KR20230038328A - 3D printing resin composition comprising fluorescent dye having urethane acrylate group and method for preparing of the composition - Google Patents

3D printing resin composition comprising fluorescent dye having urethane acrylate group and method for preparing of the composition Download PDF

Info

Publication number
KR20230038328A
KR20230038328A KR1020210120766A KR20210120766A KR20230038328A KR 20230038328 A KR20230038328 A KR 20230038328A KR 1020210120766 A KR1020210120766 A KR 1020210120766A KR 20210120766 A KR20210120766 A KR 20210120766A KR 20230038328 A KR20230038328 A KR 20230038328A
Authority
KR
South Korea
Prior art keywords
resin composition
printing
urethane acrylate
photocurable resin
group
Prior art date
Application number
KR1020210120766A
Other languages
Korean (ko)
Other versions
KR102579548B1 (en
Inventor
문승호
전시영
김용호
Original Assignee
주식회사 에스엠티랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엠티랩 filed Critical 주식회사 에스엠티랩
Priority to KR1020210120766A priority Critical patent/KR102579548B1/en
Publication of KR20230038328A publication Critical patent/KR20230038328A/en
Application granted granted Critical
Publication of KR102579548B1 publication Critical patent/KR102579548B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • C08G18/0857Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic the solvent being a polyol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings

Abstract

The present invention relates to a 3D printing resin composition containing a fluorescent dye having a urethane acrylate group, capable of crosslinking, wherein the viscosity of the resin composition is suitable for 3D molding, and a 3D molded material realizes a fluorescent color with excellent light resistance and at the same time, shows the characteristic that the dye does not migrate to the outside even when left for a long time. The 3D printing resin composition of the present invention comprises (a) a mixture of a perylene-based red fluorescent dye having a urethane acrylate group and polyalkylene glycol-urethane diacrylate, (b) a urethane acrylate oligomer, (c) a reactive diluent containing an acryl group, and (d) a photocuring initiator.

Description

우레탄 아크릴레이트기를 가지는 형광염료를 포함하는 3D 프린팅용 광경화성 수지 조성물 및 이의 제조 방법 {3D printing resin composition comprising fluorescent dye having urethane acrylate group and method for preparing of the composition}Photocurable resin composition for 3D printing containing a fluorescent dye having a urethane acrylate group and method for preparing the same

본 발명은 레드 형광염료를 포함하는 3D 프린팅용 광경화성 수지 조성물 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 가교결합이 가능한 우레탄 아크릴레이트 반응기를 가지는 페릴렌계 형광염료를 3D 프린팅용 수지 조성물에 적용하여 신축성 및 내광성이 우수하고 용출 (migration)이 전혀 없는 우레탄계 엘라스토머를 제조하는 기술에 관한 것이다.The present invention relates to a photocurable resin composition for 3D printing containing a red fluorescent dye and a method for preparing the same, and more particularly, to a resin composition for 3D printing using a perylene fluorescent dye having a urethane acrylate reactive group capable of crosslinking It relates to a technology for producing a urethane-based elastomer having excellent elasticity and light resistance and no migration.

3D 프린팅 산업은 최근 급성장을 이루고 있으며, 3D 프린팅 기술은 소비자의 아이디어를 기반으로 소비자가 바로 생산하는 새로운 패러다임을 만들고 있다. 특히 광경화성 수지를 사용하는 SLA (Stereolithography) 및 DLP (Digital Light Processing) 방식의 경우 미세한 정밀구조의 성형이 가능한 장점이 있으므로 전자부품, 센서, 바이오용 디바이스 등에 널리 적용되고 있다. 이러한 광경화 방식을 활용한 유연소자 (flexible device)를 제조하기 위해 많은 연구 개발이 진행되고 있는데 신축성이 우수한 제품이 구현되기 위해서는 광경화성 수지 조성물 중에서 분자량이 큰 우레탄 아크릴레이트 올리고머 (urethane acrylate oligomer)가 주성분으로 포함되어야 한다. 하지만 광경화성 수지의 점도가 너무 높을 경우 3D 프린팅 성형 자체가 불가능하거나 아니면 성형이 되더라도 원래 계획했던 모양 대비 과도하게 변형된 제품이 출력되는 문제점이 있다. The 3D printing industry has been growing rapidly in recent years, and 3D printing technology is creating a new paradigm in which consumers directly produce products based on their ideas. In particular, in the case of SLA (Stereolithography) and DLP (Digital Light Processing) methods using photocurable resins, they are widely applied to electronic parts, sensors, and bio devices because they have the advantage of being able to mold finely precise structures. A lot of research and development is being conducted to manufacture a flexible device using this photocuring method. In order to realize a product with excellent elasticity, a urethane acrylate oligomer having a high molecular weight among photocurable resin compositions is required. It should be included as a main ingredient. However, if the viscosity of the photocurable resin is too high, 3D printing molding itself is impossible, or even if it is molded, there is a problem in that a product that is excessively deformed compared to the originally planned shape is output.

이러한 고점도 문제를 해결하기 위해서 통상 점도가 낮은 저분자량 모노머를 반응형 희석제로 사용하는데 이들 희석제의 함량이 증가할 경우 최종 성형물이 brittle 해져 엘라스토머의 특성을 잃어버리게 된다. 광경화성 수지가 담겨있는 Vat의 온도를 올려 점도를 낮추는 방식도 문헌으로 보고되고 있지만 (Adv. Mater. 2017, 29, 1606000, Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing) 실제 상업화된 3D 프린팅 장비에 적용하기에는 어려움이 있다. 또한 미국특허 US 10,316,213 B1 및 WO 2020/131675 A1 등에서는 이중경화(Dual-cure) 방식이 개시되어 있는데, 이 경우 blocked isocyanate 또는 micro-capsule 기술을 활용하여 3D 성형 단계에서는 일부 광경화성 모노머 또는 올리고머들이 반응하여 원하는 형태를 가지는 물체를 성형시키고 (green 상태), post curing 단계에서 3D 성형조건과는 다른 조건, 예를 들면 Green 상태의 3D 성형물에 온도를 가하면 성형물에 포함되어 있던 blocked isocyanate 또는 micro-capsule 이 새로운 화학 반응에 참여하여 고분자량의 탄성체 구조가 추가로 생성되는 방법이다. In order to solve this high viscosity problem, low molecular weight monomers with low viscosity are usually used as reactive diluents, but when the content of these diluents increases, the final molded product becomes brittle and loses the characteristics of the elastomer. Although the method of lowering the viscosity by raising the temperature of the vat containing the photocurable resin has been reported in literature (Adv. Mater. 2017, 29, 1606000, Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing), commercialized 3D It is difficult to apply to printing equipment. In addition, US patents US 10,316,213 B1 and WO 2020/131675 A1 disclose a dual-cure method. In this case, some photocurable monomers or oligomers are formed in the 3D molding step using blocked isocyanate or micro-capsule technology. It reacts to form an object having a desired shape (green state), and in the post curing step, when a temperature is applied to the 3D molding in a green state, for example, a condition different from the 3D molding condition, blocked isocyanate or micro-capsule contained in the molding Participating in this new chemical reaction, an additional high-molecular-weight elastomeric structure is created.

한편 현재 3D 성형품의 다양한 색상을 구현하기 위해서 성형 후 채색하는 방식을 사용하거나 또는 수지에 분산시켜 사용하는 방법을 택하고 있는데, 성형 후 채색의 경우 고급 칼라감은 구현하기가 힘들며 수지에 분산시켜 사용할 경우 분산성, 균일성 등의 문제가 발생한다. 더욱이 고분자 올리고머로 이루어진 엘라스토머용 광경화형 수지의 경우 점도가 매우 높아 착색제의 분산이 매우 어렵다는 문제가 있다. 또한 광경화 3D 프린팅 방식의 경우 수지가 빛에 노출되는 시간이 증가하게 되어 변색의 문제도 발생하며 시간이 지남에 따라 착색제가 표면으로 용출(migration)되는 현상이 발생하기도 한다. 이러한 용출 문제는 인체와 접촉하는 부품에 적용될 경우 또는 바이오 관련 제품을 성형할 경우 심각한 문제를 초래한다. 염료의 용출 문제를 해결하기 위하여 페릴렌(Perylene)계 형광염료에 아크릴 반응기를 도입한 기술들이 보고 되었는데 (한국등록특허 10-1915865 및 10-2146616) 대량 생산시 정제 수율이 떨어져 제조원가가 너무 상승한다는 문제점이 발견되었다. 특히 페릴렌계 레드(Red) 형광염료는 분자량이 매우 크기 때문에 우레탄 아크릴레이트 반응기를 도입할 경우 분자량이 1,800 수준으로 파우더 상태의 결정을 얻기가 매우 어렵다. On the other hand, currently, in order to realize various colors of 3D molded products, a method of coloring after molding or dispersing in resin is used. In the case of coloring after molding, it is difficult to realize a high-quality color sense, and Problems such as dispersibility and uniformity arise. Moreover, in the case of photocurable resins for elastomers made of polymeric oligomers, the viscosity is very high, and it is very difficult to disperse the colorant. In addition, in the case of the photocuring 3D printing method, the time the resin is exposed to light increases, causing discoloration problems, and over time, a phenomenon in which the colorant is eluted to the surface (migration) may occur. This dissolution problem causes serious problems when applied to parts in contact with the human body or when molding bio-related products. In order to solve the dye elution problem, techniques for introducing an acrylic reactor to Perylene-based fluorescent dyes have been reported (Korean Registered Patent No. 10-1915865 and 10-2146616), and the manufacturing cost is too high due to a drop in purification yield during mass production. A problem was discovered. In particular, since the molecular weight of the perylene-based red fluorescent dye is very large, it is very difficult to obtain a crystal in a powder state with a molecular weight of 1,800 when a urethane acrylate reactor is introduced.

미국등록특허 US 10,316,213 B1US Registered Patent US 10,316,213 B1 국제공개특허 WO 2020/131675 A1International Patent Publication WO 2020/131675 A1 한국등록특허 10-1915865Korea Patent No. 10-1915865 한국등록특허 10-2146616Korea Patent Registration 10-2146616

본 발명이 해결하고자 하는 과제는 우레탄 아크릴레이트 반응기를 가지는 레드 형광염료를 효과적으로 합성하고, 이를 활용하여 신축성 및 내광성이 우수하고 용출 (migration) 문제가 전혀 없는 3D 프린팅용 수지 조성물을 제공하는 것이다. The problem to be solved by the present invention is to effectively synthesize a red fluorescent dye having a urethane acrylate reactive group, and to provide a resin composition for 3D printing that has excellent elasticity and light resistance and has no migration problem.

상기 기술적 과제를 해결하기 위하여, 본 발명은 (a) 우레탄 아크릴레이트기를 가지는 페릴렌계 레드 형광염료와 폴리알킬렌 글리콜-우레탄 디아크릴레이트의 혼합물, (b) 우레탄 아크릴레이트 올리고머, (c) 아크릴기를 포함하는 반응형 희석제 및 (d) 광경화 개시제를 포함하는 3D 프린팅용 광경화성 수지 조성물을 제공한다.In order to solve the above technical problem, the present invention is (a) a mixture of a perylene-based red fluorescent dye having a urethane acrylate group and polyalkylene glycol-urethane diacrylate, (b) a urethane acrylate oligomer, (c) an acryl group It provides a photocurable resin composition for 3D printing comprising a reactive diluent and (d) a photocuring initiator.

또한 본 발명은 i) 알코올기를 가지는 페릴렌 형광염료를 폴리알킬렌 글리콜에 용해시키는 단계; ⅱ) 상기 염료 용액에 이소시아네이토에틸 아크릴레이트 용액을 혼합하여 반응시키는 단계; ⅲ) 상기 반응 후 용매를 증발시켜 우레탄 아크릴레이트기를 가지는 레드 형광염료와 폴리알킬렌 글리콜-우레탄 디아크릴레이트 혼합물을 제조하는 단계; 및 ⅳ) 상기 혼합물에 우레탄 아크릴레이트 올리고머, 아크릴기를 포함하는 반응형 희석제 및 광경화 개시제를 혼합하는 단계를 포함하는 3D 프린팅용 광경화성 수지 조성물의 제조 방법을 제공한다. In addition, the present invention comprises the steps of i) dissolving a perylene fluorescent dye having an alcohol group in polyalkylene glycol; ii) mixing and reacting an isocyanatoethyl acrylate solution with the dye solution; iii) preparing a red fluorescent dye having a urethane acrylate group and a polyalkylene glycol-urethane diacrylate mixture by evaporating the solvent after the reaction; and iv) mixing a urethane acrylate oligomer, a reactive diluent containing an acryl group, and a photocuring initiator with the mixture.

또한 본 발명은 상기 광경화성 형광 수지 조성물을 이용해서 3D 프린팅 방식으로 제조된 형광 성형물로서, 신율(Elongation)은 200% 이상이고, 일광견뢰도는 6급 이상인 것을 특징으로 하는 성형물을 제공한다. In addition, the present invention provides a fluorescent molded article manufactured by 3D printing using the photocurable fluorescent resin composition, characterized in that the elongation is 200% or more and the light fastness is 6th grade or higher.

본 발명은 우레탄 아크릴레이트기를 가지는 레드(Red) 형광염료가 폴리알킬렌 글리콜-우레탄 디아크릴레이트(polyalkyleneglycol-urethane diacrylate)에 균일하게 녹아있는 상태의 혼합물을 먼저 제조하고, 이 혼합물을 이용하여 3D 프린팅용 수지 조성물을 제조한다. 상기 혼합물에는 우레탄 아크릴레이트기를 가지는 레드 형광염료가 고농도(0.1 ~ 1.0 중량%)로 균일하게 녹아 있기 때문에 분자량 4,000 ~ 20,000의 고점도 우레탄 아크릴레이트 올리고머 및 반응형 희석제 (reactive diluent)와 적절히 혼합하면 신축성 및 내광성이 우수하고 용출(migration) 문제가 전혀 없는 3D 프린팅용 레드 형광 수지 조성물을 제공할 수 있다. In the present invention, a mixture in which red fluorescent dye having a urethane acrylate group is uniformly dissolved in polyalkyleneglycol-urethane diacrylate is first prepared, and 3D printing is performed using this mixture. Prepare a resin composition for use. Since red fluorescent dye having a urethane acrylate group is uniformly dissolved in the mixture at a high concentration (0.1 to 1.0% by weight), when appropriately mixed with a high viscosity urethane acrylate oligomer having a molecular weight of 4,000 to 20,000 and a reactive diluent, elasticity and A red fluorescent resin composition for 3D printing having excellent light resistance and no migration problem can be provided.

도 1은 본 발명의 실시예와 비교예에 따라 제조된 3D 형광 엘라스토머 성형물의 용출 여부를 확인할 수 있는 사진이다. 1 is a photograph confirming whether or not the 3D fluorescent elastomer moldings are eluted according to Examples and Comparative Examples of the present invention.

이하 실시예를 통해 본 발명을 보다 상세히 설명한다.The present invention will be described in more detail through the following examples.

본 발명과 같은 3D 프린팅용 수지 조성물에 사용하는 형광염료는 3D 프린팅 방식의 특성상 UV 또는 405nm 영역의 Blue-LED 를 조사하게 되기 때문에 이들 고에너지 빛에 대한 내광성(Light Fastness)이 매우 뛰어나야 함을 물론, 균일한 색상의 성형품 제조를 위해 모노머 및 올리고머에 대한 상용성(miscibility) 및 용해성(solubility) 또한 우수해야 한다. 이러한 조건을 만족시기키 위해 본 발명에서는 하기 [화학식 1]로 표현되는 페릴렌(Perylene) 기반의 레드 형광염료 (Red-UA)를 합성하여 사용하였다. [화학식 1]의 화합물은 내광성이 뛰어난 페릴렌 골격에 우레탄 아크릴레이트 반응기를 가지고 있으므로 광경화성 3D 프린팅 수지 조성물에 사용되는 대부분의 모노머 및 올리고머에 대해 상용성이 매우 우수하다. Since the fluorescent dye used in the resin composition for 3D printing of the present invention irradiates UV or 405 nm Blue-LED due to the nature of the 3D printing method, it must have excellent light fastness to these high energy lights. , Miscibility and solubility for monomers and oligomers must also be excellent in order to manufacture molded products of uniform color. In order to satisfy these conditions, in the present invention, a perylene-based red fluorescent dye (Red-UA) represented by the following [Chemical Formula 1] was synthesized and used. Since the compound of [Formula 1] has a urethane acrylate reactive group in a perylene skeleton having excellent light resistance, it has excellent compatibility with most monomers and oligomers used in photocurable 3D printing resin compositions.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 [화학식 1]의 형광염료는 하기 [반응식 1]의 경로에 따라 합성할 수 있으나, Red-UA의 분자량이 너무 커서 최종 단계에서 순수한 형태의 고체로 분리하기가 힘들며 이는 특히 대량 생산시 최종 수율을 급격하게 떨어뜨려 제조 원가가 급격히 상승하는 문제가 있다.The fluorescent dye of [Chemical Formula 1] can be synthesized according to the following [Scheme 1], but the molecular weight of Red-UA is too large to separate it into a pure solid in the final stage, which is particularly important in mass production. There is a problem in that the manufacturing cost rapidly increases due to a sharp drop in manufacturing cost.

[반응식 1][Scheme 1]

Figure pat00002
Figure pat00002

상기 문제점을 해결하기 위해서 본 발명은 레드 형광염료(Red-UA)를 아래와 같이 혼합물 상태로 합성하고, 이때 얻어진 혼합물을 이용하여 3D 프린팅용 광경화성 수지 조성물을 제조하는 방법을 제공하며, 구체적으로 i) 알코올기를 가지는 페릴렌 형광염료를 폴리알킬렌 글리콜에 용해시키는 단계; ⅱ) 상기 염료 용액에 이소시아네이토에틸 아크릴레이트 용액을 혼합하여 반응시키는 단계; ⅲ) 상기 반응 후 용매를 증발시켜 우레탄 아크릴레이트기를 가지는 레드 형광염료와 폴리알킬렌 글리콜-우레탄 디아크릴레이트 혼합물을 제조하는 단계; 및 ⅳ) 상기 혼합물에 우레탄 아크릴레이트 올리고머, 아크릴기를 포함하는 반응형 희석제 및 광경화 개시제를 혼합하는 단계를 포함하는 것이 특징이다.In order to solve the above problems, the present invention provides a method for preparing a photocurable resin composition for 3D printing by synthesizing a red fluorescent dye (Red-UA) in a mixture state as follows, and using the mixture obtained at this time, specifically i ) dissolving a perylene fluorescent dye having an alcohol group in polyalkylene glycol; ii) mixing and reacting an isocyanatoethyl acrylate solution with the dye solution; iii) preparing a red fluorescent dye having a urethane acrylate group and a polyalkylene glycol-urethane diacrylate mixture by evaporating the solvent after the reaction; and iv) mixing a urethane acrylate oligomer, a reactive diluent containing an acryl group, and a photocuring initiator with the mixture.

예를 들어, 하기 [반응식 2]에 따라 [화학식 1]의 우레탄 아크릴레이트기를 가지는 페릴렌 형광염료 (Red-UA)를 합성할 수 있다. For example, perylene fluorescent dye (Red-UA) having a urethane acrylate group of [Formula 1] may be synthesized according to the following [Scheme 2].

[반응식 2][Scheme 2]

Figure pat00003
Figure pat00003

본 발명에서는 [반응식 2]와 같이, 먼저 하이드록시를 가지는 페릴렌 레드 형광염료 (Red-OH) [화학식 2]를 합성하고, 이를 40 ~ 60℃의 분자량 1,000 ~ 4,000 사이의 폴리테트라메틸렌 글리콜(PTMG)에 용해시켜 Red-OH의 농도가 0.1 ~ 1.0 중량%인 (Red-OH + 폴리테트라메틸렌 글리콜) 혼합액을 제조한다. 이들 혼합액을 THF 용매하에서 2-이소시아네이토에틸 아크릴레이트(2-Isocyanatoethyl acrylate)와 60 ~ 70℃ 온도에서 1시간 정도 반응시킨다. 반응 종료 후 용매를 감압증류로 제거하면 우레탄 아크릴레이트기를 가지는 레드 형광염료(Red-urethane acrylate)가 폴리테트라메틸렌 글리콜-우레탄 디아크릴레이트(PTMG-urethane diacrylate)에 균일하게 녹아있는 상태의 혼합물을 높은 수율로 얻을 수 있다. 또한 본 발명에서는 폴리테트라메틸렌 글리콜 대신에 폴리에틸렌 글리콜 및 폴리프로필렌 글리콜 등의 분자량 1,000 ~ 4,000 사이의 폴리알킬렌 글리콜을 단독 또는 혼합하여 사용할 수 있다. In the present invention, as shown in [Scheme 2], first, a hydroxyl-containing perylene red fluorescent dye (Red-OH) [Formula 2] is synthesized, and polytetramethylene glycol having a molecular weight of 1,000 to 4,000 at 40 to 60 ° C. PTMG) to prepare a mixture (Red-OH + polytetramethylene glycol) having a Red-OH concentration of 0.1 to 1.0% by weight. These mixtures are reacted with 2-Isocyanatoethyl acrylate in a THF solvent at a temperature of 60 to 70 ° C for about 1 hour. After completion of the reaction, when the solvent is removed by vacuum distillation, the mixture in which red-urethane acrylate having a urethane acrylate group is uniformly dissolved in polytetramethylene glycol-urethane diacrylate (PTMG-urethane diacrylate) is obtained with high can be obtained in yield. Further, in the present invention, polyalkylene glycol having a molecular weight of 1,000 to 4,000 such as polyethylene glycol and polypropylene glycol may be used alone or in combination instead of polytetramethylene glycol.

이때 혼합액 중에서 레드 형광염료(Red-OH)의 함량은 0.1 내지 1.0 중량% 범위인 것이 바람직하다. 농도가 1.0 중량% 이상이면 Red-OH가 충분히 용해되지 않아 미반응 Red-OH가 최종 화합물에 존재할 가능성이 커지며, Red-OH의 농도가 0.1 중량% 이하로 낮으면 광경화형 3D 프린팅 수지에 투입해야 할 (Red-OH + 폴리알킬렌 글리콜 디아크릴레이트) 혼합물의 함량이 증가하게 되어 경제적이지 못하다. 한편 폴리알킬렌 글리콜의 분자량이 1,000 이하이면 최종 3D 프린팅의 성형물의 신율을 감소시키는 등 엘라스토머 특성에 나쁜 영향을 미치게 되며, 분자량이 4,000 이상이면 점도가 너무 높아져 Red-OH를 충분히 용해시키지 못하는 문제가 발생한다. At this time, the content of the red fluorescent dye (Red-OH) in the mixture is preferably in the range of 0.1 to 1.0% by weight. If the concentration is more than 1.0% by weight, Red-OH is not sufficiently dissolved, so there is a high possibility that unreacted Red-OH exists in the final compound. It is not economical because the content of the Hal (Red-OH + polyalkylene glycol diacrylate) mixture increases. On the other hand, if the molecular weight of polyalkylene glycol is less than 1,000, it adversely affects the elastomer properties, such as reducing the elongation of the final 3D printing molded product. Occurs.

본 발명은 이와 같이 우레탄 아크릴레이트기를 가지는 레드 형광염료가 폴리알킬렌 글리콜 기반의 우레탄 디아크릴레이트에 균일하게 녹아있는 상태의 혼합물을 활용하여, 신축성 및 내광성이 우수하고 용출 (migration) 문제가 전혀 없는 3D 프린팅용 Red 형광 수지 조성물을 제공할 수 있다는 것이 특징이다. The present invention utilizes a mixture in which the red fluorescent dye having a urethane acrylate group is uniformly dissolved in the polyalkylene glycol-based urethane diacrylate, and has excellent elasticity and light resistance and has no migration problem. It is characterized by being able to provide a red fluorescent resin composition for 3D printing.

본 발명에 따른 3D 프린팅용 광경화성 수지 조성물은 구체적으로, (a) 우레탄 아크릴레이트기를 가지는 페릴렌계 레드 형광염료와 폴리알킬렌 글리콜-우레탄 디아크릴레이트의 혼합물, (b) 우레탄 아크릴레이트 올리고머, (c) 아크릴기를 포함하는 반응형 희석제 및 (d) 광경화 개시제를 포함하며, 필요에 따라 선택적으로 (e) 광흡수제를 포함할 수 있다. The photocurable resin composition for 3D printing according to the present invention is specifically, (a) a mixture of a perylene-based red fluorescent dye having a urethane acrylate group and polyalkylene glycol-urethane diacrylate, (b) a urethane acrylate oligomer, ( c) a reactive diluent containing an acryl group and (d) a photocuring initiator, and may optionally include (e) a light absorber if necessary.

본 발명에 따른 3D 프린팅용 광경화성 수지 조성물의 각 성분별 함량은 예를 들어, (a) 우레탄 아크릴레이트기를 가지는 Red 형광염료 (Red-urethane acrylate) 0.1 ~ 1.0 중량%가 분자량 1,000 ~ 4,000 사이의 폴리알킬렌 글리콜 기반의 우레탄 디아크릴레이트에 균일하게 녹아있는 상태의 혼합물 1 ~ 10 중량% (b) 분자량 4,000 ~ 20,000의 고점도 우레탄 아크릴레이트 올리고머 30 ~ 70 중량% (c) 아크릴기를 포함하는 반응형 희석제 (reactive diluent) 10 ~ 50 중량%, (d) 광경화 개시제 1 ~ 5 중량%를 포함할 수 있으며, 선택적으로 (e) 광흡수제 (photoabsorber) 0.1 ~ 2 중량%를 포함할 수도 있다. The content of each component of the photocurable resin composition for 3D printing according to the present invention is, for example, (a) 0.1 to 1.0% by weight of red fluorescent dye (Red-urethane acrylate) having a urethane acrylate group having a molecular weight between 1,000 and 4,000 1 to 10% by weight of a mixture uniformly dissolved in polyalkylene glycol-based urethane diacrylate (b) 30 to 70% by weight of high-viscosity urethane acrylate oligomer having a molecular weight of 4,000 to 20,000 (c) Reactive type containing an acryl group 10 to 50% by weight of a reactive diluent, (d) 1 to 5% by weight of a photocuring initiator, and optionally (e) 0.1 to 2% by weight of a photoabsorber.

본 발명에 사용가능한 우레탄 아크릴레이트 올리고머는 폴리에테르 우레탄아크리레이트 (polyether urethane acrylate), 폴리에스테르 우레탄아크릴레이트 (polyester urethane acrylate) 등을 사용할 수 있으며, 이때 신율 200% 이상의 엘라스토머 특성을 가지기 위해서는 분자량이 적어도 4,000 이상인 것이 바람직하다. 분자량 20,000 이상의 고분자 올리고머를 사용할 수도 있지만 이 경우 점도가 너무 높아 수지 조성물을 제조하기가 힘들 뿐만 아니라 3D 성형성도 매우 떨어지게 된다. 수지 조성물 중에서 우레탄 아크릴레이트 올리고머의 함량은 30 ~ 70 중량%가 적당하다. 함량이 30 중량% 이하면 신율 200% 이상의 특성을 확보하기가 어렵고, 70 중량% 이상이면 점도가 너무 상승하는 문제가 있다.Polyether urethane acrylate, polyester urethane acrylate, etc. may be used as the urethane acrylate oligomer usable in the present invention. It is preferably at least 4,000 or more. A polymer oligomer having a molecular weight of 20,000 or more may be used, but in this case, the viscosity is too high, and thus it is difficult to prepare a resin composition and the 3D moldability is very poor. The content of the urethane acrylate oligomer in the resin composition is preferably 30 to 70% by weight. If the content is 30% by weight or less, it is difficult to secure properties of 200% or more in elongation, and if the content is 70% by weight or more, there is a problem in that the viscosity increases too much.

또한 본 발명에 따른 수지 조성물에서 반응형 희석제는 광경화 반응에 참여할 수 있는 아크릴기를 포함하는 저점도 모노머이면 어느 종류나 사용 가능하며, 예를 들면 이소보닐아크릴리트(Isobornyl acrylate), 메틸아크릴레이트(methyl acrylate), 에틸아크릴레이트(ethyl acrylate), 부틸아크릴레이트(butyl acrylate), 4-하이드록시부틸아크릴레이트 (4-Hydroxybutyl acrylate), 헥산디올 디아크릴레이트(hexanediol diacrylate), 디에틸렌 글리콜 디아크릴레이트(diethyleneglycol diacrylate), 디프로필렌 글리콜 디아크릴레이트(dipropylene glycol diacrylate), 폴리에틸렌 글리콜 디아크릴레이트(polyethylene glycol diacrylate), 메틸메타크릴레이트(methyl methacrylate), 에틸메타아크릴레이트(ethyl methacrylate), 부틸메타크릴레이트(butyl methacrylate), 헥산디올 디메타크릴레이트(hexanediol dimethacrylate), 디에틸렌 글리콜 디메타크릴레이트(diethyleneglycol dimethacrylate), 디프로필렌 글리콜 디메타크릴레이트(dipropyleneglycol dimethacrylate), 폴리에틸렌 글리콜 디메타크릴레이트(polyethylene glycol dimethacylate) 이루어진 군으로부터 1종 이상 선택하여 사용할 수 있으나, 특별히 이에 제한되는 것은 아니다. 반응형 희석제인 모노머의 투입 함량의 경우 10 ~ 50 중량%가 바람직하며, 우레탄 아크릴레이트 올리고머의 분자량 및 점도에 따라 조절하여 사용한다. In addition, in the resin composition according to the present invention, the reactive diluent may be any low-viscosity monomer containing an acryl group capable of participating in a photocuring reaction, and for example, isobornyl acrylate, methyl acrylate ( methyl acrylate, ethyl acrylate, butyl acrylate, 4-hydroxybutyl acrylate, hexanediol diacrylate, diethylene glycol diacrylate (diethyleneglycol diacrylate), dipropylene glycol diacrylate, polyethylene glycol diacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate (butyl methacrylate), hexanediol dimethacrylate, diethylene glycol dimethacrylate, dipropylene glycol dimethacrylate, polyethylene glycol dimethacylate ) may be selected and used at least one from the group consisting of, but is not particularly limited thereto. In the case of the input content of the monomer, which is a reactive diluent, 10 to 50% by weight is preferable, and it is adjusted according to the molecular weight and viscosity of the urethane acrylate oligomer.

본 발명에 따른 광경화성 수지 조성물 중에서 반응형 희석제의 함량이 10 중량% 이하로 너무 낮으면 고점도 올리고머의 점도를 낮추는 데 한계가 있으며, 반면 50 중량% 이상 투입되면 고분자 사슬의 탄성이 저하되어 엘라스토머의 특성이 급격히 감소하게 된다.In the photocurable resin composition according to the present invention, if the content of the reactive diluent is too low, such as 10% by weight or less, there is a limit to lowering the viscosity of the high-viscosity oligomer. characteristics are drastically reduced.

본 발명에 따른 3D 프린팅용 광경화성 수지 조성물에 포함되는 광개시제는 통상적으로 사용되는 라디칼 광개시제를 사용할 수 있으며, 구체적으로 예를 들면, 페닐포스핀옥사이드(phenylphosphineoxide), 모노아크릴포스핀(monoacrylphosphine), 알파하이드록시케톤(a-hydroxyketone), 아세토페논(acetophenoe), 벤질디메틸케탈 (benzyldimethyl ketal), 메틸리디네트리스메틸아닐린(mrthylidynetrisdimethylaniline), 설포니움포스포네이트(sulfoniumphosphonate), 벤조일설파이드 (benzoyl sulphide), 벤조페논 (benzophenone), 아미노벤조에이트 (aminobenzoate)로 이루어진 군으로부터 1종 이상 선택할 수 있으나, 특별히 이에 제한되는 것은 아니다. 개시제의 함량은 1 ~ 5 중량%가 적당하며, 상황에 따라 penetration depth를 조절하는 광흡수제 (photoabsorber)를 0.1 ~ 2 중량% 범위에서 추가하여 사용할 수 있다. The photoinitiator included in the photocurable resin composition for 3D printing according to the present invention may use a commonly used radical photoinitiator, specifically, for example, phenylphosphineoxide, monoacrylphosphine, alpha a-hydroxyketone, acetophenoe, benzyldimethyl ketal, mrthylidynetrisdimethylaniline, sulfoniumphosphonate, benzoyl sulphide, At least one may be selected from the group consisting of benzophenone and aminobenzoate, but is not particularly limited thereto. The content of the initiator is appropriate to be 1 to 5% by weight, and depending on circumstances, a photoabsorber that controls penetration depth may be added in the range of 0.1 to 2% by weight.

본 발명에 따른 3D 프린팅용 광경화성 수지 조성물의 점도는 상온에서 500 ~ 3,000 cps가 바람직하며, 1,000 ~ 2,000 cps 범위가 더욱 바람직하다. 신율 200% 이상의 물성을 확보하면서 점도를 1,000 cps 이하로 유지하기는 매우 어려우며 낮은 점도를 위해 반응형 희석제를 너무 많이 투입하면 최종 성형물이 하드해져서 엘라스토머 특성을 확보하기가 어려워진다. 반면에 점도가 2,000 cps 이상일 경우 엘라스토 특성을 확보하기에는 매우 유리하지만 3D 프린팅 작업이 매우 힘들어진다. 점도가 높은 수지가 성형물의 표면에 달라붙어 세척이 어려워지며 일반적으로 출력물의 형태가 원하는 크기보다 훨씬 커지거나, 미세한 홀 등이 막혀 원하는 구조의 성형물이 구현되지 않는 등의 여러 가지 문제들이 발생한다.The viscosity of the photocurable resin composition for 3D printing according to the present invention is preferably 500 to 3,000 cps at room temperature, more preferably 1,000 to 2,000 cps. It is very difficult to maintain a viscosity of 1,000 cps or less while securing properties of elongation of 200% or more, and if too much reactive diluent is added for low viscosity, the final molding becomes hard, making it difficult to secure elastomer properties. On the other hand, if the viscosity is more than 2,000 cps, it is very advantageous to secure the elasto properties, but the 3D printing work becomes very difficult. Resin with high viscosity adheres to the surface of the molding, making it difficult to clean. In general, various problems such as the shape of the output being much larger than the desired size or the formation of the desired structure due to clogging of fine holes occur.

한편 본 발명은 상기 광경화성 수지 조성물을 이용하여 3D 프린팅 방식으로 성형물을 제조할 수 있다. 다양한 3D 프린팅 장치에 적용 가능하며, 예를 들어, SLA(Stereolithography) 및 DLP(Digital Light Processing) 방식으로 성형물을 제조할 수 있다. Meanwhile, in the present invention, a molded article may be manufactured by a 3D printing method using the photocurable resin composition. It can be applied to various 3D printing devices, and, for example, a molded product can be manufactured by SLA (Stereolithography) and DLP (Digital Light Processing) methods.

본 발명에 따른 광경화성 수지 조성물을 이용하여 3D 프린팅 방식으로 제조한 성형물은 신율(Elongation)이 200% 이상이고, 일광견뢰도는 6급 이상으로서 특성이 매우 우수하다.The molded article manufactured by 3D printing using the photocurable resin composition according to the present invention has an elongation of 200% or more and a light fastness of 6 or more, which is very excellent.

이하 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 하기 실시예는 본 발명의 이해를 돕기 위해 예시적으로 제시된 것으로서 본 발명의 범위가 이에 한정되는 것으로 해석되어서는 안된다. The present invention will be described in more detail through the following examples. However, the following examples are presented by way of example to aid understanding of the present invention and should not be construed as limiting the scope of the present invention thereto.

<합성예 1> -OH 기를 가지는 Perylene Red 염료의 합성 (화합물 Red-OH)<Synthesis Example 1> Synthesis of Perylene Red dye having -OH group (compound Red-OH)

1,6,7,12-테트라클로로페릴렌-3,4,9,10-테트라카르복실산 이무수물(1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic acid dianhydride) (화합물 Red-1) 10g, 2,6-디이소프로필아닐린 (2,6-diisopropylaniline) 16.67g과 프로피오닉산 (propionic acid) 250ml를 아르곤 하에서 80도까지 가열하였고 이 온도에서 17시간 동안 두었다. 실온으로 냉각시킨 후 물을 이용하여 결정을 석출시켰고 이를 필터 후 건조하였다 (Red-2). 건조된 파우더 5g을 4-하이드록시페닐에틸 알콜 8.14g 및 K2CO3 4.07g과 함께 DMF 100ml와 혼합한 후 120도까지 승온시켜 12시간 교반하였다. 반응물을 실온으로 냉각시킨 후 메탄올을 이용하여 결정을 석출시켰고 이를 필터 후 건조하였다.1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic acid dianhydride (1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylic acid dianhydride) (Compound Red-1) 10g, 2,6-diisopropylaniline (2,6-diisopropylaniline) (2,6-diisopropylaniline) (2,6-diisopropylaniline) (2,6-diisopropylaniline) 16.67g and propionic acid (propionic acid) (propionic acid) (propionic acid) (propionic acid) (propionic acid) (propionic acid) (250ml) was heated to 80 degrees and left at this temperature for 17 hours. After cooling to room temperature, crystals were precipitated using water, which was filtered and dried (Red-2). After mixing 5 g of dried powder with 8.14 g of 4-hydroxyphenylethyl alcohol and 4.07 g of K 2 CO 3 with 100 ml of DMF, the mixture was heated to 120 degrees and stirred for 12 hours. After cooling the reactant to room temperature, crystals were precipitated using methanol, which was filtered and dried.

<합성예 2> Urethane acrylate 기를 가지는 Perylene Red 염료의 합성 (화합물 Red-UA)<Synthesis Example 2> Synthesis of Perylene Red dye having a urethane acrylate group (compound Red-UA)

Red-OH 20.46g을 PGMEA 200g 및 Methoxy phenol 0.04g과 혼합한 다음 80℃까지 승온하였으며, 2-Isocyanatoethyl acrylate 12.4g을 20g의 PGMEA에 희석한 후 추가로 투입하여 12시간 반응을 시켰다. 반응 종료를 FT-IR로 확인한 후 실온으로 냉각, 감압증류를 통해 PEGMA를 제거해서 끈적한 Red 화합물을 얻었다. MALDI/TOF를 통해 분자량 1,876 인 화합물임을 확인하였으며 반응 수율은 14% 였다.After mixing 20.46 g of Red-OH with 200 g of PGMEA and 0.04 g of methoxy phenol, the temperature was raised to 80 ° C. After diluting 12.4 g of 2-Isocyanatoethyl acrylate in 20 g of PGMEA, it was added and reacted for 12 hours. After confirming the completion of the reaction by FT-IR, it was cooled to room temperature and PEGMA was removed by distillation under reduced pressure to obtain a sticky red compound. It was confirmed through MALDI/TOF that the compound had a molecular weight of 1,876, and the reaction yield was 14%.

<합성예 3> PTMG-4000 urethane diacrylate 의 합성 (PTMG-400 UDA)<Synthesis Example 3> Synthesis of PTMG-4000 urethane diacrylate (PTMG-400 UDA)

PTMG-4000 450g을 THF 200g 및 Methoxy phenol 0.23g과 혼합한 다음 65℃ 승온하여 1시간 동안 유지하였다. 2-Isocyanatoethyl acrylate 31.75g을 20g THF 에 희석한 후 추가로 투입하여 12시간 동안 반응시켰으며 반응 종료를 FT-IR로 확인한 후 실온으로 냉각, 감압증류를 통해 THF와 PEGMA를 제거해서 화합물 PTMG-4000 UDA를 얻었다. GPC를 통해 분자량을 확인하였으며 반응 수율은 92% 였다.450 g of PTMG-4000 was mixed with 200 g of THF and 0.23 g of methoxy phenol, and then heated to 65°C and maintained for 1 hour. After diluting 31.75 g of 2-Isocyanatoethyl acrylate in 20 g THF, it was further added and reacted for 12 hours. After confirming the completion of the reaction by FT-IR, it was cooled to room temperature, and THF and PEGMA were removed through distillation under reduced pressure to obtain compound PTMG-4000. got the UDA. The molecular weight was confirmed through GPC, and the reaction yield was 92%.

<합성예 4> (Red-UA + PTMG-4000 UDA) 혼합 올리고머의 합성<Synthesis Example 4> (Red-UA + PTMG-4000 UDA) Synthesis of Mixed Oligomer

Red-OH 4.5g, PTMG-4000 450g 을 THF 200g 및 Methoxy phenol 0.23g 과 혼합한 후 65℃ 승온하여 1시간 동안 유지하였다. 2-Isocyanatoethyl acrylate 32.5g을 20g THF 에 희석한 다음 추가로 투입하여 12시간 동안 반응시켰으며, 반응 종료를 FT-IR로 확인한 후 실온으로 냉각, 감압증류를 통해 THF와 PEGMA를 제거해서 (Red-UA + PTMG-4000 UDA) 혼합 올리고머를 제조하였다. GPC를 통하여 PETMG-4000 UDA가 합성되었음을 확인하였으며(수율 87%), UV-Vis. spectrophotomer를 통해 Red 염료의 농도를 측정하여 수율이 85%임을 확인하였다. Red-OH 에 urethane acrylate 반응기가 도입되었는지 여부는 상기에서 제조된 혼합 올리고머를 이용하여 3D 프린팅 성형물을 제조하고 이에 대한 용출 시험 (평가예 참조)을 통해 확인하였다.After mixing 4.5 g of Red-OH and 450 g of PTMG-4000 with 200 g of THF and 0.23 g of methoxy phenol, the mixture was heated to 65°C and maintained for 1 hour. After diluting 32.5 g of 2-Isocyanatoethyl acrylate in 20 g THF, it was further added and reacted for 12 hours. UA + PTMG-4000 UDA) mixed oligomers were prepared. It was confirmed through GPC that PETMG-4000 UDA was synthesized (yield: 87%), and UV-Vis. It was confirmed that the yield was 85% by measuring the concentration of the red dye through a spectrophotomer. Whether or not a urethane acrylate reactor was introduced into Red-OH was confirmed by preparing a 3D printing molding using the mixed oligomer prepared above and conducting a dissolution test (see evaluation example).

<실시예 1><Example 1>

분자량 15,000 인 우레탄 아크릴레이트 (Pluto사 제품명 PL-4500) 200g, (합성예 3)을 통해 제조한 PTMG-4000 UDA 325g, 아이소보닐 아크릴레이트 400g, TPO 개시제 20g, BBOT 5g, 및 (합성예 4)을 통해 제조한 (Red-UA + PTMG-4000 UDA) 혼합 올리고머 50g을 혼합하여 3D 프린팅용 광경화성 수지 조성물을 제조하였다.200 g of urethane acrylate having a molecular weight of 15,000 (Pluto's product name PL-4500), 325 g of PTMG-4000 UDA prepared through (Synthesis Example 3), 400 g of isobornyl acrylate, 20 g of TPO initiator, 5 g of BBOT, and (Synthesis Example 4 A photocurable resin composition for 3D printing was prepared by mixing 50 g of the mixed oligomer (Red-UA + PTMG-4000 UDA) prepared through (Red-UA + PTMG-4000 UDA).

<실시예 2><Example 2>

분자량이 15,000인 우레탄 아크릴레이트 대신에 합성예 3에서 제조한 PTMG-4000 UDA를 525g 사용한 것을 제외하고는 실시예 1과 동일하다. It is the same as Example 1 except that 525 g of PTMG-4000 UDA prepared in Synthesis Example 3 was used instead of urethane acrylate having a molecular weight of 15,000.

<실시예 3><Example 3>

합성예 4에서 PTMG-4000 대신에 PEG-4000을 투입하여 제조한 (Red-UA + PEG-4000 UDA)를 사용한 것을 제외하고는 실시예 1과 동일하다.Synthesis Example 4 is the same as in Example 1 except for using (Red-UA + PEG-4000 UDA) prepared by adding PEG-4000 instead of PTMG-4000.

<실시예 4> <Example 4>

아이소보닐 아크릴레이트 대신에 4-하이드록시부틸 아크릴레이트를 사용한 것을 제외하고는 실시예 1과 동일하다. It is the same as Example 1 except that 4-hydroxybutyl acrylate was used instead of isobornyl acrylate.

<비교예 1> <Comparative Example 1>

합성예 4에서 PTMG-4000 대신에 PEG-4000을 투입하여 제조한 PEG-4000-UDA 525g을 분자량이 15,000인 우레탄 아크릴레이트 및 PTMG-4000-UDA 대신에 사용한 것을 제외하고는 실시예 1과 동일하다. Same as Example 1 except that 525 g of PEG-4000-UDA prepared by adding PEG-4000 instead of PTMG-4000 in Synthesis Example 4 was used instead of urethane acrylate having a molecular weight of 15,000 and PTMG-4000-UDA .

<비교예 2> <Comparative Example 2>

(Red-UA + PTMG-4000 UDA) 혼합 올리고머 대신에 합성예 2를 통해 제조한 Red-UA 0.5g, 그리고 합성예 3을 통해 제조한 PTMG-400-UDA 49.8 g을 사용한 것을 제외하고는 실시예 1과 동일하다. (Red-UA + PTMG-4000 UDA) Examples except that 0.5 g of Red-UA prepared through Synthesis Example 2 and 49.8 g of PTMG-400-UDA prepared through Synthesis Example 3 were used instead of the mixed oligomer. Same as 1.

<비교예 3> <Comparative Example 3>

Red-UA 대신에 합성예 1을 통해 제조한 Red-OH 염료를 사용한 것을 제외 하고는 비교예 2와 동일하다. It is the same as Comparative Example 2 except for using the Red-OH dye prepared through Synthesis Example 1 instead of Red-UA.

<비교예 4><Comparative Example 4>

Red-UA 대신에 Solvent Red 26 염료를 사용한 것을 제외하고는 비교예 2와 동일하다. It is the same as Comparative Example 2 except that Solvent Red 26 dye was used instead of Red-UA.

<비교예 5> <Comparative Example 5>

분자량 15,000인 우레탄 아크릴레이트 대신에 합성예 3을 통해 제조한 PTMG-4000 UDA를 825g을 사용하고, 아이소보닐 아크릴레이트를 100g으로 감소시킨 것을 제외하고는 실시예 1과 동일하다.It is the same as Example 1 except that 825 g of PTMG-4000 UDA prepared through Synthesis Example 3 was used instead of urethane acrylate having a molecular weight of 15,000 and isobornyl acrylate was reduced to 100 g.

<평가예><Evaluation example>

실시예 1-4 및 비교실시예 1-3을 통해 제조한 광경화성 수지 조성물의 점도는 Brookfield 사의 점도계를 이용하여 상온에서 측정하였으며 (spindle #62, rpm=3), 3D 성형은 캐리마사의 DLP 장비 (제품명 IM-96)을 사용하였다. 3D성형물의 엘라스토머 특성을 평가하기 위하여 KS M 6518 표준시편을 제작하여 신율(elongation)을 측정하였으며 성형물의 상태를 육안으로 판별하여 모델링 파일과 동일하게 출력되었을 경우 O, 형태가 변형되었거나 과경화가 진행되어 실물보다 크게 출력 되었을 경우 X 로 표기하였다. 한편 용출성의 경우 성형된 시편을 IPA 용액에 담근 후 상온에서 24시간 교반시킨 다음 용액의 상태를 확인해서 평가하였는데 용액 색상에 변화가 없으면 O, 용액이 Red로 변했으면 X로 표기하였다. 내광성의 경우 KS K0700 (Xenon/Carbon-arc) 기준에 의거하여 일광견뢰도를 측정하였으며 6급 이상의 경우 O, 6급 이하의 경우 X로 표기하였으며 시험 결과는 하기 표 1에 정리 하였다.The viscosity of the photocurable resin compositions prepared in Examples 1-4 and Comparative Examples 1-3 was measured at room temperature using a Brookfield viscometer (spindle #62, rpm = 3), and 3D molding was carried out by Carima's DLP Equipment (product name IM-96) was used. In order to evaluate the elastomer characteristics of 3D moldings, KS M 6518 standard specimens were prepared and elongation was measured. If it was printed larger than the real thing, it was marked with an X. On the other hand, in the case of dissolution, the molded specimen was immersed in the IPA solution and stirred at room temperature for 24 hours, and then the state of the solution was checked and evaluated. In the case of light fastness, daylight fastness was measured in accordance with the KS K0700 (Xenon/Carbon-arc) standard, and it was marked with O for grade 6 or higher and X for grade 6 or lower, and the test results are summarized in Table 1 below.

Figure pat00004
Figure pat00004

실시예 1 ~ 4에서 확인할 수 있는 바와 같이, 본 발명에 따른 조성으로 3D v프린팅용 광경화성 수지 조성물을 제조할 경우, 상온 점도가 1,000 ~ 2,000 cps 로 유지되어 신율이 200% 이상인 Red 칼라의 엘라스토머가 성형됨을 알 수 있으며 또한 Red 염료에 도입된 우레탄 아크릴레이트가 고분자 사슬에 화학적으로 결합되어 용제에 장기간 담가두어도 용출이 전혀 일어나지 않는다는 것을 알 수 있다. (도 1) 반면에 소프트한 우레탄 아크릴레이트 올리고머 PEG-4000-DA만을 사용하는 경우 (비교예 1) 다른 모든 특성은 우수하지만 신도가 충분치 못해 엘라스토머 용도로 사용하기에는 부적합 하다는 것을 알 수 있었으며, 우레탄 아크릴레이트 반응기가 없는 염료인 Red-OH (비교예 3) 또는 solvent Red 26 (비교예4) 를 사용할 경우 용출성, 내광성 등이 우수하지 않음을 알 수 있다. 또한 혼합 올리고머 대신에 Red-UA 및 PTMG-4000-UA를 각각 합성해서 사용한 경우 (비교예 2)에는 공정이 복잡하고, 경제적이지 못한 단점이 있다. 한편 소프트한 올리고머가 너무 많이 투입된 경우 (비교예5)에는 점도가 너무 상승해 성형성이 매우 떨어짐을 알 수 있다.As can be seen in Examples 1 to 4, when the photocurable resin composition for 3D v-printing is prepared with the composition according to the present invention, the room temperature viscosity is maintained at 1,000 to 2,000 cps, and the elastomer of red color having an elongation of 200% or more It can be seen that is molded, and it can be seen that the urethane acrylate introduced into the red dye is chemically bonded to the polymer chain so that no elution occurs even when immersed in a solvent for a long time. (FIG. 1) On the other hand, in the case of using only the soft urethane acrylate oligomer PEG-4000-DA (Comparative Example 1), it was found that all other properties were excellent, but the elongation was insufficient, making it unsuitable for use as an elastomer. When using Red-OH (Comparative Example 3) or solvent Red 26 (Comparative Example 4), which are dyes without a rate reactive group, it can be seen that dissolution properties and light resistance are not excellent. In addition, when Red-UA and PTMG-4000-UA were synthesized and used instead of the mixed oligomer (Comparative Example 2), the process is complicated and economical. On the other hand, when too much soft oligomer is added (Comparative Example 5), it can be seen that the viscosity is too high and the moldability is very poor.

Claims (15)

(a) 우레탄 아크릴레이트기를 가지는 페릴렌계 레드 형광염료와 폴리알킬렌 글리콜-우레탄 디아크릴레이트의 혼합물, (b) 우레탄 아크릴레이트 올리고머, (c) 아크릴기를 포함하는 반응형 희석제 및 (d) 광경화 개시제를 포함하는 3D 프린팅용 광경화성 수지 조성물.(a) a mixture of a perylene-based red fluorescent dye having a urethane acrylate group and polyalkylene glycol-urethane diacrylate, (b) a urethane acrylate oligomer, (c) a reactive diluent containing an acryl group, and (d) photocuring A photocurable resin composition for 3D printing comprising an initiator. 제1항에 있어서,
상기 우레탄 아크릴레이트기를 가지는 페릴렌계 레드 형광염료는 하기 [화학식 1]로 표현되는 화합물인 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
[화학식 1]
Figure pat00005
According to claim 1,
The photocurable resin composition for 3D printing, characterized in that the perylene-based red fluorescent dye having a urethane acrylate group is a compound represented by the following [Formula 1].
[Formula 1]
Figure pat00005
제1항에 있어서,
상기 폴리알킬렌 글리콜은 분자량이 1,000 ~ 4,000 범위인 폴리테트라메틸렌 글리콜, 폴리에틸렌 글리콜 및 폴리프로필렌 글리콜 또는 이들의 혼합물 중에서 선택되는 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
The polyalkylene glycol is a photocurable resin composition for 3D printing, characterized in that selected from polytetramethylene glycol, polyethylene glycol and polypropylene glycol or mixtures thereof having a molecular weight in the range of 1,000 to 4,000.
제1항에 있어서,
상기 (a) 우레탄 아크릴레이트기를 가지는 페릴렌계 레드 형광염료와 폴리알킬렌 글리콜-우레탄 디아크릴레이트의 혼합물은 수지 조성물 전체를 기준으로 1 내지 10 중량% 범위인 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
The mixture of (a) a perylene-based red fluorescent dye having a urethane acrylate group and polyalkylene glycol-urethane diacrylate is a photocurable resin for 3D printing, characterized in that in the range of 1 to 10% by weight based on the total weight of the resin composition composition.
제1항에 있어서,
상기 우레탄 아크릴레이트기를 가지는 페릴렌계 레드 형광염료의 함량은 폴리알킬렌 글리콜-우레탄 디아크릴레이트의 혼합물을 기준으로 0.1 내지 1.0 중량% 범위인 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
The content of the perylene-based red fluorescent dye having a urethane acrylate group is a photocurable resin composition for 3D printing, characterized in that the range of 0.1 to 1.0% by weight based on the mixture of polyalkylene glycol-urethane diacrylate.
제1항에 있어서,
상기 우레탄 아크릴레이트 올리고머는 분자량이 4,000 이상인 고점도 폴리에테르 우레탄 아크릴레이트 또는 폴리에스테르 우레탄 아크릴레이트 또는 이들의 혼합물 중에서 선택되는 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
The urethane acrylate oligomer is a photocurable resin composition for 3D printing, characterized in that selected from high viscosity polyether urethane acrylate or polyester urethane acrylate or a mixture thereof having a molecular weight of 4,000 or more.
제1항에 있어서,
상기 (b) 우레탄 아크릴레이트 올리고머는 수지 조성물 전체를 기준으로 30 내지 70 중량% 범위인 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
The (b) urethane acrylate oligomer is a photocurable resin composition for 3D printing, characterized in that the range of 30 to 70% by weight based on the total resin composition.
제1항에 있어서,
상기 아크릴기를 포함하는 반응형 희석제는 이소보닐아크릴레이트, 메틸아크릴레이트, 에틸아크릴레이트, 부틸아크릴레이트, 4-하이드록시부틸아크릴레이트, 헥산디올 디아크릴레이트, 디에틸렌 글리콜 디아크릴레이트, 디프로필렌 글리콜 디아크릴레이트, 폴리에틸렌 글리콜 디아크릴레이트, 메틸메타크릴레이트, 에틸메타아크릴레이트, 부틸메타크릴레이트, 헥산디올 디메타크릴레이트, 디에틸렌 글리콜 디메타크릴레이트, 디프로필렌 글리콜 디메타크릴레이트, 폴리에틸렌 글리콜 디메타크릴레이트로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
The reactive diluent containing the acrylic group is isobornyl acrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 4-hydroxybutyl acrylate, hexanediol diacrylate, diethylene glycol diacrylate, dipropylene glycol Diacrylate, polyethylene glycol diacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexanediol dimethacrylate, diethylene glycol dimethacrylate, dipropylene glycol dimethacrylate, polyethylene glycol A photocurable resin composition for 3D printing, characterized in that at least one selected from the group consisting of dimethacrylate.
제1항에 있어서,
상기 (c) 아크릴기를 포함하는 반응형 희석제는 수지 조성물 전체를 기준으로 10 내지 50 중량% 범위인 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
The (c) reactive diluent containing an acrylic group is a photocurable resin composition for 3D printing, characterized in that in the range of 10 to 50% by weight based on the total resin composition.
제1항에 있어서,
상기 (e) 광흡수제를 더 포함하는 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
The (e) photocurable resin composition for 3D printing, characterized in that it further comprises a light absorber.
제1항에 있어서,
수지 조성물의 점도는 상온에서 500 ~ 3,000 cps 범위인 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물.
According to claim 1,
A photocurable resin composition for 3D printing, characterized in that the viscosity of the resin composition ranges from 500 to 3,000 cps at room temperature.
i) 알코올기를 가지는 페릴렌 형광염료를 폴리알킬렌 글리콜에 용해시키는 단계;
ⅱ) 상기 염료 용액에 이소시아네이토에틸 아크릴레이트 용액을 혼합하여 반응시키는 단계;
ⅲ) 상기 반응 후 용매를 증발시켜 우레탄 아크릴레이트기를 가지는 레드 형광염료와 폴리알킬렌 글리콜-우레탄 디아크릴레이트 혼합물을 제조하는 단계; 및
ⅳ) 상기 혼합물에 우레탄 아크릴레이트 올리고머, 아크릴기를 포함하는 반응형 희석제 및 광경화 개시제를 혼합하는 단계를 포함하는 3D 프린팅용 광경화성 수지 조성물의 제조 방법.
i) dissolving a perylene fluorescent dye having an alcohol group in polyalkylene glycol;
ii) mixing and reacting an isocyanatoethyl acrylate solution with the dye solution;
iii) preparing a red fluorescent dye having a urethane acrylate group and a polyalkylene glycol-urethane diacrylate mixture by evaporating the solvent after the reaction; and
iv) A method for preparing a photocurable resin composition for 3D printing comprising mixing a urethane acrylate oligomer, a reactive diluent containing an acryl group, and a photocuring initiator with the mixture.
제12항에 있어서,
상기 알코올기를 가지는 페릴렌 형광염료는 하기 [화학식 2]의 화합물인 것을 특징으로 하는 3D 프린팅용 광경화성 수지 조성물의 제조 방법.
[화학식 2]
Figure pat00006
According to claim 12,
The method for producing a photocurable resin composition for 3D printing, characterized in that the perylene fluorescent dye having an alcohol group is a compound of the following [Formula 2].
[Formula 2]
Figure pat00006
제1항에 따른 광경화성 형광 수지 조성물을 이용해서 3D 프린팅 방식으로 제조된 형광 성형물.A fluorescent molding manufactured by 3D printing using the photocurable fluorescent resin composition according to claim 1. 제14항에 있어서,
상기 성형물의 신율(Elongation)은 200% 이상이고, 일광견뢰도는 6급 이상인 것을 특징으로 하는 형광 성형물.
According to claim 14,
The fluorescent molding, characterized in that the elongation of the molding is 200% or more, and the light fastness is 6 or more.
KR1020210120766A 2021-09-10 2021-09-10 3D printing resin composition comprising fluorescent dye having urethane acrylate group and method for preparing of the composition KR102579548B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210120766A KR102579548B1 (en) 2021-09-10 2021-09-10 3D printing resin composition comprising fluorescent dye having urethane acrylate group and method for preparing of the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210120766A KR102579548B1 (en) 2021-09-10 2021-09-10 3D printing resin composition comprising fluorescent dye having urethane acrylate group and method for preparing of the composition

Publications (2)

Publication Number Publication Date
KR20230038328A true KR20230038328A (en) 2023-03-20
KR102579548B1 KR102579548B1 (en) 2023-09-20

Family

ID=85796472

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210120766A KR102579548B1 (en) 2021-09-10 2021-09-10 3D printing resin composition comprising fluorescent dye having urethane acrylate group and method for preparing of the composition

Country Status (1)

Country Link
KR (1) KR102579548B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367039A (en) * 1988-07-06 1994-11-22 Nippon Paint Company, Ltd. Production of colored vinyl polymer particles by polymerizing a vinyl polymerizable monomer with a polymerizable dye
KR101915865B1 (en) 2016-12-28 2018-11-06 문승호 Fluorescent waterborne enamel composition and method for preparing the same
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
KR20200035264A (en) * 2017-07-25 2020-04-02 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Photopolymerizable composition, article, and method comprising urethane component and reactive diluent
WO2020131675A1 (en) 2018-12-21 2020-06-25 Carbon, Inc. Energy absorbing dual cure polyurethane elastomers for additive manufacturing
KR20200080357A (en) * 2018-12-14 2020-07-07 문승호 UV-curable resin composition for 3D printing comprising crosslinkable fluorescent dye

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367039A (en) * 1988-07-06 1994-11-22 Nippon Paint Company, Ltd. Production of colored vinyl polymer particles by polymerizing a vinyl polymerizable monomer with a polymerizable dye
KR101915865B1 (en) 2016-12-28 2018-11-06 문승호 Fluorescent waterborne enamel composition and method for preparing the same
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
KR20200035264A (en) * 2017-07-25 2020-04-02 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Photopolymerizable composition, article, and method comprising urethane component and reactive diluent
KR20200080357A (en) * 2018-12-14 2020-07-07 문승호 UV-curable resin composition for 3D printing comprising crosslinkable fluorescent dye
KR102146616B1 (en) 2018-12-14 2020-08-20 문승호 UV-curable resin composition for 3D printing comprising crosslinkable fluorescent dye
WO2020131675A1 (en) 2018-12-21 2020-06-25 Carbon, Inc. Energy absorbing dual cure polyurethane elastomers for additive manufacturing

Also Published As

Publication number Publication date
KR102579548B1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
EP2003152B1 (en) Aqueous emulsion polymer associative thickeners
EP1448734B1 (en) Aqueous coating compositions
US20050197418A1 (en) Insoluble polymer compositions suitable for ink jet ink formulations
EP3059269B1 (en) Polymer, production method for same, and molded article
DE69914088T2 (en) THERMALIZING COMPOSITIONS THE POLYMERS CONTAINING CARBONIC ACID GROUPS AND POLYMERS CONTAINING EPOXY GROUPS PRODUCED BY ATOMIC TRANSFER RADICAL POLYMERIZATION
KR20160058595A (en) The 3D Full Color Ink Composition and 3D soft sculpture formed by using the same
CN113388073A (en) Photocurable flexible photosensitive resin, preparation method of photocurable flexible photosensitive resin, 3D printing product and preparation method of 3D printing product
CN111019438A (en) Photocuring inkjet ink and preparation method thereof
JP3409595B2 (en) Active energy ray-curable composition
CA2506364A1 (en) Microgel composition and process for preparation thereof
KR102579548B1 (en) 3D printing resin composition comprising fluorescent dye having urethane acrylate group and method for preparing of the composition
JPH08301952A (en) Active-energy-ray-curable resin composition, its production, and cured molded article of active-energy-ray-curable resin
TWI480348B (en) Self-sensitive polymerizable liquid resin and use thereof
KR102146616B1 (en) UV-curable resin composition for 3D printing comprising crosslinkable fluorescent dye
TWI729486B (en) Crosslinkable compositions having a low viscosity for coatings and materials having a high refractive index and having a high heat deflection temperature
KR20190133280A (en) (Meth) acrylate functionalized poly (meth) acrylate-block-polyimide-block-poly (meth) acrylate copolymers, preparation methods and uses thereof
CN110746523B (en) Lignin-based macromolecular photoinitiator and preparation method and application thereof
JP4130582B2 (en) Acrylic resin devolatilization method, powder coating composition and method for preparing composition capable of forming powder coating composition
KR101523756B1 (en) Organic dye for LCD color filter and composition thereof
JPH04106167A (en) Radiation-curable ink composition
KR102579547B1 (en) Photocurable resin composition for 3D printing and urethane elastomer manufactured therefrom
KR101523753B1 (en) Organic dye for LCD color filter and composition thereof
JP2017218510A (en) Active energy ray polymerizable composition and cured product of the same
KR101344449B1 (en) Curable binders for ink-jet ink for manufacturing color filter
EP4130068A1 (en) Copolymer, resin composition, shaped object, filmy shaped object, and method for producing copolymer

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant