KR20230035794A - Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane - Google Patents

Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane Download PDF

Info

Publication number
KR20230035794A
KR20230035794A KR1020210118229A KR20210118229A KR20230035794A KR 20230035794 A KR20230035794 A KR 20230035794A KR 1020210118229 A KR1020210118229 A KR 1020210118229A KR 20210118229 A KR20210118229 A KR 20210118229A KR 20230035794 A KR20230035794 A KR 20230035794A
Authority
KR
South Korea
Prior art keywords
fluorine
based polymer
polymer
silane coupling
modifying
Prior art date
Application number
KR1020210118229A
Other languages
Korean (ko)
Other versions
KR102673035B1 (en
Inventor
김성곤
김현준
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to KR1020210118229A priority Critical patent/KR102673035B1/en
Priority to PCT/KR2022/013287 priority patent/WO2023033619A1/en
Publication of KR20230035794A publication Critical patent/KR20230035794A/en
Application granted granted Critical
Publication of KR102673035B1 publication Critical patent/KR102673035B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention provides a method for reforming a fluoric polymer surface, comprising: a preprocessing step of immersing a fluoric polymer in a washing solution to wash the same and drying the same; a step of treating the dried fluoric polymer with plasma and exposing the same to the air to introduce a functional group capable of occurring a silane coupling reaction on a surface of the polymer; and a step of dipping the fluoric polymer in a silane coupling agent solution and drying the same to react a silane coupling. The method of the present invention has a process time very shortened and is simple. According to the present invention, a fluoric polymer having hydrophile properties treated therewith can be provided, and the polymer has an electrolyte impregnated therein, thereby using for a hydrogen fuel cell as an electrolyte membrane in a reinforced composite membrane shape.

Description

플라즈마 및 실란 처리를 통한 불소계 기반의 고분자 표면 친수처리 방법{Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane}Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane}

본 발명은 소수성을 띄는 불소계 기반 고분자의 표면을 친수성으로 개질하는 방법에 관한 것이다.The present invention relates to a method for modifying the surface of a hydrophobic fluorine-based polymer to be hydrophilic.

현재 전세계적으로 온실가스를 줄이고 친황경 에너지 개발을 위해 많은 노력을 기울이며 수소경제가 전 세계적인 핵심 의제로 등장하고 있다. 우리나라 정부도 2020년부터 그린뉴딜 정책을 통해 친환경 에너지 개발에 힘을 쏟고 있다. 수소자동차는 전기차에 비해 긴 주행거리와 낮은 연료 무게를 가져 장거리 운행이 유리하고 환경오염물질을 배출하는 내연기관과 다르게 산소와 수소가 만나 물을 배출하는 반응을통해 에너지를 생산하기 때문에 환경친화적이다. 따라서 수소경제 전반의 수소 생산, 저장, 운송과 함께 수송용 연료전지 기술도 꾸준한 지원으로 기술개발이 이루어질 전망이다.Currently, many efforts are being made to reduce greenhouse gases and develop eco-friendly energy around the world, and the hydrogen economy is emerging as a key global agenda. Since 2020, the Korean government has been focusing on developing eco-friendly energy through the Green New Deal policy. Compared to electric vehicles, hydrogen vehicles have a longer mileage and lower fuel weight, so they are advantageous for long-distance driving, and unlike internal combustion engines that emit environmental pollutants, they are environmentally friendly because they produce energy through a reaction in which oxygen and hydrogen meet and discharge water. . Therefore, along with hydrogen production, storage, and transportation throughout the hydrogen economy, fuel cell technology for transportation is expected to be developed with steady support.

그에 따라 수소자동차 시장은 꾸준히 성장할 것으로 예상되며 블룸버그는 수소자동차 시장에서 수소자동차 판매량이 2025년 3.4만대, 2030년 7.2만 대 수준일 거라 전망하였다.As a result, the hydrogen vehicle market is expected to grow steadily, and Bloomberg predicted that sales of hydrogen vehicles in the hydrogen vehicle market will reach 34,000 units in 2025 and 72,000 units in 2030.

특히 수소자동차 시장에서 선두를 달리고 있는 국가는 한국과 일본으로 한국은 세계 수소자동차 시장에서 2020년 기준, 약 70%의 점유율을 차지지며 압도적인 1등을 차지하고 있다. In particular, the leading countries in the hydrogen vehicle market are Korea and Japan, and Korea accounts for about 70% of the global hydrogen vehicle market as of 2020, occupying the overwhelming No. 1 position.

기존의 수소연료전지용 고분자 전해질막으로 가장 많이 사용되는 전해질막인 Dupont사의 Nafion막은 불소계 기반의 고분자를 이용한다는 점에서 본 기술과 유사한 점이 있지만 합성원료나 제조공정이 매우 비싸고 복잡하다는 단점이 있고, 또 두께를 얇게 했을 때 물성이 약화되어 성능이 떨어지기 때문에 두께를 얇게 하는데 한계가 있으며, 고온/저가습 조건에서 성능이 저하된다는 단점 또한 가지고 있다.Dupont's Nafion membrane, which is the most commonly used electrolyte membrane for conventional hydrogen fuel cells, has similarities to this technology in that it uses a fluorine-based polymer, but has the disadvantage that synthetic raw materials and manufacturing processes are very expensive and complicated. When the thickness is thinned, the physical properties are weakened and the performance is lowered, so there is a limit to thinning the thickness, and it also has a disadvantage that the performance is lowered under high temperature / low humidification conditions.

이러한 단점을 극복하기 위해서 열적, 화학적으로 안정하고 기계적인 강도가 우수한 강화복합막에 대한 연구들이 진행 중이다. 강화복합막이란 기존의 단일 고분자를 이용하여 만든 고분자 전해질막의 기계적인 물성을 증대시키기 위해서 내구성, 내열성, 내화학성 등이 뛰어난 다공성 고분자를 지지체로 하여 기계적인 물성을 확보하고, 이러한 다공성 지지체 내에 전해질의 역할을 담당하는 전해질 고분자를 함침시켜서 만든 고분자 전해질막이다. 강화복합막으로서 현재 불소계 기반의 고분자를 지지체로 이용한 강화복합막과 탄화수소계 고분자를 지지체로 이용한 강화복합막에 대한 연구들이 진행되고 있다.In order to overcome these disadvantages, studies on reinforced composite membranes that are thermally and chemically stable and have excellent mechanical strength are in progress. Reinforced composite membrane secures mechanical properties by using a porous polymer with excellent durability, heat resistance, chemical resistance, etc. as a support in order to increase the mechanical properties of a polymer electrolyte membrane made using a single polymer. It is a polymer electrolyte membrane made by impregnating an electrolyte polymer that plays a role. As a reinforced composite membrane, studies are currently being conducted on a reinforced composite membrane using a fluorine-based polymer as a support and a reinforced composite membrane using a hydrocarbon-based polymer as a support.

탄화수소계 고분자를 지지체로 이용한 강화복합막에서 지지체는 주로 방향족 골격 구조로 높은 열 안정성과 기계적 강도를 보이고 공정과 개질이 간단하여 쉽게 고분자의 구조를 조절할 수 있지만, 방향족 원소의 특성상 유동성이 낮기 때문에 불소계 전해질막처럼 큰 이온전달 채널 구조를 형성하기 어려워 불소계 기반의 고분자 전해질 막에 비해 낮은 수소이온 전도성을 나타낸다.In the reinforced composite membrane using a hydrocarbon-based polymer as a support, the support mainly has an aromatic skeleton structure, which shows high thermal stability and mechanical strength, and the process and modification are simple, so the structure of the polymer can be easily controlled. It is difficult to form a large ion transport channel structure like an electrolyte membrane, and it exhibits low hydrogen ion conductivity compared to fluorine-based polymer electrolyte membranes.

불소계 기반의 고분자에 대해서는 수소연료전지에 들어가는 고분자 전해질막을 대체할 수 있는 강화복합막의 지지체로 활용하기 위한 많은 연구들이 진행되고 있지만, 높은 내화학성과 내열성, 우수한 기계적인 물성을 가진 불소계 기반의 고분자는 매우 강한 소수성을 띄기 때문에 이러한 불소계 기반의 고분자를 활용하기 위해서는 표면을 친수성으로 개질할 필요가 있다.For fluorine-based polymers, many studies are being conducted to use them as a support for reinforced composite membranes that can replace polymer electrolyte membranes in hydrogen fuel cells, but fluorine-based polymers with high chemical resistance, heat resistance, and excellent mechanical properties are Since it exhibits very strong hydrophobicity, it is necessary to modify the surface to be hydrophilic in order to utilize these fluorine-based polymers.

특히 불소계 기반의 고분자의 예로서 PTFE(Polytetrafluoroethylene)는 탄소골격의 가지에 불소가 붙어있는 구조로 탄소원자와 불소원자와의 강한 공유결합에 의해 우수한 내열성, 내화학성, 내구성을 띄게 된다. 또한 PTFE는 다공성 고분자로서 활용성이 높은 고분자이다. 하지만 이러한 다공성 PTFE를 활용하기 위해서는 매우 강한 소수성을 띄는 PTFE의 표면을 친수성으로 개질해야 할 필요가 있다.In particular, as an example of a fluorine-based polymer, PTFE (Polytetrafluoroethylene) has a structure in which fluorine is attached to a branch of a carbon skeleton, and has excellent heat resistance, chemical resistance, and durability due to strong covalent bonds between carbon atoms and fluorine atoms. In addition, as a porous polymer, PTFE is a polymer with high utility. However, in order to utilize such porous PTFE, it is necessary to modify the surface of the highly hydrophobic PTFE to be hydrophilic.

친수성으로 개질된 PTFE는 강화복합막의 지지체로서 전해질 고분자를 함침시켜 고분자 전해질막으로 사용된다. 고분자 전해질막은 PEMFC의 MEA를 제조하는데 사용될 수 있으며, 특히 수소연료전지의 전해질막으로 쓰여 수소자동차의 핵심부품으로 사용될 수 있고, 국내에서도 수소자동차에 고분자 전해질막이 사용되고 있으며, 세계적으로도 수소자동차 시장의 규모가 점점 커지고 있는 추세이다. Hydrophilically modified PTFE is used as a polymer electrolyte membrane by impregnating an electrolyte polymer as a support for a reinforced composite membrane. The polymer electrolyte membrane can be used to manufacture the MEA of PEMFC, and can be used as an electrolyte membrane for hydrogen fuel cells and used as a core part of hydrogen vehicles. It is a growing trend.

따라서 불소계 기반의 고분자의 표면을 친수성으로 개질하기 위해 다양한 연구들이 진행중이지만 기존의 공정은 매우 복잡하고 비용이 많이 드는 것이다. Therefore, various studies are being conducted to modify the surface of a fluorine-based polymer to be hydrophilic, but the existing process is very complicated and expensive.

그러므로 선행기술의 복잡하고 비용이 많이 드는 공정과 달리, 공정 시간이 매우 단축되고 간편한 공정을 개발하는 것이 관건이다. 이에 의해 다공성을 갖는 불소계 기반의 고분자의 우수한 화학적 및 기계적 특성을 이용하고 내부에 전해질을 함침시킴으로써 강화복합막 형태의 전해질막을 개발하고자 모색하던 중 본 발명에 이르렀다. Therefore, unlike the complex and costly processes of the prior art, it is a key to develop a process that is very short in process time and simple. Accordingly, while seeking to develop an electrolyte membrane in the form of a reinforced composite membrane by using the excellent chemical and mechanical properties of a porous fluorine-based polymer and impregnating an electrolyte therein, the present invention was reached.

본 발명은 공정 시간이 매우 짧고 간단한 방법으로 불소계 기반의 고분자의 표면을 친수성으로 개질하는 방법을 제공하고자 한다. The present invention is to provide a method for modifying the surface of a fluorine-based polymer to be hydrophilic in a very short and simple process.

상기 방법에 의해 제조되는 불소계 기반의 고분자를 제공하고, 특히 이를 강화복합막으로서 활용될 수 있게 하는 것을 목적으로 한다. 본 발명은 상기 강화복합막 지지체에 이온전달 역할의 고분자를 함침시켜 수소자동차의 수소연료전지에 들어가는 고분자 전해질막을 제공하고자 한다. An object of the present invention is to provide a fluorine-based polymer prepared by the above method, and in particular to enable it to be utilized as a reinforced composite film. An object of the present invention is to provide a polymer electrolyte membrane used in a hydrogen fuel cell of a hydrogen vehicle by impregnating the reinforced composite membrane support with a polymer having an ion transport role.

본 발명은 불소계 기반의 고분자를 세척액에 담그어 세척하고 건조시키는 전처리 단계, 상기 건조된 불소계 기반의 고분자를 플라즈마 처리한 다음 대기중에 노출시켜 고분자 표면에 실란 커플링 반응을 일으킬 수 있는 작용기를 도입시키는 단계, 및 실란커플링제(silane coupling agent) 용액에 상기 불소계 기반의 고분자를 딥핑(dipping)한 후 건조시켜 실란커플링(silane coupling) 반응시키는 단계를 포함하는 불소계 기반의 고분자 표면의 개질 방법을 제공한다. In the present invention, a pretreatment step of immersing the fluorine-based polymer in a washing solution, washing and drying the dried fluorine-based polymer is plasma-treated and then exposed to the air to introduce a functional group capable of causing a silane coupling reaction on the surface of the polymer and dipping the fluorine-based polymer in a solution of a silane coupling agent, followed by drying to perform a silane coupling reaction. .

또한 본 발명은 방법에 의해 제조되는 친수처리된 표면을 갖는 불소계 기반의 고분자를 제공한다. In addition, the present invention provides a fluorine-based polymer having a hydrophilic treated surface prepared by the method.

또한 본 발명은 상기 불소계 기반의 고분자를 포함하는 수소자동차의 수소연료전지용 고분자 전해질막을 제공한다. In addition, the present invention provides a polymer electrolyte membrane for a hydrogen fuel cell of a hydrogen vehicle comprising the fluorine-based polymer.

본 발명에 의하면, 매우 빠르고 간단한 방법으로 불소계 기반의 고분자 표면을 친수처리할 수 있다. 따라서, 본 발명은 친수성의 불소계 기반의 고분자를 제공할 수 있다.According to the present invention, it is possible to hydrophilize the surface of a fluorine-based polymer in a very fast and simple manner. Therefore, the present invention can provide a hydrophilic fluorine-based polymer.

또한, 본 발명에 의하면 다공성을 갖는 친수성의 불소계 기반의 고분자의 우수한 화학적 및 기계적 특성을 이용하고 내부에 전해질을 함침시킴으로써 강화복합막 형태의 전해질막으로서 수소연료전지에의 활용이 가능하다. In addition, according to the present invention, it is possible to utilize a hydrogen fuel cell as an electrolyte membrane in the form of a reinforced composite membrane by using the excellent chemical and mechanical properties of a hydrophilic fluorine-based polymer having porosity and impregnating an electrolyte therein.

도 1은 플라즈마 처리에 따른 PTFE 표면 변화를 도시한 것이다.
도 2는 실란커플링제에 의한 실란커플링 반응을 도시한 것이다.
도 3은 실시예에서 플라즈마 처리 전과 후의 접촉각을 측정한 것이다.
도 4는 실시예에서 플라즈마 처리 전과 후의 XPS 분석 결과를 나타낸 것이다.
도 5는 실시예에서 최종적으로 친수성으로 표면 개질된 PTFE의 접촉각을 측정한 것이다.
Figure 1 shows the change of the PTFE surface according to the plasma treatment.
2 shows a silane coupling reaction by a silane coupling agent.
3 is a measurement of contact angles before and after plasma treatment in Examples.
Figure 4 shows the results of XPS analysis before and after plasma treatment in Example.
5 is a measurement of the contact angle of PTFE finally surface-modified to hydrophilicity in Example.

본 발명은 불소계 기반의 고분자에 대해 플라즈마 처리한 후, 실란커플링제 용액에 담그어 실란 커플링 반응시키는 매우 간단한 친수 처리하는 방법을 제공한다. The present invention provides a very simple hydrophilic treatment method in which a fluorine-based polymer is subjected to plasma treatment and then immersed in a silane coupling agent solution for a silane coupling reaction.

플라즈마 처리를 통해 고분자 표면에 있는 일부 불소들을 퍼옥사히드(peroxide), 하이드로퍼옥사이드(hydroperoxide) 등으로 치환시킨 다음, 실란커플링제 용액에 담그어 실란 커플링 반응을 통해 고분자 표면에 치환된 상기 퍼옥사이드 또는 하이드로퍼옥사이드가 물 속에서 실란올(silanol)이 형성된 실란커플링제와 반응하여 탈수축합반응을 통해 고분자 표면에 그래프팅되고 실란커플링제에 포함된 친수성 작용기로 인해 고분자가 친수성을 띄게 되는 것이다.Through plasma treatment, some fluorine on the polymer surface is replaced with peroxide, hydroperoxide, etc., and then immersed in a silane coupling agent solution to silane coupling reaction. The peroxide substituted on the polymer surface Alternatively, hydroperoxide reacts with a silane coupling agent in which silanol is formed in water to be grafted onto the polymer surface through a dehydration condensation reaction, and the polymer becomes hydrophilic due to the hydrophilic functional group included in the silane coupling agent.

본 발명에서는 고분자 표면의 불소 관능기의 일부를 친수성기로 개질하기 위한 플라즈마의 진동수(frequency), 출력(power), 노출시간(treatment time)의 범위를 한정하고, 플라즈마 처리 후에는 실란커플링제를 이용하여 실란 커플링 반응을 시키는 방법을 제공한다. In the present invention, the scope of the frequency, power, and treatment time of the plasma for modifying some of the fluorine functional groups on the surface of the polymer into a hydrophilic group is limited, and after plasma treatment, a silane coupling agent is used to A method for performing a silane coupling reaction is provided.

구체적으로, 본 발명은 불소계 기반의 고분자를 세척액에 담그어 세척한 다음 건조시키는 전처리 단계, 상기 건조된 불소계 기반의 고분자를 플라즈마 처리한 다음 대기중에 노출시켜 고분자 표면에 실란 커플링 반응을 일으킬 수 있는 작용기를 도입시키는 단계, 및 실란커플링제(silane coupling agent) 용액에 상기 불소계 기반의 고분자를 딥핑(dipping)하여 실란커플링(silane coupling) 반응시키는 단계를 포함하는 불소계 기반의 고분자 표면의 개질 방법을 제공한다. Specifically, the present invention is a pretreatment step in which the fluorine-based polymer is immersed in a washing solution, washed, and then dried, the dried fluorine-based polymer is plasma treated, and then exposed to the air to form a functional group capable of causing a silane coupling reaction on the surface of the polymer Provides a method for modifying the surface of a fluorine-based polymer comprising the step of introducing a silane coupling agent, and dipping the fluorine-based polymer in a solution of a silane coupling agent to cause a silane coupling reaction. do.

상기 불소계 기반의 고분자는 PTFE(Polytetrafluoroethylene), PVDF(Polyvinylidene fluoride), PTFE(Polytetrafluoroethylene), PVF(Polyvinylfluoride), PVDF(Polyvinylidene difluoride), PHFP(Polyhexafluoropropylene) 및 PCTFE(Polychlorotrifluoroethylene)으로 이루어진 그룹에서 선택되는 것일 수 있다. The fluorine-based polymer may be selected from the group consisting of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylfluoride (PVF), polyvinylidene difluoride (PVDF), polyhexafluoropropylene (PHFP), and polychlorotrifluoroethylene (PCTFE). there is.

상기 세척액으로는 메[탄올, 에탄올 또는 아세톤 등을 사용할 수 있다. 세척은 세척액에는 30분가량 담그었다 빼는 것으로 이루어진다. As the cleaning solution, m[ethanol, ethanol, or acetone may be used. Washing consists of soaking in the washing solution for about 30 minutes and removing it.

이렇게 플라즈마 처리를 하기 전 불소계 기반의 고분자를 에탄올에 담그어 세척을 함으로써 육안으로 보이는 고분자 표면의 먼지뿐만 아니라, 미시적인 관점에서 다공성의 불소계 고분자의 기공 내에 있을 수 있는 불순물을 제거하기 위한 것이다. This is to remove impurities that may be present in the pores of the porous fluorine-based polymer from a microscopic point of view as well as dust on the surface of the polymer visible to the naked eye by washing the fluorine-based polymer in ethanol before plasma treatment.

상기 플라즈마는 이에 한정되는 것은 아니지만, 바람직하게 Ar, N2 와 같은 비활성 기체 또는 O2 와 같은 활성이 적은 기체를 이용하여 플라즈마 처리를 하며, 불소계 기반의 고분자 종류에 따라 플라즈마의 진동수, 출력 및 처리 시간을 조절하여 처리한다. 상기 플라즈마 처리 시간은 1 내지 2 분 정도가 작용기들의 생성을 위해 바람직하다. The plasma is not limited thereto, but preferably, the plasma treatment is performed using an inert gas such as Ar or N 2 or a less active gas such as O 2 , and the frequency, output and processing of the plasma depend on the type of fluorine-based polymer. process by controlling the time. The plasma treatment time is preferably about 1 to 2 minutes for the generation of functional groups.

본 발명에서 플라즈마 처리는 화학적으로 불활성인 불소계 기반의 고분자 표면을 직접적으로 처리함으로써 활성화시키는 것이다. 이 경우 다공성의 고분자 내부 기공까지 플라즈마 처리가 되어 추후 실란커플링제에 의한 친수처리가 되도록 한다. 즉, 본 발명에서는 불소계 기반의 고분자 자체를 활성화시키기 위한 목적으로 플라즈마를 사용하며, 플라즈마 처리를 이용해 불소계 고분자의 내부까지 친수처리를 할 수 있다. In the present invention, the plasma treatment is to directly treat and activate the surface of a chemically inactive fluorine-based polymer. In this case, plasma treatment is performed to the pores inside the porous polymer so that the hydrophilic treatment is performed by a silane coupling agent later. That is, in the present invention, plasma is used for the purpose of activating the fluorine-based polymer itself, and hydrophilic treatment can be performed to the inside of the fluorine-based polymer using plasma treatment.

플라즈마 처리 직후에는 도 1에 도시된 바와 같이 고분자의 표면이 라디칼 형태를 띄며 그 상태에서 대기 중에 노출시키면 산소와 관련된 작용기들이 표면에 도입이 된다. 노출시간은 10~20분 정도가 바람직하다. 산소와 관련된 작용기로서 고분자의 표면 일부에 퍼옥사이드(peroxide)기 또는 하이드로퍼옥사이드(hydroperoxide)기 등의 작용기들이 생성된다. 즉, 플라즈마 처리에 의해 고분자 표면의 불소가 퍼옥사이드 또는 하이드로퍼옥사이드로 치환되는 것이다. Immediately after the plasma treatment, as shown in FIG. 1, the surface of the polymer has a radical form, and when exposed to the air in that state, functional groups related to oxygen are introduced to the surface. The exposure time is preferably about 10 to 20 minutes. As a functional group related to oxygen, functional groups such as a peroxide group or a hydroperoxide group are generated on a part of the surface of the polymer. That is, fluorine on the polymer surface is replaced with peroxide or hydroperoxide by plasma treatment.

다음으로, 실란커플링제 용액 내에 불소계 고분자를 딥핑하면, 도 2에 도시된 바와 같이 H2O와 만나서 실란올(silanol)을 형성한 실란커플링제에서 실란올이 고분자 표면과 반응하여 물이 빠져나가면서 실란커플링제와 고분자 표면이 연결(결합)된다. 이때 고분자 표면에 결합된 실란커플링제의 Y 작용기의 특성에 따라 표면의 성질이 달라지게 되는데, 본 발명에서는 Y 작용기로 친수성기를 포함하는 실란커플링제를 사용한다. 이러한 친수성기로는 아미노기가 있으나, 이에 한정되는 것은 아니다. 따라서, 본 발명에서는 실란커플링제에 포함된 친수성 작용기에 의해 고분자 표면이 친수성을 띄게 된다. Next, when dipping the fluorine-based polymer into the silane coupling agent solution, as shown in FIG. 2, the silanol reacts with the polymer surface in the silane coupling agent to form silanol by meeting with H 2 O, and water escapes. As the process progresses, the silane coupling agent and the polymer surface are connected (bonded). At this time, the properties of the surface vary depending on the characteristics of the Y functional group of the silane coupling agent bonded to the polymer surface. In the present invention, a silane coupling agent containing a hydrophilic group as the Y functional group is used. Such a hydrophilic group includes an amino group, but is not limited thereto. Therefore, in the present invention, the polymer surface becomes hydrophilic due to the hydrophilic functional group included in the silane coupling agent.

상기 실란커플링제로는 아래 화학식과 같은 구조에서 Y가 친수성 작용기인 실란 커플링제를 사용한다: As the silane coupling agent, a silane coupling agent in which Y is a hydrophilic functional group in the structure shown in the following formula is used:

Figure pat00001
Figure pat00001

X는 메틸기-CH3) 또는 에틸기 (-CH2-CH3)이고,X is a methyl group -CH 3 ) or an ethyl group (-CH 2 -CH 3 );

Y는 -CH2-CH2-CH2-NH2 , CH2-(CH2)14-CH3 , -CH2-(CH2)6-CH3 또는 -CH2-CH2-(CF2)5-CF3 이다.Y is -CH 2 -CH 2 -CH 2 -NH 2 , CH 2 -(CH 2 ) 14 -CH 3 , -CH 2 -(CH 2 ) 6 -CH 3 or -CH 2 -CH 2 -(CF 2 ) 5 -CF 3 .

이러한 실란커플링제로는 바람직하게 3-아미로프로필트리에톡시실란(3-Aminopropyltriethoxysilane, APTES), 헥사데실트리메톡시실란(Hexadecyltrimethoxysilane), 트리에톡시(옥틸)실란(Triethoxy(octyl)silane) 또는 1H,1H,2H,2H-퍼플루오로옥틸트리에톡시실란(1H,1H,2H,2H-Perfluorooctyltriethoxysilane)을 들수 있으나, 이에 한정되는 것은 아니며 친수성 작용기 Y를 포함하는 것이면 모두 사용 가능하다. Such a silane coupling agent is preferably 3-Aminopropyltriethoxysilane (APTES), hexadecyltrimethoxysilane, triethoxy (octyl) silane (Triethoxy (octyl) silane) or 1H,1H,2H,2H-Perfluorooctyltriethoxysilane (1H,1H,2H,2H-Perfluorooctyltriethoxysilane) may be used, but is not limited thereto, and any material containing a hydrophilic functional group Y may be used.

실란커플링제 용액은 5 내지 10 vol% 범위의 농도가 바람직하다. 실란커플링 반응 후에는 건조사켜 친수 처리를 완성한다. The concentration of the silane coupling agent solution is preferably in the range of 5 to 10 vol%. After the silane coupling reaction, drying is carried out to complete the hydrophilic treatment.

본 발명은 상기 방법을 통해 친수처리된 표면을 갖는 불소계 기반의 고분자를 제공한다. 상기 불소계 기반의 고분자는 PTFE(Polytetrafluoroethylene), PVDF(Polyvinylidene fluoride), PTFE(Polytetrafluoroethylene), PVF(Polyvinylfluoride), PVDF(Polyvinylidene difluoride), PHFP(Polyhexafluoropropylene) 및 PCTFE(Polychlorotrifluoroethylene)으로 이루어진 그룹에서 선택되는 것일 수 있다. 상기 고분자 표면은 실란커플링제와 연결(결합)되어 실란커플링제에 포함된 친수성기에 의해 친수성을 띄게된다. The present invention provides a fluorine-based polymer having a hydrophilic treated surface through the above method. The fluorine-based polymer may be selected from the group consisting of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylfluoride (PVF), polyvinylidene difluoride (PVDF), polyhexafluoropropylene (PHFP), and polychlorotrifluoroethylene (PCTFE). there is. The surface of the polymer is connected (bonded) with a silane coupling agent and becomes hydrophilic by a hydrophilic group included in the silane coupling agent.

또한 본 발명은 상기 친수처리된 표면을 갖는 불소계 기반의 고분자 및 이를를 포함하는 수소자동차의 수소연료전지용 고분자 전해질막을 제공한다. In addition, the present invention provides a fluorine-based polymer having the hydrophilic treated surface and a polymer electrolyte membrane for a hydrogen fuel cell of a hydrogen vehicle including the same.

상기 고분자 전해질막은 상기 친수처리된 표면을 갖는 불소계 기반의 고분자를 강화복합막의 지지체로 하고 그 내부에 이온전달 역할의 고분자를 함침시킨 것이다. The polymer electrolyte membrane is obtained by impregnating a polymer having an ion transport role therein using a fluorine-based polymer having a hydrophilic treated surface as a support for a reinforced composite membrane.

실시예Example

50 ㎛ 두께의 PTFE를 EtOH (Ethanol)에 30분 동안 담근 후 세척하고 충분히 건조시켰다. 건조된 PTFE를 40 W, 80 kHz, 1분의 조건으로 O2 플라즈마 처리한 후 대기중에 20 분간 노출시켰다. 그런다음, APTES (3-Aminopropyltriethoxysilane)과 H2O를 섞어 만든 APTES 5 vol% 용액에 PTFE를 200 mm/min 속도로 딥핑한 후 꺼내서 건조하였다.A 50 μm-thick PTFE was immersed in EtOH (Ethanol) for 30 minutes, washed, and sufficiently dried. The dried PTFE was treated with O 2 plasma under conditions of 40 W, 80 kHz, and 1 minute, and then exposed to the atmosphere for 20 minutes. Then, PTFE was dipped into a 5 vol% solution of APTES (3-Aminopropyltriethoxysilane) and H 2 O at a rate of 200 mm/min, then taken out and dried.

플라즈마 처리 전과 후의 PTFE의 접촉각을 탈이온수(DI water) 기준으로 측정하였다. 결과를 도 3에 나타냈다. 이로부터, 접촉각이 플라즈마 처리 전 141.77~144.41°에서 플라즈마 처리 후 125.62~127.39°로 감소된 것을 확인할 수 있었다. The contact angle of PTFE before and after plasma treatment was measured based on DI water. The results are shown in Figure 3. From this, it was confirmed that the contact angle decreased from 141.77 to 144.41 ° before plasma treatment to 125.62 to 127.39 ° after plasma treatment.

다음으로, 플라즈마 처리 전과 후의 XPS 분석을 하였다. 결과를 도 4에 나타냈다. 여기서는, 플라즈마 처리 후에 O와 관련된 피크가 나타난 것을 확인할 수 있다.Next, XPS analysis was performed before and after plasma treatment. Results are shown in FIG. 4 . Here, it can be confirmed that a peak related to O appeared after plasma treatment.

상기 결과로부터 플라즈마 처리에 의해 PTFE 표면의 불소가 퍼옥사이드 또는 하이드로퍼옥사이드로 치환된 것을 알 수 있었다.From the above results, it was found that fluorine on the PTFE surface was replaced with peroxide or hydroperoxide by plasma treatment.

도 5는 최종적으로 실란커플링된 PTFE 표면의 탈이온수 기준의 접촉각을 측정한 것이다. 이를 보면, 접촉각이 60°로 대폭 감소하였음을 확인할 수 있다. 5 is a measurement of the contact angle based on deionized water of the finally silane-coupled PTFE surface. Looking at this, it can be confirmed that the contact angle is significantly reduced to 60°.

상기 결과로부터 본 발명의 방법에 의해 PTFE의 탈이온수 기준 접촉각 측정값이 최초 145°에서 약 60° 정도로 대폭 감소하였음을 알 수 있다. 즉, 초소수성 PTFE (탈이온수 기준, 접촉각 약 140°)를 플라즈마 처리를 통해 표면의 불소 일부를 퍼옥사이드 또는 하이드로퍼옥사이드로 치환시킴으로써 접촉각을 약 125~130°로 감소시켰고, 이후 실란커플링 반응을 통해 PTFE의 표면을 친수성으로 개질하였다. (탈이온수 기준, 접촉각 약 60°) 결국, 접촉각이 약 140°에서 60°로 80°가량 줄어들며 PTFE의 표면이 초소수성에서 친수성으로 개질되었음을 확인할 수 있었다.From the above results, it can be seen that the measured value of the contact angle of PTFE based on deionized water significantly decreased from the initial 145° to about 60° by the method of the present invention. That is, superhydrophobic PTFE (based on deionized water, contact angle of about 140°) The contact angle was reduced to about 125-130° by replacing some of the fluorine on the surface with peroxide or hydroperoxide through plasma treatment, and then the surface of PTFE was modified to be hydrophilic through a silane coupling reaction. (Contact angle of about 60° based on deionized water) As a result, the contact angle was reduced by about 80° from about 140° to 60°, and it was confirmed that the surface of PTFE was modified from superhydrophobic to hydrophilic.

Claims (11)

불소계 기반의 고분자를 세척액에 담그어 세척한 다음 건조시키는 전처리 단계,
상기 건조된 불소계 기반의 고분자를 플라즈마 처리한 다음 대기중에 노출시켜 고분자 표면에 실란 커플링 반응을 일으킬 수 있는 작용기를 도입시키는 단계, 및
실란커플링제(silane coupling agent) 용액에 상기 불소계 기반의 고분자를 딥핑(dipping)하여 실란커플링(silane coupling) 반응시키는 단계를 포함하는 불소계 기반의 고분자 표면의 개질 방법.
A pretreatment step of immersing the fluorine-based polymer in a washing solution, washing it, and then drying it;
Plasma-treating the dried fluorine-based polymer and then exposing it to the air to introduce a functional group capable of causing a silane coupling reaction on the surface of the polymer, and
A method for modifying the surface of a fluorine-based polymer comprising dipping the fluorine-based polymer in a solution of a silane coupling agent and subjecting the fluorine-based polymer to a silane coupling reaction.
제 1 항에서,
상기 불소계 기반의 고분자는 PTFE(Polytetrafluoroethylene), PVDF(Polyvinylidene fluoride), PTFE(Polytetrafluoroethylene), PVF(Polyvinylfluoride), PVDF(Polyvinylidene difluoride), PHFP(Polyhexafluoropropylene) 및 PCTFE(Polychlorotrifluoroethylene)으로 이루어진 그룹에서 선택되는 것을 특징으로 하는, 불소계 기반의 고분자 표면의 개질 방법.
In claim 1,
The fluorine-based polymer is selected from the group consisting of Polytetrafluoroethylene (PTFE), Polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), Polyvinylfluoride (PVF), Polyvinylidene difluoride (PVDF), Polyhexafluoropropylene (PHFP), and Polychlorotrifluoroethylene (PCTFE). A method for modifying the surface of a fluorine-based polymer.
제 1 항에서,
상기 세척액은 메탄올, 에탄올 또는 아세톤인 것을 특징으로 하는, 불소계 기반의 고분자 표면의 개질 방법.
In claim 1,
Characterized in that the cleaning solution is methanol, ethanol or acetone, a method for modifying the surface of a fluorine-based polymer.
제 1 항에서,
상기 플라즈마 처리에는 비활성 기체 또는 활성이 적은 기체를 사용하는 것을 특징으로 하는, 불소계 기반의 고분자 표면의 개질 방법.
In claim 1,
The method of modifying the surface of a fluorine-based polymer, characterized in that using an inert gas or a less active gas for the plasma treatment.
제 1 항에서,
상기 플라즈마 처리 시간은 1 내지 2 분 정도인 것을 특징으로 하는, 불소계 기반의 고분자 표면의 개질 방법.
In claim 1,
The method of modifying the surface of a fluorine-based polymer, characterized in that the plasma treatment time is about 1 to 2 minutes.
제 1 항에서,
상기 실란커플링제는 친수성기를 포함하는 것을 특징으로 하는, 불소계 기반의 고분자 표면의 개질 방법.
In claim 1,
The silane coupling agent is a method for modifying the surface of a fluorine-based polymer, characterized in that it contains a hydrophilic group.
제 1 항에서,
상기 실란커플링제는 3-아미로프로필트리에톡시실란(3-Aminopropyltriethoxysilane, APTES), 헥사데실트리메톡시실란(Hexadecyltrimethoxysilane), 트리에톡시(옥틸)실란(Triethoxy(octyl)silane) 및 1H,1H,2H,2H-퍼플루오로옥틸트리에톡시실란(1H,1H,2H,2H-Perfluorooctyltriethoxysilane)으로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는, 불소계 기반의 고분자 표면의 개질 방법.
In claim 1,
The silane coupling agent is 3-Aminopropyltriethoxysilane (APTES), hexadecyltrimethoxysilane, triethoxy (octyl) silane (Triethoxy (octyl) silane) and 1H, 1H , 2H, 2H-perfluorooctyltriethoxysilane (1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane) Characterized in that at least one selected from the group consisting of, a method for modifying the surface of a fluorine-based polymer.
제 1 항에서,
실란커플링제 용액은 5 내지 10 vol% 범위의 농도인 것을 특징으로 하는, 불소계 기반의 고분자 표면의 개질 방법.
In claim 1,
A method for modifying the surface of a fluorine-based polymer, characterized in that the silane coupling agent solution has a concentration in the range of 5 to 10 vol%.
제1항 내지 제8항 중 어느 한 항의 방법으로부터 친수성으로 개질된 표면을 갖는 불소계 기반의 고분자.
A fluorine-based polymer having a hydrophilically modified surface by the method of any one of claims 1 to 8.
제1항 내지 제8항 중 어느 한 항의 방법으로부터 친수성으로 개질된 표면을 갖는 불소계 기반의 고분자를 포함하는 수소자동차의 수소연료전지용 고분자 전해질막.
A polymer electrolyte membrane for a hydrogen fuel cell of a hydrogen vehicle comprising a fluorine-based polymer having a hydrophilically modified surface from the method of any one of claims 1 to 8.
제10항에서,
상기 고분자 전해질막은 상기 친수처리된 표면을 갖는 불소계 기반의 고분자를 강화복합막의 지지체로 하고 그 내부에 이온전달 역할의 고분자를 함침시킨 것을 특징으로 하는, 고분자 전해질막.
In paragraph 10,
The polymer electrolyte membrane is a polymer electrolyte membrane, characterized in that the fluorine-based polymer having the hydrophilic treated surface is used as a support for the reinforced composite membrane and a polymer for ion transport is impregnated therein.
KR1020210118229A 2021-09-06 2021-09-06 Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane KR102673035B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210118229A KR102673035B1 (en) 2021-09-06 2021-09-06 Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane
PCT/KR2022/013287 WO2023033619A1 (en) 2021-09-06 2022-09-05 Fluorine-based polymer surface hydrophilic treatment method through plasma and silane treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210118229A KR102673035B1 (en) 2021-09-06 2021-09-06 Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane

Publications (2)

Publication Number Publication Date
KR20230035794A true KR20230035794A (en) 2023-03-14
KR102673035B1 KR102673035B1 (en) 2024-06-10

Family

ID=85411498

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210118229A KR102673035B1 (en) 2021-09-06 2021-09-06 Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane

Country Status (2)

Country Link
KR (1) KR102673035B1 (en)
WO (1) WO2023033619A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102635063B1 (en) 2023-10-27 2024-02-13 성문전자주식회사 Method for manufacturing capacitor film for inverters with enhanced environmental resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170040018A (en) * 2015-10-02 2017-04-12 김성철 manufacturing method of PTFE electrolyte membrane for fuel cell
KR101802664B1 (en) * 2016-08-16 2017-11-30 경희대학교 산학협력단 The method of reforming the hydophobic materials into hydrophilic sueface and materials having hydrophilic surface for using the same
KR20180040394A (en) * 2016-10-12 2018-04-20 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
CN111097072A (en) * 2019-12-12 2020-05-05 广州市妇女儿童医疗中心 Preparation method of hydrophilic lubricating coating with strong interface bonding on surface of polymer medical product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392840B1 (en) * 2000-12-02 2003-07-28 주식회사 우광케미칼 Method for making of Polymer thin films by low-temperature plasma enhanced chemical vapor deposition using
KR101187372B1 (en) * 2010-07-28 2012-10-05 광주과학기술원 Composite membrane for fuel cell electrolyte and its preparation method
CN105199137B (en) * 2015-09-08 2018-03-16 哈尔滨工业大学 A kind of preparation method of porous composite polymer electrolyte membrane material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170040018A (en) * 2015-10-02 2017-04-12 김성철 manufacturing method of PTFE electrolyte membrane for fuel cell
KR101802664B1 (en) * 2016-08-16 2017-11-30 경희대학교 산학협력단 The method of reforming the hydophobic materials into hydrophilic sueface and materials having hydrophilic surface for using the same
KR20180040394A (en) * 2016-10-12 2018-04-20 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
CN111097072A (en) * 2019-12-12 2020-05-05 广州市妇女儿童医疗中心 Preparation method of hydrophilic lubricating coating with strong interface bonding on surface of polymer medical product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102635063B1 (en) 2023-10-27 2024-02-13 성문전자주식회사 Method for manufacturing capacitor film for inverters with enhanced environmental resistance

Also Published As

Publication number Publication date
KR102673035B1 (en) 2024-06-10
WO2023033619A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP6338297B2 (en) Method for producing reinforced composite membrane
AU729900B2 (en) Novel polymer electrolyte membranes for use in fuel cells
KR101064986B1 (en) Ceramic porous substrate, reinforced composite electrolyte membranes using the same and membrane-electrode assembly having the same
KR100833056B1 (en) Reinforced composite electrolyte membrane for fuel cell
US20150111127A1 (en) Fuel cell with enhanced mass transfer characteristics
KR20050036849A (en) Solid polymer membrane for fuel cell prepared by in situ polymerization
CN112652795B (en) Composite proton exchange membrane of fuel cell and preparation method thereof
CN108682776B (en) High-performance lithium ion battery composite diaphragm and preparation method thereof
KR102673035B1 (en) Methods of making the surface of fluoric polymers to be hydrophilic by treating with plasma and silane
CN111477884A (en) Organic modification hydrophobic treatment method for carbon fiber paper membrane of fuel cell
JP2008522365A (en) Membrane processing method
KR100644859B1 (en) Method to manufacture polymer electrolyte composite membranes for fuel cells of DMFC
US10396384B2 (en) Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
JP2007329069A (en) Solid polymer electrolyte membrane and fuel cell
JP4532494B2 (en) Membrane-electrode assembly, manufacturing method thereof, and manufacturing method of membrane to be combined in membrane-electrode assembly
KR102008400B1 (en) Polymer eletrolyte membrane
JP5219457B2 (en) Silicide electrolyte material for fuel cell, preparation method thereof and fuel cell using the same
CN102709576B (en) Composite proton exchange membrane for high-temperature fuel cell and preparation method of composite proton exchange membrane
JP2000090945A (en) Solid polymer electrolyte film, manufacture thereof and solid polymer electrolyte fuel cell
JP2005327500A (en) Manufacturing method of solid polymer electrolyte, solid polymer electrolyte membrane and fuel cell
JP2021052001A5 (en)
KR102341371B1 (en) Polymer Composite Membrane, Method for Producing the Same and Energy Storage System comprising the Polymer Composite Membrane
CN114288873B (en) Polybenzimidazole microporous membrane with high acid resistance and high stability and preparation method thereof
KR102300433B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102265816B1 (en) A method for producing an organic-inorganic composite electrolyte membrane and an application product including the membrane

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant