KR20230010873A - A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby - Google Patents

A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby Download PDF

Info

Publication number
KR20230010873A
KR20230010873A KR1020210090961A KR20210090961A KR20230010873A KR 20230010873 A KR20230010873 A KR 20230010873A KR 1020210090961 A KR1020210090961 A KR 1020210090961A KR 20210090961 A KR20210090961 A KR 20210090961A KR 20230010873 A KR20230010873 A KR 20230010873A
Authority
KR
South Korea
Prior art keywords
graphene
press
composite panel
panel
construction
Prior art date
Application number
KR1020210090961A
Other languages
Korean (ko)
Inventor
문기수
하워드 종호 신
신동욱
Original Assignee
문기수
하워드 종호 신
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문기수, 하워드 종호 신 filed Critical 문기수
Priority to KR1020210090961A priority Critical patent/KR20230010873A/en
Publication of KR20230010873A publication Critical patent/KR20230010873A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/001Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
    • B29D99/0021Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with plain or filled structures, e.g. cores, placed between two or more plates or sheets, e.g. in a matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2715/00Condition, form or state of preformed parts, e.g. inserts
    • B29K2715/003Cellular or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Building Environments (AREA)

Abstract

The present invention relates to a graphene-enhanced ultralightweight rigid urethane foam composite panel for a building, which forms exterior walls, interior walls, and roofs of a building, wherein the panel is made lighter to allow construction to be performed faster than existing building construction methods, save construction costs, and shorten a construction period. In addition, the panel creates a semi-structural effect by increasing the strength of a panel installation frame and increases the effectiveness of insulation to reduce energy consumption for heating and cooling caused by seasonal temperature differences, thereby enhancing the functionality of the building. In addition, energy consumption is reduced to decrease the generation of carbon dioxide (CO_2), thereby allowing carbon emissions rights to be secured to create eco-friendly buildings. The panel is a lightweight panel that saves installation labor costs by approximately 25 to 30% in constructing a wall body, compared to the current construction costs of existing methods, and allows a dry construction method that saves construction period and labor costs by reducing 7-8 processes such as interior and exterior wall construction and roof construction to 2-3 processes, thereby eliminating restrictions of seasons or climate.

Description

그래핀 강화 초경량 경질발포우레탄 복합판넬의 제조방법 및 이를 이용한 그래핀 강화 초경량 경질발포우레탄 복합판넬{A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby}A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby}

본 발명은 건축용 그래핀(graphene) 강화 초경량 경질발포우레탄 복합판넬 제조방법 및 이를 이용한 그래핀 강화 초경량 복합판넬에 관한 것으로서, 이 판넬은 건축물의 외벽, 내벽 및 지붕을 형성하고, 판넬을 경량화 하여 건축물 공사의 기존 공법보다 시공이 빠르고 건축공사비의 절감 및 공기 단축을 하도록 한다. 또한 판넬설치프레임의 강도를 높여 준구조적인 효과를 내며, 단열의 효과를 높여 계절의 온도차에 의한 냉난방을 위한 에너지소비를 절감하여 건축물의 기능성을 높여주고, 에너지소비를 줄여 CO2의 생성을 감소시켜 이를 통해 탄소배출권의 확보가 가능하여 친환경적인 건축물을 만들수 있다.The present invention relates to a method for manufacturing a graphene-reinforced ultra-lightweight polyurethane composite panel for construction and a graphene-reinforced ultra-lightweight composite panel using the same. It is faster than the existing method of construction, and reduces construction costs and shortens the construction period. In addition, by increasing the strength of the panel installation frame, it creates a semi-structural effect, and by increasing the insulation effect, it reduces energy consumption for cooling and heating due to seasonal temperature differences, thereby enhancing the functionality of the building and reducing CO2 generation by reducing energy consumption. Through this, it is possible to secure carbon credits and create eco-friendly buildings.

따라서 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬은 강도 증진에 의한 기존방식의 구조비 절감, 공정들의 단축, 판넬의 경량화에 의한 시공비 절감과 단열에 의한 에너지절약을 하며 냉난방 비용을 획기적으로 절약할 수 있다. 또한 판넬의 조립이나 연결, 축조의 공정 및 기간을 최소화 하여 인건비를 절약하여 최대한의 경제적, 미적인 효과를 갖춘 건축물을 지을 수 있는 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬 제조방법 및 이를 이용한 그래핀 강화 초경량 경질발포우레탄 복합판넬에 관한 것이다.Therefore, the graphene-reinforced ultra-lightweight polyurethane composite panel for construction can reduce the structural cost of the existing method by increasing the strength, shorten the process, reduce the construction cost by reducing the weight of the panel, and save energy by insulation, and can drastically save heating and cooling costs. there is. In addition, a method for manufacturing graphene-reinforced ultra-lightweight rigid foamed urethane composite panels for construction that can build buildings with maximum economic and aesthetic effects by saving labor costs by minimizing the process and period of panel assembly, connection, and construction, and graphene reinforcement using the same It relates to ultra-lightweight rigid foamed urethane composite panels.

본 발명에 따른 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬 제조방법 및 이를 이용한 그래핀 강화 초경량 경질발포우레탄 복합판넬은 전면에는 마감재, 중간에는 코어, 후면에는 마감재 혹은 석고보드와 같은 마감을 위한 예비마감재를 설치하며, 코어에는 경질발포우레탄을 발포하여 일체식으로 만드는 그래핀강화 초경량 우레탄 복합판넬로, 전면에는 마감재 즉 석재, 타일, 화이버보드, 기타 그리고 마감을 위한 예비마감재 즉 PVC폼보드, 석고보드, 시멘트보드, 마그네슘보드, 기타 등등을 설치하며, 후면의 마감재는 전면과 같은 종류의 자재를 설치할 수 있으며, 코어에는 그래핀을 함유한 강화 초경량 경질발포우레탄을 발포하여 고강도 경량단열의 코어를 형성한다. 이 코어 내에는 종이, PVC로 제작된 FRP Mesh 혹은 원형 혹은 각형 파이프 및 박스를 매입하여 코어 내의 구조체를 형성하여 구조계산에 의한 강도를 조정한다. 또한 코어 내의 파이프의 내부공간과 판넬 연결부위의 연결파이프를 이용하여 그속에 전기설비 라인을 매립할 수 있는 중공형 판넬을 생산 시공할 수 있다.Method for manufacturing a graphene-reinforced ultra-lightweight polyurethane composite panel for construction and a graphene-reinforced ultra-lightweight polyurethane composite panel using the same according to the present invention is a finishing material on the front side, a core in the middle, and a finishing material on the back side or a preliminary finishing material for finishing such as gypsum board is installed, and the core is a graphene-reinforced ultra-light urethane composite panel made integrally by foaming hard foam urethane. On the front, finishing materials such as stone, tile, fiberboard, etc., and preliminary finishing materials for finishing, such as PVC foam board, gypsum board , cement board, magnesium board, etc. are installed, and the same type of material as the front side can be installed for the finishing material on the back side, and the core is foamed with reinforced ultra-lightweight foamed urethane containing graphene to form a high-strength lightweight insulation core. do. Inside the core, a FRP mesh made of paper or PVC, or a circular or prismatic pipe or box is embedded to form a structure within the core to adjust the strength by structural calculation. In addition, it is possible to produce and construct a hollow panel in which an electric facility line can be buried by using the inner space of the pipe in the core and the connecting pipe of the panel connection part.

이 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬은 상하에 메탈 런너를 설치하여 상하를 고정하여 설치되는 판넬로 용도는 건축물의 외벽, 내벽, 지붕, 바닥에 사용한다. 또한 냉동창고나 냉장창고, 크린룸의 벽판넬로 사용할수 있으며 최종 마감재를 판넬 생산시 부착 완전 마감하여 짧은 공정으로 시공한다.This graphene-reinforced ultra-lightweight foamed urethane composite panel for construction is a panel that is installed by installing metal runners on the top and bottom to fix the top and bottom. In addition, it can be used as a wall panel for a freezer warehouse, a refrigerated warehouse, or a clean room, and the final finishing material is attached and completely finished during panel production to be constructed in a short process.

또한 전후면의 마감재를 생략하고 코어 양쪽에 예비마감재만 설치 생산하여 기본적인 벽체 즉 칸막이벽 혹은 방습벽 기타 벽에 사용 할수 있다.In addition, by omitting the front and rear finishing materials and installing and producing only the preliminary finishing materials on both sides of the core, it can be used for basic walls, such as partition walls or moisture barriers and other walls.

국내 등록특허 제10-0655890호, "패널형 스터드를 이용한 건식벽체 시스템 및 그 시공방법", 등록특허 제10-1078219호 "건식벽체용 강재판넬 및 이를 사용한 건식벽체", 등록실용실안 제20-0469785호 "건식벽체 단열 구조물", 등록특허 제10-1190249호 "건식벽체 스터드의 원터치 결착구조" 및 등록특허 제10-1898730호 "건식벽체의 패널 및 이를 이용한 건식벽체의 시공방법"에 유사한 형태로 설명된 것이 있다.Domestic Patent No. 10-0655890, "Drywall system using panel-type studs and its construction method", Registered Patent No. 10-1078219 "Steel panel for drywall and drywall using the same", Registered Utility Model No. 20- Similar shape to No. 0469785 "Drywall insulation structure", Patent No. 10-1190249 "One-touch fastening structure of drywall stud" and Patent No. 10-1898730 "Drywall panel and drywall construction method using the same" There is something described as

그러나 이러한 등록 특허 및 실용신안들은 대부분 석고보드를 메탈스터드에 설치하는 건식벽체 시스템으로 습기 및 방수에 취약하고, 강도가 약하며, 차음성능이 낮고 단열효과가 거의 없다. 그래서 이러한 시스템은 대부분 건축물 내벽에 설치되며 강도가 낮아 석고보드를 보통 2겹으로 설치한다. 혹은 건축물의 설계에 따라 여러겹을 설치한다. 그래서 공정이 복잡하며, 또한 단열이 필요한 곳에는 메탈스터드 사이에 단열재를 설치후 그위에 석고보드를 설치해야 한다. 이러한 공법은 열교현상을 유발한다.However, most of these registered patents and utility models are drywall systems in which gypsum boards are installed on metal studs, and are vulnerable to moisture and waterproofing, have weak strength, have low sound insulation performance, and have little insulation effect. Therefore, most of these systems are installed on the inner walls of buildings, and gypsum boards are usually installed in two layers due to their low strength. Or install multiple layers according to the design of the building. Therefore, the process is complicated, and in places where insulation is required, an insulation material must be installed between the metal studs and then a gypsum board must be installed thereon. This method causes thermal bridging.

현재 일반적으로 이러한 건식벽체들은 강도가 약해서 학교, 공공건물 및 주택에 사용하기에 적합하지 못하며, 주로 상업용이나 공공 건축물에 사용하는 실정이다. 그 외는 아직도 습식벽체(콘크리트벽, 벽돌벽)를 사용하여 공사기간 및 공사비에 대한 개선점이 없는 실정이다.In general, these drywalls are not suitable for use in schools, public buildings, and houses due to their low strength, and are mainly used in commercial or public buildings. Others still use wet walls (concrete walls, brick walls), and there is no improvement in construction period and construction cost.

대한민국 등록특허공보 제10-0655890호Republic of Korea Patent Registration No. 10-0655890 대한민국 등록특허공보 제10-1078219호Republic of Korea Patent Registration No. 10-1078219 대한민국 등록실용실안공보 제20-0469785호Republic of Korea Registered Utility Model No. 20-0469785 대한민국 등록특허공보 제10-1190249호Republic of Korea Patent Registration No. 10-1190249 대한민국 등록특허공보 제10-1898730호Republic of Korea Patent Registration No. 10-1898730

본 발명은 상술한 종래의 문제점을 해소 및 이를 감안하여 안출된 것으로, 본 발명은 건축물의 외내벽체, 지붕 등을 완성하기 위해서 기존공법은 대략 7~8가지의 공정이 필요하나, 4개의 공정을 공장에서 마무리하고 1-2개의 공정은 판넬자체의 강도를 높여 공정 생략 및 단축한 후 판넬화하여 현장에서는 2-3개의 공정으로 벽체용 판넬을 조립하는 방식으로 외내벽체 등의 공사를 마감하는 판넬의 제조생산과 그 공정 및 이를 이용한 판넬을 제공하는데 그 목적이 있다.The present invention has been devised in consideration of and solving the above-mentioned conventional problems, the present invention requires about 7 to 8 processes in order to complete the exterior and interior walls and roofs of buildings, but 4 processes Finished at the factory, 1-2 processes are increased in strength of the panel itself, omitted or shortened, then panelized, and assembled on site with 2-3 processes to assemble wall panels, which finishes construction such as exterior and interior walls. Its purpose is to provide manufacturing production, its process, and panels using it.

상기 목적을 달성하기 위한 본 발명은 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬 제조방법 및 이를 이용한 그래핀 강화 초경량 경질발포우레탄 복합판넬에 관한 것으로, 이는 이 판넬을 외벽재로 사용할 경우에 건축물의 신속한 공사와 강도를 증가시킨 구조의 특징을 가지며, 냉난방을 위한 에너지의 절감을 위한 단열판넬로서 경제적인 건축용 조립식 판넬을 제조할 수 있다. 따라서 종래의 예를 보면 건축물의 외벽, 내벽, 지붕에 설치되는 다양한 판넬들은 그 재질이나 그 용도에 따라 다양하게 조립 결합하여 형성하여 사용해 왔다. 그러나 이러한 것들은 모두가 외내벽의 디자인 조건과 설치여건을 맞추기 위해서 여러 공정을 거쳐서 설치되는 관계로 열교현상, 기밀성, 판넬설치 방법 등등 여러가지 문제점이 많았었다.The present invention for achieving the above object relates to a method for manufacturing a graphene-reinforced ultra-lightweight polyurethane foam composite panel for construction and a graphene-reinforced ultra-lightweight polyurethane foam composite panel using the same, which is related to rapid construction of buildings when the panel is used as an exterior wall material. It has the characteristics of a structure with increased strength and strength, and can be manufactured as an economical prefabricated panel for construction as an insulated panel for saving energy for heating and cooling. Therefore, in the conventional example, various panels installed on the outer wall, inner wall, and roof of a building have been assembled and combined in various ways according to their material or use. However, since all of these are installed through various processes to meet the design conditions and installation conditions of the exterior and interior walls, there were many problems such as thermal bridge, airtightness, and panel installation method.

본 발명에 따른 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬은 대부분의 건축물의 용도에 맞게 벽체들을 만들 수 있는 장점이 있을 뿐만 아니라 경제적이고 친환경적인 제품을 공급할 수 있도록 된 것이다.The graphene-reinforced ultra-lightweight polyurethane foam composite panel for construction according to the present invention has the advantage of being able to make walls suitable for most buildings, as well as providing an economical and environmentally friendly product.

또한 본 발명에 따른 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬을 내벽에 설치시 건식벽체의 비내력벽체로 사용할 수 있으며 종전의 문제점을 보완하여 아래와 같은 장점이 있다.In addition, when the graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel for construction according to the present invention is installed on the inner wall, it can be used as a non-bearing wall for drywall, and has the following advantages by supplementing the previous problems.

1. 건식벽체를 형성할 프레임인 메탈스터드 설치없이 경질발포우레탄 코어를 그래핀으로 강화하여 판넬을 나열하여 벽체를 형성 할수 있다.(그래핀강화기능)1. It is possible to form a wall by arranging the panels by reinforcing the hard foamed urethane core with graphene without installing metal studs, which are the frames to form the dry wall. (Graphene reinforcement function)

2. 창호 및 문 기타 개구부는 메탈스터드 프레임을 설치 보강하여 벽체를 완성 시킬수 있다.2. Windows, doors and other openings can be reinforced by installing metal stud frames to complete the wall.

3. 이 판넬의 코어인 경질발포우레탄은 밀폐 기포(Closed Cell) 구조로 방습 및 방수에 매우 강하다. 습기 및 물이 투과가 되질 않는다.(경질발포우레탄 효능)3. Hard foam urethane, the core of this panel, has a closed cell structure and is very resistant to moisture and waterproofing. Moisture and water are not permeable. (Hard foam urethane effect)

4. 이 판넬의 코어의 단열효과는 열전도율이 0.019~0.022w/mk 이므로 0.038w/mk인 스치로폼보다 효과가 약 1.8배 크다.(경질발포우레탄 효능)4. The insulation effect of the core of this panel is about 1.8 times greater than that of Styrofoam with 0.038w/mk because the thermal conductivity is 0.019~0.022w/mk. (Efficacy of hard foamed urethane)

5. 이 판넬은 준불연단열재복합자재로 생산되어 가연성의 자재와는 달리 화재의 위험이 거의 없다.5. This panel is made of semi-incombustible insulation composite material, so unlike flammable materials, there is little risk of fire.

6. 내부벽체용 판넬은 무게가 대략 15kg/m2(두께 100mm인 경우)이므로 건축물의 중량이 감소하여 건축물 수명이 길어지며 구조에 대한 중량 감소로 건축비가 절약 된다.(참고로 콘크리트의 무게는 두께 100mm는 대략 100kg/m2 이상이다.약 콘크리트벽체 무게의 15% 정도이다.)6. The weight of the inner wall panel is approximately 15kg/m2 (in case of thickness of 100mm), so the weight of the building is reduced and the life of the building is extended, and the weight of the structure is reduced to save the construction cost. (For reference, the weight of concrete is 100mm is approximately 100kg/m2 or more. It is about 15% of the weight of the concrete wall.)

7. 이 판넬의 경량화 및 공정축소는 시공성을 7~8공정에서 2-3공정으로 축소되어 설치 인건비가 대략 30%이상 줄어들어 공기가 그만큼 단축된다.7. The weight reduction and process reduction of this panel reduce the workability from 7-8 steps to 2-3 steps, so the installation labor cost is reduced by more than 30% and the construction period is shortened by that much.

이 판넬은 현재 기존방식의 건축공사비에 대비하여 벽체공사경우 초경량판넬로서 설치인건비를 대략 25%~30% 절약할 수 있고, 내외벽체 공사, 지붕공사 등 7-8공정을 2-3공정으로 줄여 공사기간 및 인건비를 절약할 수 있는 건식공법으로 계절 및 기후에 대한 제약을 받질 않는다.Compared to the existing construction cost, this panel is an ultra-lightweight panel for wall construction, which can save installation labor costs by approximately 25% to 30%, and reduces 7-8 processes such as interior and exterior wall construction and roof construction to 2-3 processes. It is a dry construction method that can save construction period and labor cost, and is not subject to seasonal and climatic restrictions.

도 1은 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬의 코어에 경질발포우레탄재와 교반할 그래핀을 물리적방법으로 생산하는 개략적인 생산 플로 챠트(Flow Chart)이다.
도 2a는 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬의 생산과정을 설명한 개략적인 플로 챠트이다.
도 2b는 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬의 생산과정을 설명한 개략적인 도면이다.
도 3은 본 발명에 따른 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬을 개략적으로 나타내는 도면이며, (a)는 입면도를 개략적으로 나타내는 도면이며, (b)는 (a) 입면도에 나타낸 선 A-A의 절단 단면도를 개략적으로 나타내는 도면이다.
도 4는 본 발명에 따른 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬의 설치도이며, (a)는 입면도이며, (b)는 단면도이다.
도 5는, 폴리우레탄보온재(단열재)에 대해 한국시험인정기구 KTR 한국화학융합시험연구원에 의뢰하여 발급된 시험 성적서를 나타낸다.
1 is a schematic production flow chart for producing a hard foamed urethane material and graphene to be stirred in the core of a graphene-reinforced ultra-lightweight polyurethane composite panel according to the present invention by a physical method.
Figure 2a is a schematic flow chart explaining the production process of the graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel according to the present invention.
Figure 2b is a schematic diagram explaining the production process of the graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel according to the present invention.
Figure 3 is a view schematically showing a graphene-reinforced ultra-lightweight polyurethane foam composite panel for construction according to the present invention, (a) is a view schematically showing an elevation view, (b) is a cut of line AA shown in (a) elevation view It is a schematic representation of a cross-sectional view.
4 is an installation view of a graphene-reinforced ultra-lightweight polyurethane foam composite panel for construction according to the present invention, (a) is an elevation view, and (b) is a cross-sectional view.
Figure 5 shows the test report issued by requesting the Korea Testing and Recognition Organization KTR Korea Testing & Research Institute for polyurethane insulation (insulation).

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 여기서 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, detailed descriptions of well-known functions and configurations that may obscure the gist of the present invention will be omitted. For the same reason, in the accompanying drawings, some components are exaggerated, omitted, or schematically illustrated.

또한, 이하에 기술하는 실시예를 통하여 설명되는 내용은 본 발명을 실시하기 위한 하나의 실시예일 뿐, 이하의 기재된 실시예의 내용으로 한정되는 것은 아니고, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 안 되며, 발명자는 그 자신이 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.In addition, the content described through the embodiments described below is only one embodiment for carrying out the present invention, and is not limited to the content of the embodiments described below, and terms or words used in this specification and claims It should not be construed as being limited to ordinary or dictionary meanings, and the inventors themselves conform to the technical spirit of the present invention based on the principle that the concept of terms can be properly defined in order to explain the invention in the best way. should be interpreted in terms of meaning and concept.

또한, 여기서 개시된 실시예들 이외의 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명할 것임을 이해해야 한다.In addition, it should be understood that it will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention other than the embodiments disclosed herein can be implemented.

도 1은 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬의 코어에 경질발포우레탄재와 교반할 그래핀을 물리적방법으로 생산하는 개략적인 생산 플로 챠트(Flow Chart)이다.1 is a schematic production flow chart for producing a hard foamed urethane material and graphene to be stirred in the core of a graphene-reinforced ultra-lightweight polyurethane composite panel according to the present invention by a physical method.

도 1에 도시된 바와 같이, 그래핀 생산은 그래핀 원료를 재생증류기를 통해 증류시키고, 그래핀을 추출하여 전송하는 추출장치 및 펌프장치를 거치고, 건조장치를 통해 건조시킨 후, 분쇄장치를 통해 입자 크기는 20~50μm 정도로 분쇄하여, 완성된 그래핀을 집정하는 집정장치를 통해 생산된다. 그러나, 기존의 그래핀을 생산하는 방법, 즉 화학증착법(CVD), 실리콘 카바이드 절연체를 이용한 에피택셜(Epitaxial) 방법 및 환원제를 통한 화학적 방법 등이 있으며, 이들 방법을 사용하여 얻을 수도 있다.As shown in FIG. 1, graphene production is performed by distilling graphene raw materials through a regeneration distillation, passing through an extraction device and pumping device that extracts and transfers graphene, drying through a drying device, and then through a grinding device. The particle size is pulverized to about 20 ~ 50μm, and produced through a collecting device that collects the finished graphene. However, there are existing methods for producing graphene, such as chemical vapor deposition (CVD), epitaxial method using a silicon carbide insulator, and chemical method using a reducing agent, and it can also be obtained using these methods.

도 2a는 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬의 생산과정을 설명한 개략적인 플로 챠트를 나타내며, 도 2b는 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬의 생산과정을 개략적인 도면을 나타낸다.Figure 2a shows a schematic flow chart explaining the production process of the graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel according to the present invention, Figure 2b is a schematic flow chart of the production process of the graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel according to the present invention represents a drawing.

도 2a 및 2b에 도시된 바와 같이, 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬의 제조방법은, 프레스(도시하지 않음)에 프레스 베이스 몰드(1) 위에 앞면 마감재(4)를 베이스 방향으로 눕혀 설치하고 프레스 좌측면 몰드(2)와 프레스 우측면 몰드(2')를 각각 좌우로 설치하는 단계(S1);As shown in Figures 2a and 2b, in the method for manufacturing a graphene-reinforced ultra-lightweight polyurethane foam composite panel according to the present invention, the front finish material 4 is placed on the press base mold 1 in the press (not shown) in the base direction. laying down and installing the press left side mold 2 and the press right side mold 2 'to the left and right, respectively (S1);

이액형 경질발포우레탄을 준비하는 단계(S2);Preparing a two-component rigid polyurethane foam (S2);

준비된 이액형 경질발포우레탄중 경질발포우레탄 1용액에 입자 크기 20~50μm의 그래핀을 무게 1~10% 중량비를 조건에 따라 교반하는 단계(S3);Stirring graphene having a particle size of 20 to 50 μm in a weight ratio of 1 to 10% in 1 solution of the prepared two-component rigid polyurethane foam according to conditions (S3);

그래핀과 경질발포우레탄 1용액이 교반된 용액에 경질발포우레탄 1용액과 같은 양의 경질발포우레탄 2용액을 교반하는 단계(S4);stirring a second solution of hard foamed urethane in the same amount as the first solution of hard foamed urethane in a solution in which graphene and first solution of hard foamed urethane are stirred (S4);

그래핀, 경질발포우레탄 1용액과 경질발포우레탄 2용액이 교반된 용액을 프레스 위에 프레스 베이스 몰드(1), 그 위에 앞면 마감재(4)가 설치되고, 좌우측 각각에 프레스 좌측면 몰드(2) 및 프레스 우측면 몰드(2')가 설치된 된 몰드 내에 부어넣어 투입하는 단계(S5);Graphene, hard foamed urethane solution 1 and hard foamed urethane solution 2 are stirred, and the press base mold (1) is placed on the press, and the front finishing material (4) is installed on the press, and the press left side mold (2) and Step of pouring into the mold in which the right side mold 2' of the press is installed (S5);

프레스 상판 몰드(3)에 뒷면 마감재(5)를 설치하는 단계(S6);Installing the backside finishing material 5 on the press top plate mold 3 (S6);

뒷면 마감재(5)가 설치된 프레스 상판 몰드(3)를 닫아 세팅하는 단계(S7);Closing and setting the press top plate mold 3 with the backside finishing material 5 installed thereon (S7);

몰드를 상황에 따라 80~150℃ 열을 가하여 양생하는 단계(S8)를 포함하여, 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬을 완성 제조한다.Including the step of curing the mold by applying heat at 80 to 150 ° C. according to the situation (S8), the graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel according to the present invention is completely manufactured.

그래핀 강화 초경량 경질발포우레탄 복합판넬의 코어 생산에 교반되는 그래핀의 입자 크기는 20~50μm 정도이며, 이를 경질발포우레탄에 1~10% 중량부 이상 교반하면서 압축강도가 대략 1.5배 정도에 도달할 때까지 그래핀의 양을 조정한다.The particle size of the graphene stirred in the production of the core of the graphene-reinforced ultra-lightweight polyurethane composite panel is about 20 to 50 μm, and the compressive strength reaches about 1.5 times as it is stirred at 1 to 10% by weight or more in the rigid polyurethane foam. Adjust the amount of graphene until

일반적으로 경질발포우레탄의 강도는 KS M 3809방식에 의해 밀도가 40~45kg/m3 경우 압축강도 10~15N/cm2, 굴곡강도는 20~30N/cm2이다. 경질발포우레탄의 강도가 우레탄단열재 자체로 판넬을 형성하기에는 약한 경우, 메탈스터드 혹은 각파이프로 골조를 형성한 후 경질발포우레탄 코어에 완전히 매립하여 판넬을 생산한다. 그러나 본 발명은 이러한 단점들을 그래핀의 강도강화의 특성을 이용하여 강도를 높여 그 자체로서의 벽체용 판넬을 생산한다.In general, the strength of rigid polyurethane foam is 10 to 15 N/cm2 in compressive strength and 20 to 30 N/cm2 in flexural strength when the density is 40 to 45 kg/m3 according to the KS M 3809 method. If the strength of rigid polyurethane foam is too weak to form a panel with the urethane insulation itself, a frame is formed with metal studs or square pipes and then completely embedded in the rigid polyurethane core to produce panels. However, the present invention overcomes these disadvantages by increasing the strength by using the strength enhancement characteristics of graphene to produce a wall panel itself.

또 다른 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬의 제조방법은, 상술한 그래핀 강화 초경량 경질발포우레탄 복합판넬의 제조방법(단계(S1)~단계(S8))에, 상기 단계(S1), 즉 프레스(도시하지 않음)에 프레스 베이스 몰드(1) 위에 앞면 마감재(4)를 베이스 방향으로 눕혀 설치하고 프레스 좌측면 몰드(2) 및 프레스 우측면 몰드(2')를 좌우로 설치하는 단계(S1), 후에, 설치된 앞면 마감재(4) 위에 코어에 들어갈 종이 혹은 FRP Mesh 또는 PVC 원형 혹은 각형 파이프와 같은 중공형 파이프(6)을 스페이서(Spacer)(도시하지 않음) 위에 설치하는 단계를 추가로 구성하여 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬을 완성 제조할 수 있다.Another method for manufacturing a graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel according to the present invention is the method for manufacturing a graphene-reinforced ultra-lightweight polyurethane composite panel (steps (S1) to (S8)), the steps ( S1), that is, in a press (not shown), the front finishing material (4) is laid down in the direction of the base on the press base mold (1), and the press left side mold (2) and the press right side mold (2 ') are installed left and right After step (S1), the step of installing a hollow pipe 6 such as paper or FRP mesh or PVC round or angular pipe to enter the core on the installed front finishing material 4 on a spacer (not shown) By further configuration, the graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel according to the present invention can be completely manufactured.

도 3은 본 발명에 따른 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬을 개략적으로 나타내는 도면이며, (a)는 입면도를 개략적으로 나타내는 도면이며, (b)는 (a) 입면도에 나타낸 선 A-A의 절단 단면도를 개략적으로 나타내는 도면이다.Figure 3 is a view schematically showing a graphene-reinforced ultra-lightweight polyurethane foam composite panel for construction according to the present invention, (a) is a view schematically showing an elevation view, (b) is a cut of line A-A shown in (a) elevation view It is a schematic representation of a cross-sectional view.

도 3에 도시된 바와 같이, 그래핀 강화 초경량 경질발포우레탄 복합판넬(100)의 크기는 몰드 크기에 따라 최대 1.2m x 7.0m x 200mm 두께까지 만들 수 있으며, 특히 앞면 및 뒷면 마감재(4, 5)의 면재는 마감재(타일, 화이버 시멘트 보드, PVC폼 보드, 인조마불(Solid Surface Acrylic), 메탈, 목재 기타) 혹은 준마감재(석고보드, 마그네슘보드, 시멘트 보드 기타)를 설치할 수 있으며, 심재 코어는 그래핀으로 강화된 그래핀 강화 초경량 경질발포우레탄이며, 설치 및 부착하는 위치 및 장소에 따라 구조계산에 의해 원형 혹은 각형 PVC파이프 등과 같은 중공형 파이프(6)를 코어 내부에 설치할 수 있으며, 강도에 따라 중공형 파이프(6)를 FRP Mesh로 대치 하거나 같이 사용 할 수 있다. 또한 단순한 칸막이 판넬로 설치될 때는 앞뒤 면재 없이 그리고 코어에 삽입된 파이프나 메쉬(mesh) 없이 그래핀 강화 초경량 경질발포우레탄 심재 자체를 판넬로 제작하여 설치할 수 있다.As shown in FIG. 3, the size of the graphene-reinforced ultra-lightweight polyurethane foam composite panel 100 can be made up to a thickness of 1.2m x 7.0m x 200mm depending on the size of the mold, especially the front and back finishes (4, 5). For the face material, finishing materials (tile, fiber cement board, PVC foam board, solid surface acrylic, metal, wood, etc.) or semi-finishing materials (gypsum board, magnesium board, cement board, etc.) can be installed. It is pin-reinforced graphene-reinforced ultra-light rigid polyurethane foam, and hollow pipes (6) such as round or square PVC pipes can be installed inside the core by structural calculation depending on the location and location of installation and attachment. The hollow pipe (6) can be replaced with FRP mesh or used together. In addition, when installed as a simple partition panel, the graphene-reinforced ultra-lightweight polyurethane core material itself can be manufactured and installed as a panel without front and back face plates and without pipes or meshes inserted into the core.

도 4는 본 발명에 따른 건축용 그래핀 강화 초경량 경질발포우레탄 복합판넬을 설치한 개략적인 설치도이며, (a)는 입면도이며, (b)는 단면도이다.Figure 4 is a schematic installation view of the graphene-reinforced ultra-lightweight polyurethane foam composite panel for construction according to the present invention, (a) is an elevation view, (b) is a cross-sectional view.

도 4에 도시된 바와 같이, 그래핀 강화 초경량 경질발포우레탄 복합판넬(100)이 스라브(10) 사이에 벽으로 설치될 경우, 이 판넬 상하에 판넬의 두께를 잡을 메탈 찬넬(런너)(11)을 설치하고 판넬을 벽의 높이로 재단후 설치를 한다. 판넬 좌우옆면 조인트는 공사용 접착제(Construction Glue)로 연결 설치하며, 판넬이 만나는 좌우상하 측면은 음각진 조인트, 음양각의 조인트 혹은 플래트(Flat)한 조인트를 만들어 나무각재, 철재파이프 기타 등을 연결재로 사용하여 설치한다. 이 철재 혹은 PVC 등과 같은 각재(각파이프(판넬연결후레임))(13)의 조인트는 연결재로도 사용되지만 전기 배선 및 콘센트 박스(12)에 연결되는 전기배선파이프 혹은 설비 배관 파이프 매립용 파이프로도 사용된다.As shown in FIG. 4, when the graphene-reinforced ultra-lightweight rigid foamed urethane composite panel 100 is installed as a wall between the slabs 10, metal channels (runners) 11 to make the thickness of the panel above and below the panel and install after cutting the panel to the height of the wall. The left and right side joints of the panels are connected and installed with construction glue, and the left and right top and bottom sides where the panels meet are made with intaglio joints, embossed joints, or flat joints and use wooden slats, steel pipes, etc. as connecting materials. and install it The joint of the square material (angle pipe (panel connection frame)) 13 such as steel or PVC is also used as a connecting material, but it is also used as an electrical wiring pipe connected to the electrical wiring and outlet box 12 or a pipe for embedment of facility piping pipe. used

면재가 없는 이 심재 판넬, 즉 그래핀 강화 초경량 경질발포우레탄 복합판넬(100)은 무게가 100mm 두께의 경우 4~4.5kg/m2 정도이며, 면재가 설치되었을 때는 면재에 따라 달라지나 대략 15~20kg/m2이다. 참고로 콘크리트는 100mm 두께인 경우 무게가 100kg/m2 이상으로, 본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬(100)은 콘크리트를 현재 사용하고 있는 내벽, 외벽 판넬보다 가벼워 시공성이 좋아 공기단축 및 대략 25%~30%의 인건비를 줄일수 있다.This core panel without a face plate, that is, the graphene-reinforced ultra-lightweight foamed urethane composite panel (100), weighs about 4 to 4.5 kg/m2 in the case of a 100 mm thickness, and when the face plate is installed, it depends on the face plate, but approximately 15 to 20 kg /m2. For reference, concrete weighs more than 100 kg/m2 when it is 100 mm thick, and the graphene-reinforced ultra-lightweight rigid foam urethane composite panel 100 according to the present invention is lighter than the inner and outer wall panels currently using concrete, so it has good workability and shortens the construction period. And it is possible to reduce labor costs by about 25% to 30%.

이 판넬코어의 강도 강화를 위해 경질발포우레탄과 교반되는 그래핀은 물리적생산방법으로 생산된 그래핀으로 적용시방은 아래 표 1과 같다. (그래핀 경질발포우레탄 코어 강도 증진을 위한 교반되는 그래핀 시방)Graphene stirred with hard foamed urethane to enhance the strength of this panel core is graphene produced by a physical production method, and application specifications are shown in Table 1 below. (Agitated graphene specification for improving graphene rigid polyurethane core strength)

항목Item 단위unit 시방 수치Specification figures 탄소 함류량(Carbon Content)Carbon Content 99.5% 이상99.5% or higher 애쉬(Ash)Ash 0.5% 미만less than 0.5% 부피 밀도(Bulk Desity)Bulk Density g/cm3g/cm3 0.01~0.100.01~0.10 수분(Moisture)Moisture %% 2% 미만less than 2% 입자 크기(Particle Size)Particle Size 15~2515 to 25 시트 두께(Sheet Thickness)Sheet Thickness 10미만less than 10 원소 함류량(Element Content)Element Content 구리(Cu)Copper (Cu) ppmppm 150미만less than 150 아연(Zn)Zinc (Zn) ppmppm 150미만less than 150 철(Fe)Iron (Fe) ppmppm 150미만less than 150 코발트(Co)Cobalt (Co) ppmppm 150미만less than 150 니켈(Ni)Nickel (Ni) ppmppm 150미만less than 150

이 판넬코어에 교반되는 그래핀은 입자 크기가 20~50μm 정도로 이를 경질발포우레탄에 0.1~10% (중량부) 교반하여 압축 전단강도가 대략 1.5배 정도 증가할 때까지 그래핀의 중량을 조정한다.The graphene stirred in the panel core has a particle size of about 20 to 50 μm and is stirred in 0.1 to 10% (part by weight) of rigid foamed urethane to adjust the weight of graphene until the compressive shear strength increases by about 1.5 times. .

일반적으로 경질발포우레탄의 강도는 KS M 3809방식에 의해 밀도가 40~45kg/m3 경우 압축강도 10~15 N/cm2, 굴곡강도는 20~30N/cm2 이다. 이 수치에 강도가 증가하면 판넬 자체로 비내력벽 벽체를 형성할 수 있는 강도에 도달했다고 간주할 수 있다.In general, the strength of rigid polyurethane foam is 10 to 15 N/cm2 in compressive strength and 20 to 30 N/cm2 in flexural strength when the density is 40 to 45 kg/m3 according to the KS M 3809 method. When the strength increases to this value, it can be considered that the strength at which the panel itself can form a non-bearing wall is reached.

도 5에서와 같이, 폴리우레탄보온재(단열재)에 대해 한국시험인정기구 KTR 한국화학융합시험연구원에 의뢰하여 발급된 시험 성적서를 살펴보면, KS M 3809방식에 의해 시험된 시험결과, 열전도율(평균온도(20±5)℃)은 0.021W/mk, 굴곡강도는 26N/cm3, 압축강도는 14N/cm2 및 흡수량은 1.4g/100cm2을 나타낸다.As shown in Figure 5, looking at the test report issued by requesting the Korea Test Accreditation Organization KTR Korea Testing & Research Institute for polyurethane insulation (insulation), the test result tested by the KS M 3809 method, the thermal conductivity (average temperature ( 20±5) ℃) is 0.021 W/mk, flexural strength is 26 N/cm3, compressive strength is 14 N/cm2, and water absorption is 1.4 g/100 cm2.

만약에 요구되는 강도가 미달시 코어내부에 FRP Mesh나 혹은 중공형 파이프를 보강 설치하여 판넬의 강도를 증진시켜 비내력벽체의 역할을 가능께 한다.If the required strength is not enough, FRP mesh or hollow pipes are installed inside the core to increase the strength of the panel, enabling it to function as a non-bearing wall.

또한, 이 판넬의 열전도율은 0.019~0.022W/mk로 약 1.6W/mk인 콘크리트보다 단열효과가 콘크리트보다 대략 70배 이상 크며, 현재 보통 건물공사의 외벽단열을 위한 단열효과는 이 판넬 두께 100mm의 판넬을 사용할 경우 스치로폴 180mm 이상의 두께를 사용하는 결과와 같으므로 현재 건물에서 사용되는 냉난방에 들어가는 전력을 절약하여 전력생산원료의 사용량을 줄이기 때문에 CO2의 생성을 감소시켜 지구 온난화를 줄이는 친환경 자재이다. 이를 통해 탄소배출권 확보에 기여하며 자연환경 보전에 일익을 담당할 수가 있다.In addition, the thermal conductivity of this panel is 0.019 ~ 0.022W/mk, which is about 70 times greater than that of concrete, which is about 1.6W/mk. When using a panel, it is the same as the result of using a thickness of 180 mm or more of Styro pole, so it is an eco-friendly material that reduces global warming by reducing CO2 generation because it saves power used for heating and cooling used in the current building and reduces the amount of raw materials used for power production. Through this, it can contribute to securing carbon credits and play a role in preserving the natural environment.

본 발명에 따른 그래핀 강화 초경량 경질발포우레탄 복합판넬은 재질이나 치수 등을 건축물의 용도에 따라 변경시킬 수 있고, 이러한 변경은 본 발명의 범위에 속하는 것이다.The graphene-reinforced ultra-lightweight polyurethane foam composite panel according to the present invention can be changed in material or dimensions according to the use of the building, and such changes fall within the scope of the present invention.

1: 프레스 베이스 몰드
2: 프레스 좌측면 몰드 2': 프레스 우측면 몰드
3: 프레스 상판 몰드
4: 앞면 마감재 5: 뒷면 마감재
6: 중공형 파이프
7: 코어(그래핀 강화 초경량 경질발포우레탄)
10: 스라브
11: 메탈 찬넬(런너)
12: 전기콘센트 박스
13: 각파이프(판넬연결후레임)
100: 그래핀 강화 초경량 경질발포우레탄 복합판넬
1: press base mold
2: press left side mold 2': press right side mold
3: press top plate mold
4: front finish material 5: back finish material
6: hollow pipe
7: Core (graphene-reinforced ultra-lightweight hard foam urethane)
10: slave
11: Metal Channel (Runner)
12: electrical outlet box
13: Each pipe (panel connection frame)
100: graphene-reinforced ultra-light rigid polyurethane composite panel

Claims (4)

프레스에 프레스 베이스 몰드 위에 앞면 마감재를 베이스 방향으로 눕혀 설치하고 프레스 좌측면 몰드와 프레스 우측면 몰드를 각각 좌우로 설치하는 단계;
이액형 경질발포우레탄을 준비하는 단계;
준비된 이액형 경질발포우레탄중 경질발포우레탄 1용액에 입자 크기 20~50μm의 그래핀을 무게 1~10% 중량비를 조건에 따라 교반하는 단계;
그래핀과 경질발포우레탄 1용액이 교반된 용액에 경질발포우레탄 1용액과 같은 양의 경질발포우레탄 2용액을 교반하는 단계;
그래핀, 경질발포우레탄 1용액과 경질발포우레탄 2용액이 교반된 용액을 프레스 위에 프레스 베이스 몰드, 그 위에 앞면 마감재가 설치되고, 좌우측 각각에 프레스 좌측면 몰드 및 프레스 우측면 몰드가 설치된 된 몰드 내에 부어넣어 투입하는 단계;
프레스 상판 몰드에 뒷면 마감재를 설치하는 단계;
뒷면 마감재가 설치된 프레스 상판 몰드를 닫아 세팅하는 단계;
몰드를 상황에 따라 80~150℃ 열을 가하여 양생하는 단계를 포함하는 것을 특징으로 하는 그래핀 강화 초경량 경질발포우레탄 복합판넬 제조방법.
Laying and installing the front finishing material on the press base mold in the base direction in the press and installing the press left side mold and the press right side mold to the left and right, respectively;
Preparing a two-component rigid polyurethane foam;
Stirring graphene having a particle size of 20 to 50 μm in a weight ratio of 1 to 10% in 1 solution of the prepared two-component rigid polyurethane foam according to conditions;
stirring a second solution of hard foamed urethane in the same amount as the first solution of hard foamed urethane in a solution in which graphene and first solution of hard foamed urethane are stirred;
A solution in which graphene, rigid foamed urethane 1 solution and rigid foamed urethane 2 solution are stirred is poured into a press base mold on a press, a front finishing material is installed on it, and a press left side mold and a press right side mold are installed on each of the left and right sides. Putting in and putting in;
Installing a backside finishing material on the press top plate mold;
Closing and setting the press upper plate mold on which the backside finishing material is installed;
A method for manufacturing a graphene-reinforced ultra-lightweight rigid polyurethane composite panel comprising the step of curing the mold by applying heat at 80 to 150 ° C depending on the situation.
제 1항에 있어서,
상기 프레스에 프레스 베이스 몰드 위에 앞면 마감재를 베이스 방향으로 눕혀 설치하고 프레스 좌측면 몰드 및 프레스 우측면 몰드를 좌우로 설치하는 단계 후에, 설치된 앞면 마감재 위에 코어에 들어갈 종이 혹은 FRP Mesh 또는 PVC 원형 혹은 각형 파이프와 같은 중공형 파이프를 스페이서(Spacer) 위에 설치하는 단계를 추가로 포함하는 것을 특징으로 하는 그래핀 강화 초경량 경질발포우레탄 복합판넬 제조방법.
According to claim 1,
After the step of laying the front finishing material on the press base mold in the press base direction and installing the press left side mold and the press right side mold left and right, paper or FRP Mesh or PVC round or square pipe to enter the core on the installed front finishing material A method for manufacturing a graphene-reinforced ultra-lightweight rigid foamed urethane composite panel, characterized in that it further comprises the step of installing the same hollow pipe on a spacer.
제 1항에 있어서,
그래핀 강화 초경량 경질발포우레탄 복합판넬의 코어 생산에 교반되는 그래핀의 양은 경질발포우레탄에 1~10% 중량부 이상 교반하면서 압축강도가 1.5배에 도달할 때까지 그래핀의 양을 조정하는 것을 특징으로 하는 그래핀 강화 초경량 경질발포우레탄 복합판넬 제조방법
According to claim 1,
The amount of graphene stirred in the core production of graphene-reinforced ultra-lightweight polyurethane foam composite panel is to adjust the amount of graphene until the compressive strength reaches 1.5 times while stirring 1 to 10% by weight or more in hard foam polyurethane. Method for manufacturing graphene-reinforced ultra-lightweight rigid foamed urethane composite panel
제 1항 내지 제 3항 중 어느 한 항에 기재된 그래핀 강화 초경량 경질발포우레탄 복합판넬 제조방법에 의해 제조된 그래핀 강화 초경량 경질발포우레탄 복합판넬.A graphene-reinforced ultra-lightweight rigid polyurethane foam composite panel manufactured by the method of manufacturing the graphene-reinforced ultra-lightweight polyurethane composite panel according to any one of claims 1 to 3.
KR1020210090961A 2021-07-12 2021-07-12 A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby KR20230010873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210090961A KR20230010873A (en) 2021-07-12 2021-07-12 A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210090961A KR20230010873A (en) 2021-07-12 2021-07-12 A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby

Publications (1)

Publication Number Publication Date
KR20230010873A true KR20230010873A (en) 2023-01-20

Family

ID=85108530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210090961A KR20230010873A (en) 2021-07-12 2021-07-12 A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby

Country Status (1)

Country Link
KR (1) KR20230010873A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655890B1 (en) 2004-10-19 2006-12-11 재단법인 포항산업과학연구원 Drywall system and its construction method using panel type steel plates
KR101078219B1 (en) 2008-11-03 2011-11-01 연세대학교 산학협력단 Steel Panel for drywall construction and drywall using the same
KR101190249B1 (en) 2012-02-08 2012-10-12 롯데건설 주식회사 Stud fixing structure of dry wall
KR200469785Y1 (en) 2011-12-20 2013-11-12 주식회사 케이씨씨 Drywall insulation structure
KR101898730B1 (en) 2012-01-12 2018-09-13 재단법인 포항산업과학연구원 Panel of drywall and construction method of drywall using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655890B1 (en) 2004-10-19 2006-12-11 재단법인 포항산업과학연구원 Drywall system and its construction method using panel type steel plates
KR101078219B1 (en) 2008-11-03 2011-11-01 연세대학교 산학협력단 Steel Panel for drywall construction and drywall using the same
KR200469785Y1 (en) 2011-12-20 2013-11-12 주식회사 케이씨씨 Drywall insulation structure
KR101898730B1 (en) 2012-01-12 2018-09-13 재단법인 포항산업과학연구원 Panel of drywall and construction method of drywall using the same
KR101190249B1 (en) 2012-02-08 2012-10-12 롯데건설 주식회사 Stud fixing structure of dry wall

Similar Documents

Publication Publication Date Title
US7658990B2 (en) Super light weight ceramic panel and process for preparing the same
CN101265723B (en) Architecture structure system assembled by composite building board and building method
CN201704818U (en) Novel composite wallboard with high strength, high heat insulation and high sound isolation
CN103850364B (en) Combined wall
CN206769105U (en) A kind of light steel-framed composite wall
CN206418663U (en) A kind of prefabricated combined wall board of novel fabricated H types
CN201762833U (en) Prefabricated external wall panel adopting sandwich heat insulation
CN201704870U (en) Heat preserving outer wallboard
CN108316546A (en) Assembled integrated heat-insulation wall plate
CN210737892U (en) Ceramsite foam concrete sandwich partition wall batten with shear keys
CN202787557U (en) Fireproof self-insulation brickwork wall with light cores
CN104975676A (en) Lightweight high-strength composite partition batten, and production method thereof
CN101693417A (en) Reinforced composite board and production technology thereof
CN208039610U (en) Assembled integrated heat-insulation wall plate
CN201521054U (en) Lightweight wallboard
KR20230010873A (en) A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel Manufacturing Method and A Graphene Enhanced Ultra Lightweight Polyurethane Rigid Composite Panel thereby
KR20130110285A (en) Dry and all-in-one typed heat-insulating wall
CN214941262U (en) Assembled internal partition wall body
KR101219873B1 (en) The Architecture Method Featured Expandedform Stuffing Framework
CN214461472U (en) Integrated composite wall of prefabricated assembled concrete building
CN202347725U (en) Novel heat-preserving and sound-insulation composite wall board
KR101219202B1 (en) A fabricated panel for construction
CN101476357A (en) Heat-preserving energy-saving wall structure
CN204252379U (en) Super large Prefabricated exterior wall heat-insulation plate
CN208105600U (en) A kind of assembled haydite concrete Sandwich composite external wallboard

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision