC-3, IMR, NT2N, Sk-n-sh, CaSki, C33A 등이 있다. 또한, 통상의 기술분야에 잘 알려져 있는 적당한 세포주들은 ATCC (American Type Culture Collection)와 같은 세포주 기탁기관으로부터 수득할 수 있다. A host cell of a cell line expressing a target protein according to one embodiment of the present invention is a eukaryotic cell. The eukaryotic cells include fungus cells, plant cells or animal cells. Examples of the fungal cell may be yeast, specifically Saccharomyces genus ( Saccharomyces sp ) yeast, more specifically Saccharomyces cerevisiae ( S. cerevisiae ). In addition, examples of animal cells include insect cells or mammalian cells, and specific examples of animal cells include HEK293, 293T, NSO, Chinese hamster ovary cells (CHO), MDCK, U2-OSHela, NIH3T3, MOLT-4, Jurkat, PC-12, PC-3, IMR, NT2N, Sk-n-sh, CaSki, C33A, etc. In addition, suitable cell lines well known in the art can be obtained from cell line depositories such as the American Type Culture Collection (ATCC).

본 발명의 일 구체에에 따른 목적 단백질을 발현하는 세포주의 숙주세포는 중국 햄스터 난소 세포 (CHO)일 수 있으며, 바람직하게는 재조합 아데노-관련 바이러스 (recombinant Adeno-Associated Virus, rAAV)에 의하여 Glutamine Synthetase 유전자의 6번 엑손이 넉아웃 (Knock-out)된 HD-BIOP3 세포를 사용할 수 있다. The host cell of the cell line expressing the target protein according to one embodiment of the present invention may be Chinese hamster ovary cells (CHO), preferably Glutamine Synthetase by recombinant Adeno-Associated Virus (rAAV). HD-BIOP3 cells in which exon 6 of the gene is knocked out can be used.

상기 숙주세포에 목적 단백질을 코딩하는 유전 서열을 갖는 발현 벡터를 도입하기 위해서는 핵산을 세포 내로 도입하는 어떤 방법이든 사용할 수 있고, 숙주세포에 따라 통상의 기술분야에 공지된 기술을 사용할 수 있다. 예를 들어, 열충격법 (Heat Shock), 전기천공법 (Electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다. In order to introduce an expression vector having a genetic sequence encoding a target protein into the host cell, any method for introducing nucleic acid into the cell may be used, and techniques known in the art may be used depending on the host cell. For example, heat shock, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and lithium acetate-DMSO method, but are not limited thereto.

구체적으로, 상기 목적 단백질을 발현하는 세포주를 배양하는 단계는, 상기 세포주를 종배양하는 단계 및 상기 종배양한 세포주를 본배양하는 단계를 포함할 수 있다. Specifically, culturing the cell line expressing the target protein may include culturing the cell line and main-cultivating the cell line.

본 발명에서 사용된 용어, "종배양 (seed culture)"은 세포주를 대량으로 얻는 것을 목적으로 하는 배양을 의미한다. 상기 종배양은 세포수가 가장 활발하게 증가할 수 있는 온도 조건에서 배양될 수 있다. 다시 말해서, 세포주의 일정 세포수를 확보하기 위하여 종배양할 수 있다.As used herein, the term "seed culture" refers to culture for the purpose of obtaining a large amount of cell lines. The seed culture may be cultured under temperature conditions that can increase the number of cells most actively. In other words, the cell line may be cultured in order to secure a certain number of cells.

본 발명에서 사용된 용어 "본배양 (production culture)"은 목적 단백질을 생산하기 위하여 세포주를 대량 배양하는 것을 의미한다.As used herein, the term "production culture" means mass-cultivating a cell line to produce a target protein.

상기 종배양하는 단계는, 목적 단백질을 발현하는 세포주를 계대 배양, 부유배양 및 이의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 방법으로 배양하는 것일 수 있다. 바람직하게는, 목적 단백질을 발현하는 세포주를 부유배양 및 계대 배양 방식으로 배양할 수 있다. The step of culturing the species may be culturing the cell line expressing the target protein by any one method selected from the group consisting of subculture, suspension culture, and combinations thereof. Preferably, the cell line expressing the target protein can be cultured by suspension culture and subculture.

본 발명에서 사용된 용어, "부유배양 (suspension culture)"은 배양액에 세포가 부유한 상태에서 하는 배양법을 의미하며, 혈액세포나 복수의 암세포와 같이 생체 내에서도 부유 상태로 증식하는 세포는 진탕이나 회전을 시키지 않더라도 부유배양할 수 있지만 대부분의 경우는 각반자를 회전시키거나 (각반배양), 배양병마다 진탕하거나 (진탕배양), 또는 배양기를 회전시켜 배양 (선회배양)할 수 있다. As used herein, the term "suspension culture" refers to a culture method in which cells are suspended in a culture medium, and cells proliferating in a suspended state in vivo, such as blood cells or multiple cancer cells, are shaken or rotated. Suspension culture can be carried out even if not performed, but in most cases, it can be cultured by rotating the gaiter (gait culture), shaking each culture bottle (shaking culture), or rotating the incubator (swirling culture).

본 발명의 일 구체예에서, 부유배양은 120 RPM 내지 160 RPM의 교반속도의 조건에서 수행될 수 있지만, 이러한 조건으로 국한되는 것은 아니다. 상기 부유배양에서 접종하는 세포수는 2x105 cells/mL 내지 5x105 cells/mL, 3x105 cells/mL 내지 4x105 cells/mL, 또는 4x105 cells/mL 내지 5x105 cells/mL 일 수 있으나, 이에 제한되지 않는다. In one embodiment of the present invention, the suspension culture may be carried out under conditions of an agitation speed of 120 RPM to 160 RPM, but is not limited to these conditions. The number of cells inoculated in the suspension culture may be 2x10 5 cells/mL to 5x10 5 cells/mL, 3x10 5 cells/mL to 4x10 5 cells/mL, or 4x10 5 cells/mL to 5x10 5 cells/mL. Not limited.

본 발명에서 사용된 용어, "계대 배양 (subculture)"은 배양 주기에 따라 동일한 또는 다른 신선한 배지로 세포주를 옮겨가며 배양하는 방법을 의미한다. As used herein, the term "subculture" refers to a method of culturing while transferring a cell line to the same or different fresh medium according to a culture cycle.

본 발명의 일 구체예에서, 상기 계대 배양은 목적 단백질을 발현하는 세포주를 1일 내지 7일, 2일 내지 5일, 3일 내지 4일 또는 2일 내지 3일 간격으로, 동일한 신선한 배지에 옮겨 접종하여 배양할 수 있다. 이때, 접종하는 세포 수는 2x105 cells/mL 내지 5x105 cells/mL, 3x105 cells/mL 내지 4x105 cells/mL, 또는 4.5x105 cells/mL 내지 5.5x105 cells/mL 일 수 있지만, 이러한 조건으로 국한되는 것은 아니다. 또한, 계대 배양시 CO2 농도는 4.0 % 내지 6.0 %, 4.5 % 내지 5.5 %, 또는 5.0 %일 수 있지만, 이러한 조건으로 국한되는 것은 아니다. In one embodiment of the present invention, the subculture is carried out by transferring the cell line expressing the target protein to the same fresh medium at intervals of 1 to 7 days, 2 to 5 days, 3 to 4 days, or 2 to 3 days. It can be inoculated and cultured. At this time, the number of cells to be inoculated may be 2x10 5 cells/mL to 5x10 5 cells/mL, 3x10 5 cells/mL to 4x10 5 cells/mL, or 4.5x10 5 cells/mL to 5.5x10 5 cells/mL. It is not limited to conditions. In addition, the CO 2 concentration during subculture may be 4.0% to 6.0%, 4.5% to 5.5%, or 5.0%, but is not limited to these conditions.

구체적으로, 상기 종배양하는 단계는, 상기 목적 단백질을 발현하는 세포주를 34℃ 내지 38℃의 온도에서 배양하는 것일 수 있다. 바람직하게는, 상기 세포주를 36.5℃의 온도에서 배양할 수 있다. Specifically, the seed culturing may be culturing the cell line expressing the target protein at a temperature of 34°C to 38°C. Preferably, the cell line may be cultured at a temperature of 36.5°C.

본 발명의 일 구체예에서, 상기 종배양하는 단계는, 목적 단백질을 발현하는 세포주를 본원발명이 속한 기술분야에서 세포 성장에 적합한 것으로 알려진 배지에 배양할 수 있지만, 이러한 조건으로 국한되는 것은 아니다. 상기 배지는 CD OptiCHO 배지일 수 있다. In one embodiment of the present invention, in the step of culturing the species, the cell line expressing the target protein may be cultured in a medium known to be suitable for cell growth in the art to which the present invention pertains, but is not limited to these conditions. The medium may be CD OptiCHO medium.

상기 본배양하는 단계는, 상기 종배양된 세포주를 회분식 배양, 유가식 배양, 연속식 배양 및 이의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 방법으로 배양하는 것일 수 있다. 바람직하게는, 목적 단백질을 발현하는 세포주를 유가식 배양 방식으로 배양할 수 있다. In the main culturing step, the seed cultured cell line may be cultured by any one method selected from the group consisting of batch culture, fed-batch culture, continuous culture, and combinations thereof. Preferably, a cell line expressing a target protein may be cultured in a fed-batch culture method.

본 발명의 일 구체예에서, 상기 목적 단백질을 발현하는 세포주를 본배양하는 단계는, 부유배양에 의하여 생산될 수 있다. 이때, 상기 부유배양은 60 RPM 내지 100 RPM, 65 RPM 내지 95 RPM, 70 RPM 내지 95 RPM, 75 RPM 내지 95 RPM, 80 RPM 내지 95 RPM, 85 RPM 내지 95 RPM, 90 RPM 내지 95 RPM, 92 내지 94 RPM 또는 93 RPM의 교반속도 조건하에서 실시될 수 있으나, 이러한 조건으로 국한되지는 않는다. In one embodiment of the present invention, the step of main culturing the cell line expressing the target protein may be produced by suspension culture. At this time, the suspension culture is 60 RPM to 100 RPM, 65 RPM to 95 RPM, 70 RPM to 95 RPM, 75 RPM to 95 RPM, 80 RPM to 95 RPM, 85 RPM to 95 RPM, 90 RPM to 95 RPM, 92 to It may be carried out under a stirring speed condition of 94 RPM or 93 RPM, but is not limited to these conditions.

본 발명의 다른 구체예에서, 목적 단백질을 발현하는 세포주를 배양시 접종되는 세포 수는 5x105 cells/mL 내지 10x105 cells/mL, 6x105 cells/mL 내지 10x105 cells/mL, 7x105 cells/mL 내지 10x105 cells/mL, 7x105 cells/mL 내지 9x105 cells/mL 또는 7.2x105 cells/mL 내지 8.8x105 cells/mL 일 수 있으나, 이에 제한되지 않는다. In another embodiment of the present invention, the number of cells to be inoculated when culturing the cell line expressing the target protein is 5x10 5 cells/mL to 10x10 5 cells/mL, 6x10 5 cells/mL to 10x10 5 cells/mL, 7x10 5 cells/mL. It may be mL to 10x10 5 cells/mL, 7x10 5 cells/mL to 9x10 5 cells/mL, or 7.2x10 5 cells/mL to 8.8x10 5 cells/mL, but is not limited thereto.

본 발명의 또 다른 구체예에서, 상기 목적 단백질을 발현하는 세포주를 배양하는 단계는, 상기 세포주 배양액의 pH를 이산화탄소, 또는 탄산수소나트륨 등의 염기 용액을 이용하여 조절할 수 있다. 바람직하게는, 배양액의 pH를 이산화탄소 및 탄산수소나트륨을 이용하여 조절할 수 있다. 더 바람직하게는, 배양액의 pH를 이산화탄소 및 8% 탄산수소나트륨을 이용하여 조절할 수 있다. 또한, 배양시 배양액의 pH를 조절하기 위하여 도입되는 염기성 용액은 배양액 내 세포에 의하여 분비되는 젖산과 적절한 비율로 배양액 내에 존재함으로써 배양액의 pH를 적정수준으로 유지한다. 이때, 배양액의 pH (오차범위인 deadband는 0.05)는 6.8 내지 7.5, 6.9 내지 7.4, 7.0 내지 7.3, 7.0 내지 7.4, 6.8 내지 7.2 또는 6.8 내지 7.1로 조절할 수 있다. 바람직하게는, 배양액의 pH를 pH 6.8 내지 7.1 (오차범위인 deadband는 0.05)로 조절할 수 있다. In another embodiment of the present invention, in the step of culturing the cell line expressing the target protein, the pH of the cell line culture medium can be adjusted using a base solution such as carbon dioxide or sodium bicarbonate. Preferably, the pH of the culture medium can be adjusted using carbon dioxide and sodium bicarbonate. More preferably, the pH of the culture medium can be adjusted using carbon dioxide and 8% sodium bicarbonate. In addition, the basic solution introduced to adjust the pH of the culture solution during culture maintains the pH of the culture solution at an appropriate level by being present in the culture solution in an appropriate ratio with lactic acid secreted by the cells in the culture solution. At this time, the pH of the culture medium (deadband, error range is 0.05) can be adjusted to 6.8 to 7.5, 6.9 to 7.4, 7.0 to 7.3, 7.0 to 7.4, 6.8 to 7.2 or 6.8 to 7.1. Preferably, the pH of the culture medium can be adjusted to pH 6.8 to 7.1 (deadband, which is an error range, is 0.05).

이와 같이 배양액을 일정한 수치 범위 내의 pH로 유지되도록 조절함에 있어서, 이때 상기 pH 수치 범위의 상한값(이하, "pH 상단값")을 낮출수록 배양 후반부의 배양액으로의 이산화탄소 주입량 감소 및 배양액 내 버블 형성 예방효과가 나타난다. 배양이 진행됨에 따라 배양액 내 젖산 함량이 감소하는 현상이 발생하여 배양액 pH가 상승하며, 이러한 pH 상승은 바이오리액터 하단에 위치한 분사기 (sparger)를 통한 다량의 이산화탄소 주입을 야기한다. 또한, 분사기는 이산화탄소 및 산소를 배양액으로 도입하는 역할을 수행하므로 pH 상승에 따라 배양액으로 도입되는 공기 중 이산화탄소/산소 비율의 증가로 인해 배양액으로의 산소 전달력이 감소한다. 배양액으로의 산소 전달력 감소는 배양액 내 용존 산소량 (Dissolved Oxygen, DO)을 감소시킴으로써 분사기를 통한 산소 분사 빈도를 증가시킨다. 그런데, 기체의 배양액으로의 직접적인 주입은 배양액의 pH를 증가시키는 요인이 될 수 있다. In this way, in adjusting the culture solution to be maintained at a pH within a certain numerical range, at this time, as the upper limit of the pH value range (hereinafter referred to as "upper pH value") is lowered, the amount of carbon dioxide injected into the culture solution in the latter half of the culture is reduced and the formation of bubbles in the culture solution is prevented. effect appears. As the culture progresses, a phenomenon in which the lactic acid content in the culture medium decreases and the pH of the culture medium rises, and this pH rise causes a large amount of carbon dioxide to be injected through a sparger located at the bottom of the bioreactor. In addition, since the injector plays a role of introducing carbon dioxide and oxygen into the culture medium, the transferability of oxygen into the culture medium decreases due to an increase in the ratio of carbon dioxide/oxygen in the air introduced into the culture medium as the pH rises. Reduction in oxygen delivery power to the culture medium increases the frequency of oxygen injection through the injector by reducing the amount of dissolved oxygen in the culture medium (Dissolved Oxygen, DO). However, direct injection of gas into the culture medium may be a factor in increasing the pH of the culture medium.

한편, 배양을 계속 진행하는 과정에서 배양액 내 젖산 감소에 따른 배양액의 pH 상승은 배양액 내 세포가 분비하는 젖산 분비 감소와 서로 영향을 주고받게 된다. 배양액에서의 pH 상승은 세포의 젖산 분비를 감소시키고 이는 다시 배양액의 pH를 증가시키는 악순환을 야기하는바, 배양액의 pH 상단값이 높을수록 배양액의 pH를 일정하게 유지하기 위하여 요구되는 이산화탄소 투입량이 증가할 수 밖에 없다. 따라서, 배양액 내 pH를 조절함에 있어 pH 상단값을 7.15 이하, 7.10 이하, 7.05 이하, 7.00 이하, 6.95 이하, 6.90 이하, 6.85 이하, 또는 6.80 이하로 낮게 설정하면 배양기간 동안 배양액으로 투입되는 이산화탄소 및 산소 사용량을 감소시킬 수 있다. On the other hand, in the process of continuing the culture, the increase in pH of the culture medium due to the decrease in lactic acid in the culture medium interacts with the decrease in secretion of lactic acid secreted by the cells in the culture medium. An increase in pH in the culture medium reduces the secretion of lactic acid from the cells, which in turn causes a vicious cycle in which the pH of the culture medium increases. Have no choice but to. Therefore, in adjusting the pH in the culture medium, if the upper pH value is set as low as 7.15 or less, 7.10 or less, 7.05 or less, 7.00 or less, 6.95 or less, 6.90 or less, 6.85 or less, or 6.80 or less, carbon dioxide and Oxygen consumption can be reduced.

본 발명의 일 구체예에서, 본 발명의 배양액 내 pH가 7.25인 경우와 대비하여 배양액 내 pH가 6.8 내지 7.1 (오차범위인 deadband는 0.05)이면 배양 기간 동안 배양액으로 투입되는 이산화탄소, 산소 및 탄산수소나트륨과 같은 염기성 물질의 사용량을 감소시킴에 따라 생산비용을 절감할 수 있다. In one embodiment of the present invention, compared to the case where the pH in the culture medium of the present invention is 7.25, if the pH in the culture medium is 6.8 to 7.1 (deadband of the error range is 0.05), carbon dioxide, oxygen, and hydrogen carbonate introduced into the culture medium during the culture period Production costs can be reduced by reducing the amount of basic substances such as sodium.

본 발명의 일 구체예에서, 배양액 내 pH를 6.8 내지 7.1 (오차범위인 deadband는 0.05)로 유지함으로써 배양 후기 배양액으로 도입되는 탄산수소나트륨의 함량을 배양 전기 배양액으로 도입되는 탄산수소나트륨의 함량보다 감소시킬 수 있다. 이때, 배양 전기와 후기를 구분하는 기준점은 배양 4일차 또는 배양 5일차일 수 있다. In one embodiment of the present invention, by maintaining the pH in the culture medium at 6.8 to 7.1 (the deadband, which is the error range, is 0.05), the amount of sodium bicarbonate introduced into the culture medium at the end of the culture is higher than the amount of sodium bicarbonate introduced into the culture medium before the culture. can reduce At this time, the reference point for distinguishing the early and late stages of culture may be the 4th day or the 5th day of culture.

본 발명의 일 구체예에서, 배양 기간 동안 분사기를 통해 분사되는 기체 (지구 대기를 구성하는 일반적인 공기를 의미함)의 기체 분사 속도 (Air sparging rate)를 변화시킬 수 있다. In one embodiment of the present invention, the air sparging rate of the gas (meaning general air constituting the earth's atmosphere) sprayed through the injector during the culturing period may be changed.

본 발명의 다른 구체예에서, 배양 전기의 기체 분사 속도와 배양 후기의 기체 분사 속도를 다르게 할 수 있다. 바람직하게는, 배양 후기의 기체 분사 속도가 배양 전기의 기체 분사 속도의 절반 이하일 수 있다. 더 바람직하게는, 배양 4일차 또는 5일차 이후 기체 분사 속도가 배양 4일차 또는 5일차 이전의 기체 분사 속도의 절반 이하일 수 있다. In another embodiment of the present invention, the gas injection rate in the early stage of culture and the gas injection rate in the later stage of culture may be different. Preferably, the gas ejection rate in the late stage of culture may be half or less of the gas ejection rate in the early stage of culture. More preferably, the gas ejection rate after the 4th or 5th day of culture may be half or less of the gas ejection rate before the 4th or 5th day of culture.

본 발명의 또다른 구체예에서, 배양 후기, 바람직하게는 배양 4일차 또는 5일차 이후, 기체 분사 속도가 0.0005 내지 0.01 vvm(volume air/volume media/minute), 0.0005 내지 0.009 vvm, 0.0005 내지 0.008 vvm, 0.0005 내지 0.007 vvm, 0.0005 내지 0.006 vvm, 0.0005 내지 0.005 vvm, 0.0005 내지 0.004 vvm, 0.0005 내지 0.003 vvm, 0.0005 내지 0.002 vvm, 0.0005 내지 0.001 vvm, 또는 0.001 vvm일 수 있다.In another embodiment of the present invention, the gas injection rate is 0.0005 to 0.01 vvm (volume air/volume media/minute), 0.0005 to 0.009 vvm, 0.0005 to 0.008 vvm at the late stage of culture, preferably after the 4th or 5th day of culture. .

본 발명의 일 구체예에서, 목적 단백질을 발현하는 세포주의 배양액 DO를 일정 수치 범위로 유지할 수 있다. 이때, 상기 세포주 배양액의 DO를 10% 내지 90%, 20% 내지 80%, 30% 내지 70%, 40% 내지 60%, 40% 내지 50% 또는 40%로 유지할 수 있으나, 이러한 조건으로 제한되지 않는다. In one embodiment of the present invention, DO in a culture medium of a cell line expressing a target protein may be maintained within a certain range. At this time, the DO of the cell line culture may be maintained at 10% to 90%, 20% to 80%, 30% to 70%, 40% to 60%, 40% to 50% or 40%, but is not limited to these conditions. don't

본 발명의 다른 구체예에서, 상기 세포주 배양액의 DO가 배양액의 바람직한 DO 수치 범위의 하단에 위치하게 될 경우 배양액으로 산소를 공급함으로써 배양액의 DO 수치를 유지할 수 있다. In another embodiment of the present invention, when the DO of the cell line culture medium is located at the lower end of the preferred DO level range of the culture medium, the DO level of the culture medium may be maintained by supplying oxygen to the culture medium.

본 발명의 일 구체예에서, 배양 기간 내 바이오리액터로의 산소 유량 (flow rate)이 20 LPM 이하로 유지될 수 있다. In one embodiment of the present invention, the flow rate of oxygen to the bioreactor during the culturing period may be maintained at 20 LPM or less.

본 발명의 다른 구체예에서, 배양 후기, 바람직하게는 배양 4일차 또는 5일차 이후, 바이오리액터로의 이산화탄소 유량이 5 LPM 이하로 유지될 수 있다. In another embodiment of the present invention, the carbon dioxide flow rate into the bioreactor may be maintained at 5 LPM or less at the later stage of culture, preferably after the 4th or 5th day of culture.

본 발명의 일 구체예에서, 목적 단백질을 발현하는 세포주를 30℃ 내지 38℃의 온도에서 배양하는 것일 수 있다. In one embodiment of the present invention, a cell line expressing a target protein may be cultured at a temperature of 30°C to 38°C.

본 발명의 다른 구체예에서, 배양 후기, 바람직하게는 배양 4일차 또는 5일차 이후의 배양 온도가 배양 전기, 바람직하게는 배양 4일차 또는 5일차 이전의 배양온도보다 낮을 수 있다. In another embodiment of the present invention, the culture temperature at the end of culture, preferably after the 4th or 5th day of culture, may be lower than the culture temperature before the culture, preferably before the 4th or 5th day of culture.

본 발명의 또다른 구체예에서, 배양 초기 일정기간 동안 목적 단백질을 발현하는 세포주를 37 ℃의 온도에서 배양한 뒤 온도를 낮춰 배양할 수 있다. 바람직하게는 세포주를 배양 4일차 또는 5일차까지 37 ℃의 온도에서 배양하고, 배양 5일차 또는 6일차 이후에 상기 온도보다 1 ℃, 2 ℃, 3 ℃, 4 ℃, 5 ℃, 6 ℃, 7 ℃, 8 ℃, 9 ℃ 또는 10 ℃ 낮은 온도에서 배양할 수 있다. 보다 바람직하게는, 세포주를 배양 4일차 내지 5일차까지 37 ℃의 온도에서 배양하고, 그 이후의 배양기간 동안 31℃의 온도에서 배양할 수 있다. In another embodiment of the present invention, a cell line expressing a target protein may be cultured at a temperature of 37° C. for a certain period of time at the beginning of culture, and then cultured at a lower temperature. Preferably, the cell line is cultured at a temperature of 37 ° C until the 4th or 5th day of culture, and after the 5th or 6th day of culture, the temperature is 1 ° C, 2 ° C, 3 ° C, 4 ° C, 5 ° C, 6 ° C, 7 ° C. C, 8 ℃, 9 ℃ or 10 ℃ lower temperature can be incubated. More preferably, the cell line may be cultured at a temperature of 37 ° C. until the 4th to 5th day of culture, and then cultured at a temperature of 31 ° C. during the culture period.

본 발명의 다른 구체예에서, 목적 단백질을 발현하는 세포주를 본원발명이 속한 기술분야에서 세포 성장에 적합한 것으로 알려진 배지에 배양할 수 있지만, 이러한 조건으로 국한되는 것은 아니다. 상기 배지는 Dynamis 배지일 수 있다. In another embodiment of the present invention, a cell line expressing a protein of interest can be cultured in a medium known in the art to be suitable for cell growth, but is not limited to these conditions. The medium may be Dynamis medium.

본 발명의 또 다른 구체예에서, 배양액에서 발생하는 버블을 제거하기 위한 목적으로 소포제를 처리할 수 있다. 상기 소포제는 배양액 성분을 고려하여 적합한 물질을 선택하여 사용할 수 있고, 바이오리액터 내 기체 필터 (air filter) 하단에 거품이 도달할 때 사용된다. 바람직하게는, 상기 소포제가 ADCF 소포제일 수 있다. In another embodiment of the present invention, it may be treated with an antifoaming agent for the purpose of removing bubbles generated in the culture medium. The antifoaming agent can be used by selecting a suitable material in consideration of the components of the culture medium, and is used when bubbles reach the bottom of the air filter in the bioreactor. Preferably, the antifoaming agent may be an ADCF antifoaming agent.

본 발명의 일 구체예에서, 플라스크 또는 바이오리액터 (bioreactor)에서 목적 단백질을 발현하는 세포주를 배양할 수 있다. 바이오리액터를 이용한 배양은 플라스크와 달리 DO, 글루코스 함량, pH와 같은 배양조건을 조절 및 유지할 수 있어서 세포 배양을 유리한 조건에서 수행할 수 있고 대량 배양이 가능하다. In one embodiment of the present invention, a cell line expressing a target protein may be cultured in a flask or bioreactor. Unlike flasks, culture using a bioreactor can control and maintain culture conditions such as DO, glucose content, and pH, so that cell culture can be performed under favorable conditions and mass culture is possible.

상기 플라스크 및 바이오리액터의 종류 및 배양 조건은 당업자가 통상적으로 조절 가능한 범위 내에서 변경할 수 있다. The types of flasks and bioreactors and culture conditions can be changed within a range commonly controllable by those skilled in the art.

예를 들어, 목적 단백질을 발현하는 세포주를 엘렌메이어 플라스크 (Elenmeyer Flask)에 접종하여 부유배양한 뒤 계대 배양하여 바이오리액터에 접종할 최소 세포수를 확보하고, 계대배양한 세포주를 일회용 세포배양백이 장착된 바이오리액터에 접종하여 유가식배양을 실시하여 목적 단백질을 생산할 수 있다. For example, a cell line expressing a target protein is inoculated into an Elenmeyer flask, cultured in suspension, subcultured to secure the minimum number of cells to be inoculated into a bioreactor, and the subcultured cell line is equipped with a disposable cell culture bag. The target protein can be produced by inoculating the prepared bioreactor and performing fed-batch culture.

본 발명의 또 다른 구체예에서, 배양 기간은 6일 이상일 수 있다. 바람직하게는 배양 기간이 6일, 7일, 8일, 9일, 10일, 11일, 12일, 13일, 14일, 15일, 16일, 17일, 18일, 19일 또는 20일일 수 있다. 보다 바람직하게는 배양 기간이 10일일 수 있다. In another embodiment of the invention, the culture period may be 6 days or more. Preferably, the culture period is 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days or 20 days. can More preferably, the culture period may be 10 days.

실시예Example

이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, the following examples are only for exemplifying the present invention, and the scope of the present invention is not limited only to these.

제조예 1. 목적 단백질을 발현하는 세포주의 제작 Preparation Example 1. Preparation of cell lines expressing the target protein

서열번호 1의 아미노산 서열로 표시되는 폴리펩타이드를 발현하는 세포주를 제작하기 위하여 영국 HORIZON Discovery 사에서 분양 받은 HD-BIOP3 세포주를 숙주세포로 사용하였다. Donor plasmid (pJV145)에 SalI/NotI 제한 효소 반응을 이용해 Genscript사에서 합성한 cDNA를 삽입하여 재조합 발현 벡터 plasmid (M-2560)를 제작하였다 (도 1). 상기 M-2560 벡터는 서열번호 3으로 표시되는 DNA 서열을 갖는다. To prepare a cell line expressing the polypeptide represented by the amino acid sequence of SEQ ID NO: 1, HD-BIOP3 cell line obtained from HORIZON Discovery, UK was used as a host cell. A recombinant expression vector plasmid (M-2560) was constructed by inserting the cDNA synthesized by Genscript into the Donor plasmid (pJV145) using the SalI/NotI restriction enzyme reaction (Fig. 1). The M-2560 vector has a DNA sequence represented by SEQ ID NO: 3.

상기 HD-BIOP3 세포주에 재조합 발현 벡터 plasmid (M-2560)를 형질주입하였다. 형질주입된 세포 중 안정적인 single cell cloning이 가능한 세포를 선별하여 충분한 장기 계대 안정성을 갖는 연구용 세포은행(Research cell bank; RCB)을 제조하였다. 상기 RCB를 SK바이오사이언스 안동공장으로 이관하여 GMP 기준에 적합하게 제조용 세포은행(Working Cell Bank; WCB)를 제조하였다. A recombinant expression vector plasmid (M-2560) was transfected into the HD-BIOP3 cell line. Among the transfected cells, cells capable of stable single cell cloning were selected to prepare a research cell bank (RCB) having sufficient long-term passage stability. The RCB was transferred to the Andong plant of SK Bioscience, and a working cell bank (WCB) was manufactured in accordance with GMP standards.

WCB(Working Cell Bank) 1 바이알을 37 ℃ 항온수조 (water bath)에서 녹이고 CD OptiCHO 배지로 희석한 후 원심분리를 하여 펠렛 (pellet)을 CD OptiCHO 배지로 재부유시켰다. 10 L 바이오리액터에서 5 x 105 cells/mL 농도로 6 L 배양, 50 L 바이오리액터에서 5 x 105 cells/mL 농도로 30 L 배양, 200 L 바이오리액터에서 5 x 105 cells/mL 농도로 200 L 배양, 2000 L 바이오리액터에서 8 x 105 cells/mL 농도로 1600 L 배양할 수 있도록 확장 계대 배양 하였다.One vial of WCB (Working Cell Bank) was dissolved in a water bath at 37 ° C., diluted with CD OptiCHO medium, centrifuged, and the pellet was resuspended in CD OptiCHO medium. 6 L culture at 5 x 10 5 cells/mL in 10 L bioreactor, 30 L culture at 5 x 10 5 cells/mL in 50 L bioreactor, 5 x 10 5 cells/mL in 200 L bioreactor 200 L culture, 8 x 10 5 cells / mL concentration in a 2000 L bioreactor was expanded and subcultured so that it could be cultured at 1600 L.

제조예 2. 목적 단백질을 발현하는 세포주의 2000 L 바이오리액터에서의 배양 Production Example 2. Cultivation of a cell line expressing a target protein in a 2000 L bioreactor

일회용 세포 배양백을 2000 L 바이오리액터에 장착하고 가동 준비를 한 뒤, 1400 L의 Dynamis 배지를 주입하고 8.0 x 105 cells/mL의 농도로 WCB를 접종하여 배양하였다. 배양 시, DO 조절은 기체 및 산소를 통해 진행하며, pH 조절은 8 % 탄산수소나트륨 및 이산화탄소 가스를 사용하여 진행하였다. After mounting the disposable cell culture bag in a 2000 L bioreactor and preparing for operation, 1400 L of Dynamis medium was injected, and WCB was inoculated at a concentration of 8.0 x 10 5 cells/mL and cultured. During incubation, DO control proceeded through gas and oxygen, and pH control proceeded using 8% sodium bicarbonate and carbon dioxide gas.

접종 직후부터 매일 샘플링을 하여 세포수를 측정하고 미생물 오염 여부 및 배양액 내 glucose 농도 등을 확인하였으며, 바이오리액터 내 거품이 condenser에 장착된 air filter의 하단까지 올라오면 ADCF 소포제를 처리하였다. 이와 같은 과정을 배양 종료까지 반복적으로 진행하였다. 배양시 사용되는 배양 조건은 하기 표 1과 같다. Sampling was performed every day immediately after inoculation to measure the number of cells, check the presence of microbial contamination and the concentration of glucose in the culture medium, and when bubbles in the bioreactor reached the bottom of the air filter mounted on the condenser, ADCF antifoam was treated. This process was repeated until the end of the culture. Culture conditions used during culture are shown in Table 1 below.

세포주의 배양 조건 Cell line culture conditions 배양 조건culture conditions 설정 값set value 온도 (배양 0 ~ 5일차)Temperature (day 0-5 of incubation) 37℃37℃ 온도 (배양 5일차 이후)Temperature (after the 5th day of culture) 31℃31℃ 배양용 배지culture medium DynamisDynamis 접종용 배지medium for inoculation CD OptiCHOCD OptiCHO 교반 속도stirring speed 93 RPM93 RPM 배양 부피culture volume 1600 L1600L 초기 접종 농도initial inoculation concentration 8.0 x 105 cells/mL8.0 x 10 5 cells/mL 용존 산소량amount of dissolved oxygen 40%40% 용존 산소량 조절Dissolved Oxygen Control 기체, 산소gas, oxygen pH 조절pH control 8 % 탄산수소나트륨, 이산화탄소8% sodium bicarbonate, carbon dioxide

실험예 1. 바이오리액터 내 배양액 pH 변경에 따른 변화 Experimental Example 1. Change according to pH change in the culture medium in the bioreactor

상기 제조예 2에서는 배양 6일차에 바이오리액터 내 배양액의 pH 상단값이 7.25에 도달함으로써 pH 조절을 위하여 분사기를 통한 배양액으로의 이산화탄소 주입이 증가하고, 배양액의 DO 유지를 위한 산소 주입이 증가하는 현상이 발생하였다(도 2). 또한, 이산화탄소 및 산소 주입의 증가에 따라 버블 발생이 증가하는 문제가 발생하였다. In Preparation Example 2, as the upper pH value of the culture solution in the bioreactor reached 7.25 on the 6th day of culture, the injection of carbon dioxide into the culture solution through the sprayer increased and the injection of oxygen to maintain DO in the culture solution increased for pH control. occurred (FIG. 2). In addition, there is a problem in that the generation of bubbles increases as the injection of carbon dioxide and oxygen increases.

따라서, 바이오리액터 내 배양액의 pH 상단값을 pH 7.1 (pH 오차범위인 deadband는 0.05)로 설정함으로써 상기 문제를 해소할 수 있는지 검증하였다. Therefore, it was verified whether the above problem could be solved by setting the upper pH value of the culture medium in the bioreactor to pH 7.1 (the deadband, which is the pH error range, is 0.05).

구체적으로, 바이오리액터 내 배양액의 pH 상단값이 pH 7.2 (deadband는 0.05)로 설정된 경우 (CTIA01503 배치) 및 배양액의 pH 상단값을 pH 7.1 (deadband는 0.05)로 설정한 경우 (E21R054 배치)의 배양 기간 동안의 변화를 관찰하였다. 배양 4일 내지 5일차 이후에도 E21R054 배치에서는 배양액으로의 산소 주입량 및 이산화탄소 주입량이 증가하는 현상이 발생하지 않았으며, pH가 일정 수준으로 유지됨에 따라 배양 기간 동안 누적되어 사용되는 탄산수소나트륨의 총량도 더 낮은 것으로 나타났다 (도 3). Specifically, when the upper pH value of the culture medium in the bioreactor is set to pH 7.2 (deadband is 0.05) (CTIA01503 batch) and when the upper pH value of the culture medium is set to pH 7.1 (deadband is 0.05) (batch E21R054) Changes over the period were observed. Even after the 4th or 5th day of culture, the E21R054 batch did not show an increase in the amount of oxygen and carbon dioxide injected into the culture medium, and as the pH was maintained at a constant level, the total amount of sodium bicarbonate accumulated and used during the culture period increased. found to be low (Fig. 3).

또한, 바이오리액터 내 배양액의 pH 상단값을 pH 6.8, 6.99, 7.0 또는 7.2로 설정하였을 때, pH를 낮출수록 배양 기간 동안 젖산 발생량이 줄어드는 것으로 나타났다 (도 4). 따라서, 배양기간 동안 pH 상단값을 낮게 유지함으로써, 세포들이 pH 유지를 위해 무리하게 젖산과 같은 부산물을 생산하지 않게 되었다. 배양액 내 젖산의 농도가 증가하게 되면 배양액의 pH를 유지하기 위해 별도로 투입하게 되는 탄산수소나트륨과 같은 완충제 투입 용량이 감소하였다. 또한, 세포가 배양 과정에서 겪는 스트레스가 감소되고, 배양 안정성이 크게 개선되어 단백질 생산 효율이 증가되었다. In addition, when the upper pH value of the culture medium in the bioreactor was set to pH 6.8, 6.99, 7.0 or 7.2, the lower the pH, the lower the amount of lactic acid produced during the culture period (FIG. 4). Therefore, by keeping the upper pH value low during the culture period, the cells do not forcibly produce by-products such as lactic acid to maintain the pH. When the concentration of lactic acid in the culture medium increases, the amount of buffer input such as sodium bicarbonate, which is separately added to maintain the pH of the culture medium, decreases. In addition, the stress experienced by the cells during the culture process was reduced, and the culture stability was greatly improved, resulting in increased protein production efficiency.

실험예 2. 배양 과정에서 기체 분사 속도 변경에 의한 거품 억제 효과의 확인Experimental Example 2. Confirmation of the foam suppression effect by changing the gas injection speed during the culture process

바이오리액터에서의 배양시 교반을 함에 따라 배양액에 거품을 형성하는 가스가 생성되며, 이는 배양액 내 박테리아 성장 및 세포의 단백질 발현에 악영향을 미칠 수 있다. 따라서, 배양액 내 발생되는 거품 형성을 저해하기 위한 목적으로 소포제 (antifoams)를 배양 배지에 첨가하나, 소포제는 세포막 투과성 변화를 야기하여 세포 성장 저해를 일으키고, 단백질 발현에도 영향을 줄 수 있는바, 바이오리액터 내 배양액으로 도입되는 기체 분사 속도를 변경함으로써 배양액에서 발생하는 거품 형성을 억제할 수 있는지 검증하였다. During cultivation in a bioreactor, gas forming bubbles is generated in the culture medium as agitation is performed, which may adversely affect bacterial growth in the culture medium and cell protein expression. Therefore, antifoams are added to the culture medium for the purpose of inhibiting the formation of bubbles in the culture medium, but the antifoams cause cell membrane permeability changes to inhibit cell growth and affect protein expression. It was verified whether foam formation generated in the culture medium could be suppressed by changing the injection speed of the gas introduced into the culture medium.

상기 실험예 1에서 생산 효율을 증가시키는 것으로 확인된 배양액의 pH 상단값인 pH 7.1 (deadband는 0.05)을 고려하여, 배양액의 pH를 pH 6.8~7.1로 유지하면서, 아래 표 2와 같은 조건으로 배양을 진행하였을 때 배양액에서 발생되는 거품을 억제하는 효과를 확인하였다. Considering the upper pH value of pH 7.1 (deadband is 0.05) of the culture medium confirmed to increase the production efficiency in Experimental Example 1, culturing under the conditions shown in Table 2 below while maintaining the pH of the culture medium at pH 6.8 to 7.1. The effect of suppressing bubbles generated in the culture medium was confirmed.

공정 조건process conditions 배양 기간incubation period DO output§DO output§ Air sparging flow (vvm)Air sparging flow (vvm) 거품 생성 정도
(1~5)
degree of foaming
(1-5)
대조예control example Day 0 ~ Day 10Day 0 to Day 10 0%0% 00 55 10%10% 0.0020.002 100%100% 실시예 1Example 1 Day 0 ~ Day 5Day 0 to Day 5 0%0% 0.0020.002 33 10%10% 100%100% Day 5 ~ Day 10Day 5 to Day 10 0%0% 0.00050.0005 1One 10%10% 100%100% 실시예 2Example 2 Day 0 ~ Day 5Day 0 to Day 5 0%0% 0.0020.002 33 10%10% 100%100% Day 5 ~ Day 10Day 5 to Day 10 0%0% 0.0010.001 1One 10%10% 100%100%

§DO output: 보충해야 하는 산소의 분량을 나타내는 지표로서, DO ouput이 0%인 경우는 용존 산소가 배양액 내에 충분하다는 것을 의미하며, 100%인 경우는 용존 산소가 배양액 내에서 모두 소모되었다는 것을 의미한다.§DO output: As an indicator of the amount of oxygen that needs to be replenished. If DO ouput is 0%, it means that dissolved oxygen is sufficient in the culture medium, and if it is 100%, it means that all dissolved oxygen is consumed in the culture medium. do.

산소를 보충할 필요가 없을 경우에는 기체를 분사하지 않고, 그 외의 경우에는 일정한 분사 속도로 기체를 분사하는 대조예의 경우, 배양액 내 거품 생성 정도가 가장 높은 것으로 나타났다. In the case of the control example in which gas was not sprayed when there was no need to replenish oxygen, and gas was sprayed at a constant spray speed in other cases, the degree of foaming in the culture medium was the highest.

반면에, DO output과 관계 없이 배양 5일차 이후 기체 분사 속도를 감소시키는 실시예 1 및 2에서는, 거품 형성이 억제되는 것으로 나타났다. 또한, 실시예 1 및 2는 배양 5일차 이전 및 이후에 DO output 수치와 관계없이 각각 동일한 분사속도로 기체를 분사하기 때문에 공정 편의성이 확보되었다. On the other hand, in Examples 1 and 2 in which the gas injection rate was reduced after the 5th day of culture regardless of DO output, foam formation was found to be suppressed. In addition, in Examples 1 and 2, process convenience was ensured because gas was sprayed at the same spray rate regardless of the DO output value before and after the 5th day of culture.

한편, 실시예 1은 배양 후반부에 pH 상단값 deadband 수준으로 미미한 pH 감소 현상이 관찰되어, 수율이 미미하게 감소하는 것으로 나타났으나. 실시예 2는 실시예 1과 달리, 배양 후반부 pH가 감소하는 현상이 발생하지 않았고, 수율도 유지되는 것으로 나타났다.On the other hand, in Example 1, a slight pH decrease was observed to the upper pH deadband level in the second half of the culture, but it was shown that the yield decreased slightly. Unlike Example 1, Example 2 did not cause a decrease in pH in the latter part of the culture, and it was shown that the yield was maintained.

<110> SK bioscience Co., Ltd. <120> METHOD FOR CULTURING A CELL EXPRESSING A PROTEIN <130> FDP/202110-0043 <150> KR 10-2021-0137835 <151> 2021-10-15 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 467 <212> PRT <213> Artificial Sequence <220> <223> Artificial Sequence <400> 1 Met Gly Ile Leu Pro Ser Pro Gly Met Pro Ala Leu Leu Ser Leu Val 1 5 10 15 Ser Leu Leu Ser Val Leu Leu Met Gly Cys Val Ala Glu Thr Gly Thr 20 25 30 Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn 35 40 45 Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser 50 55 60 Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser 65 70 75 80 Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys 85 90 95 Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val 100 105 110 Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr 115 120 125 Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn 130 135 140 Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu 145 150 155 160 Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu 165 170 175 Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn 180 185 190 Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val 195 200 205 Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His 210 215 220 Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Gly Gly Ser Gly 225 230 235 240 Gly Ser Gly Ser Gly Gly Ser Gly Gly Ser Gly Ser Glu Lys Ala Ala 245 250 255 Lys Ala Glu Glu Ala Ala Arg Lys Met Glu Glu Leu Phe Lys Lys His 260 265 270 Lys Ile Val Ala Val Leu Arg Ala Asn Ser Val Glu Glu Ala Ile Glu 275 280 285 Lys Ala Val Ala Val Phe Ala Gly Gly Val His Leu Ile Glu Ile Thr 290 295 300 Phe Thr Val Pro Asp Ala Asp Thr Val Ile Lys Ala Leu Ser Val Leu 305 310 315 320 Lys Glu Lys Gly Ala Ile Ile Gly Ala Gly Thr Val Thr Ser Val Glu 325 330 335 Gln Ala Arg Lys Ala Val Glu Ser Gly Ala Glu Phe Ile Val Ser Pro 340 345 350 His Leu Asp Glu Glu Ile Ser Gln Phe Ala Lys Glu Lys Gly Val Phe 355 360 365 Tyr Met Pro Gly Val Met Thr Pro Thr Glu Leu Val Lys Ala Met Lys 370 375 380 Leu Gly His Thr Ile Leu Lys Leu Phe Pro Gly Glu Val Val Gly Pro 385 390 395 400 Gln Phe Val Lys Ala Met Lys Gly Pro Phe Pro Asn Val Lys Phe Val 405 410 415 Pro Thr Gly Gly Val Asn Leu Asp Asn Val Ala Glu Trp Phe Lys Ala 420 425 430 Gly Val Leu Ala Val Gly Val Gly Ser Ala Leu Val Lys Gly Thr Pro 435 440 445 Asp Glu Val Arg Glu Lys Ala Lys Ala Phe Val Glu Lys Ile Arg Gly 450 455 460 Ala Thr Glu 465 <210> 2 <211> 1404 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 2 atgggaatcc tgccaagccc tggaatgcca gccctgctgt ccctggtgtc tctgctgagc 60 gtgctgctga tgggatgcgt ggcagagacc ggaacaaggt tccctaacat caccaacctg 120 tgcccattcg gcgaggtgtt taacgccaca cgctttgcct ccgtgtatgc ctggaaccgg 180 aagagaatct ctaattgcgt ggccgactat agcgtgctgt acaatagcgc ctccttctct 240 acctttaagt gctatggcgt gtctcccacc aagctgaacg acctgtgctt cacaaacgtg 300 tacgccgaca gctttgtgat ccggggcgat gaggtgagac agatcgcacc aggacagacc 360 ggcaagatcg cagactacaa ctataagctg cctgacgatt tcacaggctg cgtgatcgcc 420 tggaatagca acaatctgga ttccaaagtg ggcggcaact acaattatct gtacaggctg 480 ttccgcaaga gcaacctgaa gccatttgag cgggacatca gcaccgagat ctaccaggca 540 ggctccacac catgcaacgg agtggagggc ttcaattgtt attttcccct gcagagctac 600 ggcttccagc ctaccaatgg cgtgggctat cagccataca gagtggtggt gctgtccttt 660 gagctgctgc acgcaccagc aaccgtgtgc ggacctaaga agtccacagg cggctctgga 720 ggaagcggat ccggaggatc cggaggatct ggaagcgaga aggcagcaaa ggcagaggag 780 gcagcaagga agatggagga gctgttcaag aagcacaaga tcgtggccgt gctgagagcc 840 aactctgtgg aggaggccat cgagaaggca gtggccgtgt tcgcaggagg agtgcacctg 900 atcgagatca cctttacagt gcccgacgcc gataccgtga tcaaggccct gtccgtgctg 960 aaggagaagg gagcaatcat cggagcagga accgtgacat ctgtggagca ggcaaggaag 1020 gcagtggagt ccggagccga gtttatcgtg tctcctcacc tggatgagga gatctcccag 1080 ttcgccaagg agaagggcgt gttttacatg cctggcgtga tgaccccaac agagctggtg 1140 aaggccatga agctgggcca caccatcctg aagctgttcc caggagaggt ggtgggacca 1200 cagtttgtga aggccatgaa gggcccattc cccaatgtga agtttgtgcc tacaggcggc 1260 gtgaacctgg acaatgtggc agagtggttc aaggcaggcg tgctggcagt gggagtggga 1320 tctgccctgg tgaagggaac cccagatgag gtgagggaaa aggccaaggc ctttgtggag 1380 aagatcaggg gagcaacaga gtga 1404 <210> 3 <211> 10704 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 3 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt ggagatcggt acttcgcgaa 420 tgcgtcgaga tgtttaaact cccgccccta actccgccca gttccgccca ttctccgccc 480 catggctgac taattttttt tatttatgca gaggccgagg ccgcctcggc ctctgagcta 540 ttccagaagt agtgaggagg cttttttgga ggcctaggct tttgcaaaaa gctagctggt 600 tctttccgcc tcagaaggta cctaaccaag ttcctctttc agaggttatt tcaggccacc 660 ttccaccatg gccacctcag caagttccca cttgaacaaa aacatcaagc aaatgtactt 720 gtgcctgccc cagggtgaga aagtccaagc catgtatatc tgggttgatg gtactggaga 780 aggactgcgc tgcaaaaccc gcaccctgga ctgtgagccc aagtgtgtag aagagttacc 840 tgagtggaat tttgatggct ctagtacctt tcagtctgag ggctccaaca gtgacatgta 900 tctcagccct gttgccatgt ttcgggaccc cttccgcaga gatcccaaca agctggtgtt 960 ctgtgaagtt ttcaagtaca accggaagcc tgcagagacc aatttaaggc actcgtgtaa 1020 acggataatg gacatggtga gcaaccagca cccctggttt ggaatggaac aggagtatac 1080 tctgatggga acagatgggc acccttttgg ttggccttcc aatggctttc ctgggcccca 1140 aggtccgtat tactgtggtg tgggcgcaga caaagcctat ggcagggata tcgtggaggc 1200 tcactaccgc gcctgcttgt atgctggggt caagattaca ggaacaaatg ctgaggtcat 1260 gcctgcccag tgggaatttc aaataggacc ctgtgaagga atccgcatgg gagatcatct 1320 ctgggtggcc cgtttcatct tgcatcgagt atgtgaagac tttggggtaa tagcaacctt 1380 tgaccccaag cccattcctg ggaactggaa tggtgcaggc tgccatacca actttagcac 1440 caaggccatg cgggaggaga atggtctgaa gcacatcgag gaggccatcg agaaactaag 1500 caagcggcac cggtaccaca ttcgagccta cgatcccaag gggggcctgg acaatgcccg 1560 tcgtctgact gggttccacg aaacgtccaa catcaacgac ttttctgctg gtgtcgccaa 1620 tcgcagtgcc agcatccgca ttccccggac tgtcggccag gagaagaaag gttactttga 1680 agaccgccgc ccctctgcca attgtgaccc ctttgcagtg acagaagcca tcgtccgcac 1740 atgccttctc aatgagactg gcgacgagcc cttccaatac aaaaactaac gcccgcccca 1800 cgacccgcag cgcccgaccg aaaggagcgc acgaccccat gcatcgcaca catcataaga 1860 tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaatg ctttatttgt 1920 gaaatttgtg atgctattgc tttatttgta accattataa gctgcaataa acaagttaac 1980 aacaacaatt gcattcattt tatgtttcag gttcaggggg agatgtggga ggttttttaa 2040 agcaagtaaa acctctacaa atgtggtaga attctacgta gataaaagtt ttgttacttt 2100 atagaagaaa ttttgagttt ttgttttttt taataaataa ataaacataa ataaattgtt 2160 tgttgaattt attattagta tgtaagtgta aatataataa aacttaatat ctattcaaat 2220 taataaataa acctcgatat acagaccgat aaaacacatg cgtcaatttt acacatgatt 2280 atctttaacg tacgtcacaa tatgattatc tttctagggt taatctagct gcgtgttctg 2340 cagcgtgtcg agcatcttca tctgctccat cacgctgtaa aacacatttg caccgcgagt 2400 ctgcccgtcc tccacgggtt caaaaacgtg aatgaacgag gcgcgctcat atcatgatta 2460 cgccaagcgc gcccgccggg taactcacgg ggtatccatg tccatttctg cggcatccag 2520 ccaggatacc cgtcctcgct gacgtaatat cccagcgccg caccgctgtc attaatctgc 2580 acaccggcac ggcagttcca tttaaatggc tgtcgccggt attgttcggg ttgctgatgc 2640 gcttcgggct gaccatccgg aactgtgtcc ggaaaagccg cgacgaactg gtatcccagg 2700 tggcctgaac gaacagttca ccgttaaagg cgtgcatggc cacaccttcc cgaatcatca 2760 tggtaaacgt gcgttttcgc tcaacgtcaa tgcagcagca gtcatcctcg gcaaactctt 2820 tccatgccgc ttcaacctcg cgggaaaagg cacgggcttc ttcctccccg atgcccagat 2880 agcgccagct tgggcgatga ctgagccgga aaaaagaccc gacgatatga tcctgatgca 2940 gctagattaa ccctagaaag atagtctgcg taaaattgac gcatgcattc ttgaaatatt 3000 gctctctctt tctaaatagc gcgaatccgt cgctgtgcat ttaggacatc tcagtcgccg 3060 cttggagctc ccgtgaggcg tgcttgtcaa tgcggtaagt gtcactgatt ttgaactata 3120 acgaccgcgt gagtcaaaat gacgcatgat tatcttttac gtgactttta agatttaact 3180 catacgataa ttatattgtt atttcatgtt ctacttacgt gataacttat tatatatata 3240 ttttcttgtt atagatatca agcttataga tctggggaca gccccccccc aaagccccca 3300 gggatgtaat tacgtccctc ccccgctagg gggcagcagc gagccgcccg gggctccgct 3360 ccggtccggc gctccccccg catccccgag ccggcagcgt gcggggacag cccgggcacg 3420 gggaaggtgg cacgggatcg ctttcctctg aacgcttctc gctgctcttt gagcctgcag 3480 acacctgggg ggatacgggg aaaaagcttt aggctgaaag agagatttag aatgacagaa 3540 tcatagaacg gcctgggttg caaaggagca cagtgctcat ccagatccaa ccccctgcta 3600 tgtgcagggt catcaaccag cagcccaggc tgcccagagc cacatccagc ctggccttga 3660 atgcctgcag ggatggggca tccacagcct ccttgggcaa cctgttcagt gcgtcaccac 3720 cctctggggg aaaaactgcc tcctcatatc caacccaaac ctcccctgtc tcagtgtaaa 3780 gccattcccc cttgtcctat caagggggag tttgctgtga cattgttggt ctggggtgac 3840 acatgtttgc caattcagtg catcacggag aggcagattt ggggataagg aagtgcagga 3900 cagcatggac gtgggacatg caggtgttga gggctctggg acactctcca agtcacagcg 3960 ttcagaacag ccttaaggat aagaagatag gatagaagga caaagagcaa gttaaaaccc 4020 agcatggaga ggagcacaaa aaggccacag acactgctgg tccctgtgtc tgagcctgca 4080 tgtttgatgg tgtctggatg caagcagaag gggtggaaga gcttgcctgg agagatacag 4140 ctgggtcagt aggactggga caggcagctg gagaattgcc atgtagatgt tcatacaatc 4200 gtcaaatcat gaaggctgga aaagccctcc aagatcccca agaccaaccc caacccaccc 4260 accgtgccca ctggccatgt ccctcagtgc cacatcccca cagttcttca tcacctccag 4320 ggacggtgac ccccccacct ccgtgggcag ctgtgccact gcagcaccgc tctttggaga 4380 aggtaaatct tgctaaatcc agcccgaccc tcccctggca caacgtaagg ccattatctc 4440 tcatccaact ccaggacgga gtcagtgagg atggggctct agagtcaaca ggaaagttcc 4500 attggagcca agtacattga gtcaataggg actttccaat gggttttgcc cagtacataa 4560 ggtcaatggg aggtaagcca atgggttttt cccattactg gcacgtatac tgagtcatta 4620 gggactttcc aatgggtttt gcccagtaca taaggtcaat aggggtgaat caacaggaaa 4680 gtcccattgg agccaagtac actgagtcaa tagggacttt ccattgggtt ttgcccagta 4740 caaaaggtca atagggggtg agtcaatggg tttttcccat tattggcacg tacataaggt 4800 caataggggt gagtcattgg gtttttccag ccaatttaat taaaacgcca tgtactttcc 4860 caccattgac gtcaatgggc tattgaaact aatgcaacgt gacctttaaa cggtactttc 4920 ccatagctga ttaatgggaa agtaccgttc tcgagccaat acacgtcaat gggaagtgaa 4980 agggcagcca aaacgtaaca ccgccccggt tttcccctgg aaattccata ttggcacgca 5040 ttctattggc tgagctgcgt tctacgtggg tatataagca gagctctccc tatcagtgat 5100 agagatctcc ctatcagtga tagagatcga gctcagcgtc ggtaccgtac ctcttccgca 5160 tcgctgtctg cgagggccag ctgttggggt gagtggcggg tgtggcttcc gcgggccccg 5220 gagctggagc cctgctctga gcgggccggg ctgatatgcg agtgtcgtcc gcagggttta 5280 gctgtgagca ttcccacttc gagtggcggg cggtgcgggg gtgagagtgc gaggcctagc 5340 ggcaaccccg tagcctcgcc tcgtgtccgg cttgaggcct agcgtggtgt ccgccgccgc 5400 gtgccactcc ggccgcacta tgcgtttttt gtccttgctg ccctcgattg ccttccagca 5460 gcatgggcta acaaagggag ggtgtggggc tcactcttaa ggagcccatg aagcttacgt 5520 tggataggaa tggaagggca ggaggggcga ctggggcccg cccgccttcg gagcacatgt 5580 ccgacgccac ctggatgggg cgaggcctgt ggctttccga agcaatcggg cgtgagttta 5640 gcctacctgg gccatgtggc cctagcactg ggcacggtct ggcctggcgg tgccgcgttc 5700 ccttgcctcc caacaagggt gaggccgtcc cgcccggcac cagttgcttg cgcggaaaga 5760 tggccgctcc cggggccctg ttgcaaggag ctcaaaatgg aggacgcggc agcccggtgg 5820 agcgggcggg tgagtcaccc acacaaagga agagggcctt gcccctcgcc ggccgctgct 5880 tcctgtgacc ccgtggtcta tcggccgcat agtcacctcg ggcttctctt gagcaccgct 5940 cgtcgcggcg gggggagggg atctaatggc gttggagttt gttcacattt ggtgggtgga 6000 gactagtcag gccagcctgg cgctggaagt cattcttgga atttgcccct ttgagtttgg 6060 agcgaggcta attctcaagc ctcttagcgg ttcaaaggta ttttctaaac ccgtttccag 6120 ctcgcggttg aggacaaact cttcgcggtc tttccagtac tcttggatcg gaaacccgtc 6180 ggcctccgaa cggtactccg ccaccgaggg acctgagcga gtccgcatcg accggatcgg 6240 aaaacctcgt cgacgccgcc accatgggaa tcctgccaag ccctggaatg ccagccctgc 6300 tgtccctggt gtctctgctg agcgtgctgc tgatgggatg cgtggcagag accggaacaa 6360 ggttccctaa catcaccaac ctgtgcccat tcggcgaggt gtttaacgcc acacgctttg 6420 cctccgtgta tgcctggaac cggaagagaa tctctaattg cgtggccgac tatagcgtgc 6480 tgtacaatag cgcctccttc tctaccttta agtgctatgg cgtgtctccc accaagctga 6540 acgacctgtg cttcacaaac gtgtacgccg acagctttgt gatccggggc gatgaggtga 6600 gacagatcgc accaggacag accggcaaga tcgcagacta caactataag ctgcctgacg 6660 atttcacagg ctgcgtgatc gcctggaata gcaacaatct ggattccaaa gtgggcggca 6720 actacaatta tctgtacagg ctgttccgca agagcaacct gaagccattt gagcgggaca 6780 tcagcaccga gatctaccag gcaggctcca caccatgcaa cggagtggag ggcttcaatt 6840 gttattttcc cctgcagagc tacggcttcc agcctaccaa tggcgtgggc tatcagccat 6900 acagagtggt ggtgctgtcc tttgagctgc tgcacgcacc agcaaccgtg tgcggaccta 6960 agaagtccac aggcggctct ggaggaagcg gatccggagg atccggagga tctggaagcg 7020 agaaggcagc aaaggcagag gaggcagcaa ggaagatgga ggagctgttc aagaagcaca 7080 agatcgtggc cgtgctgaga gccaactctg tggaggaggc catcgagaag gcagtggccg 7140 tgttcgcagg aggagtgcac ctgatcgaga tcacctttac agtgcccgac gccgataccg 7200 tgatcaaggc cctgtccgtg ctgaaggaga agggagcaat catcggagca ggaaccgtga 7260 catctgtgga gcaggcaagg aaggcagtgg agtccggagc cgagtttatc gtgtctcctc 7320 acctggatga ggagatctcc cagttcgcca aggagaaggg cgtgttttac atgcctggcg 7380 tgatgacccc aacagagctg gtgaaggcca tgaagctggg ccacaccatc ctgaagctgt 7440 tcccaggaga ggtggtggga ccacagtttg tgaaggccat gaagggccca ttccccaatg 7500 tgaagtttgt gcctacaggc ggcgtgaacc tggacaatgt ggcagagtgg ttcaaggcag 7560 gcgtgctggc agtgggagtg ggatctgccc tggtgaaggg aaccccagat gaggtgaggg 7620 aaaaggccaa ggcctttgtg gagaagatca ggggagcaac agagtgagcg gccgccacac 7680 atcataagat acattgatga gtttggacaa accacaacta gaatgcagtg aaaaaaatgc 7740 tttatttgtg aaatttgtga tgctattgct ttatttgtaa ccattataag ctgcaataaa 7800 caagttaaca acaacaattg cattcatttt atgtttcagg ttcaggggga gatgtgggag 7860 gttttttaaa gcaagtaaaa cctctacaaa tgtggtacac aaagtgggga gctctagagg 7920 gacagccccc ccccaaagcc cccagggatg taattacgtc cctcccccgc tagggggcag 7980 cagcgagccg cccggggctc cgctccggtc cggcgctccc cccgcatccc cgagccggca 8040 gcgtgcgggg acagcccggg cacggggaag gtggcacggg atcgctttcc tctgaacgct 8100 tctcgctgct ctttgagcct gcagacacct ggggggatac ggggaaaaag gggagctcta 8160 gagggacagc ccccccccaa agcccccagg gatgtaatta cgtccctccc ccgctagggg 8220 gcagcagcga gccgcccggg gctccgctcc ggtccggcgc tccccccgca tccccgagcc 8280 ggcagcgtgc ggggacagcc cgggcacggg gaaggtggca cgggatcgct ttcctctgaa 8340 cgcttctcgc tgctctttga gcctgcagac acctgggggg atacggggaa aaaggatcca 8400 tggccggcca tctgcagatc atatgatcgg atgccgggac cgacgagtgc agaggcgtgc 8460 aagcgagctt ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca 8520 caattccaca caacatacga gccggaagca taaagtgtaa agcctggggt gcctaatgag 8580 tgagctaact cacattaatt gcgttgcgct cactgcccgc tttccagtcg ggaaacctgt 8640 cgtgccagct gcattaatga atcggccaac gcgcggggag aggcggtttg cgtattgggc 8700 gctcttccgc ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg 8760 tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa 8820 agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg 8880 cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga 8940 ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg 9000 tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg 9060 gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc 9120 gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg 9180 gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca 9240 ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt 9300 ggcctaacta cggctacact agaagaacag tatttggtat ctgcgctctg ctgaagccag 9360 ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg 9420 gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc 9480 ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt 9540 tggtcatgag attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt 9600 ttaaatcaat ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca 9660 gtgaggcacc tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg 9720 tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac 9780 cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg 9840 ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc 9900 gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta 9960 caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac 10020 gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc 10080 ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac 10140 tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact 10200 caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa 10260 tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt 10320 cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca 10380 ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa 10440 aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac 10500 tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg 10560 gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc 10620 gaaaagtgcc acctgacgtc taagaaacca ttattatcat gacattaacc tataaaaata 10680 ggcgtatcac gaggcccttt cgtc 10704 <110> SK bioscience Co., Ltd. <120> METHOD FOR CULTURING A CELL EXPRESSING A PROTEIN <130> FDP/202110-0043 <150> KR 10-2021-0137835 <151> 2021-10-15 <160> 3 <170> KoPatentIn 3.0 <210> 1 < 211> 467 <212> PRT <213> Artificial Sequence <220> <223> Artificial Sequence <400> 1 Met Gly Ile Leu Pro Ser Pro Gly Met Pro Ala Leu Leu Ser Leu Val 1 5 10 15 Ser Leu Leu Ser Val Leu Leu Met Gly Cys Val Ala Glu Thr Gly Thr 20 25 30 Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn 35 40 45 Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser 50 55 60 Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser 65 70 75 80 Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys 85 90 95 Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val 100 105 110 Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr 115 120 125 Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn 130 135 140 Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu 145 150 155 160 Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu 165 170 175 Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn 180 185 190 Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val 195 200 205 Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His 210 215 220 Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Gly Gly Ser Gly 225 230 235 240 Gly Ser Gly Ser Gly Gly Ser Gly Gly Ser Gly Ser Glu Lys Ala Ala 245 250 255 Lys Ala Glu Glu Ala Ala Arg Lys Met Glu Leu Phe Lys Lys His 260 265 270 Lys Ile Val Ala Val Leu Arg Ala Asn Ser Val Glu Glu Ala Ile Glu 275 280 285 Lys Ala Val Ala Val Phe Ala Gly Gly Val His Leu Ile Glu Ile Thr 290 295 300 Phe Thr Val Pro Asp Ala Asp Thr Val Ile Lys Ala Leu Ser Val Leu 305 310 315 320 Lys Glu Lys Gly Ala Ile Ile Gly Ala Gly Thr Val Thr Ser Val Glu 325 330 335 Gln Ala Arg Lys Ala Val Glu Ser Gly Ala Glu Phe Ile Val Ser Pro 340 345 350 His Leu Asp Glu Glu Ile Ser Gln Phe Ala Lys Glu Lys Gly Val Phe 355 360 365 Tyr Met Pro Gly Val Met Thr Pro Thr Glu Leu Val Lys Ala Met Lys 370 375 380 Leu Gly His Thr Ile Leu Lys Leu Phe Pro Gly Glu Val Val Gly Pro 385 390 395 400 Gln Phe Val Lys Ala Met Lys Gly Pro Phe Pro Asn Val Lys Phe Val 405 410 415 Pro Thr Gly Val Asn Leu Asp Asn Val Ala Glu Trp Phe Lys Ala 420 425 430 Gly Val Leu Ala Val Gly Val Gly Ser Ala Leu Val Lys Gly Thr Pro 435 440 445 Asp Glu Val Arg Glu Lys Ala Lys Ala Phe Val Glu Lys Ile Arg Gly 450 455 460 Ala Thr Glu 465 <210> 2 <211> 1404 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 2 atgggaatcc tgccaagccc tggaatgcca gccctgctgt ccctggtgtc tctgctgagc 60 gtgctgctga tgggatgcgt ggcagagacc ggaacaaggt tccctaacat caccaacctg 120 tgcccattcg ct gcgaggtccgt gtatgc ctggaaccgg 180 aagagaatct ctaattgcgt ggccgactat agcgtgctgt acaatagcgc ctccttctct 240 acctttaagt gctatggcgt gtctcccacc aagctgaacg acctgtgctt cacaaacgtg 300 tacgccgaca gctttgtgat ccggggcgat gaggtgagac agatcgcacc aggacagacc 360 ggcaagatcg cagactacaa ctataagctg cctgacgatt tcacaggctg cgtgatcgcc 420 tggaatagca acaatctgga ttccaaagtg ggcggcaact acaattatct gtacagaggattcctgacagaggcctgacca gattgactg 480 catca gcaccgagat ctaccaggca 540 ggctccacac catgcaacgg agtggagggc ttcaattgtt attttcccct gcagagctac 600 ggcttccagc ctaccaatgg cgtgggctat cagccataca gagtggtggt gctgtcctttt 660 gagctgctgc acgcaccagc aaccgtgggc20 ggaccgtgggc agtaca ggat ccggaggatc cggaggatct ggaagcgaga aggcagcaaa ggcagaggag 780 gcagcaagga agatggagga gctgttcaag aagcacaaga tcgtggccgt gctgagagcc 840 aactctgtgg aggaggccat cgagaaggca gtggccgtgt tcgcaggagg agtgcacctg 900 atcgagatca cctttacagt gcccggacc gcccggacc gtgctg 960 aaggagaagg gagcaatcat cggagcagga accgtgacat ctgtggagca ggcaaggaag 1020 gcagtggagt ccggagccga gtttatcgtg tctcctcacc tggatgagga gatctcccag 1080 ttcgccaagg agaagggcgt gttttacatg cctggcgtga 1gacctgaggtga tgacctgagcaacg aga1 gggcca caccatcctg aagctgttcc caggagaggt ggtgggacca 1200 cagtttgtga aggccatgaa gggcccattc cccaatgtga agtttgtgcc tacaggcggc 1260 gtgaacctgg acaatgtggc agagtggttc aaggcaggcg tgctggcagt gggagtggga 1320 tctgccccctgg acaccagaggagggac c ctttgtggag 1380 aagatcaggg gagcaacaga gtga 1404 <210> 3 <211> 10704 <212> DNA <213> Artificial Sequence <220> < 223>Artificial Sequence <400> 3 gc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgggta 300 tacgccagct tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt ggagatcggt acttcgcgaa 420 tgcgtcgaga tgtttaaact cccgccccta actccgccca gttccgccca ttctccgccc 480 catggctgac taattttttt tatttatgca gaggccgagggt ccgcctcggtt ctgagagaggtt cttttttgga ggcctaggct tttgcaaaaa gctagctggt 600 tctttccgcc tcagaaggta cctaaccaag ttcctctttc agaggttatt tcaggccacc 660 ttccaccatg gccacctcag caagttccca cttgaacaa aacatcaagc aaatgtactt 720 aaatgtactt c catgtatatc tgggttgatg gtactggaga 780 aggactgcgc tgcaaaaccc gcaccctgga ctgtgagccc aagtgtgtag aagagttacc 840 tgagtggaat tttgatggct ctagtacctt tcagtctgag ggctccaaca gtgacatgta 900 tctcagccct gttgccatgt ttcgggaccc cttccgcaga gatcccaaca agctggtcct cttggaagtgtt cttggaagtgtt 960 tgcagagacc aatttaaggc actcgtgtaa 1020 acggataatg gacatggtga gcaaccagca cccctggttt ggaatggaac aggagtatac 1080 tctgatggga acagatgggc acccttttgg ttggccttcc aatggctttc ctgggcccca 1140 caggtccggtat tactgtacggggg tgg tcgtggaggc 1200 tcactaccgc gcctgcttgt atgctggggt caagattaca ggaacaaatg ctgaggtcat 1260 gcctgcccag tgggaatttc aaataggacc ctgtgaagga atccgcatgg gagatcatct 1320 ctgggtggcc cgtttcatct tgcatcgagt atgtgaagac tttggggtaa tagcaacctt 1380 tgaccccaag cccatttgccagccctg ggaacttgccagctg a actttagcac 1440 caaggccatg cgggaggaga atggtctgaa gcacatcgag gaggccatcg agaaactaag 1500 caagcggcac cggtaccaca ttcgagccta cgatcccaag gggggcctgg acaatgcccg 1560 tcgtctgact gggttccacg aaacgtccaa catcaacgac ctg6cc tgt0 tcgcagtgcc agcatccgca ttccccggac tgtcggccag gagaagaaag gttactttga 1680 agaccgccgc ccctctgcca attgtgaccc ctttgcagtg acagaagcca tcgtccgcac 1740 atgccttctc aatgagactg gcgacgagcc cttccaatac aaaaactaac gcccgcccca 1800 cgacccgcag cgcccgaccg cgcaca catcataaga 1860 tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaatg ctttatttgt 1920 gaaatttgg atgctattgc tttattgta accattataa gctgcaataa acaagttaac 1980 aacaacaatt gcattcattt tatgtttcag gttcag0gta agttcag0gatta aggtcag0gatta aa acctctacaa atgtggtaga attctacgta gataaaagtt ttgttacttt 2100 atagaagaaa ttttgagttt ttgttttttt taataaataa ataaacataa ataaattgtt 2160 tgttgaattt attattagta tgtaagtgta aatataataa aacttaatat ctattcaaat 2220 taataaataa acctcgatacat cagaattcattg2 cagaattcatg2 0 atctttaacg tacgtcacaa tatgattatc tttctagggt taatctagct gcgtgttctg 2340 cagcgtgtcg agcatcttca tctgctccat cacgctgtaa aacacatttg caccgcgagt 2400 ctgcccgtcc tccacgggtt caaaaacgtg aatgaacgag gcgcgctcat atcatcat ggg taactcacgg ggtatccatg tccatttctg cggcatccag 2520 ccaggatacc cgtcctcgct gacgtaatat cccagcgccg caccgctgtc attaatctgc 2580 acaccggcac ggcagttcca tttaaatggc tgtcgccggt attgttcggg ttgctgatgc 2640 gcttcgggct gaccatccgg aactgtgtcc c70accgagccg tggcctgaac gaacagttca ccgttaaagg cgtgcatggc cacaccttcc cgaatcatca 2760 tggtaaacgt gcgttttcgc tcaacgtcaa tgcagcagca gtcatcctcg gcaaactctt 2820 tccatgccgc ttcaacctcg cgggaaaagg cacgggctcagtc gtccc8cttc acc ct tgggcgatga ctgagccgga aaaaagaccc gacgatatga tcctgatgca 2940 gctagattaa ccctagaaag atagtctgcg taaaattgac gcatgcattc ttgaaatatt 3000 gctctctctt tctaaatagc gcgaatccgt cgctgtgcat ttaggacatc tcagtcgccg 3060 cttggagctc ccgtgaggcg tgcttgtcaa tgcttgtcaa tgcttgtcaa tgcggtaagt tgt1actgg gt gagtcaaaat gacgcatgat tatcttttac gtgactttta agatttaact 3180 catacgataa ttatattgtt atttcatgtt ctacttacgt gataacttat tatatatata 3240 ttttcttgtt atagatatca agcttataga tctggggaca gccccccccc aaagccccccc aaagccccccc aaagcccagctcgg ccgcccagctcgg ccgccgctccc tacgt ccgcccg gggctccgct 3360 ccggtccggc gctccccccg catccccgag ccggcagcgt gcggggacag cccgggcacg 3420 gggaaggtgg cacgggatcg ctttcctctg aacgcttctc gctgctcttt gagcctgcag 3480 acacctgggg ggatacgggg aagtaaagcttt aggctgaaag agagatttag 3gagggacaga gt g caaaggagca cagtgctcat ccagatccaa ccccctgcta 3600 tgtgcagggt catcaaccag cagcccaggc tgcccagagc cacatccagc ctggccttga 3660 atgcctgcag ggatggggca tccacagcct ccttgggcaa cctgttcagt gcgtcaccactcatac 3720 acctactggggggg aaac ctcccctgtc tcagtgtaaa 3780 gccattcccc cttgtcctat caagggggag tttgctgtga cattgttggt ctggggtgac 3840 acatgtttgc caattcagtg catcacggag aggcagattt ggggataagg aagtgcagga 3900 cagcatggac gtgggacatg caggtgttga gggctctggg acactctcca agtcacgatagagagaccagcg 3960 agtcagatagagaggaccta caaagagcaa gttaaaaccc 4020 agcatggaga ggagcacaaa aaggccacag acactgctgg tccctgtgtc tgagcctgca 4080 tgtttgatgg tgtctggatg caagcagaag gggtggaaga gcttgcctgg agagatacag 4140 ctgggtcagt aggactgggt0 caggatcagtcc at2 gagatcagctg gagatcagctg gagatcagctg gtcaaatcat gaaggctgga aaagccctcc aagatcccca agaccaaccc caacccaccc 4260 accgtgccca ctggccatgt ccctcagtgc cacatcccca cagttcttca tcacctccag 4320 ggacggtgac ccccccacct ccgtgggcag ctgtgccact gcagcaccgc tctttggaga 4380 aggctaaatct cc aggctaaatct tgctaaatct tgctaaatct tgctaaatctcc ca caacgtaagg ccattatctc 4440 tcatccaact ccaggacgga gtcagtgagg atggggctct agagtcaaca ggaaagttcc 4500 attggagcca agtacattga gtcaataggg actttccaat gggttttgcc cagtacataa 4560 ggtcaatggg aggtaagcca atgggttaggac g 6c cattatactg g tgaccattactg 4c ttcc aatgggtttt gcccagtaca taaggtcaat aggggtgaat caacaggaaa 4680 gtcccattgg agccaagtac actgagtcaa tagggacttt ccattgggtt ttgcccagta 4740 caaaaggtca atagggggtg agtcaatggg tttttcccat tattggcacg tacataaggt 4800 caataggggt gagtacgttacca agttcagtttacca ttcc 4860 caccattgac gtcaatgggc tattgaaact aatgcaacgt gacctttaaa cggtactttc 4920 ccatagctga ttaatgggaa agtaccgttc tcgagccaat acacgtcaat gggaagtgaa 4980 agggcagcca aaacgtaaca ccgccccggt tttcccctggtaattcatt4cata5 ggc tgagctgcgt tctacgtggg tatataagca gagctctccc tatcagtgat 5100 agagatctcc ctatcagtga tagagatcga gctcagcgtc ggtaccgtac ctcttccgca 5160 tcgctgtctg cgagggccag ctgttggggt gagtggcggg tgtggcttcc gcgggccccg 5220 gagctggaggtc cctgctctga gcgggtgggtcg cc gcgggccgtcgg ct 5280 gctgtgagca ttcccacttc gagtggcggg cggtgcgggg gtgagagtgc gaggcctagc 5340 ggcaaccccg tagcctcgcc tcgtgtccgg cttgaggcct agcgtggtgt ccgccgccgc 5400 gtgccactcc ggccgcacta tgcagttttttt ggtcctct4cc ggcagttttttct ggtccctttgct 60 gcatgggcta acaaagggag ggtgtggggc tcactcttaa ggagcccatg aagcttacgt 5520 tggataggaa tggaagggca ggaggggcga ctggggcccg cccgccttcg gagcacatgt 5580 ccgacgccac ctggatgggg cgaggcctgt ggctttccga agcaatcggg cgtgagttta 5640 gcctacctgg gccatgtggc cctagcactg ggtgccgggcgt ggtgccgggcgt 0 0 ccttgcctcc caacaagggt gaggccgtcc cgcccggcac cagttgcttg cgcggaaaga 5760 tggccgctcc cggggccctg ttgcaaggag ctcaaaatgg aggacgcggc agcccggtgg 5820 agcgggcggg tgagtcaccc acacaaagga agagggcct8gcc tgagtcaccc acacaaagga agagggcct8gcc tggccgtct5 gacc ccgtggtcta tcggccgcat agtcacctcg ggcttctctt gagcaccgct 5940 cgtcgcggcg gggggagggg atctaatggc gttggagttt gttcacattt ggtgggtgga 6000 gactagtcag gccagcctgg cgctggaagt cattcttgga atttgcccct ttgagtttgg 6060 agcgaggcta attctcaagc ctcttagcgg6tacta 0 ctcgcggttg aggacaaact cttcgcggtc tttccagtac tcttggatcg gaaacccgtc 6180 ggcctccgaa cggtactccg ccaccgaggg acctgagcga gtccgcatcg accggatcgg 6240 aaaacctcgt cgacgccgcc accatgggaa tcctgccag30gc ggt gtctctgctg agcgtgctgc tgatgggatg cgtggcagag accggaacaa 6360 ggttccctaa catcaccaac ctgtgcccat tcggcgaggt gtttaacgcc acacgctttg 6420 cctccgtgta tgcctggaac cggaagagaa tctctaattg cgtggccgac tatagcgtgc 6480 tgtacaatag cgcctccttc tctaccttta agtgctat0 tgcctggaac acctcagctgacct5 accaagctgaaccct gtgtacgccg acagctttgt gatccggggc gatgaggtga 6600 gacagatcgc accaggacag accggcaaga tcgcagacta caactataag ctgcctgacg 6660 atttcacagg ctgcgtgatc gcctggaata gcaacaatct ggattccaaa gtgggcggca 6720 gagtcagcggca 6720 gagtcagcggacta ctgagtcagtccacacta gagcggggaca 6780 tcagcaccga gatctaccag gcaggctcca caccatgcaa cggagtggag ggcttcaatt 6840 ggtattttcc cctgcagagc tacggcttcc agcctaccaa tggcgtgggc tatcagccat 6900 acagagtggt ggtgctgtcc tttgagctgc tgcacgcacc agcaaccgtg tgcggacctg tgcggacc0 gaag6 aggaagcg gatccggagg atccggagga tctggaagcg 7020 agaaggcagc aaaggcagag gaggcagcaa ggaagatgga ggagctgttc aagaagcaca 7080 agatcgtggc cgtgctgaga gccaactctg tggaggaggc catcgagaag gcagtcgccag aggctagtcagcagg aggctag gtgcccgac gccgataccg 7200 tgatcaaggc cctgtccgtg ctgaaggaga agggagcaat catcggagca ggaaccgtga 7260 catctgtgga gcaggcaagg aaggcagtgg agtccggagc cgagtttatc gtgtctcctc 7320 acctggatga ggagatctcc cagttcgcca aggagaaggg cgtgttttac atgcctggcg 7380 tgatgacccc aacagagctggcg ctgaagctgt 7440 tcccaggaga ggtggtggga ccacagtttg tgaaggccat gaagggccca ttccccaatg 7500 tgaagtttgt gcctacaggc ggcgtgaacc tggacaatgt ggcagagtgg ttcaaggcag 7560 gcgtgctggc agtgggagtg ggatctggagg gggacctgacccgg gggacctgaccc 620 aaaaggccaa ggcctttgtg gagaagatca ggggagcaac agagtgagcg gccgccacac 7680 atcataagat acattgatga gtttggacaa accacaacta gaatgcagtg aaaaaaatgc 7740 tttatttgtg aaatttgtga tgctattgct ttatttgtaa ccattataag ctgcaataaa 7800 caagttaaca gaattcaat gatttggtcat at gag 7860 gttttttaaa gcaagtaaaa cctctacaaa tgtggtacac aaagtgggga gctctagagg 7920 gacagccccc ccccaaagcc cccagggatg taattacgtc cctcccccgc tagggggcag 7980 cagcgagccg cccggggctc cgctccggtc cggcgctccc c4gccggggccc c4gccggggccc cgccgggccc8 cccggg cacggggaag gtggcacggg atcgctttcc tctgaacgct 8100 tctcgctgct ctttgagcct gcagacacct ggggggatac ggggaaaaag gggagctcta 8160 gagggacagc ccccccccaa agcccccagg gatgtaatta cgtccctccc ccgctagggg 8220 gcagcagcga gccgcccgc gctccccgccgc gctccccgccgc ccccgagcc 8280 ggcagcgtgc ggggacagcc cgggcacggg gaaggtggca cgggatcgct ttcctctgaa 8340 cgcttctcgc tgctctttga gcctgcagac acctgggggg atacgggggaa aaaggatcca 8400 tggccggcca tctgcagatc atatgatgggacgg atgcc agcc 8460 aagcgagctt ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca 8520 caattccaca caacatacga gccggaagca taaagtgtaa agcctggggt gcctaatgag 8580 tgagctaact cacattaatt gcgttgcgct cactgcccgc tttccagtcg ggaaacctgt 8640 cgtgccagct gcattaatga atcggccaac gcgcattgggt gcgcattgggt agggt8 cttccgc ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg 8760 tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa 8820 agaacatgtg agcaaaaggc cagcaaaagg0 cagcaaaagg0 ccaggaaggt ccaggaaggtcc gtaata8ggtcc taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga 8940 ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg 9000 tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg 9060 gaagcgtggc gctttctcat agctcacgct gtaggtattggt gcagt120 ctggtc tag9 ccaagct gggctgtgg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg 9180 gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca 9240 ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagt aggt 9240 tatttggtat ctgcgctctg ctgaagccag 9360 ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg 9420 gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc 9480 ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt 9540 tggtcatgag attatcaaaa aggatcttca cctagatcct ttaatagaattataa ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca 9660 gtgaggcacc tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg 9720 tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct gcaatcaccact gcaatgactgatac 9780 cgctgactgatacg at aaaccagcca gccggaaggg 9840 ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc 9900 gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta 9960 caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc gccatt2cag0 gccgtcaggaggt cccatgt tgtgcaaaaa agcggttagc tccttcggtc 10080 ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac 10140 tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtcagagtc ggtacagagt0 ggtacagagt0 ggtacaggtact gaccgag ttgctcttgc ccggcgtcaa 10260 tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt 10320 cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca 10380 ctcggcacc caactgatct tcagcatctt ttactttcac cagcgtttct ggggaacgagcaa 10440 aggaacagagcaa gaataagggc gacacggaaa tgttgaatac 10500 tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg 10560 gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc 10620 gaacatatagtgcc acctgacgttaac tatta ata 10680ggcgtatcac gaggcccttt cgtc 10704

Claims (12)

서열번호 1로 표시되는 아미노산 서열로 표시되는 폴리펩타이드 또는 이와 75% 이상 서열 상동성을 갖는 폴리펩타이드인 목적 단백질을 발현하는 세포주의 배양 방법으로서, 상기 단백질을 발현하는 세포주를 배양하는 단계를 포함하며, 상기 세포주를 배양하는 단계는 배양액의 pH를 조절하는 것을 포함하는, 배양 방법. A method for culturing a cell line expressing a target protein, which is a polypeptide represented by the amino acid sequence represented by SEQ ID NO: 1 or a polypeptide having 75% or more sequence homology thereto, comprising culturing a cell line expressing the protein; , The step of culturing the cell line comprises adjusting the pH of the culture medium, the culture method. 제1항에 있어서, 상기 세포주는 중국 햄스터 난소 (Chinese Hamster Ovary, CHO) 세포에서 유래한 배양 방법. The method of claim 1, wherein the cell line is derived from Chinese Hamster Ovary (CHO) cells. 제1항에 있어서, 이산화탄소 및/또는 탄산수소나트륨을 이용하여 배양액의 pH를 조절하는 배양 방법. The culture method according to claim 1, wherein the pH of the culture medium is adjusted using carbon dioxide and/or sodium bicarbonate. 제1항에 있어서, 배양액의 pH를 6.75 내지 7.15로 유지하는 배양 방법. The culture method according to claim 1, wherein the pH of the culture medium is maintained at 6.75 to 7.15. 제1항에 있어서, 배양 후기에 배양액으로 도입되는 탄산수소나트륨의 함량이 배양 전기 배양액으로 도입되는 탄산수소나트륨의 함량보다 낮은 배양 방법. The culture method according to claim 1, wherein the amount of sodium bicarbonate introduced into the culture medium at the later stage of the culture is lower than the amount of sodium bicarbonate introduced into the culture medium prior to the culture. 제1항에 있어서, 배양 후기에 배양액으로 도입되는 기체 분사 속도(Air sparging rate)가 배양 전기의 기체 분사 속도의 절반 이하인, 배양 방법. The culture method according to claim 1, wherein an air sparging rate introduced into the culture medium in the late stage of the culture is less than half of the gas sparging rate in the early stage of the culture. 제6항에 있어서, 배양 후기의 기체 분사 속도가 0.0005 내지 0.001 vvm 인, 배양 방법. The culture method according to claim 6, wherein the gas injection rate in the late stage of the culture is 0.0005 to 0.001 vvm. 제1항에 있어서, 배양 기간 내 배양이 이루어지는 바이오리액터로의 산소 유량(flow rate)이 20 LPM 이하로 유지되는 배양 방법. The culture method according to claim 1, wherein the flow rate of oxygen to the bioreactor in which the culture is performed during the culture period is maintained at 20 LPM or less. 제1항에 있어서, 배양 후기 배양이 이루어지는 바이오리액터로의 이산화탄소 유량이 5 LPM 이하로 유지되는 배양 방법. The culture method according to claim 1, wherein the flow rate of carbon dioxide to the bioreactor in which the culture is performed in the late stage of culture is maintained at 5 LPM or less. 제1항에 있어서, 배양 후기의 배양 온도가 배양 전기의 배양온도보다 낮은 배양 방법. The culture method according to claim 1, wherein the culture temperature in the late stage of culture is lower than the culture temperature in the early stage of culture. 제10항에 있어서, 배양 후기의 배양 온도가 배양 전기의 배양온도보다 1℃ 내지 10 ℃ 낮은 배양 방법. The culture method according to claim 10, wherein the culture temperature in the late stage of culture is 1 °C to 10 °C lower than the culture temperature in the early stage of culture. 제1항에 있어서, 배양 기간이 6일 내지 15일인 배양 방법.


The culture method according to claim 1, wherein the culture period is 6 to 15 days.


KR1020210179185A 2021-10-15 2021-12-14 Method for culturing a cell expressing a protein KR102553935B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210137835 2021-10-15
KR1020210137835 2021-10-15

Publications (2)

Publication Number Publication Date
KR20230054218A true KR20230054218A (en) 2023-04-24
KR102553935B1 KR102553935B1 (en) 2023-07-11

Family

ID=85570501

Family Applications (7)

Application Number Title Priority Date Filing Date
KR1020210167438A KR102527221B1 (en) 2021-10-15 2021-11-29 A method for purification of target protein
KR1020210179185A KR102553935B1 (en) 2021-10-15 2021-12-14 Method for culturing a cell expressing a protein
KR1020210180825A KR102508883B1 (en) 2021-10-15 2021-12-16 A method for producing immunogenic composition
KR1020210187185A KR20230054224A (en) 2021-10-15 2021-12-24 Method for culturing a cell expressing a protein
KR1020220030768A KR102600616B1 (en) 2021-10-15 2022-03-11 A method for preparing vaccine for COVID-19
KR1020220066095A KR20230054247A (en) 2021-10-15 2022-05-30 Method for purification of a protein
KR1020230057790A KR20230070177A (en) 2021-10-15 2023-05-03 Method for culturing a cell expressing a protein

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020210167438A KR102527221B1 (en) 2021-10-15 2021-11-29 A method for purification of target protein

Family Applications After (5)

Application Number Title Priority Date Filing Date
KR1020210180825A KR102508883B1 (en) 2021-10-15 2021-12-16 A method for producing immunogenic composition
KR1020210187185A KR20230054224A (en) 2021-10-15 2021-12-24 Method for culturing a cell expressing a protein
KR1020220030768A KR102600616B1 (en) 2021-10-15 2022-03-11 A method for preparing vaccine for COVID-19
KR1020220066095A KR20230054247A (en) 2021-10-15 2022-05-30 Method for purification of a protein
KR1020230057790A KR20230070177A (en) 2021-10-15 2023-05-03 Method for culturing a cell expressing a protein

Country Status (2)

Country Link
KR (7) KR102527221B1 (en)
WO (1) WO2023063801A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163438A1 (en) * 2020-02-14 2021-08-19 University Of Washington Polypeptides, compositions, and their use to treat or limit development of an infection
KR20210117808A (en) 2020-03-20 2021-09-29 포항공과대학교 산학협력단 A method of mass production of target gene in plants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9630994B2 (en) * 2014-11-03 2017-04-25 University Of Washington Polypeptides for use in self-assembling protein nanostructures
EP3592372A4 (en) * 2017-03-09 2021-01-13 Alexion Pharmaceuticals, Inc. Glycoprotein manufacturing process
US20210338807A1 (en) 2020-06-03 2021-11-04 Humane Genomics Covid19 vaccines and related methods
CN111991556B (en) * 2020-10-29 2021-03-02 中山大学 SARS-CoV-2 RBD conjugated nano particle vaccine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163438A1 (en) * 2020-02-14 2021-08-19 University Of Washington Polypeptides, compositions, and their use to treat or limit development of an infection
KR20210117808A (en) 2020-03-20 2021-09-29 포항공과대학교 산학협력단 A method of mass production of target gene in plants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Avicenna J Med Biotech, 13(3): 123-130(2021.07-09)* *
PLOS ONE 제16권 제2호 e0242890 (2021.02.)* *

Also Published As

Publication number Publication date
KR20230054224A (en) 2023-04-24
KR20230070177A (en) 2023-05-22
KR20230054209A (en) 2023-04-24
KR102508883B1 (en) 2023-03-10
KR102553935B1 (en) 2023-07-11
KR102527221B1 (en) 2023-05-02
KR102600616B1 (en) 2023-11-10
KR20230054247A (en) 2023-04-24
KR20230054234A (en) 2023-04-24
WO2023063801A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
CN110527737B (en) Positive plasmid molecule pYCID-1905 identified by transgenic rape and transformant of transgenic rape product and application thereof
CN104593413A (en) Method for synthesizing secreted human serum albumin employing bombyx mori posterior silk gland
US5286636A (en) DNA cloning vectors with in vivo excisable plasmids
CN105368732B (en) One plant of an industrial strain of S.cerevisiae strain for producing xylitol and construction method
CN112266914B (en) Strong constitutive promoter of bumblebee candida and application thereof
CN104962576B (en) A kind of flavobacterium columnare gene orientation knocks out plasmid and application
CN110804559B (en) Recombinant penicillium chrysogenum gene engineering bacterium and construction method and application thereof
KR102553935B1 (en) Method for culturing a cell expressing a protein
CN109234318B (en) Method for improving monascus extracellular pigment
CN110117622B (en) CRISPR/Cas gene editing system and preparation method and application thereof
CN107267538B (en) A kind of construction method of plant plastid expression vector and application
CN111235118B (en) Human type 3 adenovirus replication-defective recombinant virus, construction method and application
CN113755442B (en) Cell strain for measuring pharmaceutical activity and preparation method and application thereof
CN110452893B (en) Construction and application of high-fidelity CRISPR/AsCpf1 mutant
CN111378684B (en) Application of thermally-induced gene editing system CRISPR-Cas12b in upland cotton
CN112760241B (en) Recombinant penicillium chrysogenum gene engineering bacterium and construction method and application thereof
CN108148876B (en) A kind of trichoderma harzianum gene knockout method
CN110331170A (en) The gene expression element and its construction method of a kind of dual gRNA and application
CN109777829A (en) A kind of construction method of the sgRNA expression component of gene editing U6 promoter driving
CN108949800A (en) A kind of efficient convenient gene location is inserted into Genetic Transformation System of Filamentous Fungi and its application at seat
CN114426986B (en) URA-blast method established in gibberella and integrated based on CRISPR technology
CN102649961B (en) Aptamer sequence of hepatitis B virus (HBV) core antigen and application of nucleic aptamer sequence
CN115364096B (en) Medicine for improving islet beta cell apoptosis in Wolfram syndrome
KR102624832B1 (en) Production of transgenic dogs overexpressing muscle-specific peroxisome proliferator-activated receptor delta (PPARδ).
KR102587454B1 (en) T cell receptors, immune cell comprising t cell receptors and method using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right