KR20230016385A - Manufacturing method of quartz heater for semiconductor manufacturing equipment - Google Patents

Manufacturing method of quartz heater for semiconductor manufacturing equipment Download PDF

Info

Publication number
KR20230016385A
KR20230016385A KR1020210097820A KR20210097820A KR20230016385A KR 20230016385 A KR20230016385 A KR 20230016385A KR 1020210097820 A KR1020210097820 A KR 1020210097820A KR 20210097820 A KR20210097820 A KR 20210097820A KR 20230016385 A KR20230016385 A KR 20230016385A
Authority
KR
South Korea
Prior art keywords
heater
quartz
plate
present
semiconductor manufacturing
Prior art date
Application number
KR1020210097820A
Other languages
Korean (ko)
Inventor
김대영
Original Assignee
주식회사 피케이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피케이씨 filed Critical 주식회사 피케이씨
Priority to KR1020210097820A priority Critical patent/KR20230016385A/en
Publication of KR20230016385A publication Critical patent/KR20230016385A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)

Abstract

The present invention relates to a method for manufacturing a quartz heater for semiconductor manufacturing equipment. A quartz heater for semiconductor manufacturing equipment comprises a heater plate, a tungsten electrode, and a vertical quartz tube. According to the present invention, the method for manufacturing a quartz heater for semiconductor manufacturing equipment can improve durability and manufacturing efficiency of a semiconductor, such as a wafer and the like by improving corrosion resistance and temperature uniformity by performing CVD SiC coating on the quartz heater or a composite quartz heater. Moreover, according to the present invention, a heater plate and a heater shaft center are integrally manufactured. Therefore, production is facilitated, and the durability is improved. So, economic feasibility can be improved. According to the present invention, one among nickel, tungsten, molybdenum, and SUS is used as a heating wire material of the quartz heater. So, a heating wire is applied as an electric conductor, and heat resistance, heat-resisting impact resistance, and corrosion resistance are improved. Also, conductivity for electricity and heat becomes excellent. Therefore, the manufacturing efficiency of the semiconductor can be improved.

Description

반도체 제조장치용 석영히터의 제조방법{MANUFACTURING METHOD OF QUARTZ HEATER FOR SEMICONDUCTOR MANUFACTURING EQUIPMENT}Manufacturing method of quartz heater for semiconductor manufacturing equipment

본 발명은 반도체 제조장치용 석영히터의 제조방법에 관한 것이다. 본 발명은 더욱 상세하게는 석영히터의 표면을 CVD SiC 코팅하고, 히터플레이트와 샤프트를 일체형으로 제조하며, 히터에 구성된 열선재질을 변경한것이다.The present invention relates to a method for manufacturing a quartz heater for a semiconductor manufacturing apparatus. More specifically, the present invention is to coat the surface of a quartz heater with CVD SiC, manufacture a heater plate and a shaft integrally, and change the material of the heating wire configured in the heater.

일반적으로 반도체 제조공정 중 웨이퍼 표면에 여러 물질을 성장시키는 공정에 있어서 화학적 방법과 물리적인 방법으로 일정한 챔버 내에서 열을 가하여 열에너지를 이용한다. 이때 웨이퍼의 하부에는 웨이퍼를 일정 온도로 가열하기 위한 가열장치가 설치되는데, 고순도의 석영을 한 쌍의 원판형태로 가공하고, 그 내부에 발열체를 내장한 석영히터가 많이 사용되고 있다.In general, in a process of growing various materials on a wafer surface during a semiconductor manufacturing process, heat is applied in a certain chamber by chemical and physical methods to use thermal energy. At this time, a heating device for heating the wafer to a certain temperature is installed below the wafer. A quartz heater in which high-purity quartz is processed into a pair of disc shapes and a heating element is embedded therein is widely used.

이러한 석영히터는 내열성이 우수하여 열효율이 좋으며 급열과 급냉이 용이하여 반도체 제조공정 및 전기 및 전자제품 제조 등을 포함하는 산업 전반에 광범위하게 사용된다.These quartz heaters have excellent heat resistance, good thermal efficiency, and rapid heating and cooling are easy, so they are widely used throughout industries including semiconductor manufacturing processes and electrical and electronic product manufacturing.

이와 같은 반도체 제조용 석영히터는 일례로 석영원판으로 이루어진 베이스 플레이트 및 이와 대응되는 커버 플레이트의 마주보는 면에 홈을 형성하고, 이 홈에 발열체를 설치한 상태로 베이스 플레이트와 커버 플레이트 사이는 진공상태로 그 외주연부를 용융접합 등으로 연결한 구조로 이루어질 수 있다.In such a quartz heater for semiconductor manufacturing, for example, a groove is formed on the facing surface of a base plate made of a quartz disc and a cover plate corresponding thereto, and a heating element is installed in the groove, and a vacuum is formed between the base plate and the cover plate. It may be made of a structure in which the outer periphery is connected by fusion bonding or the like.

이러한 석영히터는 발열체의 양쪽 단부는 베이스 플레이트 또는 커버 플레이트 외측으로 위치하여 전원을 인가할 수 있는 단자로 이루어진 전원 인가부로 형성되고, 전원 인가부에 전원을 인가하면 발열체에서 열에너지가 발생되고, 이 열에너지는 커버 플레이트를 통하여 전달된 후 커버 플레이트의 복사열에 의하여 웨이퍼를 소정의 온도로 가열하게 된다.In this quartz heater, both ends of the heating element are formed as a power supply unit composed of terminals positioned outside the base plate or cover plate to apply power, and when power is applied to the power supply unit, heat energy is generated from the heating element, and the heat energy After being transferred through the cover plate, the wafer is heated to a predetermined temperature by the radiant heat of the cover plate.

그러나 이와 같은 종래의 반도체 제조용 석영히터는 발열체 및 이 발열체가 설치되는 홈이 스파이럴(Spiral) 형상으로 이루어지므로 가열면의 온도분포가 고르지 못한 단점이 있다.However, such a conventional quartz heater for manufacturing semiconductors has a disadvantage in that the temperature distribution on the heating surface is uneven because the heating element and the groove in which the heating element is installed are formed in a spiral shape.

또한 종래에는 발열체의 단면이 원형 또는 사각형상과 같은 향상으로 이루어져 발열면적이 어느 면이나 동일하므로 열효율이 좋지 않은 문제점이 있다.In addition, in the prior art, since the cross section of the heating element is formed in a circular or rectangular shape, and the heating area is the same on any surface, there is a problem in that thermal efficiency is not good.

그리고 종래의 반도체 제조용 석영히터는 베이스 플레이트 및 이와 대응되는 커버 플레이트의 마주보는 면에 모두 홈이 형성된 구조이므로 베이스 플레이트 및 커버 플레이트의 제작이 어렵고 제작에 많은 시간이 소요된다.In addition, since a conventional quartz heater for manufacturing semiconductors has a structure in which grooves are formed on both surfaces of a base plate and a corresponding cover plate facing each other, it is difficult to manufacture the base plate and the cover plate and it takes a lot of time to manufacture them.

또한, 반도체 공정설비용 석영히터의 종래 기술을 개략적으로 더 살펴보면, 열선을 내부에 위치시킨 상태로 상판과 하판을 접합 실링하여 히터판을 구성하게 되는데, 세라믹 본드를 이용하여 본딩(bonding)을 하거나 또는 상판과 하판 자체를 융착시키는 방식으로 상판과 하판을 서로 결합 및 실링(sealing) 처리하여 열선이 내장된 히터판을 구성하고 있다.Further, schematically looking at the prior art of a quartz heater for semiconductor processing equipment, a heater plate is formed by bonding and sealing an upper plate and a lower plate with a heating wire placed inside, and bonding is performed using a ceramic bond or Alternatively, the upper and lower plates are bonded to each other and sealed in a manner in which the upper and lower plates are fused together to form a heater plate with a built-in heating wire.

그런데, 세라믹 본딩방식에 의해 만들어지는 히터판의 경우는 제품이 불투명으로 되어 사용할 수가 없게 되는 문제점은 물론 히터판과 세라믹 본드와의 열팽창계수 차이로 인해 크랙이 발생되므로 고온과 산 처리에 약한 문제점 및 접합면이 매끄럽지 못하고 기타 가공조건을 잡아내기가 상당히 까다로운 문제점이 있었다.However, in the case of the heater plate made by the ceramic bonding method, the product becomes opaque and cannot be used, as well as cracks due to the difference in thermal expansion coefficient between the heater plate and the ceramic bond, so it is weak in high temperature and acid treatment, and There was a problem that the joint surface was not smooth and it was quite difficult to capture other processing conditions.

또한, 상판과 하판을 융착시켜 접합 실링하는 방식에 의한 히터판의 경우는 융착에 의해 상하판이 일체가 되어 열선에서의 고장발생시 수리가 불가능한 문제점이 있었고, 고가의 융착장비 사용 및 고도의 기술을 요하므로 제작비용이 많이 소요됨은 물론 제조원가의 상승요인이 되고 있으며, 융착에 의한 히터판 제조과정에서부터 상판과 하판 자체의 두께가 줄어들므로 사용수명을 떨어뜨리는 문제점이 있었다.In addition, in the case of a heater plate in which the upper and lower plates are fused together and sealed, the upper and lower plates are united by fusion, so that it is impossible to repair when a failure occurs in the heating wire, and it requires the use of expensive fusion equipment and advanced technology. Therefore, it takes a lot of manufacturing cost as well as being a factor of increasing manufacturing cost, and since the thickness of the upper and lower plates themselves is reduced from the manufacturing process of the heater plate by fusion, there is a problem of reducing the service life.

더구나, 히터판의 내부에 내장되는 카본코일 등의 열선에 있어서는 열효율면에서 그리 좋지 못하고 코일이 풀리는 문제점 및 이로 인해 발열량에 문제가 발생되는 단점이 있었다.In addition, in the heating wire such as a carbon coil embedded inside the heater plate, the thermal efficiency is not so good, and the coil is unwound, which causes a problem in the amount of heat generated.

본 발명은 종래 반도체 제조장치의 석영히터에 관련된 문제점을 해결하기 위하여 창안된 것으로서, 본 발명의 목적은 석영히터 또는 합성 석영히터의 표면을 CVD SiC 코팅하여 내부식성 및 온도균일성을 개선할 수 있도록 한 반도체 제조장치용 석영히터의 제조방법을 제공하는데 있다.The present invention was invented to solve problems related to quartz heaters of conventional semiconductor manufacturing equipment, and an object of the present invention is to improve corrosion resistance and temperature uniformity by coating the surface of a quartz heater or synthetic quartz heater with CVD SiC It is to provide a manufacturing method of a quartz heater for a semiconductor manufacturing apparatus.

본 발명의 다른 목적은 석영히터의 히터 플레이트와 샤프트를 일체형으로 제조하여 불순물 유입을 차단하고 내구성을 증진시킬 수 있도록 한 반도체 제조장치용 석영히터의 제조방법을 제공하는데 있다.Another object of the present invention is to provide a method for manufacturing a quartz heater for a semiconductor manufacturing apparatus in which a heater plate and a shaft of the quartz heater are integrally manufactured to block inflow of impurities and improve durability.

본 발명의 또 다른 목적은 석영히터의 열선 재질을 니켈, 텅스텐, 몰리브덴 및 서스 중 어느 하나의 재질로 제조하여 열효율을 향상시킬 수 있도록 한 반도체 제조장치용 석영히터의 제조방법을 제공하는데 있다.Another object of the present invention is to provide a method for manufacturing a quartz heater for a semiconductor manufacturing apparatus in which a heat wire material of the quartz heater is made of any one of nickel, tungsten, molybdenum, and Sus to improve thermal efficiency.

본 발명의 상기 목적과 여러 가지 장점은 이 기술분야에 숙련된 사람들에 의해 본 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다.The above objects and various advantages of the present invention will become more apparent from preferred embodiments of the present invention by those skilled in the art.

상기 목적을 달성하기 위한 본 발명의 반도체 제조장치용 석영히터의 제조방법은, 상판과 하판 사이의 결합부에 열선을 내재시켜 실링 처리하는 반도체 제조장치의 석영히터 제조방법에 있어서, 석영히터 구조물 표면에 CVD SiC 코팅으로 코팅액을 표면에 침투시켜 박막을 형성한 것을 특징으로 한다.In order to achieve the above object, a method for manufacturing a quartz heater for a semiconductor manufacturing apparatus of the present invention is a method for manufacturing a quartz heater for a semiconductor manufacturing apparatus in which a heating wire is embedded in a joint between an upper plate and a lower plate to seal the surface of the quartz heater structure. It is characterized in that a thin film is formed by infiltrating the coating liquid into the surface with CVD SiC coating.

본 발명의 석영히터를 구성하는 열선은 니켈, 텅스텐, 몰리브덴 및 서스 재질 중 어느 하나에 의해 제조된 것을 특징으로 한다.The heating wire constituting the quartz heater of the present invention is characterized in that it is made of any one of nickel, tungsten, molybdenum, and Sus material.

본 발명의 반도체 제조장치용 석영히터의 히터판과 샤프트는, 상판과 하판 사이에 열선이 내장된 히터판과, 상기 열선측에 전원을 공급하기 위한 텅스텐전극과, 이들이 내재되도록 연결튜브에 석영용접으로 상호 결합된 버티컬 석영튜브가 구성된 샤프트로 이루어진 석영히터에 있어서, 히터판과 샤프트가 기밀하게 접합된 일체형 구조인 것을 특징으로 한다.The heater plate and shaft of the quartz heater for a semiconductor manufacturing apparatus of the present invention include a heater plate having a heating wire embedded between the upper and lower plates, a tungsten electrode for supplying power to the heating wire, and quartz welding to the connecting tube so that they are embedded In the quartz heater composed of a shaft composed of vertical quartz tubes coupled to each other, it is characterized in that the heater plate and the shaft are hermetically joined to form an integral structure.

본 발명의 반도체 제조장치용 석영히터의 제조방법에 따르면, 석영히터 또는 합성 석영히터를 CVD SiC 코팅하여 표면막질 개선을 통해 내부식성 및 온도균일성을 개선함으로써 내구성을 증진시키고 웨이퍼 등의 반도체 제조효율을 향상시킬 수 있다.According to the manufacturing method of a quartz heater for a semiconductor manufacturing apparatus of the present invention, a quartz heater or a synthetic quartz heater is coated with CVD SiC to improve corrosion resistance and temperature uniformity through surface film quality improvement, thereby improving durability and improving semiconductor manufacturing efficiency such as wafers. can improve

또한 본 발명의 반도체 제조장치용 석영히터의 제조방법에 따르면, 히터 플레이트와 히터 샤프트 센터를 일체형으로 제조하여 히터 내부로의 폐쇄성을 증진시키고 내구성을 증진시켜 경제성 향상은 물론, 불순물 등의 유입을 방지함으로써 반도체 제조효율을 향상시킬 수 있다.In addition, according to the manufacturing method of the quartz heater for a semiconductor manufacturing apparatus of the present invention, the heater plate and the heater shaft center are integrally manufactured to improve the closeness to the inside of the heater and improve durability, thereby improving economic feasibility and preventing the inflow of impurities. By doing so, semiconductor manufacturing efficiency can be improved.

또한 본 발명의 반도체 제조장치용 석영히터의 제조방법에 따르면, 석영히터의 열선 재질을 니켈, 텅스텐, 몰리브덴 및 서스 중 어느 하나를 사용함으로써 열선이 전기 전도체로 작용하면서 내열성, 내열충격성, 내식성이 강하고 전기 및 열 전도성이 양호하게 됨으로써 반도체 제조효율을 향상시킬 수 있다.In addition, according to the manufacturing method of the quartz heater for semiconductor manufacturing apparatus of the present invention, by using any one of nickel, tungsten, molybdenum, and Sus as a material for the heating wire of the quartz heater, the heating wire acts as an electrical conductor and has strong heat resistance, thermal shock resistance, and corrosion resistance. By improving electrical and thermal conductivity, semiconductor manufacturing efficiency can be improved.

도 1은 본 발명의 바람직한 실시예에 따른 제조방법에 의해 생산된 반도체 제조장치용 석영히터의 개략 단면도.
도 2 및 도 3은 본 발명의 실시예에 따라 히터판과 샤프트의 결합상태 및 저면에 대한 사진.
도 4는 본 발명의 실시예에 따른 히터판과 샤프트의 분해사시도.
도 5는 도 4의 결합도.
도 6은 도 5의 저면도.
도 7은 본 발명의 다른 실시예에 따른 히터판과 샤프트의 분해 사시도.
1 is a schematic cross-sectional view of a quartz heater for a semiconductor manufacturing apparatus produced by a manufacturing method according to a preferred embodiment of the present invention.
2 and 3 are photographs of a coupled state and a bottom surface of a heater plate and a shaft according to an embodiment of the present invention.
4 is an exploded perspective view of a heater plate and a shaft according to an embodiment of the present invention;
Figure 5 is a combined view of Figure 4;
Figure 6 is a bottom view of Figure 5;
7 is an exploded perspective view of a heater plate and a shaft according to another embodiment of the present invention;

이하, 본 발명의 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 바람직한 실시예에 따른 제조방법에 의해 생산된 반도체 제조장치용 석영히터의 개략 단면도, 도 2 및 도 3은 본 발명의 실시예에 따라 히터판과 샤프트의 결합상태 및 저면에 대한 사진, 도 4는 본 발명의 실시예에 따른 히터판과 샤프트의 분해사시도, 도 5는 도 4의 결합도, 도 6은 도 5의 저면도, 도 7은 본 발명의 다른 실시예에 따른 히터판과 샤프트의 분해 사시도이다.1 is a schematic cross-sectional view of a quartz heater for a semiconductor manufacturing apparatus produced by a manufacturing method according to a preferred embodiment of the present invention, and FIGS. 2 and 3 are a coupled state and bottom surface of a heater plate and a shaft according to an embodiment of the present invention. Figure 4 is an exploded perspective view of a heater plate and a shaft according to an embodiment of the present invention, Figure 5 is a combined view of Figure 4, Figure 6 is a bottom view of Figure 5, Figure 7 is a view according to another embodiment of the present invention It is an exploded perspective view of the heater plate and shaft.

이하 본 발명의 상세한 설명은 당업자가 이해할 수 있는 내용들이며, 다소 부족할 수 있는 정의들은 종래 기술을 따르도록 한다.The following detailed description of the present invention is content that can be understood by those skilled in the art, and definitions that may be somewhat lacking follow the prior art.

본 발명에 따른 반도체 제조장치용 석영히터는, 도 1에 도시된 바와 같이 몸체가 되는 상판(11)과 하판(12)이 구비되어 히터판(10)으로서의 기능을 수행하며, 이들 상판(11)과 하판(12) 사이에는 웨이퍼 가열에 필요한 온도의 열을 발생하는 열선(13)이 배치된다.As shown in FIG. 1, the quartz heater for a semiconductor manufacturing apparatus according to the present invention is provided with an upper plate 11 and a lower plate 12 serving as a body to function as a heater plate 10, and these upper plates 11 A heating wire 13 is disposed between the lower plate 12 and the heat wire 13 generating heat of a temperature necessary for heating the wafer.

이와 같이 상판(11)과 하판(12)이 그 사이에 열선(13)을 개재한 상태에서 결합되면 하판(12)의 타면 일측에 샤프트(20)를 결합한다.In this way, when the upper plate 11 and the lower plate 12 are coupled with the hot wire 13 interposed therebetween, the shaft 20 is coupled to one side of the other surface of the lower plate 12 .

하판(12)에 배치되는 열선(13)은 연결튜브(21)를 통하여 외부에 노출되도록 배치되는데 이는 버티컬 석영튜브(22)내에 배치되는 텅스텐전극(24)과의 연결 접속이 용이하게 하기 위함이다.The heating wire 13 disposed on the lower plate 12 is disposed to be exposed to the outside through the connecting tube 21, which is to facilitate connection with the tungsten electrode 24 disposed in the vertical quartz tube 22. .

상기 열선(13)을 하판(12)에 삽입 배치한 후에는, 열선(13)이 상판(11)과 하판(12)의 사이에 위치하여 내장되도록 상판(11)과 하판(12)을 용접으로 서로 결합함으로써 외부로부터 실링 처리하는 식으로 히터판(10)을 구성한다.After the hot wire 13 is inserted into the lower plate 12, the upper plate 11 and the lower plate 12 are welded so that the hot wire 13 is located between the upper plate 11 and the lower plate 12 and embedded therein. The heater plate 10 is formed in such a way that sealing is performed from the outside by being coupled to each other.

상기 상판(11), 하판(12) 및 열선(13)으로 이루어진 히터판(10)은 열처리한 후, 상판(11)과 하판(12)의 용접부위를 그라인딩 처리한다.The heater plate 10 composed of the upper plate 11, the lower plate 12, and the heating wire 13 is subjected to heat treatment, and then a welded portion of the upper plate 11 and the lower plate 12 is subjected to grinding.

열선(13)에 전원 공급을 위한 텅스텐전극(24)을 연결 접속한 상태에 이들이 내재되도록 석영튜브(22)를 연결튜브(21)에 상호 결합한다.The quartz tube 22 is mutually coupled to the connection tube 21 so that the hot wire 13 is embedded with the tungsten electrode 24 for supplying power.

이때 열선(13)이 내장된 히터판(10)의 내부를 진공으로 만든 다음, 연결튜브(21)와의 연결부위에 위치된 석영튜브(22)를 용융시켜 내부 실링 처리함으로써 히터판(10) 내부를 진공상태로 밀봉하는 것이 바람직하다.At this time, the inside of the heater plate 10 in which the heating wire 13 is embedded is vacuumed, and then the quartz tube 22 located at the connection portion with the connection tube 21 is melted to seal the inside of the heater plate 10. It is preferable to seal in a vacuum state.

상기 연결튜브(21), 석영튜브(22), 텅스텐전극(24)은 모두 샤프트(20)에 내장되는 구성이다.The connecting tube 21, the quartz tube 22, and the tungsten electrode 24 are all built into the shaft 20.

이와 같이 히터판(10)의 내부를 진공상태로 형성함에 따라 열선(13)에서 일정한 발열량으로 고온을 유지할 수 있고 불순 가스의 발생을 없앨 수 있을 뿐만 아니라, 열팽창에 의한 제품의 파손을 방지 및 열선의 산화까지 방지하여 주므로 히터판(10)의 사용 수명을 향상시킬 수 있게 된다.In this way, as the inside of the heater plate 10 is formed in a vacuum state, a high temperature can be maintained with a constant calorific value in the heating wire 13, generation of impure gas can be eliminated, and damage to the product due to thermal expansion can be prevented and the heating wire Since oxidation is prevented, the service life of the heater plate 10 can be improved.

그러나 이러한 구조의 석영히터는 반도체 제조공정시 챔버내에 위치하여 웨이퍼를 소정온도로 가열하는 주 기능이므로 반도체 제조공정 중 발생되는 각종 가스 및 불순물로부터 자유롭지 못하다는 한계가 있다.However, since the quartz heater having this structure is located in a chamber during the semiconductor manufacturing process and has a main function of heating the wafer to a predetermined temperature, there is a limit in that it is not free from various gases and impurities generated during the semiconductor manufacturing process.

따라서 본 발명은 석영히터(10)의 표면에 CVD SiC 코팅을 적용하여 코팅액을 표면에 침투시키는 방법으로 박막을 형성하여 표면막질을 개선함으로써 반도체 제조공정 중 발생되는 각종 유해가스 및 불순물들의 히터 내부로의 유입을 차단하고 표면을 보호함에 따라 유해가스 및 불순물로 인한 각종 내부식성을 개선하고 우수한 기능을 담보할 수 있는 웨이퍼 가열의 최우선 조건이라 할 수 있는 온도 균일성을 개선한다.Therefore, the present invention applies a CVD SiC coating to the surface of the quartz heater 10 and forms a thin film by infiltrating the coating liquid into the surface to improve the surface film quality, thereby removing various harmful gases and impurities generated during the semiconductor manufacturing process into the heater. By blocking the inflow and protecting the surface, it improves various corrosion resistance due to harmful gases and impurities and improves temperature uniformity, which is the top priority condition for wafer heating that can ensure excellent functions.

SiC 코팅으로는 CVI(Chemical Vapor Infiltration) 코팅, CVR(Chemical Vapor Reaction) 코팅, CVD(Chemical Vapor Deposition) 코팅 등이 있다.SiC coatings include Chemical Vapor Infiltration (CVI) coating, Chemical Vapor Reaction (CVR) coating, and Chemical Vapor Deposition (CVD) coating.

CVI는 그라파이트 소재를 원하는 형상으로 선가공한 후 소스를 침투시켜 표면에 SiC를 형성하는 기술로 가공공차의 변형이 있을 수 있고, CVR은 그라파이트 소재를 원하는 형상으로 선가공한 후 소소를 흘려주어 그라파이트 전체를 SiC로 재성형하는 기술로 가공치수가 변하지는 않지만 표면강도 및 진행단가가 높아 비효율적이며, CVD는 널리 알려진 반도체 CVD 공정과 동일한 방법으로 박막을 증착시키는 기술로 막질의 견고성 및 내산화성 등 매우 우수한 막질을 얻을 수 있는 기술이나 두께의 한계성이라는 단점을 내포하고 있다.CVI is a technology that forms SiC on the surface by pre-processing the graphite material into a desired shape and infiltrating the source, and there may be variations in processing tolerance. It is a technology that re-forms the whole thing with SiC. Although the processing dimensions do not change, it is inefficient because the surface strength and processing unit cost are high. However, it has the disadvantage of limiting the thickness and the technology for obtaining excellent film quality.

이와 같이 SiC 코팅은 전체적으로 고순도 분말이 필요하고 소결소재, 바인더 등의 첨가물로 고순도를 얻기 어려우며, 제조단가가 높고 복잡한 형상 제조물에는 부적합하다는 여러 가지 단점이 있어 여러 가지 조건을 만족하기 위한 시도가 끊임없이 이어져왔다고 해도 과언이 아니다.As such, SiC coating requires high purity powder as a whole, is difficult to obtain high purity with additives such as sintering materials and binders, and has various disadvantages such as high manufacturing cost and unsuitable for complex shape products. It is no exaggeration to say that it has come.

상기 코팅 중에서 특히 CVD SiC 코팅기술이 상대적으로 나은 코팅특성을 얻을 수 있는바, 이 코팅기법 역시 치밀하고 순도가 높은 코팅막을 제공하므로 상기와 같은 효과를 보장할 수 있는 것이다.Among the above coatings, the CVD SiC coating technology in particular can obtain relatively better coating properties, and this coating technology also provides a dense and high-purity coating film, so that the above effects can be guaranteed.

따라서 본 발명에서는 석영히터(10)를 이루는 전체 표면에 CVD SiC 코팅을 적용하여 코팅액을 표면에 침투시키는 방법으로 박막을 형성하는 것이다.Therefore, in the present invention, a thin film is formed by applying a CVD SiC coating to the entire surface constituting the quartz heater 10 and infiltrating the coating liquid into the surface.

또한 본 발명에서 상기 열선(13)은 니켈, 텅스텐, 몰리브덴 및 서스 재질 중 어느 하나의 재질로 제조된 것을 사용한다. 재질은 그라파이트(graphite) 재질 또는 그라파이트 얀(graphite yarn)을 사용할 수도 있다.Also, in the present invention, the heating wire 13 is made of any one of nickel, tungsten, molybdenum, and Sus material. As the material, a graphite material or graphite yarn may be used.

니켈은 특히 산화와 부식에 강하므로 반도체 제조공정 중 발생되는 여러 가지 유해 가스들로부터의 악영향을 최소화함과 동시에 내구성을 증진시킬 수 있고,텅스텐은 녹는점이 3,400℃로 금속 중에서 가장 높으므로 반도체 제조공정시 챔버 내 웨이퍼 가열에 필요한 온도를 충족시키면서 열선 또는 히터판 자체에 악영향을 방지할 수 있으며, 몰리브덴은 고온에서 강철 및 다른 합금의 강도를 높이는 쓰이는 물질로서 열선 재질로 사용할 경우 강도를 증진시키므로 열선의 내구성을 향상시킬 수 있다.Nickel is particularly resistant to oxidation and corrosion, so it can minimize adverse effects from various harmful gases generated during the semiconductor manufacturing process and improve durability at the same time. Molybdenum is a material used to increase the strength of steel and other alloys at high temperatures. durability can be improved.

또한 서스는 내식성 및 내열성이 강하므로 반도체 제조공정을 위해 고온의 열을 발생하는 석영히터의 부식을 방지하고 열을 견뎌 내구성을 증진시킬 수 있고, 그라파이트 및 그라파이트얀은 화학 공정에서의 내식성 기구의 재료로 사용되는 특성을 이용하여 반도체 제조공정시 챔버 내 웨이퍼에 일정온도의 열을 장기간 공급하더라도 내구성을 증진시킬 수 있다.In addition, since the sauce has strong corrosion resistance and heat resistance, it can prevent corrosion of the quartz heater that generates high-temperature heat for the semiconductor manufacturing process and improve durability by enduring the heat, and graphite and graphite yarn are materials for corrosion-resistant tools in chemical processes. Durability can be improved even if heat of a certain temperature is supplied to the wafer in the chamber for a long period of time during the semiconductor manufacturing process by using the characteristics used as

따라서 상기 재질들을 사용함으로써 석영히터의 열선은 전기 전도체로 작용하면서 내열성, 내열충격성, 내식성이 강하고 전기 및 열 전도성이 양호하게 된다.Therefore, by using the above materials, the heat wire of the quartz heater acts as an electrical conductor, and has high heat resistance, thermal shock resistance, corrosion resistance, and good electrical and thermal conductivity.

또한 본 발명에서는 도 2 내지 도 6에 도시된 바와 같이 히터판(10)과 샤프트(20)를 일체형으로 제조한다.Also, in the present invention, as shown in FIGS. 2 to 6 , the heater plate 10 and the shaft 20 are integrally manufactured.

이들 히터판(10)과 샤프트(20)는 최초 분리된 상태로 각각 제조되며, 강력한 접착수단을 통해 기밀을 유지할 수 있도록 히터판(10)의 하부 센터에 접착시키게 된다.The heater plate 10 and the shaft 20 are initially manufactured in a separate state, and are bonded to the lower center of the heater plate 10 to maintain airtightness through a strong bonding means.

이를 위해 상기 샤프트(20)는 히터판(10)의 하측 센터에 대응 접착되는 부분을 샤프트(20)의 직경보다 다소 크게 접착부(40)를 형성하여 이 접착부(40)에 접착수단을 도포하여 히터판(10)에 접착시키게 된다. 접착부(40)에 대응하는 히터판(10) 부분에 접착제를 도포하여도 무방하다.To this end, the shaft 20 forms an adhesive portion 40 slightly larger than the diameter of the shaft 20 at the portion to be attached to the lower center of the heater plate 10, and an adhesive means is applied to the adhesive portion 40 to form a heater. It is adhered to the plate 10. An adhesive may be applied to a portion of the heater plate 10 corresponding to the adhesive portion 40 .

히터판(10)과 샤프트(20)를 미세한 간극도 없이 기밀하게 접착시키는 것은 반도체 제조공정시 본 발명의 석영히터가 챔버내에 위치되어 웨이퍼를 소정온도로 가열하는 것이 그 역할인 점을 감안할 때 반도체 제조공정 중 발생되는 가스, 불순물 등이 히터판 내부로 유입되는 것을 방지하기 위함이다.Considering that the quartz heater of the present invention is placed in a chamber to heat the wafer to a predetermined temperature during the semiconductor manufacturing process, it is the role of the heater plate 10 and the shaft 20 to be airtightly bonded without a minute gap. This is to prevent gases, impurities, etc. generated during the manufacturing process from flowing into the heater plate.

종래 석영히터의 히터판과 샤프트의 경우 각각 별개로 제조되는 것은 본 발명과 동일하나 종래에는 이들 히터판과 샤프트를 볼트 등의 체결수단을 통해 체결시킴으로써 미세한 간극이 남아 있는 상태로 챔버 내에서 웨이퍼 가열기능을 수행하도록 하였는바, 반도체 제조공정 중 발생되는 가스 및 불순물들이 이들 간극을 통해 석영히터 내부로 유입되어 가열온도에 악영향을 끼치고 석영히터의 내구성을 악화시킴은 물론, 반도체 제조효율을 저하시키는 요인으로 작용되어 왔다.In the case of the heater plate and shaft of a conventional quartz heater, each separately manufactured is the same as in the present invention, but in the prior art, the heater plate and the shaft are fastened through fastening means such as bolts to heat the wafer in the chamber with a fine gap remaining. Gases and impurities generated during the semiconductor manufacturing process flow into the quartz heater through these gaps, adversely affecting the heating temperature, deteriorating the durability of the quartz heater, and reducing semiconductor manufacturing efficiency has worked as

이는 반도체가 정밀 산업분야에 쓰이는 부품이라는 점을 감안할 때 매우 중요한 고려사항으로서 반도체 제조효율에 직결되며 불량이 없는 반도체야말로 한 치의 오차도 허용하지 않는 초정밀 산업분야에서 정상적인 동작을 가능하게 한다는 점에서 본 발명의 히터판과 샤프트 결합 구조는 종래에 비해 매우 우수한 성능을 확보할 수 있다.This is a very important consideration given that semiconductors are parts used in the precision industry, and it is directly related to semiconductor manufacturing efficiency. The heater plate and shaft coupling structure of the present invention can secure very excellent performance compared to the prior art.

또한 본 발명은 도 7에 도시된 바와 같이 히터판(10)과 샤프트(20)의 결합을, 히터판(10)의 하부를 일정직경 및 깊이를 갖는 홈(50)을 형성하고 그 홈(50)의 직경에 타이트하게 맞도록 샤프트(20)의 히터판(10)에 대한 체결부위(40)를 설계하고, 체결시에는 히터판(10)의 홈(50) 또는 체결부위에 강력 접착제를 도포하고 홈(50)에 체결부위(40)를 삽입하는 구조에 의해서 히터판(10)과 샤프트(20)가 결합된 후에도 접착제에 의해 히터판(10)과 샤프트(20)가 더욱 기밀하게 체결됨으로써 불순물 등이 히터판(10)의 내부로 유입되는 것을 확실하게 방지할 수 있다.In addition, as shown in FIG. 7, the present invention forms a groove 50 having a certain diameter and depth in the lower part of the heater plate 10 to couple the heater plate 10 and the shaft 20, and the groove 50 ) Design the fastening part 40 of the shaft 20 to the heater plate 10 to fit tightly to the diameter of the shaft 20, and apply a strong adhesive to the groove 50 or the fastening part of the heater plate 10 during fastening And even after the heater plate 10 and the shaft 20 are coupled by the structure of inserting the fastening part 40 into the groove 50, the heater plate 10 and the shaft 20 are more airtightly fastened by an adhesive. Inflow of impurities into the heater plate 10 can be reliably prevented.

여기서 설명된 실시예들은 본 발명 및 본 발명의 실제적 응용을 잘 설명하기 위해 개시되었다. 따라서 당업자가 본 발명의 석영히터를 만들고 사용할 수 있도록 하기 위해 명시되었다. 그러므로 여기에 설명되어진 것처럼 개시된 정확한 형태로 본 발명에 적용되거나 한정되지는 않는다. 전반적으로 청구범위의 기재로부터 벗어나지 않도록 상기 설명된 범위에서 많은 수정 및 변형이 발생할 수 있다.The embodiments described herein are disclosed to better explain the present invention and its practical applications. It is therefore specified to enable those skilled in the art to make and use the quartz heater of the present invention. Therefore, it is not intended to be applied or limited to the present invention in the precise form disclosed as set forth herein. Many modifications and variations may occur within the scope of the above description without departing from the general teaching of the claims.

10 : 히터판 20 : 샤프트
40 : 샤프트의 체결부위 50 : 히터판의 홈
10: heater plate 20: shaft
40: coupling part of shaft 50: groove of heater plate

Claims (1)

상판과 하판 사이에 니켈, 텅스텐, 몰리브덴 및 서스 중 어느 하나의 재질로 제조된 열선이 내장된 히터판과,
상기 열선에 전원을 공급하기 위한 텅스텐전극과, 상기 열선과 텅스텐전극이 내재되도록 연결튜브에 석영용접으로 상호 결합된 버티컬 석영튜브가 구성된 샤프트로 이루어지고, 상기 히터판의 표면에 CVD SiC 코팅에 의해 코팅액을 표면에 침투시켜 박막을 형성한 반도체 제조장치용 석영히터에 있어서,
상기 히터판과 샤프트는 불순물 유입을 방지하도록 히터판의 하부에 일정직경 및 깊이를 갖도록 형성된 홈과,
상기 홈의 직경에 맞도록 샤프트에 형성된 체결부위가 결합되어 일체형이 되도록 제조되는 것을 특징으로 하는 반도체 제조장치용 석영히터의 제조방법.
A heater plate with a built-in heating wire made of any one of nickel, tungsten, molybdenum, and Sus between the upper and lower plates;
It consists of a shaft composed of a tungsten electrode for supplying power to the heating wire, and a vertical quartz tube mutually coupled to a connecting tube by quartz welding so that the heating wire and the tungsten electrode are embedded, and a CVD SiC coating on the surface of the heater plate. In the quartz heater for a semiconductor manufacturing apparatus in which a thin film is formed by infiltrating the coating liquid on the surface,
The heater plate and the shaft include grooves formed in the lower portion of the heater plate to have a predetermined diameter and depth to prevent impurities from entering;
A method of manufacturing a quartz heater for a semiconductor manufacturing apparatus, characterized in that the fastening portion formed on the shaft is coupled to the diameter of the groove to be integral.
KR1020210097820A 2021-07-26 2021-07-26 Manufacturing method of quartz heater for semiconductor manufacturing equipment KR20230016385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210097820A KR20230016385A (en) 2021-07-26 2021-07-26 Manufacturing method of quartz heater for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210097820A KR20230016385A (en) 2021-07-26 2021-07-26 Manufacturing method of quartz heater for semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
KR20230016385A true KR20230016385A (en) 2023-02-02

Family

ID=85225661

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210097820A KR20230016385A (en) 2021-07-26 2021-07-26 Manufacturing method of quartz heater for semiconductor manufacturing equipment

Country Status (1)

Country Link
KR (1) KR20230016385A (en)

Similar Documents

Publication Publication Date Title
US5231690A (en) Wafer heaters for use in semiconductor-producing apparatus and heating units using such wafer heaters
US11331738B2 (en) High temperature resistant silicon joint for the joining of ceramics
US7279661B2 (en) Heating apparatus
JP2018172281A (en) Method for joining materials, plate and shaft device, and multilayer plate formed therewith
US7126093B2 (en) Heating systems
US7053339B2 (en) Ceramic heater
TWI548301B (en) A ceramic heater
JP2007088484A (en) Heater
JP7418327B2 (en) Semiconductor processing equipment with high temperature resistant nickel alloy joint and method for manufacturing the same
JP2005166354A (en) Ceramic heater
JP2018518060A (en) Method for repairing equipment parts used in semiconductor processing
US6958462B2 (en) Ceramic heaters
JP5460184B2 (en) Support device
JP3810216B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP2001237051A (en) Ceramic heater with cylindrical part and heating device using the same
KR20230016385A (en) Manufacturing method of quartz heater for semiconductor manufacturing equipment
JPH0677148A (en) Semiconductor wafer heating device
JPH0628258B2 (en) Semiconductor wafer heating device and manufacturing method thereof
KR20160000970A (en) Heater manufacturing method of semiconductor manufacturing apparatus and heater damage portion treating method
JP2023023670A (en) ceramic heater
KR101194437B1 (en) Quartz heater manufacturing method for semiconductor manufacturing apparatus
KR20110101365A (en) A heater chuck using aluminum and a film processing method thereof
JPH088246B2 (en) Heating device
JP4503714B2 (en) High temperature resistance heater
JPH0487179A (en) Ceramic heater and its manufacture