KR20230041303A - Cathode active material for lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery comprising the same - Google Patents

Cathode active material for lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery comprising the same Download PDF

Info

Publication number
KR20230041303A
KR20230041303A KR1020210124740A KR20210124740A KR20230041303A KR 20230041303 A KR20230041303 A KR 20230041303A KR 1020210124740 A KR1020210124740 A KR 1020210124740A KR 20210124740 A KR20210124740 A KR 20210124740A KR 20230041303 A KR20230041303 A KR 20230041303A
Authority
KR
South Korea
Prior art keywords
active material
secondary battery
lithium secondary
cathode active
positive electrode
Prior art date
Application number
KR1020210124740A
Other languages
Korean (ko)
Other versions
KR102708553B1 (en
Inventor
한병찬
박주원
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020210124740A priority Critical patent/KR102708553B1/en
Publication of KR20230041303A publication Critical patent/KR20230041303A/en
Application granted granted Critical
Publication of KR102708553B1 publication Critical patent/KR102708553B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a positive electrode active material for a lithium secondary battery, a manufacturing method thereof, and the lithium secondary battery comprising the same. More specifically, a nanorod-shaped positive electrode active material with a high aspect ratio is manufactured through a sintering process after mixing a lithium precursor and a doping metal with a transition metal compound precursor such that compared to an existing bulk positive electrode active material, the movement distance of lithium ions can be shortened and the resistance in the movement distance can be reduced. In addition, the positive electrode active material for the lithium secondary battery facilitates charge transfer in horizontal and vertical directions to increase a diffusion rate. Furthermore, the positive electrode active material for the lithium secondary battery has excellent charge/discharge performance, battery capacity, and lifespan characteristics when applied to the lithium secondary battery and can also have fast charging recovery in a short period of time.

Description

리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지{Cathode active material for lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery comprising the same}Cathode active material for lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery comprising the same}

본 발명은 높은 종횡비를 통해 전하전달과 이온전달의 우수성을 가져 확산속도가 향상된 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery with improved diffusion rate due to excellent charge transfer and ion transfer through a high aspect ratio, a manufacturing method thereof, and a lithium secondary battery including the same.

최근 전자 장비의 소형화 및 경량화가 실현되고, 휴대용 전자 기기의 사용이 일반화됨에 따라 휴대용 전자 기기의 전원으로서 높은 에너지 밀도를 가지는 리튬 이차 전지에 대한 연구가 활발히 이루어지고 있다.Recently, as miniaturization and weight reduction of electronic equipment have been realized and the use of portable electronic devices has become common, research on lithium secondary batteries having high energy density as a power source for portable electronic devices has been actively conducted.

또한 하이브리드자동차(HEV), 전기 자동차(EV) 등에 사용되는 전지의 경우 고용량, 고출력뿐만 아니라 안정성 또한 큰 과제로 남아있다. 적용분야가 확대되면서 저장기술에 대한 연구와 개발이 활발히 이루어지고 있다.In addition, in the case of batteries used in hybrid vehicles (HEV) and electric vehicles (EV), stability as well as high capacity and high output remains a major challenge. As the field of application expands, research and development of storage technology is being actively conducted.

이차전지는 양극, 음극 및 전해액 등으로 구성되는데, 그 중 양극의 비율이 가장 높고 중요하다. 양극재료는 양극 활물질로서 일반적으로 충방전 시 높은 에너지 밀도를 가지는 동시에 가역 리튬 이온의 층간 삽입, 탈리에 의해 구조가 파괴되지 않아야 한다. 또한 전기전도도가 높아야 하며, 전해질로 사용되는 유기용매에 대한 화학적 안정성이 높아야 한다.A secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte solution, among which the positive electrode has the highest ratio and is important. A cathode material, as a cathode active material, generally has a high energy density during charging and discharging and must not have a structure destroyed by intercalation and desorption of reversible lithium ions. In addition, electrical conductivity must be high, and chemical stability to organic solvents used as electrolytes must be high.

이러한 리튬이온전지의 양극 활물질로서는 리튬 이온의 삽입, 탈리가 가능한 층상화합물인 니켈산리튬(LiNiO2), 코발트산리튬(LiCoO2), 망간산리튬(LiMnO2) 등이 있다. 이중 니켈산리튬(LiNiO2)은 전기용량이 높으나, 충방전 시 사이클 특성, 안정성 등에 문제가 있어서 실용화되지 못하고 있는 실정이다. 또한 코발트산리튬(LiCoO2)은 용량이 클 뿐만 아니라 사이클 수명과 용량률(rate capability) 특성이 우수하고 합성이 쉽다는 장점이 있으나, 코발트의 높은 가격과 인체에 유해하며 고온에서 열적 불안정성을 가지는 단점이 있다.Examples of the cathode active material of the lithium ion battery include lithium nickelate (LiNiO 2 ), lithium cobaltate (LiCoO 2 ), and lithium manganate (LiMnO 2 ), which are layered compounds capable of intercalating and deintercalating lithium ions. Among them, lithium nickelate (LiNiO 2 ) has a high electric capacity, but has problems such as cycle characteristics and stability during charging and discharging, so it has not been put to practical use. In addition, lithium cobalt oxide (LiCoO 2 ) has advantages such as high capacity, excellent cycle life and rate capability characteristics, and easy synthesis, but has the high price of cobalt, is harmful to the human body, and has thermal instability at high temperatures. There are downsides.

이를 보완하기 위해 층상결정 구조를 갖는 재료로 니켈-코발트-망간계 또는 니켈-코발트-알루미늄계와 같은 복합금속산화물이 연구되고 있다. 복합금속산화물의 일반적인 제조방법으로는 고상법과 공침법이 사용되는데 고상법은 혼합 시 불순물 유입이 많아 균일한 조성을 얻기가 어려우며, 제조 시 높은 온도와 제조시간이 긴 단점이 있다.To compensate for this, as a material having a layered crystal structure, composite metal oxides such as nickel-cobalt-manganese or nickel-cobalt-aluminum have been studied. A solid phase method and a co-precipitation method are used as common methods for producing composite metal oxides. The solid phase method has a disadvantage in that it is difficult to obtain a uniform composition due to the influx of impurities during mixing, and it requires a high temperature and a long manufacturing time.

반면에 공침법은 니켈(Ni), 코발트(Co), 망간(Mn)을 포함하는 수용액과 공침제로 사용하는 수산화나트륨을 사용하고, 착염제로는 킬레이트제를 사용하여 동시에 침전시키는 방법으로 얻어진 전구체를 리튬(Li)염과 혼합한 뒤 소성하여 양극 활물질을 얻는 방법이다.On the other hand, the coprecipitation method uses an aqueous solution containing nickel (Ni), cobalt (Co), and manganese (Mn), sodium hydroxide used as a coprecipitator, and a chelating agent as a complexing agent to simultaneously precipitate the precursor. is mixed with a lithium (Li) salt and then fired to obtain a cathode active material.

그러나 공침법은 물질의 특성적인 면에서 균일한 조성을 얻을 수 있어 고상법의 단점을 극복할 수 있으나, 활물질의 입자크기가 전구체의 입자크기에 영향을 받으며, 대용량 합성이 어렵고, 합성 과정의 공정변수가 매우 많으며, 과정이 복잡하기 때문에 최적화 과정에 많은 노력과 시간이 필요한 문제점이 있다.However, the co-precipitation method can obtain a uniform composition in terms of material characteristics and can overcome the disadvantages of the solid phase method. There are many problems, and because the process is complicated, the optimization process requires a lot of effort and time.

한국등록특허 제10-2147293호Korean Patent Registration No. 10-2147293

상기와 같은 문제 해결을 위하여, 본 발명은 높은 종횡비를 가져 리튬이온의 이동거리 상의 저항을 감소시키고, 전하전달이 용이하여 확산속도가 향상된 리튬이차전지용 양극 활물질을 제공하는 것을 그 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide a cathode active material for a lithium secondary battery, which has a high aspect ratio, reduces the resistance of lithium ion movement distance, and has an improved diffusion rate due to easy charge transfer.

또한 본 발명은 상기 양극 활물질을 포함하는 리튬이차전지용 양극을 제공하는 것을 그 목적으로 한다.In addition, an object of the present invention is to provide a cathode for a lithium secondary battery including the cathode active material.

또한 본 발명은 상기 양극을 포함하여 충방전 성능, 전지 용량 및 수명 특성이 우수한 동시에 빠른 충전 회복력을 갖는 리튬이차전지를 제공하는 것을 그 목적으로 한다.In addition, an object of the present invention is to provide a lithium secondary battery having excellent charge/discharge performance, battery capacity, and lifespan characteristics, including the positive electrode, and having fast charge recovery.

또한 본 발명은 상기 리튬이차전지를 포함하는 장치를 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a device including the lithium secondary battery.

또한 본 발명은 리튬이차전지용 양극 활물질의 제조방법을 제공하는 것을 그 목적으로 한다.In addition, an object of the present invention is to provide a method for manufacturing a cathode active material for a lithium secondary battery.

본 발명은 리튬전이금속 복합 산화물; 및 상기 리튬전이금속 복합 산화물 상에 도핑된 도핑 금속;을 포함하는 리튬이차전지용 양극 활물질을 제공한다.The present invention is a lithium transition metal complex oxide; and a doping metal doped on the lithium transition metal composite oxide.

또한 본 발명은 본 발명에 따른 양극 활물질을 포함하는 리튬이차전지용 양극을 제공한다.In addition, the present invention provides a positive electrode for a lithium secondary battery comprising the positive electrode active material according to the present invention.

또한 본 발명은 본 발명에 따른 양극; 음극; 및 상기 양극 및 음극 사이에 개재되는 전해질;을 포함하는 리튬이차전지를 제공한다.In addition, the present invention is a positive electrode according to the present invention; cathode; and an electrolyte interposed between the positive electrode and the negative electrode.

또한 본 발명은 본 발명에 따른 리튬이차전지를 포함하는 장치로서, 상기 장치는 통신장치, 운송장치 및 에너지저장 장치 중에서 선택되는 어느 하나인 것인 장치를 제공한다.In addition, the present invention provides a device including a lithium secondary battery according to the present invention, wherein the device is any one selected from a communication device, a transportation device, and an energy storage device.

또한 본 발명은 전이금속 화합물 전구체 분말을 제조하는 단계; 상기 전이금속 화합물 전구체 분말에 리튬 전구체 및 도핑 금속 전구체를 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물을 소성하여 도핑 금속이 리튬전이금속 복합 산화물 상에 도핑된 구조의 양극 활물질을 형성하는 단계;를 포함하는 리튬이차전지용 양극 활물질의 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a transition metal compound precursor powder; preparing a mixture by mixing a lithium precursor and a doped metal precursor with the transition metal compound precursor powder; and sintering the mixture to form a cathode active material having a structure in which a doping metal is doped on a lithium transition metal composite oxide.

본 발명에 따른 리튬이차전지용 양극 활물질은 전이금속 화합물 전구체에 리튬 전구체 및 도핑 금속을 혼합한 후 소성 공정을 거쳐 높은 종횡비를 갖는 나노막대 형태의 양극 활물질을 제조함으로써 기존의 벌크 형태 양극 활물질에 비해 리튬이온의 이동거리가 짧아질 수 있고, 이동거리 상의 저항을 감소시킬 수 있다.The cathode active material for a lithium secondary battery according to the present invention is prepared by mixing a lithium precursor and a doping metal with a transition metal compound precursor and then going through a firing process to prepare a nanorod-type cathode active material having a high aspect ratio, compared to conventional bulk-type cathode active materials. The movement distance of ions can be shortened, and resistance on the movement distance can be reduced.

또한 본 발명에 따른 리튬이차전지용 양극 활물질은 횡축 및 종축 방향으로 전하전달이 용이하여 확산속도를 향상시킬 수 있으며, 나아가 이를 리튬이차전지에 적용 시 충방전 성능, 전지 용량 및 수명 특성이 우수한 동시에 단시간 내에 빠른 충전 회복력을 가질 수 있다.In addition, the cathode active material for a lithium secondary battery according to the present invention facilitates charge transfer in the transverse and longitudinal directions, thereby improving the diffusion rate. Furthermore, when applied to a lithium secondary battery, the cathode active material has excellent charge and discharge performance, battery capacity, and lifespan characteristics, while providing excellent short-time You can have a quick charge recovery within.

도 1은 NCA 전구체와 본 발명에 따른 비교예 1 및 실시예 1에서 제조된 양극 활물질의 평균 직경을 측정한 그래프이다.
도 2는 본 발명에 따른 비교예 1에서 제조된 NCA계 양극 활물질의 TEM 사진이다.
도 3은 본 발명에 따른 비교예 1에서 제조된 NCA계 양극 활물질의 확대된 TEM 사진이다.
도 4는 본 발명에 따른 실시예 1에서 제조된 NCA-In계 양극 활물질의 TEM 사진이다.
도 5는 본 발명에 따른 실시예 1에서 제조된 NCA-In계 양극 활물질의 확대된 TEM 사진이다.
도 6은 본 발명에 따른 비교예 1에서 제조된 NCA계 양극 활물질의 확대된 SEM 사진이다.
도 7은 본 발명에 따른 실시예 1에서 제조된 NCA계 양극 활물질의 확대된 SEM 사진이다.
도 8은 본 발명에 따른 실시예 1 및 비교예 1에서 제조된 양극 활물질에 대하여 C-rate 변화에 따른 방전 용량(mAh/g) 변화를 나타낸 그래프이다.
도 9는 본 발명에 따른 실시예 1 및 비교예 1에서 제조된 양극 활물질을 이용한 리튬이차전지의 순환전압전류(CV)법 결과 그래프이다.
도 10은 본 발명에 따른 실시예 1 및 비교예 1에서 제조된 양극 활물질을 이용한 리튬이차전지의 충방전 사이클에 따른 용량 유지율을 나타낸 그래프이다.
1 is a graph of measuring average diameters of NCA precursors and cathode active materials prepared in Comparative Example 1 and Example 1 according to the present invention.
2 is a TEM photograph of the NCA-based cathode active material prepared in Comparative Example 1 according to the present invention.
3 is an enlarged TEM photograph of the NCA-based cathode active material prepared in Comparative Example 1 according to the present invention.
4 is a TEM photograph of the NCA-In-based positive electrode active material prepared in Example 1 according to the present invention.
5 is an enlarged TEM photograph of the NCA-In-based positive electrode active material prepared in Example 1 according to the present invention.
6 is an enlarged SEM picture of the NCA-based cathode active material prepared in Comparative Example 1 according to the present invention.
7 is an enlarged SEM picture of the NCA-based cathode active material prepared in Example 1 according to the present invention.
8 is a graph showing a change in discharge capacity (mAh/g) according to a change in C-rate for the cathode active materials prepared in Example 1 and Comparative Example 1 according to the present invention.
9 is a graph showing results of a cyclic voltammetry (CV) method for lithium secondary batteries using the cathode active materials prepared in Example 1 and Comparative Example 1 according to the present invention.
10 is a graph showing capacity retention rates according to charge/discharge cycles of lithium secondary batteries using positive electrode active materials prepared in Example 1 and Comparative Example 1 according to the present invention.

이하에서는 본 발명을 하나의 실시예로 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail as an embodiment.

본 발명은 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.

앞서 설명한 바와 같이, 공침법을 이용한 전이금속 복합 산화물은 균일한 조성을 얻을 수 있으나, 활물질의 입자크기, 대용량 합성, 합성 과정 시 공정변수와 최적화 과정이 어려운 문제가 있었다. 특히 기존의 니켈-코발트-알루미늄(NCA)계 복합금속산화물은 1차 입자가 비정형 다각형(equiaxed shape) 형태를 형성하여 다각형 사이의 팽창 및 수축을 통한 마찰과 파괴가 발생하고, 리튬이온전달의 입계(grain boundary)가 많아 이온전달이 어려운 문제가 있었다.As described above, the transition metal complex oxide using the co-precipitation method can obtain a uniform composition, but there are difficulties in the particle size of the active material, large-scale synthesis, and process parameters and optimization processes during the synthesis process. In particular, in the existing nickel-cobalt-aluminum (NCA) composite metal oxide, the primary particles form an equiaxed shape, causing friction and destruction through expansion and contraction between the polygons, and grain boundaries for lithium ion transfer. There were many grain boundaries, which made it difficult to transfer ions.

이에 본 발명에서는 전이금속 화합물 전구체에 리튬 전구체 및 도핑 금속을 혼합한 후 소성 공정을 거쳐 높은 종횡비를 갖는 나노막대 형태의 리튬이차전지용 양극 활물질을 제조함으로써 기존의 벌크 형태 양극 활물질에 비해 막대(Rod) 형태의 입자로 리튬이온의 이동거리는 짧아지고, 횡축 및 종축 방향으로 전하전달이 용이하여 확산속도를 향상시킬 수 있다. 나아가 이를 리튬이차전지에 적용 시 충방전 성능, 전지 용량 및 수명 특성이 우수한 동시에 단시간 내에 빠른 충전 회복력을 가질 수 있다.Accordingly, in the present invention, a lithium precursor and a doped metal are mixed with a transition metal compound precursor and then subjected to a sintering process to prepare a nanorod-type cathode active material for lithium secondary batteries having a high aspect ratio, thereby producing a rod (Rod) compared to conventional bulk-type cathode active materials. The moving distance of lithium ions is shortened by the shape of the particle, and the diffusion rate can be improved because charge transfer is easy in the direction of the horizontal axis and the vertical axis. Furthermore, when applied to a lithium secondary battery, it has excellent charge/discharge performance, battery capacity, and lifespan characteristics, and can have fast charge recovery within a short time.

구체적으로 본 발명은 리튬전이금속 복합 산화물; 및 상기 리튬전이금속 복합 산화물 상에 도핑된 도핑 금속;을 포함하는 리튬이차전지용 양극 활물질을 제공한다.Specifically, the present invention is a lithium transition metal composite oxide; and a doping metal doped on the lithium transition metal composite oxide.

상기 리튬전이금속 복합 산화물은 하기 화학식 1로 표시되는 화합물일 수 있다.The lithium transition metal composite oxide may be a compound represented by Formula 1 below.

[화학식 1][Formula 1]

Lix(NiyCozAlu)O2 Li x (Ni y Co z Al u ) O 2

(상기 화학식 1에서, x, y, z 및 u는 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01이며, y+z+u=1이다.)(In Formula 1, x, y, z and u are 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01, and y+z+u=1.)

상기 도핑 금속은 상기 리튬전이금속 복합 산화물 상에 도핑됨으로써 1차 입자가 나노막대(nanorod) 구조를 형성할 수 있다. 이는 기존의 비정형 다각형(equiaxed shape) 구조의 1차 입자를 가지는 니켈-코발트-알루미늄(NCA) 복합금속산화물과 비교하여 리튬이온과의 계면저항을 줄일 수 있고, 횡축 및 종축 방향으로의 전하전달이 매우 용이하여 충방전 속도 및 전지 용량을 증대시킬 수 있다. By doping the doping metal on the lithium transition metal composite oxide, the primary particles may form a nanorod structure. Compared to the existing nickel-cobalt-aluminum (NCA) composite metal oxide having primary particles of an equiaxed shape structure, the interface resistance with lithium ions can be reduced, and charge transfer in the transverse and longitudinal directions is improved. It is very easy to increase the charge/discharge rate and battery capacity.

상기 도핑 금속은 In, Na, Fe, Ti, Mg 및 Ga으로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 In, Na 또는 이들의 혼합물일 수 있고, 가장 바람직하게는 In일 수 있다. 특히 상기 도핑 금속으로 In의 경우 단시간 내에 충전 용량의 80%에 달하는 빠른 용량 회복력을 가지는 이점이 있으며, 방전용량도 기존 양극 활물질에 비해 우수한 이점이 있다. 다만, 하기 실시예 또는 비교예 등에는 명시적으로 기재하지는 않았지만, 상기 도핑 금속으로 Mn을 사용하는 경우 비활성(inactive)한 특성으로 인해 충전 용량의 10 내지 30% 정도의 현저하게 낮은 충전 회복 특성을 나타내는 문제가 있음을 확인하였다. The doping metal may be at least one selected from the group consisting of In, Na, Fe, Ti, Mg, and Ga, preferably In, Na, or a mixture thereof, and most preferably In. In particular, in the case of In as the doping metal, there is an advantage of having a fast capacity recovery ability of up to 80% of the charging capacity in a short time, and a discharge capacity also has an advantage superior to that of conventional cathode active materials. However, although not explicitly described in the following Examples or Comparative Examples, when Mn is used as the doping metal, remarkably low charge recovery characteristics of about 10 to 30% of the charge capacity are obtained due to inactive characteristics. It was confirmed that there is a problem indicated.

상기 도핑 금속의 도핑량은 양극 활물질 100 중량%에 대하여 0.0001 내지 0.01 중량%, 바람직하게는 0.0005 내지 0.009 중량%, 더욱 바람직하게는 0.001 내지 0.007 중량%, 가장 바람직하게는 0.002 내지 0.004 중량%일 수 있다. 이때, 상기 도핑 금속의 도핑량이 0.0001 중량% 미만이면, 방전용량이 감소할 수 있으며, 양극 활물질이 막대 형태로 형성되지 않을 수 있고, 반대로 0.01 중량% 초과이면 방전용량이 감소할 수 있고, 막대 형태의 활물질이 존재하지 않을 수 있다.The doping amount of the doping metal may be 0.0001 to 0.01 wt%, preferably 0.0005 to 0.009 wt%, more preferably 0.001 to 0.007 wt%, and most preferably 0.002 to 0.004 wt%, based on 100 wt% of the positive electrode active material. there is. At this time, if the doping amount of the doped metal is less than 0.0001% by weight, the discharge capacity may be reduced, and the positive electrode active material may not be formed in a rod shape. of the active material may not exist.

상기 리튬이차전지용 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.The cathode active material for a lithium secondary battery may include a compound represented by Chemical Formula 2 below.

[화학식 2][Formula 2]

Lix(NiyCozAluMw)O2 Li x (Ni y Co z Al u M w ) O 2

(상기 화학식 2에서, M은 In, Na, Fe, Ti, Mg 및 Ga으로 이루어진 군에서 선택된 1종 이상이고, x, y, z, u 및 w는 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.001≤u≤0.01, 0.00001≤w≤0.01이며, y+z+u+w=1이다.)(In Formula 2, M is at least one selected from the group consisting of In, Na, Fe, Ti, Mg, and Ga, and x, y, z, u, and w are 0.8≤x≤2, 0.7≤y≤0.9 , 0.1≤z≤0.3, 0.001≤u≤0.01, 0.00001≤w≤0.01, and y+z+u+w=1.)

바람직하게는 상기 화학식 2에서 M은 In, Na 또는 이들의 혼합물이고, x, y, z, u 및 w는 0.9≤x≤1.5, 0.8≤y≤0.87, 0.12≤z≤0.2, 0.003≤u≤0.0098, 0.00003≤w≤0.003이며, y+z+u+w=1일 수 있다.Preferably, in Formula 2, M is In, Na or a mixture thereof, and x, y, z, u and w are 0.9≤x≤1.5, 0.8≤y≤0.87, 0.12≤z≤0.2, 0.003≤u≤ 0.0098, 0.00003≤w≤0.003, and may be y+z+u+w=1.

가장 바람직하게는 상기 화학식 2에서 M은 In이고, x, y, z, u 및 w는 0.95≤x≤1.2, 0.82≤y≤0.85, 0.14≤z≤0.18, 0.005≤u≤0.007, 0.00006≤w≤0.00008이며, y+z+u+w=1일 수 있다.Most preferably, in Formula 2, M is In, and x, y, z, u and w are 0.95≤x≤1.2, 0.82≤y≤0.85, 0.14≤z≤0.18, 0.005≤u≤0.007, 0.00006≤w ≤0.00008, and may be y+z+u+w=1.

상기 리튬이차전지용 양극 활물질은 평균 직경(D50)이 1 내지 7 ㎛, 바람직하게는 2 내지 6.5 ㎛, 더욱 바람직하게는 4 내지 6.3 ㎛, 가장 바람직하게는 5 내지 6 ㎛일 수 있다. 이때, 상기 양극 활물질의 평균 직경(D50)이 1 ㎛ 미만이면 원하는 수준의 체적당 에너지 밀도 향상 효과를 얻을 수 없으며, 반대로 7 ㎛ 초과이면 양극 활물질의 회복율이 감소할 수 있다. The cathode active material for a lithium secondary battery may have an average diameter (D 50 ) of 1 μm to 7 μm, preferably 2 μm to 6.5 μm, more preferably 4 μm to 6.3 μm, and most preferably 5 μm to 6 μm. At this time, if the average diameter (D 50 ) of the positive electrode active material is less than 1 μm, a desired level of energy density improvement effect per volume cannot be obtained, and conversely, if it exceeds 7 μm, the recovery rate of the positive electrode active material may decrease.

상기 리튬이차전지용 양극 활물질은 높은 종횡비를 가지는 나노막대(nanorod) 형태일 수 있는데, 상기 나노막대는 확산속도를 증가시켜 단위시간 당 충전 용량을 현저하게 향상시킬 수 있다. 기존의 양극 활물질은 대부분 등축 모양(equiaxed shape) 구조로 이루어져 있어 이온 확산 경로가 길기 때문에 확산속도가 느린 문제가 있었다. 본 발명에서는 등축 모양 구조가 아닌 나노막대 형태를 형성함으로써 이온 확산 경로를 짧아져 확산속도가 증가함에 따라 율속 특성을 현저하게 향상시킬 수 있다.The cathode active material for a lithium secondary battery may be in the form of nanorods having a high aspect ratio, and the nanorods can significantly improve charge capacity per unit time by increasing a diffusion rate. Existing cathode active materials are mostly composed of an equiaxed shape structure, so there is a problem in that the diffusion rate is slow because the ion diffusion path is long. In the present invention, by forming a nanorod shape rather than an equiaxed structure, the ion diffusion path is shortened, and as the diffusion rate increases, the rate limiting characteristics can be remarkably improved.

바람직하게는 상기 나노막대의 종횡비가 1 내지 10, 더욱 바람직하게는 2 내지 10, 가장 바람직하게는 5 내지 10일 수 있다. 이때, 상기 종횡비가 1 미만이면 입자 경계(grain boundary)의 존재로 인해 리튬이온의 이동거리가 길어지고, 그로 인해 확산속도가 저하될 수 있다. 반대로 상기 종횡비가 10 초과이면 저항이 증가될 수 있다. Preferably, the aspect ratio of the nanorods may be 1 to 10, more preferably 2 to 10, and most preferably 5 to 10. At this time, if the aspect ratio is less than 1, the moving distance of lithium ions becomes longer due to the presence of grain boundaries, and as a result, the diffusion rate may decrease. Conversely, when the aspect ratio exceeds 10, resistance may increase.

상기 리튬이차전지용 양극 활물질은 층상 구조이며, X선 회절법에 의해 측정한 결정 면간거리(D-spacing, D003) 값이 0.2 내지 0.8 nm, 바람직하게는 0.3 내지 0.6 nm, 가장 바람직하게는 0.4 내지 0.5 nm일 수 있다. 이때, 상기 결정 면간거리가 0.2 nm 미만이면 층상(layered) 구조가 제대로 유지되지 않을 수 있고, 반대로 0.8 nm 초과이면 층상 구조가 형성되지 않을 수 있다.The cathode active material for a lithium secondary battery has a layered structure, and has a D-spacing (D 003 ) value measured by X-ray diffraction of 0.2 to 0.8 nm, preferably 0.3 to 0.6 nm, and most preferably 0.4 nm. to 0.5 nm. At this time, if the interplanar distance between crystals is less than 0.2 nm, a layered structure may not be properly maintained, and conversely, if it exceeds 0.8 nm, a layered structure may not be formed.

한편, 본 발명은 본 발명에 따른 양극 활물질을 포함하는 리튬이차전지용 양극을 제공한다.Meanwhile, the present invention provides a cathode for a lithium secondary battery comprising the cathode active material according to the present invention.

또한, 본 발명은 본 발명에 따른 양극; 음극; 및 상기 양극 및 음극 사이에 개재되는 전해질;을 포함하는 리튬이차전지를 제공한다.In addition, the present invention is a positive electrode according to the present invention; cathode; and an electrolyte interposed between the positive electrode and the negative electrode.

또한, 본 발명은 본 발명에 따른 리튬이차전지를 포함하는 장치로서, 상기 장치는 통신장치, 운송장치 및 에너지저장 장치 중에서 선택되는 어느 하나인 것인 장치를 제공한다.In addition, the present invention provides a device including a lithium secondary battery according to the present invention, wherein the device is any one selected from a communication device, a transportation device, and an energy storage device.

또한, 본 발명은 전이금속 화합물 전구체 분말을 제조하는 단계; 상기 전이금속 화합물 전구체 분말에 리튬 전구체 및 도핑 금속 전구체를 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물을 소성하여 도핑 금속이 리튬전이금속 복합 산화물 상에 도핑된 구조의 양극 활물질을 형성하는 단계;를 포함하는 리튬이차전지용 양극 활물질의 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a transition metal compound precursor powder; preparing a mixture by mixing a lithium precursor and a doped metal precursor with the transition metal compound precursor powder; and sintering the mixture to form a cathode active material having a structure in which a doping metal is doped on a lithium transition metal composite oxide.

상기 전이금속 화합물 전구체 분말을 제조하는 단계는 전이금속 화합물 전구체 용액을 80 내지 120 ℃에서 20 내지 28 시간, 바람직하게는 90 내지 110 ℃에서 23 내지 25 시간 동안 건조하여 분말화할 수 있다. 상기 전이금속 화합물 전구체는 는 완벽하게 수분을 제거하기 위해 건조과정을 거쳐 분말화하는 것이 좋다. The step of preparing the transition metal compound precursor powder may be powdered by drying the transition metal compound precursor solution at 80 to 120 °C for 20 to 28 hours, preferably at 90 to 110 °C for 23 to 25 hours. The transition metal compound precursor is preferably pulverized through a drying process in order to completely remove moisture.

상기 전이금속 화합물 전구체 분말은 NiyCozAlu(여기서, y, z, u는 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01이며, y+z+u=1임)일 수 있다.The transition metal compound precursor powder is Ni y Co z Al u (where y, z, u are 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01, and y+z+u=1) can be

상기 리튬 전구체는 LiOH, Li2CO3, LiCoO2, LiNO3, CH3COOLi 및 Li2(COO)2로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 LiOH, Li2CO3 및 LiNO3로 이루어진 군에서 선택된 1종 이상일 수 있고, 가장 바람직하게는 LiOH일 수 있다.The lithium precursor may be at least one selected from the group consisting of LiOH, Li 2 CO 3 , LiCoO 2 , LiNO 3 , CH 3 COOLi and Li 2 (COO) 2 , and preferably LiOH, Li 2 CO 3 and LiNO 3 It may be at least one selected from the group consisting of, and most preferably LiOH.

상기 도핑 금속 전구체는 인듐(III) 아세틸아세토네이트를 이용할 수 있다. The doped metal precursor may use indium (III) acetylacetonate.

상기 양극 활물질을 형성하는 단계에서 소성은 산소 분위기 하에 600 내지 1000 ℃에서 24 내지 32 시간, 바람직하게는 650 내지 850 ℃에서 26 내지 30 시간, 가장 바람직하게는 700 내지 740 ℃에서 27 내지 29 시간 동안 수행할 수 있다. 이때, 상기 소성 온도가 600 ℃ 미만이거나, 소성 시간이 24 시간 미만이면 소성 공정이 충분이 수행되지 않을 수 있고, 반대로 소성 온도가 1000 ℃ 초과이거나, 소성 시간이 32 시간 초과인 경우 높은 종횡비를 가지는 나노막대 형태의 양극 활물질이 형성되지 않을 수 있고, 양극 활물질의 물성이 저하될 수 있다.In the step of forming the cathode active material, firing is performed under an oxygen atmosphere at 600 to 1000 ° C for 24 to 32 hours, preferably at 650 to 850 ° C for 26 to 30 hours, and most preferably at 700 to 740 ° C for 27 to 29 hours. can be done At this time, if the firing temperature is less than 600 ° C or the firing time is less than 24 hours, the firing process may not be sufficiently performed. A cathode active material in the form of a nanorod may not be formed, and physical properties of the cathode active material may be deteriorated.

상기 도핑 금속의 도핑량은 양극 활물질 100 중량%에 대하여 0.0001 내지 0.01 중량%, 바람직하게는 0.0005 내지 0.009 중량%, 더욱 바람직하게는 0.001 내지 0.007 중량%, 가장 바람직하게는 0.002 내지 0.004 중량%일 수 있다.The doping amount of the doping metal may be 0.0001 to 0.01 wt%, preferably 0.0005 to 0.009 wt%, more preferably 0.001 to 0.007 wt%, and most preferably 0.002 to 0.004 wt%, based on 100 wt% of the positive electrode active material. there is.

상기 리튬이차전지용 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.The cathode active material for a lithium secondary battery may include a compound represented by Chemical Formula 2 below.

[화학식 2][Formula 2]

Lix(NiyCozAluMw)O2 Li x (Ni y Co z Al u M w ) O 2

(상기 화학식 2에서, (In Formula 2,

M은 In, Na, Fe, Ti, Mg 및 Ga으로 이루어진 군에서 선택된 1종 이상이고,M is at least one selected from the group consisting of In, Na, Fe, Ti, Mg, and Ga;

x, y, z, u 및 w는 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.001≤u≤0.01, 0.00001≤w≤0.01이며, y+z+u+w=1이다.)x, y, z, u and w are 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.001≤u≤0.01, 0.00001≤w≤0.01, and y+z+u+w=1 am.)

상기 리튬이차전지용 양극 활물질의 평균 직경(D50)이 1 내지 7 ㎛, 바람직하게는 2 내지 6.5 ㎛, 더욱 바람직하게는 4 내지 6.3 ㎛, 가장 바람직하게는 5 내지 6 ㎛일 수 있다The average diameter (D 50 ) of the cathode active material for a lithium secondary battery may be 1 to 7 μm, preferably 2 to 6.5 μm, more preferably 4 to 6.3 μm, and most preferably 5 to 6 μm.

상기 리튬이차전지용 양극 활물질은 층상 구조이며, X선 회절법에 의해 측정한 결정 면간거리(D-spacing, D003) 값이 0.2 내지 0.8 nm, 바람직하게는 0.3 내지 0.6 nm, 가장 바람직하게는 0.4 내지 0.5 nm일 수 있다.The cathode active material for a lithium secondary battery has a layered structure, and has a D-spacing (D 003 ) value measured by X-ray diffraction of 0.2 to 0.8 nm, preferably 0.3 to 0.6 nm, and most preferably 0.4 nm. to 0.5 nm.

특히, 하기 실시예 또는 비교예 등에는 명시적으로 기재하지는 않았지만, 본 발명에 따른 리튬이차전지용 양극 활물질의 제조방법에 있어서, 상기 9가지 조건들을 달리하여 양극 활물질을 제조하고, 이를 양극으로 이용하여 통상의 방법에 의해 리튬이차전지를 제조하였다. 상기 리튬이차전지에 대해 500회 충방전을 실시한 후 화학적 안정성, 내구성, 용량 유지율, 전지의 수명 특성을 각각 측정하였다.In particular, although not explicitly described in the following Examples or Comparative Examples, in the method for manufacturing a positive electrode active material for a lithium secondary battery according to the present invention, a positive electrode active material was prepared by varying the above 9 conditions, and using this as a positive electrode A lithium secondary battery was manufactured by a conventional method. After charging and discharging the lithium secondary battery 500 times, chemical stability, durability, capacity retention rate, and life characteristics of the battery were measured, respectively.

그 결과, 다른 조건 및 다른 수치 범위에서와는 달리, 아래 조건을 모두 만족하였을 때 500회 충방전 후에도 전기 화학적 안정성 및 내구성이 매우 우수하였으며, 충전 용량의 회복력이 75% 이상으로 높은 수준을 유지하여 수명 특성이 우수한 것을 확인하였다.As a result, unlike other conditions and other numerical ranges, when all of the following conditions were satisfied, the electrochemical stability and durability were very excellent even after 500 charge/discharge cycles, and the charge capacity recovery was maintained at a high level of 75% or more, resulting in life characteristics. This excellent thing was confirmed.

① 상기 전이금속 화합물 전구체 분말은 NiyCozAlu(여기서, y, z, u는 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01이며, y+z+u=1임)이고, ② 상기 리튬 전구체는 LiOH이고, ③ 상기 도핑 금속 전구체는 인듐(III) 아세틸아세토네이트이고, ④ 상기 양극 활물질을 형성하는 단계에서 소성은 산소 분위기 하에 700 내지 740 ℃에서 27 내지 29 시간 동안 수행하고, ⑤ 상기 도핑 금속의 도핑량은 양극 활물질 100 중량%에 대하여 0.002 내지 0.004 중량%%이고, ⑥ 상기 리튬이차전지용 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함하고, ⑦ 상기 리튬이차전지용 양극 활물질의 평균 직경(D50)은 5 내지 6 ㎛이고, ⑧ 상기 리튬이차전지용 양극 활물질은 나노막대 형태이며, 상기 나노막대의 종횡비가 5 내지 10이고, ⑨ 상기 리튬이차전지용 양극 활물질은 층상 구조이며, X선 회절법에 의해 측정한 결정 면간거리(D-spacing, D003) 값이 0.4 내지 0.5 nm일 수 있다.① The transition metal compound precursor powder is Ni y Co z Al u (where y, z, and u are 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01, and y + z + u = 1 ), ② the lithium precursor is LiOH, ③ the doped metal precursor is indium (III) acetylacetonate, and ④ firing in the step of forming the cathode active material is performed at 700 to 740 ° C. for 27 to 29 hours in an oxygen atmosphere. ⑤ the doping amount of the doping metal is 0.002 to 0.004% by weight based on 100% by weight of the positive electrode active material, ⑥ the positive electrode active material for a lithium secondary battery includes a compound represented by Formula 2 below, and ⑦ the lithium secondary battery The average diameter (D 50 ) of the cathode active material is 5 to 6 μm, ⑧ the cathode active material for lithium secondary batteries has a nanorod shape, and the aspect ratio of the nanorods is 5 to 10, ⑨ the cathode active material for lithium secondary batteries has a layered structure And, the interplanar spacing (D-spacing, D 003 ) value measured by the X-ray diffraction method may be 0.4 to 0.5 nm.

[화학식 2][Formula 2]

Lix(NiyCozAluMw)O2 Li x (Ni y Co z Al u M w ) O 2

(상기 화학식 2에서, M은 In이고, x, y, z, u 및 w는 0.95≤x≤1.2, 0.82≤y≤0.85, 0.14≤z≤0.18, 0.005≤u≤0.007, 0.00006≤w≤0.00008이며, y+z+u+w=1이다.)(In Formula 2, M is In, and x, y, z, u and w are 0.95≤x≤1.2, 0.82≤y≤0.85, 0.14≤z≤0.18, 0.005≤u≤0.007, 0.00006≤w≤0.00008 , and y+z+u+w=1.)

다만, 상기 9가지 조건 중 어느 하나라도 충족되지 않는 경우에는 충방전 횟수가 증가함에 따라 전기 화학적 안정성 또는 내구성이 급격하게 저하되었고, 350회 충방전 이후 전지 용량이 현저하게 저하되었고, 용량 유지율이 40% 이하로 낮은 수준을 나타내어 수명 특성이 저조하였다.However, when any one of the above 9 conditions was not satisfied, the electrochemical stability or durability rapidly deteriorated as the number of charge/discharge cycles increased, the battery capacity significantly decreased after 350 charge/discharge cycles, and the capacity retention rate was 40 Representing a low level of % or less, life characteristics were poor.

이하 본 발명을 실시예에 의거하여 더욱 구체적으로 설명하겠는 바, 본 발명이 다음 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited by the following examples.

비교예 1: 순수 NCA계 양극 활물질(NCA)의 제조Comparative Example 1: Preparation of pure NCA-based positive electrode active material (NCA)

NCA(Ni0.84Co0.15Al0.01) 전구체 용액을 100 ℃에서 24 시간 동안 건조하여 분말화하였다. 그 다음 알루미늄 옥사이드 보틀에 상기 NCA 전구체 분말 0.9243 g 및 LiOH 분말 101%(0.4281 g)을 투입한 후 O2 (고순도 가스) 분위기 하에 720 ℃에서 28 시간 동안 가열하여 Li0.97(Ni0.84Co0.15Al0.01)O2 양극 활물질을 수득하였다. A NCA (Ni 0.84 Co 0.15 Al 0.01 ) precursor solution was dried at 100 °C for 24 hours and powdered. Then, 0.9243 g of the NCA precursor powder and 101% (0.4281 g) of the LiOH powder were added to an aluminum oxide bottle, and heated at 720 ° C. for 28 hours under an O 2 (high purity gas) atmosphere to obtain Li 0.97 (Ni 0.84 Co 0.15 Al 0.01 )O 2 A cathode active material was obtained.

실시예 1: 인듐 도핑된 NCA계 양극 활물질(NCA-In)의 제조Example 1: Preparation of indium-doped NCA-based cathode active material (NCA-In)

NCA(Ni0.84Co0.15Al0.01) 전구체 용액을 100 ℃에서 24 시간 동안 건조하여 분말화하였다. 그 다음 알루미늄 옥사이드 보틀에 상기 NCA 전구체 분말 0.9243 g, 인듐 전구체인 인듐(III) 아세틸아세토네이트 분말 0.0029 g 및 LiOH 분말 101% (0.4281g)을 투입한 후 O2 (고순도 가스) 분위기 하에 720 ℃에서 28 시간 동안 가열하여 Li0.99(Ni0.8394Co0.1499Al0.0100In0.0007)O2 양극 활물질을 수득하였다. A NCA (Ni 0.84 Co 0.15 Al 0.01 ) precursor solution was dried at 100 °C for 24 hours and powdered. Then, 0.9243 g of the NCA precursor powder, 0.0029 g of indium (III) acetylacetonate powder as an indium precursor, and 101% (0.4281 g) of LiOH powder were added to an aluminum oxide bottle, and then at 720 ° C. under an O 2 (high purity gas) atmosphere. By heating for 28 hours, a Li 0.99 (Ni 0.8394 Co 0.1499 Al 0.0100 In 0.0007 )O 2 cathode active material was obtained.

실험예 1: 양극 활물질의 평균 직경 분석Experimental Example 1: Average diameter analysis of positive electrode active material

NCA 전구체와 상기 비교예 1 및 실시예 1에서 제조된 양극 활물질에 대하여 통상의 방법에 의해 평균 직경을 분석하였으며, 그 결과는 도 1에 나타내었다. The average diameter of the NCA precursor and the cathode active material prepared in Comparative Example 1 and Example 1 was analyzed by a conventional method, and the results are shown in FIG. 1 .

도 1은 NCA 전구체와 상기 비교예 1 및 실시예 1에서 제조된 양극 활물질의 평균 직경을 측정한 그래프이다. 상기 도 1을 참조하면, 상기 NCA 전구체의 경우 평균 직경(D50)이 6.799 ㎛였으며, 상기 비교예 1의 NCA계 양극 활물질은 7.075 ㎛인 것을 확인하였다. 또한 상기 실시예 1의 경우 평균 직경(D50)이 5.707 ㎛였다. 특히, 상기 실시예 1의 경우 NCA 전구체 및 비교예 1에 비해 평균 직경이 감소하였는데 이는 이온 경로(Ionic pathway)가 기존의 등축 모양(equiaxed shape) 구조에서 나노막대(nanorod) 형태로 변화하면서 이온 확산 경로(ionic diffusion path)가 감소하였기 때문임을 확인하였다. 이에 따라 후술하는 전기화학적 성능 분석에서 표 1의 율속 특성(rate-capability test) 결과 역시 이온 확산 경로가 감소된 나노막대 형태로부터 기인하여 증가된 율속 특성을 얻을 수 있음을 알 수 있었다.1 is a graph in which average diameters of NCA precursors and cathode active materials prepared in Comparative Example 1 and Example 1 are measured. Referring to FIG. 1 , in the case of the NCA precursor, the average diameter (D 50 ) was 6.799 μm, and it was confirmed that the NCA-based cathode active material of Comparative Example 1 was 7.075 μm. In the case of Example 1, the average diameter (D 50 ) was 5.707 μm. In particular, in the case of Example 1, the average diameter was decreased compared to the NCA precursor and Comparative Example 1, which is due to the ion diffusion as the ionic pathway changed from the existing equiaxed shape structure to the nanorod form. It was confirmed that this was because the ionic diffusion path was reduced. Accordingly, as a result of the rate-capability test in Table 1 in the electrochemical performance analysis described later, it was found that increased rate-capability characteristics could be obtained due to the reduced ion diffusion path in the form of nanorods.

실험예 2: 양극 활물질의 TEM 및 SEM 분석 Experimental Example 2: TEM and SEM analysis of cathode active material

상기 비교예 1 및 실시예 1에서 제조된 양극 활물질에 대하여 결정 구조를 확인하기 위해 TEM 및 SEM 분석과 X선 회절법에 의해 결정 면간거리(D-spacing)를 측정하였으며, 그 결과는 도 2 내지 7에 나타내었다.In order to confirm the crystal structure of the cathode active materials prepared in Comparative Example 1 and Example 1, the crystal interplanar spacing (D-spacing) was measured by TEM and SEM analysis and X-ray diffraction, and the results are shown in FIGS. 7.

도 2는 상기 비교예 1에서 제조된 NCA계 양극 활물질의 TEM 사진이다. 상기 도 2를 참조하면, 상기 NCA계 양극 활물질에서 일반적으로 관찰되는 비정형 다각형(equiaxed shape) 구조를 나타내었으며, ICP 분석 결과, 니켈, 코발트 및 알루미늄의 원자 함량이 각각 84 원자%, 14 원자% 및 2 원자%로 측정되었다. 2 is a TEM photograph of the NCA-based positive electrode active material prepared in Comparative Example 1. Referring to FIG. 2, the NCA-based cathode active material exhibits an equiaxed shape structure commonly observed, and as a result of ICP analysis, the atomic content of nickel, cobalt, and aluminum is 84 atomic%, 14 atomic%, and 14 atomic%, respectively. It was measured as 2 atomic percent.

도 3은 상기 비교예 1에서 제조된 NCA계 양극 활물질의 확대된 TEM 사진이다. 상기 도 3을 참조하면, X선 회절법에 의해 측정한 결정 면간거리(D-spacing) 값이 Fd3m의 reference 값(0.27341)과 일치하게 0.2742로 확인되는 것을 알 수 있었다. 이는 전해질과 밀접한 영역을 관찰한 결과로 전해질과의 노출이 심할수록 암염(Rocksalt) 구조로의 변형이 더 심하게 나타나는 것을 알 수 있었다. 3 is an enlarged TEM photograph of the NCA-based positive electrode active material prepared in Comparative Example 1. Referring to FIG. 3, it was found that the D-spacing value measured by the X-ray diffraction method was found to be 0.2742 consistent with the reference value (0.27341) of Fd3m. As a result of observing the area close to the electrolyte, it was found that the more exposed to the electrolyte, the more severe the transformation to the rock salt structure.

도 4는 상기 실시예 1에서 제조된 NCA-In계 양극 활물질의 TEM 사진이다. 상기 도 4를 참조하면, In이 도핑된 양극 활물질의 경우 비정형 다각형 구조를 보이는 것이 아니라 5 내지 10의 높은 종횡비(high aspect ratio)를 갖는 나노막대 형태의 구조를 갖는 양극 활물질이 형성된 것을 확인하였다. 또한 ICP 분석 결과, 니켈, 코발트, 알루미늄의 원자 함량이 각각 83.549694 원자%, 15.826401 원자%, 0.621727 원자% 가량 측정되었으며, 인듐이 0.002279 원자%로 소량 도핑된 것을 알 수 있었다.4 is a TEM photograph of the NCA-In-based positive electrode active material prepared in Example 1. Referring to FIG. 4, it was confirmed that the cathode active material doped with In did not have an irregular polygonal structure, but had a nanorod-shaped structure with a high aspect ratio of 5 to 10. In addition, as a result of ICP analysis, the atomic contents of nickel, cobalt, and aluminum were measured to be 83.549694 atomic%, 15.826401 atomic%, and 0.621727 atomic%, respectively, and it was found that indium was doped with a small amount of 0.002279 atomic%.

도 5는 상기 실시예 1에서 제조된 NCA-In계 양극 활물질의 확대된 TEM 사진이다. 상기 도 5를 참조하면, X선 회절법에 의해 측정한 결정 면간거리(D-spacing) 값이 R-3m의 reference 값(0.47101 nm)과 일치하게 0.4721 nm로 확인되는 것을 알 수 있었다. 전해질과 밀접한 영역을 관찰한 결과이며, 전해질과의 노출이 심하지만 결과 값은 층상(Layered) 형태를 유지하는 것을 알 수 있었다. 5 is an enlarged TEM photograph of the NCA-In-based positive electrode active material prepared in Example 1. Referring to FIG. 5, it was found that the D-spacing value measured by the X-ray diffraction method was found to be 0.4721 nm consistent with the reference value (0.47101 nm) of R-3m. This is the result of observing the area close to the electrolyte, and it was found that the exposure to the electrolyte was severe, but the result value maintained a layered form.

도 6은 상기 비교예 1에서 제조된 NCA계 양극 활물질의 확대된 SEM 사진이다. 6 is an enlarged SEM picture of the NCA-based positive electrode active material prepared in Comparative Example 1.

도 7은 상기 실시예 1에서 제조된 NCA계 양극 활물질의 확대된 SEM 사진이다. 7 is an enlarged SEM picture of the NCA-based positive electrode active material prepared in Example 1.

상기 도 6 및 7을 참조하면, 상기 실시예 1의 경우 상기 비교예 1과 비교하여 리튬전이금속 복합 산화물 상에 인듐이 고르게 분산되어 있으며, 동질적인(homogeneous) 것을 확인하였다. Referring to FIGS. 6 and 7 , in the case of Example 1, compared to Comparative Example 1, it was confirmed that indium was evenly dispersed on the lithium-transition metal composite oxide and that it was homogeneous.

실험예 3: 전기화학적 성능 분석Experimental Example 3: Electrochemical Performance Analysis

상기 실시예 1 및 비교예 1에서 제조된 양극 활물질에 대하여 충방전 사이클 동안 C-rate 및 충방전 반응 시간(hr) 조건들 다르게 하여 20분 충전 시간 기준 순수(pristine) 15.2 %, In 도핑된 리튬전이금속 복합 산화물 80%의 충전 회복율(%)을 확인하기 위해 통상의 방법으로 리튬이차전지를 제조하였다. 구체적으로 양극은 각각 상기 실시예 1 및 비교예 1의 활물질, 카본 블랙(carbon black), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride) 바인더를 90:5:5 중량비로 혼합하여 제조하였다. NMP 용액에 의해 분산된 전극은 Al 포일(foil) 위에 슬러리 형태로 도포하였다. 도포된 전극의 로딩량은 4.0 mg/cm2였으며, 전극의 다공성(porosity)은 30%였다.With respect to the cathode active materials prepared in Example 1 and Comparative Example 1, the C-rate and charge/discharge reaction time (hr) conditions were changed during the charge/discharge cycle, and the pristine 15.2% based on the charge time of 20 minutes, In-doped lithium A lithium secondary battery was prepared in a conventional manner to confirm the charge recovery rate (%) of 80% of the transition metal composite oxide. Specifically, the positive electrode was prepared by mixing the active materials of Example 1 and Comparative Example 1, carbon black, and polyvinylidene fluoride binder in a weight ratio of 90:5:5. The electrode dispersed by the NMP solution was applied in the form of a slurry on an Al foil. The loading amount of the applied electrode was 4.0 mg/cm 2 , and the porosity of the electrode was 30%.

전기화학적 시험 결과는 2032 코인 셀 시험(coin cell test) 시스템을 따라 평가하였고 하프 셀(half cell) 형태로 Li 금속(음극)과 1.2M LiPF6 염을 에틸카보네이트-에틸메틸카보네이트(3:7 부피비)에 비닐렌 카보네이트 2 중량%를 첨가하여 제조되었다. 테스트 결과는 0.1C 형성 주기(formation cycle) 1회 0.33C 사이클 시험(cycle test) 50회 상온에서 진행하였다. 그 결과는 도 8 및 표 1에 나타내었다. The electrochemical test results were evaluated according to the 2032 coin cell test system, and Li metal (cathode) and 1.2M LiPF 6 salt were mixed with ethyl carbonate-ethylmethyl carbonate (3:7 volume ratio) in the form of a half cell. ) was prepared by adding 2% by weight of vinylene carbonate. The test results were conducted at room temperature for 50 cycle tests at 0.33 C once at 0.1 C formation cycle. The results are shown in Figure 8 and Table 1.

도 8은 상기 실시예 1 및 비교예 1에서 제조된 양극 활물질에 대하여 C-rate 변화에 따른 방전 용량(mAh/g) 변화를 나타낸 그래프이다. 상기 도 8에서 검은색은 비교예 1이고, 파란색은 실시예 1의 실험 결과를 각각 나타낸 것이다.8 is a graph showing a change in discharge capacity (mAh/g) according to a change in C-rate for the cathode active materials prepared in Example 1 and Comparative Example 1. In FIG. 8, black represents Comparative Example 1, and blue represents the experimental results of Example 1, respectively.

하기 표 1은 C-rate와 충방전 반응 시간에 따른 실시예 1 및 비교예 1의 평균 방전용량과 충전 회복율(%) 평가 결과를 나타낸 것이다. Table 1 below shows the average discharge capacity and charge recovery rate (%) evaluation results of Example 1 and Comparative Example 1 according to C-rate and charge/discharge reaction time.

Figure pat00001
Figure pat00001

상기 도 8 및 표 1의 결과에 의하면, 상기 실시예 1의 경우 C-rate 변화에 따라 초기 방전용량이 204 mAh/g에서 방전으로 인해 67.4 mAh/g으로 저하되었다가 충전 시 다시 195 mAh/g로 회복되어 충전 회복율이 약 95.6%로 높은 것을 알 수 있었다. 특히 상기 실험예 3-4에서 상기 실시예 1의 NCA-In계 양극 활물질을 양극에 사용함에 따라 충전 회복율이 반응시간이 20 분으로 단시간 내에 초기 충전 용량의 80%로 높은 충전 회복율을 가지는 것을 확인하였다. According to the results of FIG. 8 and Table 1, in the case of Example 1, the initial discharge capacity was lowered from 204 mAh/g to 67.4 mAh/g due to discharging according to the C-rate change, and then recharged to 195 mAh/g It was found that the charge recovery rate was as high as about 95.6%. In particular, in Experimental Examples 3-4, as the NCA-In-based positive electrode active material of Example 1 was used for the positive electrode, it was confirmed that the charge recovery rate had a high charge recovery rate of 80% of the initial charge capacity in a short time with a reaction time of 20 minutes. did

반면에, 상기 비교예 1의 경우 초기 방전용량이 146.7 mAh/g에서 방전으로 인해 0.01 mAh/g으로 급격하게 저하되었고, 충전 시 다시 103.5 mAh/g로 회복되었으나, 충전 회복율이 약 70.6%로 상기 실시예 1에 비해 매우 낮은 수치를 보이는 것을 알 수 있었다. On the other hand, in the case of Comparative Example 1, the initial discharge capacity was rapidly lowered from 146.7 mAh/g to 0.01 mAh/g due to discharging, and was restored to 103.5 mAh/g during charging, but the charge recovery rate was about 70.6%. It was found that the values were very low compared to Example 1.

이를 통해 매우 상기 실시예 1의 NCA-In계 양극 활물질은 상기 비교예 1과 비교하여 단 시간 내에 우수한 충전 용량 회복율을 가지는 것을 알 수 있으며, 이는 기존에 잘 알려져 있는 현대자동차 Ionic 5에 탑재된 기술과 비교하여도 뒤쳐지지 않는 결과 값임을 알 수 있었다. Through this, it can be seen that the NCA-In-based cathode active material of Example 1 has an excellent charge capacity recovery rate in a short time compared to Comparative Example 1, which is a technology installed in Hyundai Motor Company's Ionic 5, which is well known in the past. It was found that the result value was not lagging behind even when compared with .

실험예 4: 순환전압전류(CV) 및 수명특성 분석 Experimental Example 4: Analysis of cyclic voltammetry (CV) and lifetime characteristics

상기 실시예 1 및 비교예 1에서 제조된 양극 활물질을 이용하여 순환전압전류(CV) 및 수명특성을 확인하기 위해 상기 실험예 3에서 제조된 리튬이차전지를 이용하여 50회 충방전 시험을 실시하였다. 충방전 시험은 1.5mg/cm2의 LL을 평가 조건으로 설정하여 실험하였다. 그 결과는 도 9 및 10에 나타내었다. In order to confirm the cyclic voltammetry (CV) and lifetime characteristics using the cathode active materials prepared in Example 1 and Comparative Example 1, a 50-time charge/discharge test was performed using the lithium secondary battery prepared in Experimental Example 3. . The charge/discharge test was performed by setting LL of 1.5 mg/cm 2 as an evaluation condition. The results are shown in Figures 9 and 10.

도 9는 상기 실시예 1 및 비교예 1에서 제조된 양극 활물질을 이용한 리튬이차전지의 순환전압전류(CV)법 결과 그래프이다. 상기 도 9를 참조하면, Cv 영역대의 값을(전압에 따른 전류값) 적분한 값이 에너지 덴시티라는 점을 고려하였을 때상기 실시예 1의 양극 활물질을 사용한 경우 상기 비교예 1에 비해 In을 도핑함으로써 에너지 측면에서도 우위가 있음을 알 수 있었다.9 is a graph showing results of a cyclic voltammetry (CV) method of a lithium secondary battery using the cathode active material prepared in Example 1 and Comparative Example 1. Referring to FIG. 9, considering that the value obtained by integrating the value of the Cv range (current value according to voltage) is the energy density, when the cathode active material of Example 1 was used, compared to Comparative Example 1, In was It was found that there is an advantage in terms of energy by doping.

도 10은 상기 실시예 1 및 비교예 1에서 제조된 양극 활물질을 이용한 리튬이차전지의 충방전 사이클에 따른 용량 유지율을 나타낸 그래프이다. 상기 도 10을 참조하면, 상기 실시예 1의 경우 방전 용량이 상기 비교예 1에 비해 훨씬 높았으며, 50회 충방전 후 용량 유지율(retention)이 96%로 매우 높은 수명 특성을 나타내었다. 반면에 상기 비교예 1의 경우 충방전 횟수가 증가함에 따라 급격하게 저하되어 용량 유지율이 67.6%를 보였으며, 30회 충방전 이후에는 양극 내 활물질이 일부 소실 또는 분해되어 더 이상 충방전이 불가능하였다.10 is a graph showing capacity retention rates according to charge/discharge cycles of lithium secondary batteries using the cathode active materials prepared in Example 1 and Comparative Example 1. Referring to FIG. 10, in the case of Example 1, the discharge capacity was much higher than that of Comparative Example 1, and the capacity retention after 50 charge/discharge cycles was 96%, showing very high lifespan characteristics. On the other hand, in the case of Comparative Example 1, as the number of charge/discharge cycles increased, the capacity retention rate rapidly decreased, showing a capacity retention rate of 67.6%. .

Claims (23)

리튬전이금속 복합 산화물; 및
상기 리튬전이금속 복합 산화물 상에 도핑된 도핑 금속;을 포함하는 리튬이차전지용 양극 활물질.
lithium transition metal complex oxide; and
A cathode active material for a lithium secondary battery comprising a doped metal doped on the lithium transition metal composite oxide.
제1항에 있어서,
상기 리튬전이금속 복합 산화물은 하기 화학식 1로 표시되는 화합물인 것인 리튬이차전지용 양극 활물질.
[화학식 1]
Lix(NiyCozAlu)O2
(상기 화학식 1에서,
x, y, z 및 u는 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01이며, y+z+u=1이다.)
According to claim 1,
The lithium transition metal composite oxide is a positive electrode active material for a lithium secondary battery that is a compound represented by Formula 1 below.
[Formula 1]
Li x (Ni y Co z Al u ) O 2
(In Formula 1 above,
x, y, z and u are 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01, and y+z+u=1.)
제1항에 있어서,
상기 도핑 금속은 In, Na, Fe, Ti, Mg 및 Ga으로 이루어진 군에서 선택된 1종 이상인 것인 리튬이차전지용 양극 활물질.
According to claim 1,
The doping metal is a cathode active material for a lithium secondary battery that is at least one selected from the group consisting of In, Na, Fe, Ti, Mg and Ga.
제1항에 있어서,
상기 도핑 금속의 도핑량은 양극 활물질 100 중량%에 대하여 0.0001 내지 0.01 중량%인 것인 리튬이차전지용 양극 활물질.
According to claim 1,
The doping amount of the doping metal is 0.0001 to 0.01% by weight based on 100% by weight of the positive electrode active material, the cathode active material for a lithium secondary battery.
제1항에 있어서,
상기 리튬이차전지용 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함하는 것인 리튬이차전지용 양극 활물질.
[화학식 2]
Lix(NiyCozAluMw)O2
(상기 화학식 2에서,
M은 In, Na, Fe, Ti, Mg 및 Ga으로 이루어진 군에서 선택된 1종 이상이고,
x, y, z, u 및 w는 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.001≤u≤0.01, 0.00001≤w≤0.01이며, y+z+u+w=1이다.)
According to claim 1,
The cathode active material for a lithium secondary battery is a cathode active material for a lithium secondary battery comprising a compound represented by Formula 2 below.
[Formula 2]
Li x (Ni y Co z Al u M w ) O 2
(In Formula 2 above,
M is at least one selected from the group consisting of In, Na, Fe, Ti, Mg, and Ga;
x, y, z, u and w are 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.001≤u≤0.01, 0.00001≤w≤0.01, and y+z+u+w=1 am.)
제1항에 있어서,
상기 화학식 2에서 M은 In이고, x, y, z, u 및 w는 0.95≤x≤1.2, 0.82≤y≤0.85, 0.14≤z≤0.18, 0.005≤u≤0.007, 0.00006≤w≤0.00008이며, y+z+u+w=1인 것인 리튬이차전지용 양극 활물질.
According to claim 1,
In Formula 2, M is In, and x, y, z, u and w are 0.95≤x≤1.2, 0.82≤y≤0.85, 0.14≤z≤0.18, 0.005≤u≤0.007, 0.00006≤w≤0.00008, A cathode active material for a lithium secondary battery in which y + z + u + w = 1.
제1항에 있어서,
상기 리튬이차전지용 양극 활물질의 평균 직경(D50)은 1.0 내지 7.0 ㎛인 것인 리튬이차전지용 양극 활물질.
According to claim 1,
The average diameter (D 50 ) of the cathode active material for a lithium secondary battery is 1.0 to 7.0 ㎛ of the cathode active material for a lithium secondary battery.
제1항에 있어서,
상기 리튬이차전지용 양극 활물질은 나노막대 형태이며, 상기 나노막대의 종횡비가 1 내지 10인 것인 리튬이차전지용 양극 활물질.
According to claim 1,
The cathode active material for a lithium secondary battery is in the form of nanorods, and the aspect ratio of the nanorods is 1 to 10.
제1항에 있어서,
상기 리튬이차전지용 양극 활물질은 층상 구조이며, X선 회절법에 의해 측정한 결정 면간거리(D-spacing, D003) 값이 0.2 내지 0.8 nm인 것인 리튬이차전지용 양극 활물질.
According to claim 1,
The positive electrode active material for a lithium secondary battery has a layered structure, and the crystal interplanar distance (D-spacing, D 003 ) value measured by X-ray diffraction is 0.2 to 0.8 nm.
제1항 내지 제9항 중에서 선택된 어느 한 항의 양극 활물질을 포함하는 리튬이차전지용 양극.
A cathode for a lithium secondary battery comprising the cathode active material of any one of claims 1 to 9.
제10항의 양극; 음극; 및 상기 양극 및 음극 사이에 개재되는 전해질;을 포함하는 리튬이차전지.
The positive electrode of claim 10; cathode; and an electrolyte interposed between the positive electrode and the negative electrode.
제11항의 리튬이차전지를 포함하는 장치로서,
상기 장치는 통신장치, 운송장치 및 에너지저장 장치 중에서 선택되는 어느 하나인 것인 장치.
A device comprising the lithium secondary battery of claim 11,
The device is any one selected from a communication device, a transport device and an energy storage device.
전이금속 화합물 전구체 분말을 제조하는 단계;
상기 전이금속 화합물 전구체 분말에 리튬 전구체 및 도핑 금속 전구체를 혼합하여 혼합물을 제조하는 단계; 및
상기 혼합물을 소성하여 도핑 금속이 리튬전이금속 복합 산화물 상에 도핑된 구조의 양극 활물질을 형성하는 단계;
를 포함하는 리튬이차전지용 양극 활물질의 제조방법.
preparing a transition metal compound precursor powder;
preparing a mixture by mixing a lithium precursor and a doped metal precursor with the transition metal compound precursor powder; and
firing the mixture to form a cathode active material having a structure in which a doped metal is doped on a lithium-transition metal composite oxide;
Method for producing a cathode active material for a lithium secondary battery comprising a.
제13항에 있어서,
상기 전이금속 화합물 전구체 분말은 NiyCozAlu(여기서, y, z, u는 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01이며, y+z+u=1임)인 것인 리튬이차전지용 양극 활물질의 제조방법.
According to claim 13,
The transition metal compound precursor powder is Ni y Co z Al u (where y, z, u are 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01, and y+z+u=1) A method for producing a cathode active material for a lithium secondary battery.
제13항에 있어서,
상기 리튬 전구체는 LiOH, Li2CO3, LiCoO2, LiNO3, CH3COOLi 및 Li2(COO)2로 이루어진 군에서 선택된 1종 이상인 것인 리튬이차전지용 양극 활물질의 제조방법.
According to claim 13,
The lithium precursor is at least one selected from the group consisting of LiOH, Li 2 CO 3 , LiCoO 2 , LiNO 3 , CH 3 COOLi and Li 2 (COO) 2 Method for producing a cathode active material for a lithium secondary battery.
제13항에 있어서,
상기 도핑 금속 전구체는 인듐(III) 아세틸아세토네이트인 것인 리튬이차전지용 양극 활물질의 제조방법.
According to claim 13,
The doped metal precursor is a method for producing a cathode active material for a lithium secondary battery that is indium (III) acetylacetonate.
제13항에 있어서,
상기 양극 활물질을 형성하는 단계에서 소성은 산소 분위기 하에 600 내지 1000 ℃에서 24 내지 32 시간 동안 수행하는 것인 리튬이차전지용 양극 활물질의 제조방법.
According to claim 13,
In the step of forming the cathode active material, the method of producing a cathode active material for a lithium secondary battery, in which sintering is performed at 600 to 1000 ° C. for 24 to 32 hours under an oxygen atmosphere.
제13항에 있어서,
상기 도핑 금속의 도핑량은 양극 활물질 100 중량%에 대하여 0.0001 내지 0.01 중량%인 것인 리튬이차전지용 양극 활물질의 제조방법.
According to claim 13,
The doping amount of the doping metal is 0.0001 to 0.01% by weight based on 100% by weight of the positive electrode active material, a method for producing a positive electrode active material for a lithium secondary battery.
제13항에 있어서,
상기 리튬이차전지용 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함하는 것인 리튬이차전지용 양극 활물질의 제조방법.
[화학식 2]
Lix(NiyCozAluMw)O2
(상기 화학식 2에서,
M은 In, Na, Fe, Ti, Mg 및 Ga으로 이루어진 군에서 선택된 1종 이상이고,
x, y, z, u 및 w는 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.001≤u≤0.01, 0.00001≤w≤0.01이며, y+z+u+w=1이다.)
According to claim 13,
The cathode active material for a lithium secondary battery is a method for producing a cathode active material for a lithium secondary battery comprising a compound represented by Formula 2 below.
[Formula 2]
Li x (Ni y Co z Al u M w ) O 2
(In Formula 2 above,
M is at least one selected from the group consisting of In, Na, Fe, Ti, Mg, and Ga;
x, y, z, u and w are 0.8≤x≤2, 0.7≤y≤0.9, 0.1≤z≤0.3, 0.001≤u≤0.01, 0.00001≤w≤0.01, and y+z+u+w=1 am.)
제13항에 있어서,
상기 리튬이차전지용 양극 활물질의 평균 직경(D50)은 1.0 내지 7.0 ㎛인 것인 리튬이차전지용 양극 활물질의 제조방법.
According to claim 13,
The average diameter (D 50 ) of the positive electrode active material for a lithium secondary battery is a method for producing a positive electrode active material for a lithium secondary battery of 1.0 to 7.0 ㎛.
제13항에 있어서,
상기 리튬이차전지용 양극 활물질은 나노막대 형태이며, 상기 나노막대의 종횡비가 1 내지 10인 것인 리튬이차전지용 양극 활물질의 제조방법.
According to claim 13,
The cathode active material for a lithium secondary battery is in the form of nanorods, and the aspect ratio of the nanorods is 1 to 10.
제13항에 있어서,
상기 리튬이차전지용 양극 활물질은 층상 구조이며, X선 회절법에 의해 측정한 결정 면간거리(D-spacing, D003) 값이 0.2 내지 0.8 nm인 것인 리튬이차전지용 양극 활물질의 제조방법.
According to claim 13,
The cathode active material for a lithium secondary battery has a layered structure, and the crystal interplanar distance (D-spacing, D 003 ) value measured by X-ray diffraction is 0.2 to 0.8 nm. Method for producing a cathode active material for a lithium secondary battery.
제13항에 있어서,
상기 전이금속 화합물 전구체 분말은 NiyCozAlu(여기서, y, z, u는 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01이며, y+z+u=1임)이고,
상기 리튬 전구체는 LiOH이고,
상기 도핑 금속 전구체는 인듐(III) 아세틸아세토네이트이고,
상기 양극 활물질을 형성하는 단계에서 소성은 산소 분위기 하에 700 내지 740 ℃에서 27 내지 29 시간 동안 수행하고,
상기 도핑 금속의 도핑량은 양극 활물질 100 중량%에 대하여 0.002 내지 0.004 중량%%이고,
상기 리튬이차전지용 양극 활물질은 하기 화학식 2로 표시되는 화합물을 포함하고,
상기 리튬이차전지용 양극 활물질의 평균 직경(D50)은 5 내지 6 ㎛이고,
상기 리튬이차전지용 양극 활물질은 나노막대 형태이며, 상기 나노막대의 종횡비가 5 내지 10이고,
상기 리튬이차전지용 양극 활물질은 층상 구조이며, X선 회절법에 의해 측정한 결정 면간거리(D-spacing, D003) 값이 0.4 내지 0.5 nm인 것인 리튬이차전지용 양극 활물질의 제조방법.
[화학식 2]
Lix(NiyCozAluMw)O2
(상기 화학식 2에서, M은 In이고, x, y, z, u 및 w는 0.95≤x≤1.2, 0.82≤y≤0.85, 0.14≤z≤0.18, 0.005≤u≤0.007, 0.00006≤w≤0.00008이며, y+z+u+w=1이다.)
According to claim 13,
The transition metal compound precursor powder is Ni y Co z Al u (where y, z, u are 0.7≤y≤0.9, 0.1≤z≤0.3, 0.005≤u≤0.01, and y+z+u=1) ego,
The lithium precursor is LiOH,
The doped metal precursor is indium(III) acetylacetonate,
In the step of forming the cathode active material, firing is performed at 700 to 740 ° C. for 27 to 29 hours in an oxygen atmosphere,
The doping amount of the doping metal is 0.002 to 0.004% by weight based on 100% by weight of the positive electrode active material,
The cathode active material for a lithium secondary battery includes a compound represented by Formula 2 below,
The average diameter (D 50 ) of the cathode active material for a lithium secondary battery is 5 to 6 μm,
The cathode active material for a lithium secondary battery is in the form of nanorods, and the aspect ratio of the nanorods is 5 to 10,
The cathode active material for a lithium secondary battery has a layered structure, and the crystal interplanar distance (D-spacing, D 003 ) value measured by X-ray diffraction is 0.4 to 0.5 nm. Method for producing a cathode active material for a lithium secondary battery.
[Formula 2]
Li x (Ni y Co z Al u M w ) O 2
(In Formula 2, M is In, and x, y, z, u and w are 0.95≤x≤1.2, 0.82≤y≤0.85, 0.14≤z≤0.18, 0.005≤u≤0.007, 0.00006≤w≤0.00008 , and y+z+u+w=1.)
KR1020210124740A 2021-09-17 2021-09-17 Low cost cathode material design for lithium ion batteries of special microstructure with high activity KR102708553B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210124740A KR102708553B1 (en) 2021-09-17 2021-09-17 Low cost cathode material design for lithium ion batteries of special microstructure with high activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210124740A KR102708553B1 (en) 2021-09-17 2021-09-17 Low cost cathode material design for lithium ion batteries of special microstructure with high activity

Publications (2)

Publication Number Publication Date
KR20230041303A true KR20230041303A (en) 2023-03-24
KR102708553B1 KR102708553B1 (en) 2024-09-23

Family

ID=85872719

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210124740A KR102708553B1 (en) 2021-09-17 2021-09-17 Low cost cathode material design for lithium ion batteries of special microstructure with high activity

Country Status (1)

Country Link
KR (1) KR102708553B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129381A (en) * 2016-08-31 2016-11-16 广西茗匠科技有限公司 All solid state lithium ion power battery anode material preparation method
KR20180063862A (en) * 2016-12-02 2018-06-12 주식회사 엘지화학 Positive electrode active material precursor for secondary battery and positive electrode active material for secondary battery prepared by using the same
KR20190008156A (en) * 2017-07-14 2019-01-23 한양대학교 산학협력단 Positive active material, method of fabricating of the same, and lithium secondary battery comprising the same
CN109713252A (en) * 2018-11-30 2019-05-03 高点(深圳)科技有限公司 The high nickelic tertiary cathode material and its preparation method and application of electrical property consistency
KR102147293B1 (en) 2019-09-27 2020-08-24 재단법인 포항산업과학연구원 Positive active material for lithium rechargeable battery, and lithium rechargeable battery including the same
CN113206237A (en) * 2021-05-06 2021-08-03 西安电子科技大学 Indium-doped high-nickel positive electrode material coated with lithium indium oxide and preparation method thereof
KR20210106913A (en) * 2020-02-21 2021-08-31 주식회사 배터리솔루션 Positive active material containing ultrafine grain and highly oriented primary particle for lithium secondary battery, and lithium secondary battery comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129381A (en) * 2016-08-31 2016-11-16 广西茗匠科技有限公司 All solid state lithium ion power battery anode material preparation method
KR20180063862A (en) * 2016-12-02 2018-06-12 주식회사 엘지화학 Positive electrode active material precursor for secondary battery and positive electrode active material for secondary battery prepared by using the same
KR20190008156A (en) * 2017-07-14 2019-01-23 한양대학교 산학협력단 Positive active material, method of fabricating of the same, and lithium secondary battery comprising the same
CN109713252A (en) * 2018-11-30 2019-05-03 高点(深圳)科技有限公司 The high nickelic tertiary cathode material and its preparation method and application of electrical property consistency
KR102147293B1 (en) 2019-09-27 2020-08-24 재단법인 포항산업과학연구원 Positive active material for lithium rechargeable battery, and lithium rechargeable battery including the same
KR20210106913A (en) * 2020-02-21 2021-08-31 주식회사 배터리솔루션 Positive active material containing ultrafine grain and highly oriented primary particle for lithium secondary battery, and lithium secondary battery comprising the same
CN113206237A (en) * 2021-05-06 2021-08-03 西安电子科技大学 Indium-doped high-nickel positive electrode material coated with lithium indium oxide and preparation method thereof

Also Published As

Publication number Publication date
KR102708553B1 (en) 2024-09-23

Similar Documents

Publication Publication Date Title
Li et al. The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
Zhang et al. Improved electrochemical performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials via incorporation of rubidium cations into the original Li sites
US7192539B2 (en) Cobalt oxide particles and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
Yi et al. Enhanced electrochemical performance of Li-rich low-Co Li1. 2Mn0. 56Ni0. 16Co0. 08− xAlxO2 (0≤ x≤ 0.08) as cathode materials
KR101475922B1 (en) Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same
EP3930052A1 (en) Low gas-producing high capacity ternary positive electrode material
US10236531B2 (en) Powder for negative electrode of lithium ion secondary battery, and method for producing such powder
US20180175368A1 (en) Spherical or spherical-like cathode material for a lithium battery, a battery and preparation method and application thereof
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
Lou et al. Mg-doped Li1. 2Mn0. 54Ni0. 13Co0. 13O2 nano flakes with improved electrochemical performance for lithium-ion battery application
Yuan et al. Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
CN114284499B (en) Spinel structure coated modified lithium cobaltate-based material, preparation method and lithium battery
CN110556531A (en) Anode material, preparation method thereof and lithium ion battery containing anode material
KR20120091590A (en) Positive-electrode active material with improved output and lithium secondary battery including them
JP2022078776A (en) Method for manufacturing positive electrode active material, positive electrode active material, and method for manufacturing lithium ion battery
Zhang et al. Synthesis and characterization of mono-dispersion LiNi0. 8Co0. 1Mn0. 1O2 micrometer particles for lithium-ion batteries
CN112186166B (en) Molybdenum/cobalt oxide-carbon composite material and preparation method thereof, lithium ion battery negative electrode piece and lithium ion battery
CN116779836B (en) Lithium supplementing material, preparation method, positive pole piece, energy storage device and power utilization device
KR20150084818A (en) Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
CN116799201A (en) Halide-based positive electrode active material, and synthesis method and application thereof
Akhilash et al. A comparative study of aqueous-and non-aqueous-processed Li-rich Li 1.5 Ni 0.25 Mn 0.75 O 2.5 cathodes for advanced lithium-ion cells
CN114864894B (en) High-pressure-resistant coating modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
Tian et al. A new lithium‐rich layer‐structured cathode material with improved electrochemical performance and voltage maintenance

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant