KR20230030763A - Cvd film for cutting tool with excellent wear resistance - Google Patents

Cvd film for cutting tool with excellent wear resistance Download PDF

Info

Publication number
KR20230030763A
KR20230030763A KR1020210112819A KR20210112819A KR20230030763A KR 20230030763 A KR20230030763 A KR 20230030763A KR 1020210112819 A KR1020210112819 A KR 1020210112819A KR 20210112819 A KR20210112819 A KR 20210112819A KR 20230030763 A KR20230030763 A KR 20230030763A
Authority
KR
South Korea
Prior art keywords
layer
altin
plane
tin
film
Prior art date
Application number
KR1020210112819A
Other languages
Korean (ko)
Other versions
KR102663474B1 (en
Inventor
안진우
강재훈
김옥길
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Priority to KR1020210112819A priority Critical patent/KR102663474B1/en
Publication of KR20230030763A publication Critical patent/KR20230030763A/en
Application granted granted Critical
Publication of KR102663474B1 publication Critical patent/KR102663474B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

A purpose of the present invention is to provide a hard film having excellent adhesiveness and improved wear resistance and toughness. In accordance with the present invention, a film for a cutting tool, which is a film formed through a CVD method, includes a first layer, and a second layer formed in an upper part of the first layer. The first layer includes a layer including TiC^x N^y (x+y=1, x>0, y>0) as a main phase, and oriented such that the peak intensity of a surface (311) and/or a surface (422) can be the greatest during X-ray diffraction analysis, and the second layer has a structure in which an A layer formed of Ti^1-x Al^x C^1-y N^y (0.6<=x<1.0, 0<=y<=1), and a B layer formed of TiN are alternately and repeatedly stacked at least twice in the form of A/B/A/B.

Description

내마모성이 우수한 CVD 절삭공구용 피막 {CVD FILM FOR CUTTING TOOL WITH EXCELLENT WEAR RESISTANCE}Coating for CVD cutting tools with excellent wear resistance {CVD FILM FOR CUTTING TOOL WITH EXCELLENT WEAR RESISTANCE}

본 발명은 절삭공구용 피막으로 화학기상증착법(Chemical Vapour Deposition)으로 형성되며, Al의 함량이 높은 AlTiN층을 포함하고, 내산화성, 내마모성 및 내박리성이 우수한 절삭공구용 피막에 관한 것이다.The present invention relates to a coating for a cutting tool, which is formed by chemical vapor deposition as a coating for a cutting tool, includes an AlTiN layer having a high Al content, and has excellent oxidation resistance, wear resistance, and peeling resistance.

절삭성능 향상 및 수명개선을 위해 초경합금, 서멧(cermet), 엔드밀, 드릴류 등의 경질기체 위에 경질피막인 TiN, TiAlN, AlTiN, Al2O3와 같은 박막을 증착하는 방식이 사용되고 있다.In order to improve cutting performance and life, a method of depositing a thin film such as TiN, TiAlN, AlTiN, Al 2 O 3 which is a hard film on a hard substrate such as cemented carbide, cermet, end mill, drill, etc. is used.

1980년대까지는 절삭공구에 TiN을 코팅하여 절삭성능과 수명을 향상시키고자 하였으나, 일반적인 절삭가공시 약 600 ~ 700℃ 정도 열이 발생하게 되므로, 1980년대 후반에는 기존의 TiN 보다 경도와 내산화성이 높은 TiAlN으로 코팅기술이 변천되었고, 내마모성 및 내산화성을 더욱 향상시키기 위해 Al을 더 첨가시킨 AlTiN 박막이 개발되었다. AlTiN 박막은 Al2O3 산화층을 형성함으로써, 고온 내산화성과 내마모성을 향상시키는 효과를 얻었으나, 경질 기체와의 결합력이 약한 문제가 있다.Until the 1980s, cutting tools were coated with TiN to improve their cutting performance and lifespan. The coating technology was changed to TiAlN, and an AlTiN thin film with more Al was developed to further improve wear resistance and oxidation resistance. The AlTiN thin film has an effect of improving high-temperature oxidation resistance and wear resistance by forming an Al 2 O 3 oxide layer, but has a problem in that it has a weak bonding force with a hard substrate.

최근 들어 피삭재는 점차 고경도화되고 있을 뿐 아니라, 열전도도가 낮고 공구와 용착이 심한 난삭재에 대한 가공수요가 많아지고 있다. 이러한 고경도 피삭재에 대한 고속 절삭가공 및 난삭재에 대한 고속 절삭가공 시 우수한 절삭성능 및 수명을 얻기 위해서는 우수한 내산화성과 내마모성을 가지는 것이 중요하다.In recent years, workpiece materials have become increasingly hard, and there is an increasing demand for difficult-to-cut materials that have low thermal conductivity and severe adhesion to tools. It is important to have excellent oxidation resistance and wear resistance in order to obtain excellent cutting performance and lifespan during high-speed cutting for high-hardness workpieces and high-speed cutting for difficult-to-cut materials.

이러한 요구에 대하여, Al과 Ti 중에서 Al의 함량을 몰비로 0.7 이상 증가시켜 내산화성과 내마모성이 우수한 CVD법으로 형성한 AlTiN 박막이 새로운 대안으로서 부각되고 있으나, 낮은 내박리특성과 인성이 문제가 되어 적용 범위를 넓히는데 제약이 되고 있다.In response to this demand, an AlTiN thin film formed by a CVD method with excellent oxidation resistance and wear resistance by increasing the Al content by 0.7 or more in terms of molar ratio among Al and Ti has emerged as a new alternative, but low exfoliation resistance and toughness have become a problem. The scope of application is limited.

일례로, 하기 특허문헌에서는 라멜라 구조를 가지면서 동시에 특정한 결정면으로 우선 배향시킨 집합조직을 갖는 CVD법으로 형성한 AlTiN 박막을 통해 보다 향상된 내마모성을 구현한 경질피막에 대해 개시하고 있다. 하지만, AlTiN 박막의 적용에 가장 문제가 되는 경질 기체와의 결합력을 향상시키는 기술에 대해서는 개시하지 않고 있다.For example, the following patent literature discloses a hard film having improved wear resistance through an AlTiN thin film formed by a CVD method having a lamellar structure and a texture preferentially oriented in a specific crystal plane. However, the technology for improving the bonding force with the hard substrate, which is the most problematic for the application of the AlTiN thin film, is not disclosed.

대한민국 공개특허공보 제2016-0130752호Republic of Korea Patent Publication No. 2016-0130752

본 발명의 목적은 내박리성이 우수하면서 내마모성을 한층 더 향상시킨 절삭공구용 피막을 제공하는데 있다.An object of the present invention is to provide a coating for a cutting tool having excellent peeling resistance and further improved abrasion resistance.

상기와 같은 목적을 달성하기 위해, CVD법으로 형성되는 피막으로, 상기 피막은 제1층과, 상기 제1층의 상부에 형성된 제2층을 포함하고, 상기 제1층은 TiCxNy(x+y=1, x>0, y>0)을 주상으로 포함하고 X-선 회절분석 시에 (311)면 및/또는 (422)면의 피크 강도가 가장 크도록 배향되어 있는 층을 포함하고, 상기 제2층은 Ti1-xAlxC1-yNy (0.6≤x<1.0, 0≤y≤1)으로 이루어진 A층과, TiN으로 이루어진 B층이 2회 이상 A/B/A/B 형태로 교대 반복적으로 적층된 구조를 가지는, 절삭공구용 피막을 제공한다.In order to achieve the above object, a film formed by the CVD method, the film includes a first layer and a second layer formed on top of the first layer, the first layer is TiC x N y ( x + y = 1, x>0, y>0) as a main phase and includes a layer oriented so that the peak intensity of the (311) plane and / or (422) plane is the largest in X-ray diffraction analysis In the second layer, an A layer made of Ti 1-x Al x C 1-y N y (0.6≤x<1.0, 0≤y≤1) and a B layer made of TiN are formed twice or more A / B It provides a coating for a cutting tool having a structure that is repeatedly laminated in an alternating / A / B form.

본 발명의 일 실시형태에 따른 피막은 AlTiN층의 하부에 AlTiN층과의 결합력을 향상시키도록 결정성장이 이루어진 TiCN층을 배치하고, AlTiN층의 사이에 TiN층을 개재한 다층 적층 구조를 적용함으로써, 절삭공구용 피막의 내박리성 및 내마모성을 현저하게 향상시킬 수 있다.In the film according to an embodiment of the present invention, a TiCN layer having crystal growth is placed under the AlTiN layer to improve bonding strength with the AlTiN layer, and a multi-layered structure with a TiN layer interposed between the AlTiN layers is applied. , peeling resistance and abrasion resistance of coatings for cutting tools can be remarkably improved.

또한, 본 발명의 일 실시형태에 따른 피막은 TiCN층의 입자크기를 0.9㎛ 이하의 미립 조직을 적용함으로써 피막의 내마모성을 더욱 향상시킬 수 있다.In addition, the wear resistance of the coating film according to an embodiment of the present invention can be further improved by applying a fine grain structure of the TiCN layer having a particle size of 0.9 μm or less.

또한, 본 발명의 일 실시형태에 따른 피막은 XRD 분석 시에 (111)면의 피크강도가 가장 크게 성장시킨 AlTiN과 (200)면의 피크 강도가 가장 크게 성장시킨 AlTiN을 TiN층을 개재하여 배치되어 있어, 보다 향상된 내마모성을 얻을 수 있다.In addition, in the film according to one embodiment of the present invention, during XRD analysis, AlTiN grown with the largest peak intensity of the (111) plane and AlTiN grown with the largest peak intensity of the (200) plane are disposed with a TiN layer interposed therebetween. Thus, more improved wear resistance can be obtained.

도 1은 본 발명의 일 실시형태에 따른 경질피막의 구조에 대한 모식도이다.
도 2는 본 발명의 일 실시형태에 따라 제조된 피막의 X선 회절분석 결과로, TiCN층의 피크 중에서 강도가 높은 결정면의 피크(적색 박스)를 나타낸 것이다.
도 3은 본 발명의 일 실시형태에 따라 제조된 피막의 X선 회절분석 결과로, AlTiN층의 피크 중에서 가장 강도가 높은 결정면의 피크(적색 박스)를 나타낸 것이다.
1 is a schematic view of the structure of a hard coating according to an embodiment of the present invention.
FIG. 2 is a result of X-ray diffraction analysis of a film prepared according to an embodiment of the present invention, and shows a peak (red box) of a crystal plane having high intensity among peaks of a TiCN layer.
FIG. 3 is a result of X-ray diffraction analysis of a film prepared according to an embodiment of the present invention, and shows a crystal plane peak (red box) with the highest intensity among peaks of an AlTiN layer.

이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

그러나 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.However, the embodiments of the present invention exemplified below may be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

본 발명에 따른 절삭공구용 피막은, CVD법으로 형성되며, 상기 피막은 제1층과, 상기 제1층의 상부에 형성된 제2층을 포함하고, 상기 제1층은 TiCxNy(x+y=1, x>0, y>0)을 주상으로 포함하고, X-선 회절분석 시에 (311)면 및/또는 (422)면의 피크 강도가 가장 크도록 배향되어 있는 층을 포함하고, 상기 제2층은 Ti1-xAlxC1-yNy (0.6≤x<1.0, 0≤y≤1)으로 이루어진 A층과, TiN으로 이루어진 B층이 적어도 2회 이상 A/B/A/B 형태로 교대 반복적으로 적층된 구조를 가지는 것을 특징으로 한다.A film for a cutting tool according to the present invention is formed by the CVD method, and the film includes a first layer and a second layer formed on top of the first layer, and the first layer is TiC x N y (x +y = 1, x>0, y>0) as a main phase, including a layer oriented so that the peak intensity of the (311) plane and / or (422) plane is the largest in X-ray diffraction analysis And, in the second layer, an A layer made of Ti 1-x Al x C 1-y N y (0.6≤x<1.0, 0≤y≤1) and a B layer made of TiN are formed at least twice or more by A/ It is characterized in that it has a structure that is alternately and repeatedly laminated in the form of B / A / B.

본 발명에 있어서 '주상'이란 해당 층에서 부피분율로 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 가장 바람직하게는 99% 이상을 이루는 상(phase)을 의미한다.In the present invention, 'main phase' means a phase that makes up 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more in terms of volume fraction in the corresponding layer.

도 1에서 도시된 것과 같이, 본 발명의 일 실시형태에 따른 피막은, 초경합금이나 서멧(cermet)과 같은 절삭공구용으로 사용되는 모재(100) 상에 형성되어 사용되는 것으로, 크게 하지층(200), 제1층(300) 및 제2층(400)을 포함하여 이루어진다.As shown in FIG. 1, the film according to an embodiment of the present invention is formed and used on a base material 100 used for a cutting tool such as cemented carbide or cermet, and largely underlayer 200 ), the first layer 300 and the second layer 400 are included.

상기 하지층(200)은 모재(100)와 제1층(300) 사이의 결합력 향상을 위해 선택적으로 형성할 수 있는 것으로, TiN으로 이루어진 층이 사용될 수 있다. 이러한 하지층(200)의 두께는 2㎛ 이하로 형성되는 것이 바람직하고, 1㎛ 이하로 형성되는 것이 더 바람직하다.The base layer 200 can be selectively formed to improve bonding strength between the base material 100 and the first layer 300, and a layer made of TiN can be used. The thickness of the base layer 200 is preferably less than 2 μm, and more preferably less than 1 μm.

상기 제1층(300)은 모재에 접하거나 인접하여 형성되는 TiCxNy(x+y=1, x>0, y>0, 이하 'TiCN' 이라 함)을 주상으로 하는 TiCN층을 포함하여 이루어진다.The first layer 300 includes a TiCN layer having TiC x N y (x + y = 1, x > 0, y > 0, hereinafter referred to as 'TiCN') formed in contact with or adjacent to the base material as a main phase. It is done by

본 발명에 따른 피막에서는, 제2층(300)의 AlTiN층과 접하는 하부에 TiCN층을 배치하고, 이와 함께 X-선 회절분석 시에 (311)면 및/또는 (422)면에서 가장 강한 피크가 나타나도록 배향한 TiCN층을 적용함으로써, 제1층(300)인 TiCN층과 제2층(400)의 일부를 형성하는 AlTiN층 사이의 결합력(즉, 피막의 내박리성)을 향상시키면서, 내마모성이 우수한 TiCN층을 통해 피막 전체의 내마모성도 향상시킬 수 있다.In the film according to the present invention, the TiCN layer is disposed on the lower side in contact with the AlTiN layer of the second layer 300, and together with this, the strongest peaks on the (311) plane and / or (422) plane during X-ray diffraction analysis By applying a TiCN layer oriented to appear, the bonding strength between the TiCN layer as the first layer 300 and the AlTiN layer forming a part of the second layer 400 is improved (ie, peeling resistance of the film) while improving, The wear resistance of the entire film can also be improved through the TiCN layer having excellent wear resistance.

상기 TiCN층은 X-선 회절분석 시에 (311)면이 가장 강한 피크일 경우 (422)면이 두 번째로 강한 피크 상태로 있거나, (422)면이 가장 강한 피크일 경우 (311)면이 두 번째로 강한 피크 상태인 것이 AlTiN층과의 결합력 측면에서 보다 바람직하다.In the TiCN layer, when the (311) plane is the strongest peak in X-ray diffraction analysis, the (422) plane is in the second strongest peak state, or if the (422) plane is the strongest peak, the (311) plane is the strongest peak. The second strongest peak state is more preferable in terms of bonding strength with the AlTiN layer.

상기 제1층(300)의 두께는 0.5㎛ 미만일 경우 상기한 효과를 얻기 어렵고, 15㎛ 초과일 경우 TiCN층과 제2층(400)의 AlTiN층 사이의 결합력 저하가 발생하므로, 0.5 ~ 15㎛ 범위로 형성되는 것이 바람직하다.When the thickness of the first layer 300 is less than 0.5 μm, it is difficult to obtain the above effect, and when the thickness exceeds 15 μm, the bonding force between the TiCN layer and the AlTiN layer of the second layer 400 decreases. It is preferable to form a range.

상기 TiCN층은 미세조직상 평균 결정립 크기가 0.9㎛ 이하의 미세립으로 형성되는 것이 그 상부에 형성되는 AlTiN층과의 결합력 향상은 물론 피막 전체의 내마모성을 향상시키는데 바람직하다.The TiCN layer is preferably formed of fine grains having an average grain size of 0.9 μm or less in microstructure to improve bonding strength with the AlTiN layer formed thereon and to improve wear resistance of the entire film.

상기 제2층(400)은, AlTiN층(410)의 사이에 버퍼층으로 기능하는 TiN층(420)을 개재하여 A/B/A/B 형태로 적층되는 구조로 형성되어 있다.The second layer 400 is formed in a stacked structure in A/B/A/B form with a TiN layer 420 functioning as a buffer layer interposed between AlTiN layers 410.

상기 A층은 Al의 함량이 몰비로 0.6 이상으로, Ti에 비해 많이 함유되는 AlTiN을 주상으로 하는데, AlTiN은 내산화성이 우수하나 내박리성이 낮은 문제점이 있다. 본 발명에 따른 피막은 AlTiN층의 낮은 내박리성을 개선하기 위하여, 전술한 바와 같이, AlTiN층의 하부에는 특정한 결정방향으로 배향시킨 TiCN층을 배치하였다. 또한, 본 발명에 따른 피막에서는 제2층(400)을 구성하는 AlTiN층의 사이에 TiN층을 배치시킴으로써, 피막의 내박리성을 한층 더 개선할 수 있다.The A layer has Al content of 0.6 or more in molar ratio, and AlTiN, which is contained more than Ti, as a main phase. AlTiN has excellent oxidation resistance, but has a problem of low exfoliation resistance. In order to improve the low exfoliation resistance of the AlTiN layer in the film according to the present invention, as described above, a TiCN layer oriented in a specific crystal direction was disposed below the AlTiN layer. Further, in the coating film according to the present invention, by disposing the TiN layer between the AlTiN layers constituting the second layer 400, peeling resistance of the coating film can be further improved.

일반적으로 AlTiN 피막은 인성이 약하여 내충격성이 낮은데, 라멜라 구조를 가지는 AlTiN 피막은 인성을 향상시킬 수 있다. 그리고 인성 향상 효과를 얻기 위해서는 라멜라 영역의 평균 두께(라멜라를 구성하는 미세층 사이의 평균 간격)는 150nm 이하가 바람직하고, 100nm 이하인 것이 더 바람직하고, 50nm 이하인 것이 가장 바람직하다. 상기 라멜라 구조는 상이한 조성을 가지면서 동시에 면심 입방정(fcc) 조직과 육방정 구조(hcp) 조직과 같이 결정구조도 상이한 영역의 교대 반복일 수도 있고, 동일한 결정구조 예를 들어 면심 입방정(fcc) 구조를 가지면서 상이한 조성 영역이 교대 반복되는 것일 수 있다. 라멜라 구조는 절삭공구 사용 시에 하중에 대한 저항성을 높여 수명을 연장하는데 효과적인다. 특히 교대 반복되는 2개의 영역이 동일한 면심 입방정(fcc) 구조를 가지면서 상이한 조성 영역인 것이 바람직할 수 있다.In general, AlTiN films have low impact resistance due to weak toughness, but AlTiN films having a lamellar structure can improve toughness. And, in order to obtain the effect of improving toughness, the average thickness of the lamellar region (average spacing between fine layers constituting the lamella) is preferably 150 nm or less, more preferably 100 nm or less, and most preferably 50 nm or less. The lamellar structure may be an alternating repetition of regions having different compositions and different crystal structures, such as a face-centered cubic (fcc) structure and a hexagonal structure (hcp) structure, or the same crystal structure, for example, a face-centered cubic (fcc) structure. While having, different composition regions may be alternately repeated. The lamellar structure is effective in extending the life of the cutting tool by increasing resistance to load when using it. In particular, it may be preferable that the two alternating regions have the same face-centered cubic (fcc) structure and have different compositional regions.

또한, 상기 AlTiN 층은 결합력과 내마모성을 고려할 때 알루미늄의 함량(x)는 0.6 이상 0.95 미만이 바람직하고, 0.7 이상 0.93 이하의 범위로 리치(rich)하게 포함되는 것이 보다 바람직하다.In addition, the AlTiN Considering bonding force and wear resistance, the aluminum content (x) is preferably 0.6 or more and less than 0.95, and more preferably 0.7 or more and 0.93 or less in a rich range.

또한, 상기 AlTiN층은 면심입방구조(fcc)를 가지는 조직의 부피분율이 90 vol% 이상일 수 있다. AlTiN 을 주상으로 하는 피막은 성막 조건에 따라 면심입방구조(fcc)와 조밀육방구조(hcp) 구조가 나타날 수 있는데, 내마모성, 내충격성 등에서 면심입방구조인 것이 더 유리하다. 또한, 면심입방구조가 90 vol% 이상이어야 면심입방 구조에 따른 특성이 충분히 발현될 수 있기 때문에, 상기 AlTiN층의 결정구조는 면심입방구조가 90 vol% 이상인 것이 바람직하다.In addition, the AlTiN layer may have a volume fraction of tissue having a face centered cubic structure (fcc) of 90 vol% or more. AlTiN The film with a main phase may have a face-centered cubic structure (fcc) and a dense hexagonal structure (hcp) depending on the film formation conditions, but a face-centered cubic structure is more advantageous in terms of abrasion resistance and impact resistance. In addition, since the characteristics of the face-centered cubic structure can be sufficiently expressed only when the face-centered cubic structure is 90 vol% or more, the crystal structure of the AlTiN layer preferably has a face-centered cubic structure of 90 vol% or more.

또한, 본 발명의 일 실시형태에 따른 피막은, 상기 제2층(400)은 X-선 회절분석 시에 (200)면의 피크 강도가 가장 크도록 배향되어 있는 AlTiN층(도 1의 A층)과, X-선 회절분석 시에 (111)면의 피크 강도가 가장 크도록 배향되어 있는 AlTiN층(도 1의 C층)이 상기 TiN층을 개재하여 배치되는 구조를 가질 수 있다. 이와 같이 방위가 다른 AlTiN층을 교대반복적으로 배치함으로써, AlTiN층에 특정 방향으로 응력이 집중되는 것을 방지하여 내박리성을 더 향상시킬 수 있게 된다.In addition, in the film according to an embodiment of the present invention, the second layer 400 is an AlTiN layer (layer A in FIG. ), and an AlTiN layer (C layer in FIG. 1) oriented so that the peak intensity of the (111) plane is the highest in X-ray diffraction analysis may have a structure in which the TiN layer is interposed. By alternately and repeatedly arranging AlTiN layers having different orientations in this way, it is possible to further improve peeling resistance by preventing stress from being concentrated in a specific direction in the AlTiN layer.

또한, 상기 제2층(200)의 두께는 2 ~ 6㎛인 것이 바람직한데, 이는 제2층의 두께가 2㎛ 미만일 경우 내마모성 및 내산화성이 충분하지 않을 수 있고, 6㎛ 초과일 경우 내부응력에 의해 내박리성이 저하될 수 있기 때문이다.In addition, the thickness of the second layer 200 is preferably 2 to 6 μm, which means that when the thickness of the second layer is less than 2 μm, wear resistance and oxidation resistance may not be sufficient, and when the thickness exceeds 6 μm, internal stress This is because peeling resistance may be lowered by

이하, 본 발명을 보다 구체적으로 설명하기 위해, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기에서 설명되는 실시예에 한정되지는 않는다.Hereinafter, in order to explain the present invention in more detail, a preferred embodiment according to the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein.

[실시예 1][Example 1]

먼저, 초경합금 모재는, 초경합금의 바인더로 작용하는 Co의 함량이 10중량%, 4족, 5족 또는 6족의 원소를 포함하는 탄화물 또는 탄질화물은 그 함량이 2중량%를 첨가하여 13시간 혼합 분쇄 이후 스프레이 드라이 공법을 이용하여 혼합분말을 얻는다. 얻어진 혼합분말을 가지고 SNMX1206ANN-MM 형번 제작을 위해 2ton/㎠의 압력으로 프레스를 수행하여 성형체를 제조하였다.First, the cemented carbide base material is mixed for 13 hours by adding 10% by weight of Co, which acts as a binder of cemented carbide, and 2% by weight of carbides or carbonitrides containing elements of Groups 4, 5, or 6. After pulverization, a mixed powder is obtained using a spray drying method. With the obtained mixed powder, a molded article was manufactured by performing a press at a pressure of 2 ton/cm 2 to manufacture the SNMX1206ANN-MM model.

이어서, 600℃에서 탈지(dewaxing) 공정을 수행하여, 성형체 제조과정에 투입된 유기 바인더 성분을 제거한 후, 불활성 가스 분위기에서 1 ~ 2시간 동안 소결을 진행하고, 600℃까지 불활성 가스 분위기에서 소정의 냉각속도 냉각시킨 후, 자연냉각시키는 방법으로 소결공정을 수행하여, 경질피막 형성용 모재를 제조하였다.Subsequently, a dewaxing process is performed at 600 ° C to remove the organic binder component introduced in the molded product manufacturing process, and then sintering is performed in an inert gas atmosphere for 1 to 2 hours, followed by predetermined cooling in an inert gas atmosphere up to 600 ° C. After the rate cooling, a sintering process was performed by a natural cooling method to prepare a base material for forming a hard film.

상기 제조된 모재 위에 열적 CVD 방법을 사용하여 피막을 형성하였다.A film was formed on the prepared base material using a thermal CVD method.

먼저, 핫-월(hot-wall) CVD 반응기를 사용하여, 850℃, 5mbar의 압력 하에서, 8ml/min의 TiCl4, 12ml/min의 N2, 100ml/min의 H2 가스를 도입하는 방법을 통해, 하지층으로 두께 1㎛ 이하의 TiN층을 형성하였다.First, a method of introducing 8ml/min of TiCl 4 , 12ml/min of N 2 , and 100ml/min of H 2 gas at 850° C. under a pressure of 5 mbar using a hot-wall CVD reactor Through this, a TiN layer having a thickness of 1 μm or less was formed as an underlayer.

다음으로, 800℃, 50mbar의 압력하에서, 4ml/min의 TiCl4, 0.5ml/min의 CH3CN, 15ml/min의 N2, 2000ml/min의 H2 혼합 가스를 도입하여 두께 약 9㎛의 MT-TiCN층(제1층)을 형성하였다.Next, at 800° C., under a pressure of 50 mbar, a mixed gas of 4 ml/min TiCl 4 , 0.5 ml/min CH 3 CN, 15 ml/min N 2 , and 2000 ml/min H 2 was introduced to obtain a thickness of about 9 μm. An MT-TiCN layer (first layer) was formed.

이후 800℃, 5mbar의 압력하에서, 5ml/min의 TiCl4, 18ml/min의 AlCl3, 1200ml/min의 H2 혼합 가스를 도입하여 65ml/min의 NH3 및 140ml/min의 N2, 0.5ml/min의 CH3CN 혼합물을 제2 가스 공급으로 반응기 내로 통과시켰다. 20분의 코팅 시간이 지난 후, 두께 2㎛의 검은 회색층의 AlTiN층이 형성되었다. 생성된 AlTiN층의 알루미늄의 함량(x)는 0.93이었다.Then, at 800° C., under a pressure of 5 mbar, 5 ml/min of TiCl 4 , 18 ml/min of AlCl 3 , and 1200 ml/min of H 2 mixed gas were introduced, and 65 ml/min of NH 3 and 140 ml/min of N 2 , 0.5 ml /min of the CH 3 CN mixture was passed into the reactor as the second gas feed. After a coating time of 20 minutes, a black gray AlTiN layer having a thickness of 2 μm was formed. The aluminum content (x) of the resulting AlTiN layer was 0.93.

다음으로 850℃, 5mbar의 압력 하에서, 8ml/min의 TiCl4, 12ml/min의 N2, 100ml/min의 H2 가스 공급으로 반응기 내로 통과시켰다. 10분의 코팅 시간이 자난 후, 두께 1㎛ 이하의 TiN층을 형성하였으며, 이후 800℃, 5mbar의 압력하에서, 4ml/min의 TiCl4, 20ml/min의 AlCl3, 1200ml/min의 H2 혼합 가스를 도입하여 80ml/min의 NH3 및 160ml/min의 N2, 0.5ml/min의 CH3CN 혼합물을 제2 가스 공급으로 반응기 내로 통과시켰다. 20분의 코팅 시간이 지난 후, 두께 2㎛의 검은 회색층의 AlTiN층이 형성되었다. 생성된 AlTiN층의 알루미늄의 함량(x)는 0.89이었다.Next, at 850° C. under a pressure of 5 mbar, TiCl 4 at 8 ml/min, N 2 at 12 ml/min, and H 2 at 100 ml/min were supplied through the reactor. After 10 minutes of coating time, a TiN layer with a thickness of 1 μm or less was formed, and then, at 800° C., under a pressure of 5 mbar, 4 ml/min of TiCl 4 , 20 ml/min of AlCl 3 , and 1200 ml/min of H 2 were mixed. A gas was introduced and a mixture of NH 3 at 80 ml/min and N 2 at 160 ml/min and CH 3 CN at 0.5 ml/min was passed through the reactor as a second gas supply. After a coating time of 20 minutes, a black gray AlTiN layer having a thickness of 2 μm was formed. The aluminum content (x) of the resulting AlTiN layer was 0.89.

마지막으로 850℃, 5mbar의 압력 하에서, 8ml/min의 TiCl4, 12ml/min의 N2, 100ml/min의 H2 가스 공급으로 반응기 내로 통과시켰다. 20분의 코팅 시간이 자난 후, 두께 2㎛ 이하의 TiN층을 형성하였다.Finally, at 850° C. under a pressure of 5 mbar, 8 ml/min of TiCl 4 , 12 ml/min of N 2 , and 100 ml/min of H 2 were passed through the reactor. After a coating time of 20 minutes, a TiN layer having a thickness of 2 μm or less was formed.

도 2와 도 3는 본 발명의 실시예 1에 따른 경질피막의 X선 회절분석 결과를 나타낸 것이다. 도 2에서 확인되는 바와 같이, 실시예 1에 따라 제조된 경질피막의 TiCN층의 최대 강도를 나타내는 피크는 (311)면이며, 두번째로 강한 (422) 피크가 형성되어 있다.2 and 3 show the results of X-ray diffraction analysis of the hard coating according to Example 1 of the present invention. As confirmed in FIG. 2, the peak representing the maximum intensity of the TiCN layer of the hard film prepared according to Example 1 is the (311) plane, and the second strongest (422) peak is formed.

또한, 도 3에서 확인되는 바와 같이, 실시예 1에 따라 제조된 경질피막의 AlTiN층의 최대 강도를 나타내는 피크는 (111)면과 (200)면이다.In addition, as confirmed in FIG. 3, the peaks showing the maximum intensity of the AlTiN layer of the hard film prepared according to Example 1 are the (111) plane and the (200) plane.

즉, 본 발명의 실시예 1에 따른 경질피막은 경질 기체(모재)의 표면에 (311)면과 (422)면으로 배향된 TiCN층을 형성한 후에 (111)면과 (200)면으로 배향된 AlTiN층을 형성함으로써, 결정구조의 유사성으로 양 층 간의 결합력이 향상되게 된다.That is, in the hard film according to Example 1 of the present invention, a TiCN layer oriented in the (311) and (422) planes is formed on the surface of the hard substrate (base material), and then the TiCN layer is oriented in the (111) and (200) planes. By forming the AlTiN layer, the bonding force between the two layers is improved due to the similarity of the crystal structure.

[비교예 1][Comparative Example 1]

실시예 1과 동일한 초경합금 모재에 동일한 공정으로 MT-TiCN층을 제조한 후, (111)면으로 배향된 단일 AlTiN층을 형성하였다.After fabricating the MT-TiCN layer on the same cemented carbide base material as in Example 1 by the same process, a single AlTiN layer oriented in a (111) plane was formed.

[비교예 2][Comparative Example 2]

실시예 1과 동일한 초경합금 모재에 동일한 공정으로 MT-TiCN층을 제조한 후, (200)면으로 배향된 단일 AlTiN층을 형성하였다.After the MT-TiCN layer was prepared on the same cemented carbide base material as in Example 1 by the same process, a single AlTiN layer oriented in a (200) plane was formed.

[비교예 3][Comparative Example 3]

실시예 1과 동일한 초경합금 모재에 동일한 공정으로 MT-TiCN층을 제조한 후, (111)면으로 배향된 단일 AlTiN층을 실시예 1과 유사한 두께로 형성하였다.After fabricating the MT-TiCN layer on the same cemented carbide base material as in Example 1 by the same process, a single AlTiN layer oriented in the (111) plane was formed to a thickness similar to that of Example 1.

[비교예 4][Comparative Example 4]

실시예 1과 동일한 초경합금 모재에 동일한 공정으로 MT-TiCN층을 제조한 후, (200)면으로 배향된 단일 AlTiN층을 실시예 1과 유사한 두께로 형성하였다.After manufacturing the MT-TiCN layer on the same cemented carbide base material as in Example 1 by the same process, a single AlTiN layer oriented in the (200) plane was formed to a thickness similar to that of Example 1.

아래 표 1은 실시예 1, 비교예 1 ~ 4의 피막을 CVD법으로 형성할 때, 각 층의 형성조건을 나타낸 것이다.Table 1 below shows conditions for forming each layer when the films of Example 1 and Comparative Examples 1 to 4 were formed by the CVD method.

실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 TiCN
(제1층)
TiCN
(1st floor)
시간hour minmin 5050 5050 5050 5050 5050
TiCNTiCN 온도temperature 800800 800800 800800 800800 800800 TiCNTiCN 압력enter mbarmbar 5050 5050 5050 5050 5050 TiCNTiCN TiCl4 TiCl 4 ml/minml/min 44 44 44 44 44 TiCNTiCN N2 N 2 ml/minml/min 1515 1515 1515 1515 1515 TiCNTiCN H2 H2 ml/minml/min bal.bal. bal.bal. bal.bal. bal.bal. bal.bal. TiCNTiCN CH3CNCH 3 CN ml/minml/min 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 AlTiN(제2층)AlTiN (second layer) 시간hour minmin 3030 3030 3030 4040 4040 AlTiNAlTiN 온도temperature 800800 800800 800800 800800 800800 AlTiNAlTiN 압력enter mbarmbar 55 55 55 55 55 AlTiNAlTiN TiCl4 TiCl 4 ml/minml/min 33 44 33 44 33 AlTiNAlTiN N2 N 2 ml/minml/min 140140 160160 140140 160160 140140 AlTiNAlTiN H2 H2 ml/minml/min BalBal balbal BalBal balbal BalBal AlTiNAlTiN CH3CNCH 3 CN ml/minml/min 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 AlTiNAlTiN AlCl3 AlCl 3 ml/minml/min 1818 2020 1818 2020 1818 AlTiNAlTiN NH3 NH 3 ml/minml/min 6565 8080 6565 8080 6565 TiNTiN 시간hour minmin 1010 TiNTiN 온도temperature 850850 TiNTiN 압력enter mbarmbar 55 TiNTiN TiCl4 TiCl 4 ml/minml/min 88 TiNTiN N2 N 2 ml/minml/min 1212 TiNTiN H2 H2 ml/minml/min 100100 AlTiNAlTiN 시간hour minmin 77 AlTiNAlTiN 온도temperature 800800 AlTiNAlTiN 압력enter mbarmbar 55 AlTiNAlTiN TiCl4 TiCl 4 ml/minml/min 44 AlTiNAlTiN N2 N 2 ml/minml/min 160160 AlTiNAlTiN H2 H2 ml/minml/min balbal AlTiNAlTiN CH3CNCH 3 CN ml/minml/min 0.50.5 AlTiNAlTiN AlCl3 AlCl 3 ml/minml/min 2020 AlTiNAlTiN NH3 NH 3 ml/minml/min 8080 TiNTiN 시간hour minmin 2020 TiNTiN 온도temperature 850850 TiNTiN 압력enter mbarmbar 55 TiNTiN TiCl4 TiCl 4 ml/minml/min 88 TiNTiN N2 N 2 ml/minml/min 1212 TiNTiN H2 H2 ml/minml/min 100100

아래 표 2는 실시예 1, 비교예 1 ~ 4의 피막 중, TiCN층의 C 함량과, 우선성장 결정면을 나타낸 것이다. 표 2에서 우선성장 결정면이 2개로 기재된 것은 X-선 회절분석시 나타나는 피크의 강도가 유사한 경우이다.Table 2 below shows the C content of the TiCN layer and preferentially grown crystal planes among the films of Example 1 and Comparative Examples 1 to 4. In Table 2, two preferentially grown crystal planes are described when the intensity of peaks appearing in X-ray diffraction analysis is similar.

제1층1st floor 실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 C 함량C content 0.7 이상0.7 or higher 0.7 이상0.7 or higher 0.7 이상0.7 or higher 0.7 이상0.7 or higher 0.7 이상0.7 or higher 우선성장결정면Preferential Growth Decision Plane (311),
(422)
(311),
(422)
(311),
(422)
(311),
(422)
(311),
(422)
(311),
(422)
(311),
(422)
(311),
(422)
(311),
(422)
(311),
(422)

아래 표 3은 실시예 1, 비교예 1 ~ 4의 피막 중, TiAlN층의 Al 함량(몰비)와, 우선성장 결정면 및 두께를 나타낸 것이다.Table 3 below shows the Al content (molar ratio) of the TiAlN layer among the films of Example 1 and Comparative Examples 1 to 4, preferentially grown crystal plane and thickness.

아래 표 3은 실시예 1, 비교예 1 ~ 4의 피막 중, TiAlN층의 Al 함량(몰비)와, 우선성장 결정면 및 두께를 나타낸 것이다.Table 3 below shows the Al content (molar ratio) of the TiAlN layer among the films of Example 1 and Comparative Examples 1 to 4, preferentially grown crystal plane and thickness. 제2층2nd floor 실시예1Example 1 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 Al 함량Al content 0.95, 0.920.95, 0.92 0.940.94 0.920.92 0.930.93 0.920.92 우선성장결정면Preferential Growth Decision Plane (111),
(200)
(111),
(200)
(111)(111) (200)(200) (111)(111) (200)(200)
두께(㎛)Thickness (㎛) 66 55 55 66 66

절삭성능 평가Cutting performance evaluation

본 발명의 실시예 1 및 비교예 1 ~ 4에 따라 제조한 피막을 구비한 절삭공구의 내마모성과 내치핑성을 다음과 같은 평가조건으로 평가하였다.The wear resistance and chipping resistance of cutting tools having coatings prepared according to Example 1 and Comparative Examples 1 to 4 of the present invention were evaluated under the following evaluation conditions.

(1) 내마모성 평가 : 인써트 여유면, 경사면 및 상면 마모(1) Evaluation of wear resistance: wear on the insert flank, rake and crater

피삭재: SCM440Work material: SCM440

샘플형번: SNMX1206ANN-MMSample model number: SNMX1206ANN-MM

절삭 속도: 250m/minCutting speed: 250m/min

절삭 이송: 0.15mm/toothCutting feed: 0.15mm/tooth

절삭 깊이: 1.5mmCutting Depth: 1.5mm

절삭유: 없음(건식)Coolant: none (dry)

(2) 내치핑성 평가 :인써트 인선 날부 파손(2) Evaluation of chipping resistance: Breakage of the cutting edge of the insert

피삭재: SCM440Work material: SCM440

샘플형번: SNMX1206ANN-MMSample model number: SNMX1206ANN-MM

절삭 속도: 180m/minCutting speed: 180m/min

절삭 이송: 0.15mm/toothCutting feed: 0.15mm/tooth

절삭 깊이: 2.0mmCutting Depth: 2.0mm

절삭유: 없음(건식)Coolant: none (dry)

이상과 같은 조건으로 내마모성과 내치핑성을 평가한 샘플과 그 결과를 아래 표 4에 나타내었다.Table 4 below shows the samples and results evaluated for wear resistance and chipping resistance under the above conditions.

실시예Example 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 내마모성 가공시간Wear resistance Machining time 35분35 minutes 25분25 minutes 20분20 minutes 30분30 minutes 27분27 minutes 내치핑성 가공시간Chipping resistance Machining time 40분40 minutes 42분42 minutes 47분47 minutes 30분30 minutes 35분35 minutes

위 표 4에서 확인되는 바와 같이, 본 발명의 실시예 1에 따른 피막은 AlTiN (111)면 (200)면 층간의 결정 배향 및 두께조절을 통해 결합력이 향상되어, 공구 수명이 비교예들에 비해 현저하게 개선되었다.As confirmed in Table 4 above, the film according to Example 1 of the present invention has improved bonding strength through crystal orientation and thickness control between the AlTiN (111) and (200) plane layers, and the tool life is longer than that of comparative examples. Significantly improved.

100: 모재
200: 하지층
300: 제1층
400: 제2층
100: parent material
200: lower layer
300: first layer
400: second layer

Claims (5)

CVD법으로 형성되는 피막으로,
상기 피막은 제1층과, 상기 제1층의 상부에 형성된 제2층을 포함하고,
상기 제1층은 TiCxNy(x+y=1, x>0, y>0)을 주상으로 포함하고, X-선 회절분석 시에 (311)면 및/또는 (422)면의 피크 강도가 가장 크도록 배향되어 있는 층을 포함하고,
상기 제2층은 Ti1-xAlxC1-yNy (0.6≤x<1.0, 0≤y≤1)으로 이루어진 A층과, TiN으로 이루어진 B층이 적어도 2회 이상 A/B/A/B 형태로 교대 반복적으로 적층된 구조를 가지는, 절삭공구용 피막.
As a film formed by the CVD method,
The film includes a first layer and a second layer formed on top of the first layer,
The first layer includes TiC x N y (x + y = 1, x>0, y>0) as a main phase, and has a peak of (311) plane and/or (422) plane in X-ray diffraction analysis Including a layer oriented so that the strength is greatest,
In the second layer, an A layer made of Ti 1-x Al x C 1-y N y (0.6≤x<1.0, 0≤y≤1) and a B layer made of TiN are formed by A/B/ Coating for cutting tools having a structure in which layers are alternately and repeatedly layered in A/B form.
제 1 항에 있어서,
상기 A층은, X-선 회절분석 시에 (111)면의 피크 강도가 가장 크도록 배향되어 있는 A-1층과, X-선 회절분석 시에 (200)면의 피크 강도가 가장 크도록 배향되어 있는 A-2층이 상기 TiN층을 개재하여 배치되는, 절삭공구용 피막.
According to claim 1,
The A-layer is oriented so that the peak intensity of the (111) plane is the highest during X-ray diffraction analysis, and the peak intensity of the (200) plane is the highest during X-ray diffraction analysis. A coating for a cutting tool in which an oriented A-2 layer is disposed with the TiN layer interposed therebetween.
제 1 항에 있어서,
상기 TiCxNy(x+y=1, x>0, y>0)는 평균입도가 0.9㎛ 이하인, 절삭공구용 피막.
According to claim 1,
The TiC x N y (x + y = 1, x>0, y>0) has an average particle size of 0.9 μm or less, a coating for a cutting tool.
제 1 항에 있어서,
상기 A층은 면심입방구조(fcc)를 가지는 조직의 부피분율이 90 vol% 이상인, 절삭공구용 피막.
According to claim 1,
The layer A has a volume fraction of tissue having a face centered cubic structure (fcc) of 90 vol% or more, a coating for a cutting tool.
제 1 항에 있어서,
상기 제1층의 하부에는 하지층이 더 포함되고, 상기 하지층은 TiN을 주상으로 포함하는, 절삭공구용 피막.
According to claim 1,
A base layer is further included under the first layer, and the base layer includes TiN as a main phase.
KR1020210112819A 2021-08-26 2021-08-26 Cvd film for cutting tool with excellent wear resistance KR102663474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210112819A KR102663474B1 (en) 2021-08-26 2021-08-26 Cvd film for cutting tool with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210112819A KR102663474B1 (en) 2021-08-26 2021-08-26 Cvd film for cutting tool with excellent wear resistance

Publications (2)

Publication Number Publication Date
KR20230030763A true KR20230030763A (en) 2023-03-07
KR102663474B1 KR102663474B1 (en) 2024-05-07

Family

ID=85512240

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210112819A KR102663474B1 (en) 2021-08-26 2021-08-26 Cvd film for cutting tool with excellent wear resistance

Country Status (1)

Country Link
KR (1) KR102663474B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160130752A (en) 2014-03-11 2016-11-14 발터 악티엔게젤샤프트 Tialcn layers with lamellar structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160130752A (en) 2014-03-11 2016-11-14 발터 악티엔게젤샤프트 Tialcn layers with lamellar structure

Also Published As

Publication number Publication date
KR102663474B1 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
EP2085500B1 (en) Surface-coated cutting tool with hard coating layer having excellent abrasion resistance
KR101297298B1 (en) Coated layer for cutting tools
EP1736565B1 (en) Method for depositing composite coatings for finishing of hardened steels
KR20170057434A (en) Surface-coated cutting tool having excellent chip resistance
JPH068010A (en) Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
KR101208838B1 (en) Cutting tool and manufacturing method for the same having multi coating layers with improved oxidation resistance and high hardness
US10744568B2 (en) Coated tool
KR101179255B1 (en) Surface coating layer for cutting tools
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP2002346811A (en) Coated sintered tool
KR102356224B1 (en) Hard coating layer for cutting tools with excellent peeling resistance
KR102663474B1 (en) Cvd film for cutting tool with excellent wear resistance
KR102497484B1 (en) Cvd film for cutting tool with excellent peel resistance
KR102509585B1 (en) Cvd film for cutting tool with enhanced wear resistance and chipping resistance
KR102629997B1 (en) Cutting insert having hard film with excellent wear resistance
KR102318298B1 (en) Hard film for cutting tools
KR102200647B1 (en) A hard layer for cutting tools and manufacturing method for the same
JP5023897B2 (en) Surface coated cutting tool
KR102112084B1 (en) Hard coating layer for cutting tools
KR102399559B1 (en) Hard coating layer for cutting tools with improved peeling resistance
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
KR102497483B1 (en) Hard film for cutting tools
KR102168162B1 (en) A hard layer for cutting tools and manufacturing method for the same
JP3109272B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent fracture and wear resistance
JP5309698B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant