KR20230046577A - Recombinant vector for base transversion of plant and uses thereof - Google Patents

Recombinant vector for base transversion of plant and uses thereof Download PDF

Info

Publication number
KR20230046577A
KR20230046577A KR1020210129712A KR20210129712A KR20230046577A KR 20230046577 A KR20230046577 A KR 20230046577A KR 1020210129712 A KR1020210129712 A KR 1020210129712A KR 20210129712 A KR20210129712 A KR 20210129712A KR 20230046577 A KR20230046577 A KR 20230046577A
Authority
KR
South Korea
Prior art keywords
plant
recombinant vector
base conversion
base
vector
Prior art date
Application number
KR1020210129712A
Other languages
Korean (ko)
Inventor
정춘균
이지민
오누리
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020210129712A priority Critical patent/KR20230046577A/en
Publication of KR20230046577A publication Critical patent/KR20230046577A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2497Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing N- glycosyl compounds (3.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04005Cytidine deaminase (3.5.4.5)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A recombinant vector for base transformation of plants of the present invention includes uracil N-glycosylase, cytidine deaminase and nickase Cas9 (nCas9) coding sequences which are sequentially linked, and transformation by injecting the recombinant vector and a vector containing a guide RNA coding sequence specific to a target base sequence into plant cells induces effective C to G base transformation, thereby being expected to be useful for developing new varieties with improved agricultural traits.

Description

식물체의 염기전환용 재조합 벡터 및 이의 용도{Recombinant vector for base transversion of plant and uses thereof}Recombinant vector for base transversion of plant and uses thereof {Recombinant vector for base transversion of plant and uses thereof}

본 발명은 식물체의 염기전환용 재조합 벡터 및 이의 용도에 관한 것이다.The present invention relates to a recombinant vector for base conversion of plants and its use.

현대 농업에서 작물의 생산성 증대와 스트레스 저항성 형질 획득은 매우 중요한 과제이다. 최근, 목적하는 유전자만을 특이적으로 교정하는 CRISPR/Cas9 시스템을 사용한 유전체 변형 작물들이 개발되었다. 이러한 CRISPR/Cas9 시스템은 간편성과 효율성 덕에 유전자 편집 기술 분야에 폭넓게 활용되고 있으며, 해당 분야의 획기적인 발전을 이루었다. 하지만, CRISPR/Cas9 시스템은 DNA 절단 후, 생물의 무작위적인 복구 시스템을 이용하기 때문에 정확히 원하는 DNA 서열을 얻기 힘들다는 점과, 유전자의 기능을 없애는 방향으로만 사용 가능하다는 단점이 있다. 이러한 CRISPR/Cas9 시스템의 단점을 극복하기 위한 대안으로 염기교정(base editor)이 개발되고 있다. In modern agriculture, increasing crop productivity and acquiring stress-resistant traits are very important tasks. Recently, genetically modified crops using the CRISPR/Cas9 system that specifically corrects only the desired gene have been developed. This CRISPR/Cas9 system is widely used in the field of gene editing technology thanks to its simplicity and efficiency, and has made a breakthrough in the field. However, the CRISPR/Cas9 system has disadvantages in that it is difficult to obtain exactly the desired DNA sequence because it uses the random recovery system of organisms after DNA cutting, and it can only be used in the direction of eliminating the function of the gene. As an alternative to overcome the disadvantages of the CRISPR/Cas9 system, a base editor is being developed.

염기교정은 CRISPR/Cas9 시스템의 목적 특이성과 탈아미노효소(deaminase)의 특성을 활용한 기술로, 이중가닥절단(double strand break, DSB)과 외래 DNA의 도입 없이도 원하는 서열의 돌연변이를 일으킬 수 있다. 2017년부터 식물체에 적용가능한 ABE(A to G base editor) 및 CBE(C to T base editor)가 개발되었는데, 이는 퓨린 염기가 다른 퓨린 염기로 교체되거나 피리미딘 염기가 다른 피리미딘 염기로 치환되는 염기전이(base transition)이다. 그러나, CBE 과정 중에 예외적으로 우라실의 글리코실화가 진행되면 염기 절제 복구(base excision repair)에 의해 소량의 염기전환이 유도된다고 보고된 바 있다. 염기전환(base transversion)은 퓨린 염기가 피리미딘 염기로 또는 피리미딘 염기가 퓨린 염기로 치환되는 것이다. 최근, 이러한 현상을 역으로 이용하여 인간세포에서 염기전환이 가능한 CGBE(C to G base editor) 벡터가 개발되었지만, 아직까지 식물체에 적용가능한 CGBE 벡터에 대한 연구는 보고된 바가 없다. Base editing is a technology that utilizes the target specificity of the CRISPR/Cas9 system and the characteristics of deaminase, and can cause mutations in the desired sequence without double strand break (DSB) and introduction of foreign DNA. Since 2017, ABE (A to G base editor) and CBE (C to T base editor) applicable to plants have been developed, which are bases in which purine bases are replaced with other purine bases or pyrimidine bases are replaced with other pyrimidine bases. It is a base transition. However, it has been reported that when glycosylation of uracil proceeds exceptionally during the CBE process, a small amount of base conversion is induced by base excision repair. A base transversion is the substitution of a purine base with a pyrimidine base or a pyrimidine base with a purine base. Recently, a CGBE (C to G base editor) vector capable of base conversion in human cells has been developed using this phenomenon in reverse, but studies on CGBE vectors applicable to plants have not yet been reported.

한편, 한국등록특허 제2258713호에는 '사이토신 염기교정용 조성물 및 이의 용도'가 개시되어 있고, 한국등록특허 제2151065호에는 '동물 배아의 염기 교정용 조성물 및 염기 교정 방법'이 개시되어 있으나, 본 발명의 식물체의 염기전환용 재조합 벡터 및 이의 용도에 대해서는 기재된 바가 없다.Meanwhile, Korean Patent No. 2258713 discloses 'a composition for cytosine base correction and its use', and Korean Patent No. 2151065 discloses 'a composition for base correction in animal embryos and a base correction method'. There is no description of the recombinant vector for base conversion of plants of the present invention and its use.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 벼(Oryza sativa) 유전자의 C to G 염기전환용 재조합 벡터를 개발하고자, 기존 벼 유전자의 C to T 염기교정용 PBE 벡터에서 우라실 글리코실라제 억제인자(uracil glycosylase inhibitor, UGI)를 제거하고, 벼의 코돈으로 최적화된 우라실 N-글리코실라제(uracil N-glycosylase, UNG)를 삽입하여 PcCGBE(plant compatible C to G base editor) 벡터를 제작하였다. 상기 PcCGBE 벡터와 OsAAT, OsALS2, OsCKX2 또는 OsSPL14 유전자에 특이적인 가이드 RNA(gRNA)를 암호화하는 서열을 포함하는 벡터 각각을 벼 원형질체 세포에 주입하여 형질전환한 후, 각 유전자의 표적 서열 부위의 염기서열을 분석한 결과, 각 유전자의 표적 서열에 C to G 염기전환이 효과적으로 유도되는 것을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above needs, and in the present invention, in order to develop a recombinant vector for C to G base conversion of rice ( Oryza sativa ) genes, uracil glycolysis in PBE vector for C to T base conversion of existing rice genes PcCGBE (plant compatible C to G base editor) vector was created by removing uracil glycosylase inhibitor (UGI) and inserting uracil N-glycosylase (UNG) optimized for rice codons. produced. Each of the vectors containing the PcCGBE vector and the OsAAT , OsALS2 , OsCKX2 or OsSPL14 gene-specific guide RNA (gRNA) encoding sequences was injected into rice protoplast cells and transformed, and then the nucleotide sequence of the target sequence region of each gene As a result of the analysis, the present invention was completed by confirming that C to G base conversion was effectively induced in the target sequence of each gene.

상기 과제를 해결하기 위해, 본 발명은 우라실 N-글리코실라제(uracil N-glycosylase, UNG), 시티딘 디아미나아제(cytidine deaminase) 및 nCas9(nickase Cas9) 코딩 서열이 순차적으로 연결된 것을 특징으로 하는 식물체 염기전환용 재조합 벡터를 제공한다.In order to solve the above problems, the present invention is characterized in that uracil N-glycosylase (UNG), cytidine deaminase and nCas9 (nickase Cas9) coding sequences are sequentially linked A recombinant vector for plant base conversion is provided.

또한, 본 발명은 상기 재조합 벡터 및 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 코딩 서열이 포함된 벡터를 유효성분으로 포함하는 식물체의 염기전환용 조성물를 제공한다.In addition, the present invention provides a composition for base conversion of plants comprising the recombinant vector and a vector containing a guide RNA coding sequence specific to a target base sequence as an active ingredient.

또한, 본 발명은 상기 조성물을 식물세포에 주입하여 형질전환하는 단계를 포함하는 식물체의 염기전환 방법을 제공한다.In addition, the present invention provides a method for base conversion of plants comprising the step of transforming by injecting the composition into plant cells.

본 발명의 식물체의 염기전환용 재조합 벡터는 우라실 N-글리코실라제(uracil N-glycosylase), 시티딘 디아미나아제(cytidine deaminase) 및 nCas9(nickase Cas9) 코딩 서열이 순차적으로 연결된 것으로, 상기 재조합 벡터 및 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 코딩 서열이 포함된 벡터를 식물세포에 주입하여 형질전환시키면 효과적인 C to G 염기전환이 유도되므로, 농업 형질이 개량된 신품종 개발에 유용하게 사용될 수 있을 것이다.The recombinant vector for base conversion of plants of the present invention is one in which the coding sequences of uracil N-glycosylase, cytidine deaminase, and nCas9 (nickase Cas9) are sequentially linked, and the recombinant vector And when a vector containing a guide RNA coding sequence specific to a target sequence is injected into plant cells and transformed, effective C to G base conversion is induced, so it can be usefully used for the development of new varieties with improved agricultural traits. There will be.

도 1은 본 발명의 PcCGBE(plant compatible C to G base editor) 벡터의 모식도로, 기존 벼 유전자의 C to T 염기교정용 PBE 벡터(A)에서 우라실 글리코실라제 억제인자(uracil glycosylase inhibitor, UGI)를 제거하여 miniPcCGBE 벡터(B)를 제작하였고, 벼의 코돈으로 최적화된 우라실 N-글리코실라제(uracil N-glycosylase, UNG)를 삽입하여 PcCGBE 벡터(C)를 제작하였다. PcCGBE 재조합 벡터 및 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 코딩 서열이 포함된 벡터(D)를 이용하여 식물체의 염기전환을 유도하였다.
도 2는 PBE, miniPcCGBE 또는 PcCGBE 벡터와 OsAAT, OsALS2, OsCKX2 또는 OsSPL14 유전자를 각각 표적으로 하는 gRNA 코딩 서열이 포함된 벡터를 벼의 원형질체에 PEG(polyethylene glycol) 매개 주입하여 형질전환시킨 후, 각 유전자의 C to G 염기전환 효율을 분석하여 평균값을 나타낸 결과이다. Control은 벡터 없이 PEG만 주입한 대조군이다. **, ***은 Control에 비해 벡터를 주입한 원형질체의 염기전환 효율이 통계적으로 유의미하게 증가하였다는 것을 의미하며, **은 p<0.01, ***은 p<0.001이다.
도 3은 PcCGBE 벡터의 교정 윈도우(editing window)를 알아보기 위해서 프로토스페이서(protospacer) 서열 내의 시토신(cytosine) 위치에 따른 OsAAT, OsALS2, OsCKX2 또는 OsSPL14 유전자에 대한 C to G 염기전환 효율을 분석한 결과이다.
Figure 1 is a schematic diagram of the PcCGBE (plant compatible C to G base editor) vector of the present invention, uracil glycosylase inhibitor (UGI) in the PBE vector (A) for C to T base editing of the existing rice gene was removed to construct a miniPcCGBE vector (B), and a PcCGBE vector (C) was constructed by inserting uracil N-glycosylase (UNG) optimized for rice codons. Plant base conversion was induced using the PcCGBE recombinant vector and the vector (D) containing a guide RNA coding sequence specific to the target sequence.
Figure 2 shows that PBE, miniPcCGBE or PcCGBE vectors and vectors containing gRNA coding sequences targeting OsAAT , OsALS2 , OsCKX2 or OsSPL14 genes, respectively, were injected into rice protoplasts through polyethylene glycol (PEG)-mediated transformation, and each gene It is the result of analyzing the C to G base conversion efficiency and showing the average value. Control is a control in which only PEG was injected without vector. **, *** means that the base conversion efficiency of the vector-injected protoplasts increased statistically significantly compared to the control, ** means p<0.01 and *** p<0.001.
Figure 3 is a result of analyzing the C to G base conversion efficiency for OsAAT , OsALS2 , OsCKX2 or OsSPL14 genes according to the position of cytosine in the protospacer sequence in order to find out the editing window of the PcCGBE vector. am.

본 발명의 목적을 달성하기 위하여, 본 발명은 우라실 N-글리코실라제(uracil N-glycosylase, UNG), 시티딘 디아미나아제(cytidine deaminase) 및 nCas9(nickase Cas9) 코딩 서열이 순차적으로 연결된 것을 특징으로 하는 식물체 염기전환용 재조합 벡터를 제공한다.In order to achieve the object of the present invention, the present invention is characterized in that uracil N-glycosylase (UNG), cytidine deaminase and nCas9 (nickase Cas9) coding sequences are sequentially linked A recombinant vector for plant base conversion is provided.

본 발명의 식물체 염기전환용 재조합 벡터에서, 상기 염기전환(base transversion)은 시토신(cytosine, C)을 구아닌(guanine, G)으로 치환하는 것이나, 이에 제한되지 않는다. In the recombinant vector for plant base transversion of the present invention, the base transversion is substituting cytosine (C) with guanine (G), but is not limited thereto.

또한, 상기 염기전환은 바람직하게는 프로토스페이서(protospacer) 서열 내의 4번째 내지 8번째 시토신을 구아닌으로 치환하는 것일 수 있고, 더욱 바람직하게는 프로토스페이서 서열 내의 5번째 내지 7번째 시토신을 구아닌으로 치환하는 것일 수 있으며, 가장 바람직하게는 프로토스페이서 서열 내의 6번째 시토신을 구아닌으로 치환하는 것일 수 있으나, 이에 제한되지 않는다. In addition, the base conversion may preferably be to replace the 4th to 8th cytosines in the protospacer sequence with guanine, and more preferably to substitute the 5th to 7th cytosines in the protospacer sequence with guanine. It may be, and most preferably, the 6th cytosine in the protospacer sequence may be substituted with guanine, but is not limited thereto.

상기 프로토스페이서 서열은 crRNA(CRISPR RNA)에 상보적인 서열로, Cas9 단백질이 인식하는 부위인 PAM(protospacer adjacent motif) 서열의 앞(5' 방향)에 존재하는 20 내지 50개의 염기서열을 의미한다. The protospacer sequence is a sequence complementary to crRNA (CRISPR RNA) and refers to a sequence of 20 to 50 bases present in front (5' direction) of a protospacer adjacent motif (PAM) sequence recognized by Cas9 protein.

본 발명의 일 구현 예에 따른 식물체 염기전환용 재조합 벡터에서, 상기 시티딘 디아미나아제는 표적 부위의 서열의 PAM 서열이 존재하는 가닥에 위치하는 시토신을 우라실로 치환시키는 활성을 갖는 효소를 의미하는 것으로, 바람직하게는 래트 유래의 rAPOBEC1(rat apolipoprotein B mRNA editing enzyme, catalytic polypeptide-1)일 수 있으나, 이에 제한되지 않는다. In the recombinant vector for plant base conversion according to an embodiment of the present invention, the cytidine deaminase means an enzyme having an activity of substituting uracil for cytosine located in the strand where the PAM sequence of the sequence of the target site is present. As such, it may preferably be rat-derived rAPOBEC1 (rat apolipoprotein B mRNA editing enzyme, catalytic polypeptide-1), but is not limited thereto.

또한, 본 발명의 일 구현 예에 따른 식물체 염기전환용 재조합 벡터에서, 상기 nCas9은 DNA의 한 쪽 가닥을 자르는 엔도뉴클레아제 단백질이며, 상기 우라실 N-글리코실라제는 우라실(uracil, U)을 글리코실화시키는 효소를 의미한다.In addition, in the recombinant vector for plant base conversion according to an embodiment of the present invention, the nCas9 is an endonuclease protein that cuts one strand of DNA, and the uracil N-glycosylase converts uracil (U) to enzymes that catalyze glycosylation.

또한, 본 발명의 일 구현 예에 따른 식물체 염기전환용 재조합 벡터에서, 상기 10AA 링커(linker) 및 XTEN 링커는 아미노산 링커로서 효소들의 효율적인 작용을 위해 도입된 것이다.In addition, in the recombinant vector for plant base conversion according to an embodiment of the present invention, the 10AA linker and the XTEN linker are amino acid linkers introduced for efficient action of enzymes.

본 발명의 식물체 염기전환용 재조합 벡터는 nCas9에 의해 DNA의 한 쪽 가닥이 잘리고, 시티딘 디아미나아제에 의해 시토신이 우라실로 치환된 후, 우라실 N-글리코실라제에 의해 우라실이 구아닌으로 치환됨으로써, C to G 염기전환을 유도하는 것이 특징이다. In the recombinant vector for plant base conversion of the present invention, one strand of DNA is cut by nCas9, cytosine is replaced by uracil by cytidine deaminase, and uracil is replaced by guanine by uracil N-glycosylase. , characterized by inducing C to G base conversion.

본 발명의 일 구현 예에 따른 식물체 염기전환용 재조합 벡터에서, 상기 식물체는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 양파 등의 단자엽 식물 또는 애기장대, 감자, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 당근, 미나리, 배추, 양배추, 갓무, 수박, 참외, 오이, 호박, 박, 딸기, 대두, 녹두, 강낭콩, 완두 등의 쌍자엽 식물일 수 있고, 바람직하게는 단자엽 식물일 수 있으며, 더욱 바람직하게는 벼일 수 있으나, 이에 제한되지 않는다.In the recombinant vector for plant base conversion according to an embodiment of the present invention, the plant is a monocotyledonous plant such as rice, barley, wheat, rye, corn, sugarcane, oat, onion, or Arabidopsis thaliana, potato, eggplant, tobacco, and pepper Dicotyledonous plants such as tomato, burdock, crown daisy, lettuce, bellflower, spinach, chard, sweet potato, carrot, water parsley, cabbage, cabbage, mustard, watermelon, melon, cucumber, pumpkin, gourd, strawberry, soybean, mung bean, kidney bean, and pea It may be, preferably a monocotyledonous plant, more preferably a rice plant, but is not limited thereto.

본 발명의 일 구현 예에 따른 식물체 염기전환용 재조합 벡터에서, 상기 재조합 벡터는 5'에서 3' 방향으로 핵위치화신호(nuclear localization signal, NLS); 우라실 N-글리코실라제; 10AA 링커(linker); 시티딘 디아미나아제; XTEN 링커; nCas9; 및 핵위치화신호 코딩 서열이 순차적으로 연결된 것일 수 있으며, 바람직하게는 핵위치화신호(nuclear localization signal, NLS); 우라실 N-글리코실라제; 10AA 링커(linker); 시티딘 디아미나아제; XTEN 링커; nCas9; 및 핵위치화신호 코딩 서열은 서열번호 1의 염기서열로 이루어질 수 있다. 상기 재조합 벡터는 유비퀴틴 프로모터와 CaMV 터미네이터가 각각 5'과 3'에 연결되어 유비퀴틴 프로모터; 핵위치화신호(nuclear localization signal, NLS); 우라실 N-글리코실라제; 10AA 링커(linker); 시티딘 디아미나아제; XTEN 링커; nCas9; 및 핵위치화신호 코딩 서열 및 CaMV 터미네이터; 서열이 순차적으로 연결된 것일 수 있고(도 1C 참고), 상기 우라실 N-글리코실라제 코딩 서열은 벼의 코돈으로 최적화된 것(서열번호 2)일 수 있으나, 이에 제한되지 않는다. In the recombinant vector for plant base conversion according to one embodiment of the present invention, the recombinant vector includes a nuclear localization signal (NLS) in the 5' to 3' direction; uracil N-glycosylase; 10AA linker; cytidine deaminase; XTEN linker; nCas9; and a nuclear localization signal coding sequence may be sequentially linked, preferably a nuclear localization signal (NLS); uracil N-glycosylase; 10AA linker; cytidine deaminase; XTEN linker; nCas9; And the nuclear localization signal coding sequence may consist of the nucleotide sequence of SEQ ID NO: 1. The recombinant vector includes a ubiquitin promoter in which a ubiquitin promoter and a CaMV terminator are linked to 5' and 3', respectively; nuclear localization signal (NLS); uracil N-glycosylase; 10AA linker; cytidine deaminase; XTEN linker; nCas9; and nuclear localization signal coding sequences and CaMV terminators; Sequences may be sequentially linked (see FIG. 1C), and the uracil N-glycosylase coding sequence may be optimized for rice codons (SEQ ID NO: 2), but is not limited thereto.

본 발명에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로써 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term "recombinant" refers to a cell that replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a protein encoded by a heterologous peptide or a heterologous nucleic acid. Recombinant cells can express genes or gene segments not found in the cell's native form, either in sense or antisense form. Recombinant cells can also express genes found in cells in their natural state, but the genes have been modified and reintroduced into the cell by artificial means.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다.The term "vector" is used to refer to DNA fragment(s), nucleic acid molecules, which are delivered into cells. Vectors replicate DNA and can reproduce independently in host cells. The term “delivery vehicle” is often used interchangeably with “vector”.

발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함한다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 제오신(블레오마이신), 글리포세이트(glyphosate) 또는 포스피노트리신과 같은 제초제 저항성 유전자, 카나마이신, G418, 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.Expression vectors preferably contain one or more selectable markers. The marker is a nucleic acid sequence having a characteristic that can be selected by a conventional chemical method, and includes all genes capable of distinguishing transformed cells from non-transformed cells. Examples include herbicide resistance genes such as zeocin (bleomycin), glyphosate, or phosphinotricin, and antibiotic resistance genes such as kanamycin, G418, hygromycin, and chloramphenicol. It is not limited.

또한, 본 발명은 상기 식물체 염기전환용 재조합 벡터 및 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 코딩 서열이 포함된 벡터를 유효성분으로 포함하는 식물체의 염기전환용 조성물을 제공한다. In addition, the present invention provides a composition for plant base conversion comprising, as an active ingredient, the recombinant vector for plant base conversion and a vector containing a guide RNA coding sequence specific to a target base sequence.

본 발명의 염기전환용 조성물에 있어서, 상기 식물체 염기전환용 재조합 벡터는 전술한 것과 같다. In the composition for base conversion of the present invention, the recombinant vector for plant base conversion is as described above.

본 발명의 일 구현 예에 따른 식물체의 염기전환용 조성물에서, 상기 표적 염기서열은 바람직하게는 서열번호 3 내지 서열번호 6인 것일 수 있으며, 더욱 바람직하게는 서열번호 5 또는 서열번호 6인 것일 수 있으나, 이에 제한되지 않는다. In the composition for plant base conversion according to an embodiment of the present invention, the target base sequence may preferably be SEQ ID NO: 3 to SEQ ID NO: 6, more preferably SEQ ID NO: 5 or SEQ ID NO: 6 However, it is not limited thereto.

또한, 본 발명은 상기 식물체의 염기전환용 조성물을 식물세포에 주입하여 형질전환하는 단계를 포함하는 식물체의 염기전환 방법을 제공한다.In addition, the present invention provides a plant base conversion method comprising the step of transforming plant cells by injecting the plant base conversion composition.

본 발명에 따른 염기전환 방법에 있어서, 상기 조성물을 식물세포에 주입하여 형절전환하는 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296:72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol. 3:1099-1102), 식물 요소로의 현미주사법(Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), 각종 식물요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al., 1987, Nature 327:70), 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 박테리아에 의한 감염 등으로부터 적당하게 선택될 수 있다.In the base conversion method according to the present invention, the transformation method by injecting the composition into plant cells is a calcium/polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296:72-74; Negrutiu et al. , 1987, Plant Mol. Biol. 8:363-373), electroporation of protoplasts (Shillito et al., 1985, Bio/Technol. 3:1099-1102), microinjection into plant elements (Crossway et al. Gen. Genet. ens ( Agrobacterium tumefaciens ) It can be appropriately selected from infection by bacteria in (incomplete) mediated gene transfer.

또한, 상기 조성물을 식물세포에 도입하는 것은 형질전환 방법을 의미한다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 재조합 벡터를 적당한 선조 세포로 도입시키는데 이용될 수 있다.In addition, introducing the composition into plant cells refers to a transformation method. Transformation of plant species is now common for plant species including both dicotyledonous as well as monocotyledonous plants. In principle, any transformation method can be used to introduce the recombinant vectors according to the invention into suitable progenitor cells.

본 발명에 따른 염기전환 방법에 있어서, 상기 조성물을 주입하는 "식물세포"는 어떤 식물세포도 된다. 식물세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 소포자, 난세포, 종자 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다. 본 발명에 따른 바람직한 식물세포는 원형질체이다.In the base conversion method according to the present invention, the "plant cell" into which the composition is injected can be any plant cell. A plant cell is a cultured cell, cultured tissue, cultured organ or whole plant. "Plant tissue" refers to differentiated or undifferentiated plant tissue, including, but not limited to, roots, stems, leaves, pollen, microspores, ovules, seeds, and various types of cells used in culture, i.e., single cells, Includes protoplast, shoot and callus tissues. Plant tissue may be in planta or may be in organ culture, tissue culture or cell culture. Preferred plant cells according to the present invention are protoplasts.

본 발명의 형질전환 식물체는 우라실 N-글리코실라제, 시티딘 디아미나아제 및 nCas9 코딩 서열이 순차적으로 연결된 재조합 벡터 및 표적 염기서열에 특이적인 가이드 RNA 코딩 서열이 포함된 벡터로 형질전환되어 대조군 대비 C to G 염기전환 효율이 증가된 것일 수 있다. The transgenic plants of the present invention were transformed with a recombinant vector in which uracil N-glycosylase, cytidine deaminase and nCas9 coding sequences were sequentially linked and a vector containing a guide RNA coding sequence specific to the target sequence, compared to the control group. C to G base conversion efficiency may be increased.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, and the content of the present invention is not limited to the following examples.

재료 및 방법Materials and Methods

1. 식물재료1. Plant material

벼의 극조생종인 키타케(Oryza sativa L. cv. Kitaake)를 이용하여 실험을 진행하였다. 종자의 종피를 제거하여 70%(v/v) 에탄올로 1분 처리 후, 50%(v/v) 클로락스 용액에서 40분 동안 교반하여 표면을 소독하였다. 소독된 종자는 증류수로 10회 이상 세척한 후, 1%(w/v) 수크로스가 포함된 MS(Murashige and Skoog) 배지에서 28℃로 암조건에서 10일, 명조건에서 1일 동안 배양하였다. Experiments were conducted using Oryza sativa L. cv. The seed coat of the seed was removed, treated with 70% (v/v) ethanol for 1 minute, and then stirred in a 50% (v/v) Clorox solution for 40 minutes to disinfect the surface. The disinfected seeds were washed more than 10 times with distilled water, and then cultured in MS (Murashige and Skoog) medium containing 1% (w/v) sucrose at 28 ° C for 10 days in dark conditions and 1 day in light conditions. .

2. 식물에 사용가능한 C to G 염기전환용 재조합 백터 제작2. Production of recombinant vectors for C to G conversion that can be used in plants

Zong 등(2017, Nat. Biotechnol. 35:438-440)에 개시된 PBE(plant base editor) 벡터를 수정하여 PcCGBE(plant compatible C to G base editor) 벡터를 제작하였다. 구체적으로는, MluⅠ과 XmaⅠ 제한효소를 이용하여 PBE 벡터에서 우라실 글리코실라제 억제인자(uracil glycosylase inhibitor, UGI)를 제거하여 miniPcCGBE 벡터를 제작하였고, miniPcCGBE의 N-말단을 HindⅢ와 PmlⅠ 제한효소로 선형화시킨 후, 이 위치에 벼의 코돈으로 최적화한 E.coli의 우라실 N-글리코실라제(uracil N-glycosylase, UNG)를 붙여 PcCGBE 벡터를 완성하였다(도 1A, B 및 C). A PcCGBE (plant compatible C to G base editor) vector was prepared by modifying the PBE (plant base editor) vector disclosed in Zong et al. (2017, Nat. Biotechnol. 35:438-440). Specifically, the miniPcCGBE vector was constructed by removing the uracil glycosylase inhibitor (UGI) from the PBE vector using Mlu I and Xma I restriction enzymes, and the N-terminus of miniPcCGBE was Hind III and Pml I After linearization with a restriction enzyme, E. coli uracil N-glycosylase (UNG) optimized for rice codons was attached to this position to complete the PcCGBE vector (Fig. 1A, B and C).

3. 벼 원형질체 분리3. Rice protoplast isolation

벼의 지상부 조직을 면도칼로 0.5 mm 이내의 작은 조각으로 자른 후, 효소 용액(1.5% Cellulase R-10, 0.75% Macerozyme R-10)에서 4시간 동안 총 3번의 진공을 가하여 생화학적으로 세포벽을 분해하여 원형질체를 분리하였다. 헤모사이토미터를 이용하여 원형질체의 개수를 센 후, 5×106 개의 원형질체 세포를 실험에 사용하였다. After cutting the above-ground tissue of rice into small pieces within 0.5 mm with a razor, biochemically decompose the cell wall by applying a vacuum for 4 hours in an enzyme solution (1.5% Cellulase R-10, 0.75% Macerozyme R-10) three times. and the protoplasts were isolated. After counting the number of protoplasts using a hemocytometer, 5×10 6 protoplast cells were used in the experiment.

4. 벼 원형질체 형질전환4. Rice protoplast transformation

염기교정용 재조합 벡터(PBE, miniPcCGBE 또는 PcCGBE)와 4개의 유전자(OsAAT, OsALS2, OsCKX2 또는 OsSPL14)에 특이적인 각각의 가이드 RNA 코딩 서열이 포함된 벡터(도 1D)를 몰농도 1:3의 비율로 섞은 후, 벼 원형질체 세포에 PEG(polyethylene glycol)를 사용하여 주입하였다. 각각의 벡터를 주입한 후, 세포 내에서 염기전환이 일어날 수 있도록 암조건에서 60시간 동안 배양하였다. A recombinant vector for base correction (PBE, miniPcCGBE or PcCGBE) and a vector (Fig. 1D) containing each of the guide RNA coding sequences specific to four genes ( OsAAT , OsALS2 , OsCKX2 or OsSPL14 ) were mixed at a molar concentration of 1:3. After mixing, the rice protoplast cells were injected using PEG (polyethylene glycol). After each vector was injected, the cells were cultured for 60 hours under dark conditions so that base conversion could occur in the cells.

5. 염기전환 결과 분석5. Base conversion result analysis

형질전환한 벼 원형질체 세포에서 게노믹 DNA 추출 후, 3번의 PCR을 수행하여 딥시퀀싱(deep sequencing)을 위한 주형을 준비하였다. 첫 번째 PCR은 게놈 중에서 목적 유전자를 증폭시키기 위해 유전자에 특이한 프라이머(표 1)를 이용하였다. 두 번째 및 세 번째 PCR은 딥시퀀싱에 이용되는 바코드를 붙여주는 과정이며, 첫 번째 PCR 산물을 주형으로 사용하였다. Illumina의 MiniSeq 장비를 이용하여 앰플리콘(amplicon) 딥시퀀싱 후, CRISPR RGEN tool과 CRISPResso2 tool을 이용하여 분석하였다.After genomic DNA was extracted from the transformed rice protoplast cells, PCR was performed three times to prepare a template for deep sequencing. In the first PCR, gene-specific primers (Table 1) were used to amplify a target gene in the genome. The second and third PCRs are processes of attaching barcodes used for deep sequencing, and the first PCR product was used as a template. After amplicon deep sequencing using Illumina's MiniSeq equipment, analysis was performed using CRISPR RGEN tool and CRISPResso2 tool.

Figure pat00001
Figure pat00001

실시예 1. C to G 염기전환용 재조합 벡터 개발Example 1. Development of recombinant vector for C to G base conversion

C to T 염기전이용 PBE 벡터를 이용하여 벼 식물체에 적용 가능한 C to G 염기전환용 PcCGBE 벡터를 제작하였다. PBE 벡터는 시토신 디아미네이즈(cytosine deaminase)로 rAPOBEC1가 nCas9(nikase Cas9)의 N-말단에 결합되어 있다. 이러한 시토신 디아미네이즈에 의해 시토신(cytosine, C)이 티민(thymine, T)으로 치환되는데, 예외적으로 우라실의 글리코실화가 진행되면 염기 절단 복구(base excision repair, BER)에 인해 티민이 아닌 구아닌(guanine, G)으로 치환되는 경우가 있다고 보고된 바 있다. 본 발명은 이러한 현상을 역으로 이용하여 PBE 벡터로부터 PcCGBE 벡터를 제작하였다. PBE 벡터에는 우라실 글리코실화(uracil glycosylation)를 막기 위해 우라실 글리코실라제 억제인자(UGI)가 C-말단에 결합되어 있다. 따라서, PBE 벡터에서 우라실 글리코실라제 억제인자를 제거한 miniPcCGBE 벡터를 제작하였고, miniPcCGBE 벡터의 N-말단에 우라실 N-글리코실라제(UNG)를 첨가하여 PcCGBE 벡터를 최종 제작하였다(도 1).A PcCGBE vector for C to G base conversion applicable to rice plants was constructed using the PBE vector for C to T base conversion. The PBE vector is a cytosine deaminase, and rAPOBEC1 is linked to the N-terminus of nCas9 (nikase Cas9). By this cytosine deaminase, cytosine (C) is replaced by thymine (T). Exceptionally, when glycosylation of uracil proceeds, base excision repair (BER) causes guanine (not thymine) to occur. It has been reported that it may be substituted with guanine, G). In the present invention, a PcCGBE vector was constructed from a PBE vector by using this phenomenon in reverse. In the PBE vector, a uracil glycosylase inhibitor (UGI) is linked to the C-terminus to prevent uracil glycosylation. Therefore, a miniPcCGBE vector was constructed by removing the uracil glycosylase inhibitor from the PBE vector, and a PcCGBE vector was finally constructed by adding uracil N-glycosylase (UNG) to the N-terminus of the miniPcCGBE vector (FIG. 1).

실시예 2. C to G 염기전환 효율 검증Example 2. Verification of C to G base conversion efficiency

본 발명의 miniPcCGBE 및 PcCGBE 벡터의 C to G 염기전환 효율을 확인하기 위해 OsAAT(XM_015765674), OsALS2(XM_015770973.1), OsCKX2(NM_001048837.1) 또는 OsSPL14(XM_026027598.1) 유전자를 각각 표적으로 하는 gRNA(표 2)를 상기 벡터와 함께 원형질체에 주입하여 형질전환시켰다. 이후, 염기전환이 유도된 원형질체의 게노믹 DNA를 이용하여 앰플리콘 딥시퀀싱을 수행하여 각 유전자의 C to G 염기전환 효율을 분석하여 평균값을 계산하였다. 벡터 없이 PEG만 주입한 형질전환체를 대조군(control)으로 이용하였다. OsAAT (XM_015765674), OsALS2 (XM_015770973.1), OsCKX2 (NM_001048837.1) to confirm the C to G nucleotide conversion efficiency of the miniPcCGBE and PcCGBE vectors of the present invention Alternatively, gRNAs (Table 2) targeting the OsSPL14 (XM_026027598.1) gene, respectively, were injected into the protoplasts together with the vectors to transform them. Thereafter, amplicon deep sequencing was performed using the genomic DNA of the protoplasts from which the base conversion was induced, and the C to G base conversion efficiency of each gene was analyzed and the average value was calculated. A transformant injected with only PEG without vector was used as a control.

본 발명에서 사용한 gRNA 서열gRNA sequences used in the present invention GeneGene Sequences (protospacer with PAM)Sequences (protospacer with PAM ) 서열번호sequence number OsAATOsAAT CAAAACACCTTACCTCGGTCCGG CAAAA C ACCTTACCTCGGTC CGG 33 OsALS2OsALS2 CAGGTCCCCCGCCGCATGATCGG CAGGT C CCCCGCCGCATGAT CGG 44 OsCKX2OsCKX2 GAGCTCAAGCTCCGCGCCGCGGG GAGCT C AAGCTCCGCGCCGC GGG 55 OsSPL14OsSPL14 CTCTTCTGTCAACCCAGCCATGG CTCTT C TGTCAACCCAGCCA TGG 66

* 진하게 표시된 C는 프로토스페이서 서열 내의 6번째 시토신 염기를 나타낸다.* Bold C represents the 6th cytosine base in the protospacer sequence.

그 결과, 본 발명의 miniPcCGBE 및 PcCGBE 벡터를 주입한 형질전환체의 C to G 염기전환 평균 효율이 대조군 대비 유의미하게 높은 것을 확인하였다. PcCGBE 벡터를 주입했을 때는 약 0.28%의 효율을 보였고, miniPcCGBE 벡터를 주입했을 때는 약 0.1% 정도의 효율을 보이는 것을 확인하였다(도 2). 상기 결과를 통해, UGI만 제거했을 때(miniPcCGBE 벡터)보다 UNG를 붙여주었을 때(PcCGBE 벡터), BER 경로로 더 유도되어 C to G 염기전환이 증가하는 것을 알 수 있었다. As a result, it was confirmed that the average efficiency of C to G base conversion of the transformants injected with the miniPcCGBE and PcCGBE vectors of the present invention was significantly higher than that of the control group. When the PcCGBE vector was injected, the efficiency was about 0.28%, and when the miniPcCGBE vector was injected, it was confirmed that the efficiency was about 0.1% (FIG. 2). Through the above results, it was found that when UNG was added (PcCGBE vector) than when only UGI was removed (miniPcCGBE vector), the BER pathway was more induced and C to G base conversion increased.

실시예 3. 프로토스페이서(protospacer) 서열 내의 시토신(cytosine) 위치에 따른 염기전환 효율 분석Example 3. Analysis of base conversion efficiency according to cytosine position in protospacer sequence

본 발명의 PcCGBE 벡터의 교정 윈도우(editing window)를 알아보기 위해서 프로토스페이서 서열 내의 시토신 위치에 따른 4개 유전자에 대한 염기전환 효율을 분석하였다. In order to examine the editing window of the PcCGBE vector of the present invention, base conversion efficiencies of four genes according to cytosine positions in the protospacer sequence were analyzed.

그 결과, OsAAT, OsALS2, OsCKX2 또는 OsSPL14 유전자 중에서 OsCKX2 또는 OsSPL14 유전자의 염기전환 효율이 현저하게 높았다. OsAAT, OsALS2, OsCKX2 또는 OsSPL14 유전자 모두 20개의 뉴클레오테드로 이루어진 프로토스페이서 내의 시토신 중, 6번 째 위치의 시토신(C6)에서 염기전환이 가장 많이 일어나는 것을 확인하였다. OsAAT 유전자 및 OsALS2 유전자는 전체적으로 효율이 낮기 때문에 경향성이 뚜렷하게 나타나지 않았지만, OsCKX2 유전자 및 OsSPL14 유전자는 6번 째 위치의 시토신에서 C to G 염기전환이 뚜렷하게 가장 많이 일어나는 것을 확인하였다(도 3).As a result, among the OsAAT , OsALS2 , OsCKX2 or OsSPL14 genes, the base conversion efficiency of the OsCKX2 or OsSPL14 gene was remarkably high. Among the cytosines in the protospacer consisting of 20 nucleotides in all of the OsAAT , OsALS2 , OsCKX2 , and OsSPL14 genes, it was confirmed that base conversion occurs the most at cytosine (C6) at position 6. OsAAT gene and OsALS2 gene did not show a clear trend because of their overall low efficiency, but OsCKX2 gene and OsSPL14 gene showed that the most C to G base conversion occurred at cytosine at position 6 (FIG. 3).

<110> Seoul National University R&DB Foundation <120> Recombinant vector for base transversion of plant and uses thereof <130> PN21323 <160> 42 <170> KoPatentIn 3.0 <210> 1 <211> 5640 <212> DNA <213> Artificial Sequence <220> <223> PcCGBE vector <400> 1 ccaaagaaga agaggaaggt tgcgaatgag cttacatggc atgatgtcct ggctgaggag 60 aagcagcagc cgtacttctt aaatacgctg caaacagtcg ccagcgagcg gcagtcgggg 120 gtcaccatct atccaccgca gaaagatgtt ttcaacgcct tcaggtttac cgagttgggc 180 gacgtcaaag ttgtaattct tggtcaagat ccctaccacg gccctggaca agcacatggt 240 cttgcttttt cagtgaggcc gggcattgca ataccgccgt cgctattgaa catgtacaag 300 gagctggaaa atactattcc aggcttcacg cgccctaatc atggatattt ggaaagctgg 360 gcgaggcaag gtgttcttct actcaacact gttctcaccg tacgtgccgg gcaagctcat 420 tctcacgcca gtttagggtg ggagacattt actgacaagg tgatatccct catcaaccag 480 caccgcgagg gtgtggtgtt cctcctgtgg ggctctcacg cgcagaagaa gggggccatc 540 atcgacaaac agcggcacca cgtgctgaag gctccacatc catctcctct ctccgcgcac 600 aggggattct tcggctgcaa ccattttgtc ctcgcaaatc aatggctgga gcagagagga 660 gaaacgccta ttgattggat gccggtgttg cccgcagaat cagaatcggg ggggagcggc 720 ggctcggggg ggagctcatc ggagaccggc cctgttgctg ttgaccccac cctgcggcgg 780 agaatcgagc cacacgagtt cgaggtgttc ttcgacccaa gggagctccg caaggagacg 840 tgcctcctgt acgagatcaa ctggggcggc aggcactcca tctggaggca caccagccaa 900 aacaccaaca agcacgtgga ggtcaacttc atcgagaagt tcaccaccga gaggtacttc 960 tgcccaaaca cccgctgctc catcacctgg ttcctgtcct ggagcccatg cggcgagtgc 1020 tccagggcca tcaccgagtt cctcagccgc tacccacacg tcaccctgtt catctacatc 1080 gccaggctct accaccacgc cgacccaagg aacaggcagg gcctccgcga cctgatctcc 1140 agcggcgtga ccatccaaat catgaccgag caggagtccg gctactgctg gaggaacttc 1200 gtcaactact ccccaagcaa cgaggcccac tggccaaggt acccacacct ctgggtgcgc 1260 ctctacgtgc tcgagctgta ctgcatcatc ctcggcctgc caccatgcct caacatcctg 1320 aggcgcaagc aaccacagct gaccttcttc accatcgccc tccaaagctg ccactaccag 1380 aggctcccac cacacatcct gtgggctacc ggcctcaagt ccggcagcga gacgccaggc 1440 acctccgaga gcgctacgcc tgaacttaag gacaagaagt actcgatcgg cctcgccatc 1500 gggacgaact cagttggctg ggccgtgatc accgacgagt acaaggtgcc ctctaagaag 1560 ttcaaggtcc tggggaacac cgaccgccat tccatcaaga agaacctcat cggcgctctc 1620 ctgttcgaca gcggggagac cgctgaggct acgaggctca agagaaccgc taggcgccgg 1680 tacacgagaa ggaagaacag gatctgctac ctccaagaga ttttctccaa cgagatggcc 1740 aaggttgacg attcattctt ccaccgcctg gaggagtctt tcctcgtgga ggaggataag 1800 aagcacgagc ggcatcccat cttcggcaac atcgtggacg aggttgccta ccacgagaag 1860 taccctacga tctaccatct gcggaagaag ctcgtggact ccaccgataa ggcggacctc 1920 agactgatct acctcgctct ggcccacatg atcaagttcc gcggccattt cctgatcgag 1980 ggggatctca acccagacaa cagcgatgtt gacaagctgt tcatccaact cgtgcagacc 2040 tacaaccaac tcttcgagga gaacccgatc aacgcctctg gcgtggacgc gaaggctatc 2100 ctgtccgcga ggctctcgaa gtccaggagg ctggagaacc tgatcgctca gctcccaggc 2160 gagaagaaga acggcctgtt cgggaacctc atcgctctca gcctggggct caccccgaac 2220 ttcaagtcga acttcgatct cgctgaggac gccaagctgc aactctccaa ggacacctac 2280 gacgatgacc tcgataacct cctggcccag atcggcgatc aatacgcgga cctgttcctc 2340 gctgccaaga acctgtcgga cgccatcctc ctgtcagata tcctccgcgt gaacaccgag 2400 atcacgaagg ctccactctc tgcctccatg atcaagcgct acgacgagca ccatcaggat 2460 ctgaccctcc tgaaggcgct ggtccgccaa cagctcccgg agaagtacaa ggagattttc 2520 ttcgatcagt cgaagaacgg ctacgctggg tacatcgacg gcggggcctc acaagaggag 2580 ttctacaagt tcatcaagcc aatcctggag aagatggacg gcacggagga gctcctggtg 2640 aagctcaaca gggaggacct cctgcggaag cagagaacct tcgataacgg cagcatcccc 2700 caccaaatcc atctcgggga gctgcacgcc atcctgagaa ggcaagagga cttctaccct 2760 ttcctcaagg ataaccggga gaagatcgag aagatcctga ccttcagaat cccatactac 2820 gtcggccctc tcgcgcgggg gaactcaaga ttcgcttgga tgacccgcaa gtctgaggag 2880 accatcacgc cgtggaactt cgaggaggtg gtggacaagg gcgctagcgc tcagtcgttc 2940 atcgagagga tgaccaactt cgacaagaac ctgcccaacg agaaggtgct ccctaagcac 3000 tcgctcctgt acgagtactt caccgtctac aacgagctca cgaaggtgaa gtacgtcacc 3060 gagggcatgc gcaagccagc gttcctgtcc ggggagcaga agaaggctat cgtggacctc 3120 ctgttcaaga ccaaccggaa ggtcacggtt aagcaactca aggaggacta cttcaagaag 3180 atcgagtgct tcgattcggt cgagatcagc ggcgttgagg accgcttcaa cgccagcctc 3240 gggacctacc acgatctcct gaagatcatc aaggataagg acttcctgga caacgaggag 3300 aacgaggata tcctggagga catcgtgctg accctcacgc tgttcgagga cagggagatg 3360 atcgaggagc gcctgaagac gtacgcccat ctcttcgatg acaaggtcat gaagcaactc 3420 aagcgccgga gatacaccgg ctgggggagg ctgtcccgca agctcatcaa cggcatccgg 3480 gacaagcagt ccgggaagac catcctcgac ttcctcaaga gcgatggctt cgccaacagg 3540 aacttcatgc aactgatcca cgatgacagc ctcaccttca aggaggatat ccaaaaggct 3600 caagtgagcg gccaggggga ctcgctgcac gagcatatcg cgaacctcgc tggctccccc 3660 gcgatcaaga agggcatcct ccagaccgtg aaggttgtgg acgagctcgt gaaggtcatg 3720 ggccggcaca agcctgagaa catcgtcatc gagatggcca gagagaacca aaccacgcag 3780 aaggggcaaa agaactctag ggagcgcatg aagcgcatcg aggagggcat caaggagctg 3840 gggtcccaaa tcctcaagga gcacccagtg gagaacaccc aactgcagaa cgagaagctc 3900 tacctgtact acctccagaa cggcagggat atgtacgtgg accaagagct ggatatcaac 3960 cgcctcagcg attacgacgt cgatcatatc gttccccagt ctttcctgaa ggatgactcc 4020 atcgacaaca aggtcctcac caggtcggac aagaaccgcg gcaagtcaga taacgttcca 4080 tctgaggagg tcgttaagaa gatgaagaac tactggaggc agctcctgaa cgccaagctg 4140 atcacgcaaa ggaagttcga caacctcacc aaggctgaga gaggcgggct ctcagagctg 4200 gacaaggccg gcttcatcaa gcggcagctg gtcgagacca gacaaatcac gaagcacgtt 4260 gcgcaaatcc tcgactctcg gatgaacacg aagtacgatg agaacgacaa gctgatcagg 4320 gaggttaagg tgatcaccct gaagtctaag ctcgtctccg acttcaggaa ggatttccag 4380 ttctacaagg ttcgcgagat caacaactac caccatgccc atgacgctta cctcaacgct 4440 gtggtcggca ccgctctgat caagaagtac ccaaagctgg agtccgagtt cgtgtacggg 4500 gactacaagg tttacgatgt gcgcaagatg atcgccaagt cggagcaaga gatcggcaag 4560 gctaccgcca agtacttctt ctactcaaac atcatgaact tcttcaagac cgagatcacg 4620 ctggccaacg gcgagatccg gaagagaccg ctcatcgaga ccaacggcga gacgggggag 4680 atcgtgtggg acaagggcag ggatttcgcg accgtccgca aggttctctc catgccccag 4740 gtgaacatcg tcaagaagac cgaggtccaa acgggcgggt tctcaaagga gtctatcctg 4800 cctaagcgga acagcgacaa gctcatcgcc agaaagaagg actgggaccc aaagaagtac 4860 ggcgggttcg acagccctac cgtggcctac tcggtcctgg ttgtggcgaa ggttgagaag 4920 ggcaagtcca agaagctcaa gagcgtgaag gagctcctgg ggatcaccat catggagagg 4980 tccagcttcg agaagaaccc aatcgacttc ctggaggcca agggctacaa ggaggtgaag 5040 aaggacctga tcatcaagct cccgaagtac tctctcttcg agctggagaa cggcaggaag 5100 agaatgctgg cttccgctgg cgagctccag aaggggaacg agctcgcgct gccaagcaag 5160 tacgtgaact tcctctacct ggcttcccac tacgagaagc tcaagggcag cccggaggac 5220 aacgagcaaa agcagctgtt cgtcgagcag cacaagcatt acctcgacga gatcatcgag 5280 caaatctccg agttcagcaa gcgcgtgatc ctcgccgacg cgaacctgga taaggtcctc 5340 tccgcctaca acaagcaccg ggacaagccc atcagagagc aagcggagaa catcatccat 5400 ctcttcaccc tgacgaacct cggcgctcct gctgctttca agtacttcga caccacgatc 5460 gatcggaaga gatacacctc cacgaaggag gtcctggacg cgaccctcat ccaccagtcg 5520 atcaccggcc tgtacgagac gaggatcgac ctctcacaac tcggcgggga taagagaccc 5580 gcagcaacca agaaggcagg gcaagcaaag aagaagaagc caaagaagaa gcggaaggtg 5640 5640 <210> 2 <211> 684 <212> DNA <213> Artificial Sequence <220> <223> rice codon optimized uracil N-glycosylase <400> 2 gcgaatgagc ttacatggca tgatgtcctg gctgaggaga agcagcagcc gtacttctta 60 aatacgctgc aaacagtcgc cagcgagcgg cagtcggggg tcaccatcta tccaccgcag 120 aaagatgttt tcaacgcctt caggtttacc gagttgggcg acgtcaaagt tgtaattctt 180 ggtcaagatc cctaccacgg ccctggacaa gcacatggtc ttgctttttc agtgaggccg 240 ggcattgcaa taccgccgtc gctattgaac atgtacaagg agctggaaaa tactattcca 300 ggcttcacgc gccctaatca tggatatttg gaaagctggg cgaggcaagg tgttcttcta 360 ctcaacactg ttctcaccgt acgtgccggg caagctcatt ctcacgccag tttagggtgg 420 gagacattta ctgacaaggt gatatccctc atcaaccagc accgcgaggg tgtggtgttc 480 ctcctgtggg gctctcacgc gcagaagaag ggggccatca tcgacaaaca gcggcaccac 540 gtgctgaagg ctccacatcc atctcctctc tccgcgcaca ggggattctt cggctgcaac 600 cattttgtcc tcgcaaatca atggctggag cagagaggag aaacgcctat tgattggatg 660 ccggtgttgc ccgcagaatc agaa 684 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> gRNA <400> 3 caaaacacct tacctcggtc cgg 23 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> gRNA <400> 4 caggtccccc gccgcatgat cgg 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> gRNA <400> 5 gagctcaagc tccgcgccgc ggg 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> gRNA <400> 6 ctcttctgtc aacccagcca tgg 23 <210> 7 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 tcgtccgtct tcgctggcc 19 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gaacacggaa tctgtacact cagcc 25 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cggtcatcac caaccacctc ttc 23 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 ccaccaccga catagagaat c 21 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gctgctagtg ctggcaaaat 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 acgcacaata tgaggggtcg 20 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 cgctgatgtg ttgtttgttg cga 23 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 cctgcagagc aagctcaagc tca 23 <210> 15 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 acactctttc cctacacgac gctcttccga tcttcgacct gatcggtgct c 51 <210> 16 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gtgactggag ttcagacgtg tgctcttccg atctatccac caccaatcca atcc 54 <210> 17 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 acactctttc cctacacgac gctcttccga tctggcaacc aacctcgtgt cc 52 <210> 18 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gtgactggag ttcagacgtg tgctcttccg atctgacaag gtaattgtgc ttggtg 56 <210> 19 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 acactctttc cctacacgac gctcttccga tcttttgcag aggatggatg tgctg 55 <210> 20 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gtgactggag ttcagacgtg tgctcttccg atctacaggt tcagccatgg gtgc 54 <210> 21 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 acactctttc cctacacgac gctcttccga tcttcgctgg cccaaatctc cct 53 <210> 22 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gtgactggag ttcagacgtg tgctcttccg atctgacatg gctgcagcct ggtt 54 <210> 23 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 aatgatacgg cgaccaccga gatctacact atagcctaca ctctttccct acacgac 57 <210> 24 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 aatgatacgg cgaccaccga gatctacaca tagaggcaca ctctttccct acacgac 57 <210> 25 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 aatgatacgg cgaccaccga gatctacacc ctatcctaca ctctttccct acacgac 57 <210> 26 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 aatgatacgg cgaccaccga gatctacacg gctctgaaca ctctttccct acacgac 57 <210> 27 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 aatgatacgg cgaccaccga gatctacaca ggcgaagaca ctctttccct acacgac 57 <210> 28 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 aatgatacgg cgaccaccga gatctacact aatcttaaca ctctttccct acacgac 57 <210> 29 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 aatgatacgg cgaccaccga gatctacacc aggacgtaca ctctttccct acacgac 57 <210> 30 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 aatgatacgg cgaccaccga gatctacacg tactgacaca ctctttccct acacgac 57 <210> 31 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 caagcagaag acggcatacg agatcgagta atgtgactgg agttcagacg tgt 53 <210> 32 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 caagcagaag acggcatacg agattctccg gagtgactgg agttcagacg tgt 53 <210> 33 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 caagcagaag acggcatacg agataatgag cggtgactgg agttcagacg tgt 53 <210> 34 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 caagcagaag acggcatacg agatggaatc tcgtgactgg agttcagacg tgt 53 <210> 35 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 caagcagaag acggcatacg agatttctga atgtgactgg agttcagacg tgt 53 <210> 36 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 caagcagaag acggcatacg agatacgaat tcgtgactgg agttcagacg tgt 53 <210> 37 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 caagcagaag acggcatacg agatagcttc aggtgactgg agttcagacg tgt 53 <210> 38 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 caagcagaag acggcatacg agatgcgcat tagtgactgg agttcagacg tgt 53 <210> 39 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 caagcagaag acggcatacg agatcatagc cggtgactgg agttcagacg tgt 53 <210> 40 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 caagcagaag acggcatacg agatttcgcg gagtgactgg agttcagacg tgt 53 <210> 41 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 caagcagaag acggcatacg agatgcgcga gagtgactgg agttcagacg tgt 53 <210> 42 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 caagcagaag acggcatacg agatctatcg ctgtgactgg agttcagacg tgt 53 <110> Seoul National University R&DB Foundation <120> Recombinant vector for base transversion of plant and uses its <130> PN21323 <160> 42 <170> KoPatentIn 3.0 <210> 1 <211> 5640 <212> DNA <213> artificial sequence <220> <223> PcCGBE vector <400> 1 ccaaagaaga agaggaaggt tgcgaatgag cttacatggc atgatgtcct ggctgaggag 60 aagcagcagc cgtacttctt aaatacgctg caaacagtcg ccagcgagcg gcagtcgggg 120 gtcaccatct atccaccgca gaaagatgtt ttcaacgcct tcaggtttac cgagttgggc 180 gacgtcaaag ttgtaattct tggtcaagat ccctaccacg gccctggaca agcacatggt 240 cttgcttttt cagtgaggcc gggcattgca ataccgccgt cgctattgaa catgtacaag 300 gagctggaaa atactattcc aggcttcacg cgccctaatc atggatattt ggaaagctgg 360 gcgaggcaag gtgttcttct actcaacact gttctcaccg tacgtgccgg gcaagctcat 420 tctcacgcca gtttagggtg ggagacattt actgacaagg tgatatccct catcaaccag 480 caccgcgagg gtgtggtgtt cctcctgtgg ggctctcacg cgcagaagaa gggggccatc 540 atcgacaaac agcggcacca cgtgctgaag gctccacatc catctcctct ctccgcgcac 600 aggggattct tcggctgcaa ccattttgtc ctcgcaaatc aatggctgga gcagagagga 660 gaaacgccta ttgattggat gccggtgttg cccgcagaat cagaatcggg ggggagcggc 720 ggctcggggg ggagctcatc ggagaccggc cctgttgctg ttgaccccac cctgcggcgg 780 agaatcgagc cacacgagtt cgaggtgttc ttcgacccaa gggagctccg caaggagacg 840 tgcctcctgt acgagatcaa ctggggcggc aggcactcca tctggaggca caccagccaa 900 aacaccaaca agcacgtgga ggtcaacttc atcgagaagt tcaccaccga gaggtacttc 960 tgcccaaaca cccgctgctc catcacctgg ttcctgtcct ggagcccatg cggcgagtgc 1020 tccagggcca tcaccgagtt cctcagccgc tacccacacg tcaccctgtt catctacatc 1080 gccaggctct accaccacgc cgacccaagg aacaggcagg gcctccgcga cctgatctcc 1140 agcggcgtga ccatccaaat catgaccgag caggagtccg gctactgctg gaggaacttc 1200 gtcaactact ccccaagcaa cgaggcccac tggccaaggt acccacacct ctgggtgcgc 1260 ctctacgtgc tcgagctgta ctgcatcatc ctcggcctgc caccatgcct caacatcctg 1320 aggcgcaagc aaccacagct gaccttcttc accatcgccc tccaaagctg ccactaccag 1380 aggctcccac cacacatcct gtgggctacc ggcctcaagt ccggcagcga gacgccaggc 1440 acctccgaga gcgctacgcc tgaacttaag gacaagaagt actcgatcgg cctcgccatc 1500 gggacgaact cagttggctg ggccgtgatc accgacgagt acaaggtgcc ctctaagaag 1560 ttcaaggtcc tggggaacac cgaccgccat tccatcaaga agaacctcat cggcgctctc 1620 ctgttcgaca gcggggagac cgctgaggct acgaggctca agagaaccgc taggcgccgg 1680 tacacgagaa ggaagaacag gatctgctac ctccaagaga ttttctccaa cgagatggcc 1740 aaggttgacg attcattctt ccaccgcctg gaggagtctt tcctcgtgga ggaggataag 1800 aagcacgagc ggcatcccat cttcggcaac atcgtggacg aggttgccta ccacgagaag 1860 taccctacga tctaccatct gcggaagaag ctcgtggact ccaccgataa ggcggacctc 1920 agactgatct acctcgctct ggcccacatg atcaagttcc gcggccattt cctgatcgag 1980 ggggatctca acccagacaa cagcgatgtt gacaagctgt tcatccaact cgtgcagacc 2040 tacaaccaac tcttcgagga gaacccgatc aacgcctctg gcgtggacgc gaaggctatc 2100 ctgtccgcga ggctctcgaa gtccaggagg ctggagaacc tgatcgctca gctcccaggc 2160 gagaagaaga acggcctgtt cgggaacctc atcgctctca gcctggggct caccccgaac 2220 ttcaagtcga acttcgatct cgctgaggac gccaagctgc aactctccaa ggacacctac 2280 gacgatgacc tcgataacct cctggcccag atcggcgatc aatacgcgga cctgttcctc 2340 gctgccaaga acctgtcgga cgccatcctc ctgtcagata tcctccgcgt gaacaccgag 2400 atcacgaagg ctccactctc tgcctccatg atcaagcgct acgacgagca ccatcaggat 2460 ctgaccctcc tgaaggcgct ggtccgccaa cagctcccgg agaagtacaa ggagattttc 2520 ttcgatcagt cgaagaacgg ctacgctggg tacatcgacg gcggggcctc acaagaggag 2580 ttctacaagt tcatcaagcc aatcctggag aagatggacg gcacggagga gctcctggtg 2640 aagctcaaca gggaggacct cctgcggaag cagagaacct tcgataacgg cagcatcccc 2700 caccaaatcc atctcgggga gctgcacgcc atcctgagaa ggcaagagga cttctaccct 2760 ttcctcaagg ataaccggga gaagatcgag aagatcctga ccttcagaat cccatactac 2820 gtcggccctc tcgcgcgggg gaactcaaga ttcgcttgga tgacccgcaa gtctgaggag 2880 accatcacgc cgtggaactt cgaggaggtg gtggacaagg gcgctagcgc tcagtcgttc 2940 atcgagagga tgaccaactt cgacaagaac ctgcccaacg agaaggtgct ccctaagcac 3000 tcgctcctgt acgagtactt caccgtctac aacgagctca cgaaggtgaa gtacgtcacc 3060 gagggcatgc gcaagccagc gttcctgtcc ggggagcaga agaaggctat cgtggacctc 3120 ctgttcaaga ccaaccggaa ggtcacggtt aagcaactca aggaggacta cttcaagaag 3180 atcgagtgct tcgattcggt cgagatcagc ggcgttgagg accgcttcaa cgccagcctc 3240 gggacctacc acgatctcct gaagatcatc aaggataagg acttcctgga caacgaggag 3300 aacgaggata tcctggagga catcgtgctg accctcacgc tgttcgagga cagggagatg 3360 atcgaggagc gcctgaagac gtacgcccat ctcttcgatg acaaggtcat gaagcaactc 3420 aagcgccgga gatacaccgg ctgggggagg ctgtcccgca agctcatcaa cggcatccgg 3480 gacaagcagt ccgggaagac catcctcgac ttcctcaaga gcgatggctt cgccaacagg 3540 aacttcatgc aactgatcca cgatgacagc ctcaccttca aggaggatat ccaaaaggct 3600 caagtgagcg gccagggggga ctcgctgcac gagcatatcg cgaacctcgc tggctccccc 3660 gcgatcaaga agggcatcct ccagaccgtg aaggttgtgg acgagctcgt gaaggtcatg 3720 ggccggcaca agcctgagaa catcgtcatc gagatggcca gagagaacca aaccacgcag 3780 aaggggcaaa agaactctag ggagcgcatg aagcgcatcg aggagggcat caaggagctg 3840 gggtcccaaa tcctcaagga gcacccagtg gagaacaccc aactgcagaa cgagaagctc 3900 tacctgtact acctccagaa cggcagggat atgtacgtgg accaagagct ggatatcaac 3960 cgcctcagcg attacgacgt cgatcatatc gttccccagt ctttcctgaa ggatgactcc 4020 atcgacaaca aggtcctcac caggtcggac aagaaccgcg gcaagtcaga taacgttcca 4080 tctgaggagg tcgttaagaa gatgaagaac tactggaggc agctcctgaa cgccaagctg 4140 atcacgcaaa ggaagttcga caacctcacc aaggctgaga gaggcgggct ctcagagctg 4200 gacaaggccg gcttcatcaa gcggcagctg gtcgagacca gacaaatcac gaagcacgtt 4260 gcgcaaatcc tcgactctcg gatgaacacg aagtacgatg agaacgacaa gctgatcagg 4320 gaggttaagg tgatcaccct gaagtctaag ctcgtctccg acttcaggaa ggatttccag 4380 ttctacaagg ttcgcgagat caacaactac caccatgccc atgacgctta cctcaacgct 4440 gtggtcggca ccgctctgat caagaagtac ccaaagctgg agtccgagtt cgtgtacggg 4500 gactacaagg tttacgatgt gcgcaagatg atcgccaagt cggagcaaga gatcggcaag 4560 gctaccgcca agtacttctt ctactcaaac atcatgaact tcttcaagac cgagatcacg 4620 ctggccaacg gcgagatccg gaagagaccg ctcatcgaga ccaacggcga gacggggggag 4680 atcgtgtggg acaagggcag ggatttcgcg accgtccgca aggttctctc catgccccag 4740 gtgaacatcg tcaagaagac cgaggtccaa acgggcgggt tctcaaagga gtctatcctg 4800 cctaagcgga acagcgacaa gctcatcgcc agaaagaagg actgggaccc aaagaagtac 4860 ggcgggttcg acagccctac cgtggcctac tcggtcctgg ttgtggcgaa ggttgagaag 4920 ggcaagtcca agaagctcaa gagcgtgaag gagctcctgg ggatcaccat catggagagg 4980 tccagcttcg agaagaaccc aatcgacttc ctggaggcca aggggctacaa ggaggtgaag 5040 aaggacctga tcatcaagct cccgaagtac tctctcttcg agctggagaa cggcaggaag 5100 agaatgctgg cttccgctgg cgagctccag aaggggaacg agctcgcgct gccaagcaag 5160 tacgtgaact tcctctacct ggcttcccac tacgagaagc tcaagggcag cccggaggac 5220 aacgagcaaa agcagctgtt cgtcgagcag cacaagcatt acctcgacga gatcatcgag 5280 caaatctccg agttcagcaa gcgcgtgatc ctcgccgacg cgaacctgga taaggtcctc 5340 tccgcctaca acaagcaccg ggacaagccc atcagagagc aagcggagaa catcatccat 5400 ctcttcaccc tgacgaacct cggcgctcct gctgctttca agtacttcga caccacgatc 5460 gatcggaaga gatacacctc cacgaaggag gtcctggacg cgaccctcat ccaccagtcg 5520 atcaccggcc tgtacgagac gaggatcgac ctctcacaac tcggcgggga taagagaccc 5580 gcagcaacca agaaggcagg gcaagcaaag aagaagaagc caaagaagaa gcggaaggtg 5640 5640 <210> 2 <211> 684 <212> DNA <213> artificial sequence <220> <223> rice codon optimized uracil N-glycosylase <400> 2 gcgaatgagc ttacatggca tgatgtcctg gctgaggaga agcagcagcc gtacttctta 60 aatacgctgc aaacagtcgc cagcgagcgg cagtcggggg tcaccatcta tccaccgcag 120 aaagatgttt tcaacgcctt caggtttacc gagttgggcg acgtcaaagt tgtaattctt 180 ggtcaagatc cctaccacgg ccctggacaa gcacatggtc ttgctttttc agtgaggccg 240 ggcattgcaa taccgccgtc gctattgaac atgtacaagg agctggaaaa tactattcca 300 ggcttcacgc gccctaatca tggatatttg gaaagctggg cgaggcaagg tgttcttcta 360 ctcaacactg ttctcaccgt acgtgccggg caagctcatt ctcacgccag tttagggtgg 420 gagacattta ctgacaaggt gatatccctc atcaaccagc accgcgaggg tgtggtgttc 480 ctcctgtggg gctctcacgc gcagaagaag ggggccatca tcgacaaaca gcggcaccac 540 gtgctgaagg ctccacatcc atctcctctc tccgcgcaca ggggattctt cggctgcaac 600 catttgtcc tcgcaaatca atggctggag cagagaggag aaacgcctat tgattggatg 660 ccggtgttgc ccgcagaatc agaa 684 <210> 3 <211> 23 <212> DNA <213> artificial sequence <220> <223> gRNA <400> 3 caaaaccct tacctcggtc cgg 23 <210> 4 <211> 23 <212> DNA <213> artificial sequence <220> <223> gRNA <400> 4 caggtccccc gccgcatgat cgg 23 <210> 5 <211> 23 <212> DNA <213> artificial sequence <220> <223> gRNA <400> 5 gagctcaagc tccgcgccgc ggg 23 <210> 6 <211> 23 <212> DNA <213> artificial sequence <220> <223> gRNA <400> 6 ctcttctgtc aacccagcca tgg 23 <210> 7 <211> 19 <212> DNA <213> artificial sequence <220> <223> primer <400> 7 tcgtccgtct tcgctggcc 19 <210> 8 <211> 25 <212> DNA <213> artificial sequence <220> <223> primer <400> 8 gaacacggaa tctgtacact cagcc 25 <210> 9 <211> 23 <212> DNA <213> artificial sequence <220> <223> primer <400> 9 cggtcatcac caaccacctc ttc 23 <210> 10 <211> 21 <212> DNA <213> artificial sequence <220> <223> primer <400> 10 ccaccaccga catagagaat c 21 <210> 11 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 11 gctgctagtg ctggcaaaat 20 <210> 12 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 12 acgcacaata tgaggggtcg 20 <210> 13 <211> 23 <212> DNA <213> artificial sequence <220> <223> primer <400> 13 cgctgatgtg ttgtttgttg cga 23 <210> 14 <211> 23 <212> DNA <213> artificial sequence <220> <223> primer <400> 14 cctgcagagc aagctcaagc tca 23 <210> 15 <211> 51 <212> DNA <213> artificial sequence <220> <223> primer <400> 15 acactctttc cctacacgac gctcttccga tcttcgacct gatcggtgct c 51 <210> 16 <211> 54 <212> DNA <213> artificial sequence <220> <223> primer <400> 16 gtgactggag ttcagacgtg tgctcttccg atctatccac caccaatcca atcc 54 <210> 17 <211> 52 <212> DNA <213> artificial sequence <220> <223> primer <400> 17 acactctttc cctacacgac gctcttccga tctggcaacc aacctcgtgt cc 52 <210> 18 <211> 56 <212> DNA <213> artificial sequence <220> <223> primer <400> 18 gtgactggag ttcagacgtg tgctcttccg atctgacaag gtaattgtgc ttggtg 56 <210> 19 <211> 55 <212> DNA <213> artificial sequence <220> <223> primer <400> 19 acactctttc cctacacgac gctcttccga tcttttgcag aggatggatg tgctg 55 <210> 20 <211> 54 <212> DNA <213> artificial sequence <220> <223> primer <400> 20 gtgactggag ttcagacgtg tgctcttccg atctacaggt tcagccatgg gtgc 54 <210> 21 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 21 acactctttc cctacacgac gctcttccga tcttcgctgg cccaaatctc cct 53 <210> 22 <211> 54 <212> DNA <213> artificial sequence <220> <223> primer <400> 22 gtgactggag ttcagacgtg tgctcttccg atctgacatg gctgcagcct ggtt 54 <210> 23 <211> 57 <212> DNA <213> artificial sequence <220> <223> primer <400> 23 aatgatacgg cgaccaccga gatctacact atagcctaca ctctttccct acacgac 57 <210> 24 <211> 57 <212> DNA <213> artificial sequence <220> <223> primer <400> 24 aatgatacgg cgaccaccga gatctacaca tagaggcaca ctctttccct acacgac 57 <210> 25 <211> 57 <212> DNA <213> artificial sequence <220> <223> primer <400> 25 aatgatacgg cgaccaccga gatctacacc ctatcctaca ctctttccct acacgac 57 <210> 26 <211> 57 <212> DNA <213> artificial sequence <220> <223> primer <400> 26 aatgatacgg cgaccaccga gatctacacg gctctgaaca ctctttccct acacgac 57 <210> 27 <211> 57 <212> DNA <213> artificial sequence <220> <223> primer <400> 27 aatgatacgg cgaccaccga gatctacaca ggcgaagaca ctctttccct acacgac 57 <210> 28 <211> 57 <212> DNA <213> artificial sequence <220> <223> primer <400> 28 aatgatacgg cgaccaccga gatctacact aatcttaaca ctctttccct acacgac 57 <210> 29 <211> 57 <212> DNA <213> artificial sequence <220> <223> primer <400> 29 aatgatacgg cgaccaccga gatctacacc aggacgtaca ctctttccct acacgac 57 <210> 30 <211> 57 <212> DNA <213> artificial sequence <220> <223> primer <400> 30 aatgatacgg cgaccaccga gatctacacg tactgacaca ctctttccct acacgac 57 <210> 31 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 31 caagcagaag acggcatacg agatcgagta atgtgactgg agttcagacg tgt 53 <210> 32 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 32 caagcagaag acggcatacg agattctccg gagtgactgg agttcagacg tgt 53 <210> 33 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 33 caagcagaag acggcatacg agataatgag cggtgactgg agttcagacg tgt 53 <210> 34 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 34 caagcagaag acggcatacg agatggaatc tcgtgactgg agttcagacg tgt 53 <210> 35 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 35 caagcagaag acggcatacg agatttctga atgtgactgg agttcagacg tgt 53 <210> 36 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 36 caagcagaag acggcatacg agatacgaat tcgtgactgg agttcagacg tgt 53 <210> 37 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 37 caagcagaag acggcatacg agatagcttc aggtgactgg agttcagacg tgt 53 <210> 38 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 38 caagcagaag acggcatacg agatgcgcat tagtgactgg agttcagacg tgt 53 <210> 39 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 39 caagcagaag acggcatacg agatcatagc cggtgactgg agttcagacg tgt 53 <210> 40 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 40 caagcagaag acggcatacg agatttcgcg gagtgactgg agttcagacg tgt 53 <210> 41 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 41 caagcagaag acggcatacg agatgcgcga gagtgactgg agttcagacg tgt 53 <210> 42 <211> 53 <212> DNA <213> artificial sequence <220> <223> primer <400> 42 caagcagaag acggcatacg agatctatcg ctgtgactgg agttcagacg tgt 53

Claims (10)

우라실 N-글리코실라제(uracil N-glycosylase, UNG), 시티딘 디아미나아제(cytidine deaminase) 및 nCas9(nickase Cas9) 코딩 서열이 순차적으로 연결된 것을 특징으로 하는 식물체 염기전환용 재조합 벡터.A recombinant vector for plant base conversion, characterized in that the coding sequences of uracil N-glycosylase (UNG), cytidine deaminase, and nickase Cas9 (nCas9) are sequentially linked. 제1항에 있어서, 상기 염기전환은 시토신(C)을 구아닌(G)으로 치환하는 것을 특징으로 하는 식물체 염기전환용 재조합 벡터.The recombinant vector for plant base conversion according to claim 1, wherein the base conversion is performed by replacing cytosine (C) with guanine (G). 제1항에 있어서, 상기 염기전환은 프로토스페이서(protospacer) 서열 내의 6번째 시토신(C)을 구아닌(G)으로 치환하는 것을 특징으로 하는 식물체 염기전환용 재조합 벡터.The recombinant vector for plant base conversion according to claim 1, wherein the base conversion is performed by substituting 6th cytosine (C) in a protospacer sequence with guanine (G). 제1항에 있어서, 상기 식물체는 벼인 것을 특징으로 하는 식물체 염기전환용 재조합 벡터.The recombinant vector for plant base conversion according to claim 1, wherein the plant is rice. 제1항에 있어서, 상기 재조합 벡터는 5'에서 3' 방향으로 핵위치화신호(nuclear localization signal, NLS); 우라실 N-글리코실라제; 10AA 링커(linker); 시티딘 디아미나아제; XTEN 링커; nCas9; 및 핵위치화신호 코딩 서열이 순차적으로 연결된 것을 특징으로 하는 식물체 염기전환용 재조합 벡터. The method of claim 1, wherein the recombinant vector comprises a nuclear localization signal (NLS) in the 5' to 3' direction; uracil N-glycosylase; 10AA linker; cytidine deaminase; XTEN linker; nCas9; and a nuclear localization signal coding sequence sequentially linked to each other. 제5항에 있어서, 상기 우라실 N-글리코실라제 코딩 서열은 벼의 코돈으로 최적화된 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는 식물체 염기전환용 재조합 벡터.The recombinant vector for plant base conversion according to claim 5, wherein the uracil N-glycosylase coding sequence consists of the nucleotide sequence of SEQ ID NO: 2 optimized for rice codons. 제6항에 있어서, 상기 재조합 벡터는 서열번호 1의 염기서열을 포함하는 것을 특징으로 하는 식물체 염기전환용 재조합 벡터.The recombinant vector for plant base conversion according to claim 6, wherein the recombinant vector comprises the nucleotide sequence of SEQ ID NO: 1. 제1항 내지 제7항 중 어느 한 항의 재조합 벡터 및 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 코딩 서열이 포함된 벡터를 유효성분으로 포함하는 식물체의 염기전환용 조성물.A composition for base conversion of plants comprising, as an active ingredient, the recombinant vector of any one of claims 1 to 7 and a vector containing a guide RNA coding sequence specific to a target base sequence. 제8항에 있어서, 상기 표적 염기서열은 서열번호 5 또는 6인 것을 특징으로 하는 식물체의 염기전환용 조성물.The composition for base conversion of plants according to claim 8, wherein the target base sequence is SEQ ID NO: 5 or 6. 제8항의 조성물을 식물세포에 주입하여 형질전환하는 단계를 포함하는 식물체의 염기전환 방법.A method for transforming plants by injecting the composition of claim 8 into plant cells to transform them.
KR1020210129712A 2021-09-30 2021-09-30 Recombinant vector for base transversion of plant and uses thereof KR20230046577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210129712A KR20230046577A (en) 2021-09-30 2021-09-30 Recombinant vector for base transversion of plant and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210129712A KR20230046577A (en) 2021-09-30 2021-09-30 Recombinant vector for base transversion of plant and uses thereof

Publications (1)

Publication Number Publication Date
KR20230046577A true KR20230046577A (en) 2023-04-06

Family

ID=85917861

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210129712A KR20230046577A (en) 2021-09-30 2021-09-30 Recombinant vector for base transversion of plant and uses thereof

Country Status (1)

Country Link
KR (1) KR20230046577A (en)

Similar Documents

Publication Publication Date Title
JP2020188773A (en) Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair
CN111433363B (en) Plants having increased abiotic stress tolerance and polynucleotides and methods for increasing abiotic stress tolerance in plants
US11692199B2 (en) Synthetic desalination genetic circuit in plants
JP5273624B2 (en) Method for improving salt tolerance of plants by overexpressing SyFBP / SBPase gene isolated from Synechocystis and plant produced by the method
CN110713994B (en) Plant stress tolerance associated protein TaMAPK3, and coding gene and application thereof
CN112175058B (en) Cloning, identification and application of salt tolerance related gene splice
US20230313212A1 (en) Plastid transformation by complementation of nuclear mutations
US11913004B2 (en) Plant promoter for transgene expression
US20230146220A1 (en) Plant terminator for transgene expression
US20240200088A1 (en) Transgenic Plants Comprising Myoglobin and Methods for Producing Myoglobin in Transgenic Plants
KR20230046577A (en) Recombinant vector for base transversion of plant and uses thereof
US11319552B2 (en) Methods for improving transformation frequency
JP3964701B2 (en) Disease resistant gramineous plant
KR102173875B1 (en) Composition for enhancing herbicide resistance of plants and method for enhancing herbicide resistance of plants using the same
AU2016340893A1 (en) Plant promoter for transgene expression
WO2021086576A1 (en) Cannabis ubiquitin promoter
CN114657204A (en) Application of inhibiting PAD1 and coding gene expression thereof in regulating and controlling plant stress tolerance
CN117511965A (en) Gene OsGRAS34 related to salt tolerance of rice at seedling stage and application thereof
CA3079549A1 (en) Plant promoter for transgene expression
CN114716521A (en) Corn drought-resistant related protein and application thereof in plant drought resistance
KR20030084677A (en) Method for improving herbicide resistance of crops by expressing protoporphyrinogen oxidase both in chloroplasts and mitochondria and method for selecting transgenic cell lines using the said gene as herbicide-resistant selection marker