KR20230002268A - 무선 전력 전송을 위한 안전 회로들 - Google Patents

무선 전력 전송을 위한 안전 회로들 Download PDF

Info

Publication number
KR20230002268A
KR20230002268A KR1020227019962A KR20227019962A KR20230002268A KR 20230002268 A KR20230002268 A KR 20230002268A KR 1020227019962 A KR1020227019962 A KR 1020227019962A KR 20227019962 A KR20227019962 A KR 20227019962A KR 20230002268 A KR20230002268 A KR 20230002268A
Authority
KR
South Korea
Prior art keywords
pair
resonant
coil
charging circuit
signal
Prior art date
Application number
KR1020227019962A
Other languages
English (en)
Inventor
존 밀러 월게머스
Original Assignee
인덕트이브이 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인덕트이브이 인크. filed Critical 인덕트이브이 인크.
Priority to KR1020237034438A priority Critical patent/KR20230147756A/ko
Publication of KR20230002268A publication Critical patent/KR20230002268A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

자기 유도성 공진 충전 회로는 유도성 1차 코일로부터 수신된 자기장을 교류(AC) 신호로 변환하는 유도성 2차 코일을 갖는 공진 네트워크, 및 부하에 인가하기 위한 직류(DC) 신호를 생성하기 위해 AC 신호를 정류하는 동기 정류기를 포함한다. 동기 정류기는 고장의 경우에 AC 전류원의 AC 파형을 션트하기 위한 다양한 구성을 포함한다. 예를 들어, 정류기 제어기는, 과전압, 과전류 고장 조건 또는 과온 고장 조건이 검출될 때 AC 전류원을 션트하기 위해 정류기의 한 쌍의 정상 열림 스위치를 오프 상태로 및 정류기의 한 쌍의 정상 닫힘 스위치를 온 상태로 유지할 수 있다. 공진 네트워크가 언밸런싱될 때 전기 차량의 섀시에서 발생된 용량성 전자기 간섭을 접지하는 구성이 제공된다.

Description

무선 전력 전송을 위한 안전 회로들
관련 출원의 상호참조
본 특허 출원은 2020년 4월 16일자로 출원된 미국 가특허 출원 제63/010,771호, 및 2020년 11월 19일자로 출원된 미국 특허 출원 제16/952,933호- 둘 다 John Wolgemuth에 의해 출원되고, 둘 다 발명의 명칭이 "Safety Circuits for Wireless Power Transfer"임 -의 혜택을 주장하며, 이들 출원들은 참조 문헌으로서 그 전체 내용이 본 명세서에 포함된다.
기술분야
본 개시내용은 공진 유도에 의한 전기 에너지의 전송에 관한 것이다. 보다 구체적으로, 본 개시내용은 고전력 무선 전력 전송 시스템의 안전성을 최대화하는 안전 회로들의 시스템 설계, 회로 아키텍처, 및 구현 상세들에 관한 것이다.
유도성 전력 전송은 많은 산업들 및 시장들에 걸쳐 있는 많은 중요한 응용들을 갖는다. 배터리들과 같은 전기 저장소를 충전하기 위한 유도성 전력 전송의 사용은 저전력 휴대용 소비자 디바이스들에서 점점 더 흔해지고 있다.
자기 공진을 이용한 코일들 간의 전력 전송은 잘 알려져 있다. 1차(일명 송신기) 코일에서의 교류 전류는, 패러데이의 유도 법칙(Faraday's law of induction) 및 렌츠의 법칙(Lenz's Law)에 의해 설명된 바와 같이, 2차(일명 수신기) 코일에서 대응하는 반대 전류를 야기하기 위해 에어-갭을 통해 전파되는 자기장을 생성한다. 배터리를 충전하기 위해, 유도된 교류 전류(AC)는 직류 전류(DC)로 변환된다. 정류기는 주기적으로 방향을 반전시키는 교류(AC)를 한 방향으로만 흐르는 직류(DC)로 변환한다.
AC 주파수, 원하는 DC 전압, 또는 원하는 효율에 따라, 수동(다이오드-기반) 또는 능동(MOSFET 또는 스위치-기반) 정류기들이 사용될 수 있다. 정류기들은 통상적으로 배터리 충전에 필요한 균일한 정상(steady) 전압 및/또는 전압 레벨(DC/DC) 변환을 생성하기 위한 추가적인 회로부를 필요로 한다.
더 빠른 충전에 대한 요구가 증가함에 따라, 더 높은 전력으로 충전할 필요성은 더 높은 전압들 및 더 높은 전류들의 사용으로 이어진다. 높은 전류원들 및 전압원들의 증가된 안전 위험들로 인해, 전기 충격의 가능성을 감소시키기 위해 안전 회로들이 요구된다.
본 발명 대상의 실시예들에 대한 다양한 상세들이 첨부 도면들 및 이하의 상세한 설명 텍스트에 제공된다.
본 명세서에 설명된 시스템들 및 방법들은 고장의 경우 전력을 션트(shunt)하기 위한 메커니즘들을 제공함으로써 무선 전력 전송 동안 전기 충격으로부터의 증가된 안전성을 제공한다. 샘플 실시예들에서, 유도성 1차 코일로부터 수신된 자기장을 교류(AC) 신호로 변환하는 유도성 2차 코일을 포함하는 공진 네트워크, 및 충전될 부하에 인가하기 위한 직류(DC) 신호를 생성하기 위해 AC 신호를 정류하는 동기 정류기를 포함하는, 자기 유도성 공진 충전 회로가 제공된다. 동기 정류기는 고장의 경우에 AC 파형을 션트하기 위한 수단을 더 포함한다. 예시적인 구성에서, 2차 코일은 전기 차량에 장착되고 부하는 전기 차량의 배터리이다.
샘플 실시예에서, 공진 네트워크는 2차 코일의 각각의 단부들에 직렬로 연결된 제1 및 제2 밸런싱된 커패시터들을 포함하고, 이에 의해 AC 신호는 제1 및 제2 커패시터들과 직렬 공진한다. 동기 정류기는 한 쌍의 정상 열림 스위치들(normally open switches) 및 한 쌍의 정상 닫힘 스위치들(normally closed switches)을 포함할 수 있으며, 여기서 한 쌍의 정상 열림 스위치들 중 하나 및 한 쌍의 정상 닫힘 스위치들 중 하나는 제1 밸런싱된 커패시터에 연결되고, 한 쌍의 정상 열림 스위치들 중 다른 하나 및 한 쌍의 정상 닫힘 스위치들 중 다른 하나는 제2 밸런싱된 커패시터에 연결된다. 션트하기 위한 수단은 고장의 경우에 2차 코일을 션트하는 정상 닫힘 스위치들을 포함한다. 정상 열림 스위치들은 고장의 경우에 부하의 단락을 방지하도록 구성된다. 신호 조절 회로부(signal conditioning circuitry)는 또한 부하에 인가하기 위해 DC 신호를 조절된 DC 신호로 조절하도록 제공될 수 있다.
샘플 실시예들에서, 제1 전류 및 전압 센서는 공진 회로로부터 동기 정류기에 입력되는 AC 신호를 모니터링하도록 제공될 수 있고, 제2 전류 및 전압 센서는 부하에 인가되는 조절된 DC 파형을 모니터링하도록 제공될 수 있다. 제1 전류 및 전압 센서와 제2 전류 및 전압 센서에 의해 측정된 값들에 응답하는 정류기 제어기는 공진 네트워크에 의해 출력된 AC 신호에 위상 고정(phase lock)할 수 있고, 측정된 값들에 응답하여 한 쌍의 정상 열림 스위치들과 한 쌍의 정상 닫힘 스위치들의 스위칭을 제어하는 제어 신호들을 제공할 수 있다. 동기 정류기의 과온(over-temperature) 고장 조건을 검출하고 검출 신호를 정류기 제어기에 제공하는 온도 센서가 또한 제공될 수 있다.
다른 샘플 실시예들에서, 충전 회로는 정류기 제어기로부터 입력 AC 신호 진폭, 입력 AC 신호 주파수, 조절된 DC 파형 전압, 조절된 DC 파형 전류, 및/또는 동기 정류기의 온도를 수신하고, 예를 들어 검출된 고장 조건들로부터의 보호를 제공하도록 정류기 제어기의 동작들을 명령하는, 충전 프로세서를 더 포함한다. 충전 프로세서는, AC 신호 주파수가 허용된 범위 내에 있고, AC 신호 제곱 평균 제곱근(root mean square)이 임계치 위이며, 어떠한 고장도 검출되지 않았을 때, 공진 네트워크로부터의 AC 신호의 근사화된 제로-크로싱들(zero-crossings)에서 한 쌍의 정상 열림 스위치들과 한 쌍의 정상 닫힘 스위치들을 턴온 및 턴오프하도록 정류기 제어기에 지시한다. 한편, 고장 조건이 검출될 때, 충전 프로세서는 정류기 제어기를 무능화시킬 수 있고, 이는 한 쌍의 정상 열림 스위치들을 오프 상태로 유지하고 한 쌍의 정상 닫힘 스위치들을 온 상태로 유지한다. 예를 들어, 정류기 제어기는, 제2 전류 및 전압 센서에 의해 과전압, 과전류 고장 상태가 검출되거나 온도 센서에 의해 과온 고장 상태가 검출될 때, 한 쌍의 정상 열림 스위치들을 오프 상태로 유지하고 한 쌍의 정상 닫힘 스위치들을 온 상태로 유지할 수 있다.
다른 샘플 실시예들에서, 공진 네트워크는 교류(AC) 전류원을 포함할 수 있고, 동기 정류기는 AC 전류원의 제1 및 제2 리드들에 각각 연결된 제1 한 쌍의 다이오드들 및 AC 전류원의 제1 및 제2 리드들에 각각 연결된 제2 한 쌍의 다이오드들을 포함할 수 있다. 션트 수단은 제2 한 쌍의 다이오드들 중의 제1 다이오드와 병렬로 연결될 수 있는 제1 정상 닫힘 스위치 및 제2 한 쌍의 다이오드들 중의 제2 다이오드와 병렬로 연결될 수 있는 제2 정상 닫힘 스위치를 포함할 수 있다. 제1 및 제2 정상 닫힘 스위치들은 고장의 경우에 AC 전류원을 션트한다.
또 다른 샘플 실시예들에서, 공진 네트워크는 교류(AC) 전류원을 포함할 수 있고, 동기 정류기는 AC 전류원의 제1 및 제2 리드들에 각각 연결된 제1 한 쌍의 다이오드들 및 AC 전류원의 제1 및 제2 리드들에 각각 연결된 제2 한 쌍의 다이오드들을 포함할 수 있다. 션트 수단은 제1 한 쌍의 다이오드들과 제2 한 쌍의 다이오드들 사이에 연결된 정상 닫힘 안전 스위치를 포함할 수 있다. 정상 닫힘 안전 스위치는 고장의 경우에 AC 전류원을 션트한다.
또 다른 샘플 실시예들에서, 공진 네트워크는 교류(AC) 전류원을 포함할 수 있고, 동기 정류기는 AC 전류원의 제1 및 제2 리드들에 각각 연결되는 제1 한 쌍의 정상 열림 스위치들 및 AC 전류원의 제1 및 제2 리드들에 각각 연결되는 제2 한 쌍의 정상 열림 스위치들을 포함할 수 있다. 션트 수단은 제1 한 쌍의 정상 열림 스위치들과 제2 한 쌍의 정상 열림 스위치들 사이에 연결된 정상 닫힘 안전 스위치를 포함할 수도 있다. 정상 닫힘 안전 스위치는 고장의 경우에 AC 전류원을 션트한다.
공진 네트워크는 샘플 실시예들에서 밸런싱되거나(balanced) 언밸런싱될(unbalanced) 수 있다. 다양한 구성들이 사용될 수 있다.
공진 네트워크는 유도성 1차 코일, 1차 코일과 병렬인 제1 공진 커패시터, 2차 코일, 및 2차 코일과 병렬인 제2 공진 커패시터를 포함하는, 밸런싱된 병렬-병렬 공진 네트워크(PPRN; parallel-parallel resonant network)일 수 있다.
공진 네트워크는 유도성 1차 코일, 1차 코일과 직렬인 제1 공진 커패시터, 2차 코일, 및 2차 코일과 직렬인 제2 공진 커패시터를 포함하는, 언밸런싱된 직렬-직렬 공진 네트워크(SSRN; series-series resonant network)일 수 있다.
공진 네트워크는 유도성 1차 코일, 1차 코일과 병렬인 제1 공진 커패시터, 2차 코일, 및 2차 코일과 직렬인 제2 공진 커패시터를 포함하는, 언밸런싱된 병렬-직렬 공진 네트워크(PSRN; parallel-series resonant network)일 수 있다.
공진 네트워크는 유도성 1차 코일, 1차 코일과 직렬인 제1 공진 커패시터, 2차 코일, 및 2차 코일과 병렬인 제2 공진 커패시터를 포함하는, 언밸런싱된 직렬-병렬 공진 네트워크(SPRN; series-parallel resonant network)일 수 있다.
공진 네트워크는 유도성 1차 코일, 1차 코일과 병렬인 제1 공진 커패시터, 2차 코일, 유도성 코일의 제1 단부에서 2차 코일과 직렬인 제2 공진 커패시터, 및 2차 코일의 제2 단부에서 2차 코일과 직렬인 제3 공진 커패시터를 포함하는, 밸런싱된 PSRN일 수 있다.
공진 네트워크는 유도성 1차 코일, 1차 코일의 제1 단부에서 1차 코일과 직렬인 제1 공진 커패시터, 1차 코일의 제2 단부에서 1차 코일과 직렬인 제2 공진 커패시터, 2차 코일, 및 2차 코일과 병렬인 제3 공진 커패시터를 포함하는, 밸런싱된 SPRN일 수 있다.
공진 네트워크는 유도성 1차 코일, 1차 코일의 제1 단부에서 1차 코일과 직렬인 제1 공진 커패시터, 1차 코일의 제2 단부에서 1차 코일과 직렬인 제2 공진 커패시터, 2차 코일, 2차 코일의 제1 단부에서 2차 코일과 직렬인 제3 공진 커패시터, 및 2차 코일의 제2 단부에서 2차 코일과 직렬인 제4 공진 커패시터를 포함하는, 밸런싱된 SSRN일 수 있다.
샘플 실시예들에서, 공진 네트워크는 절연성 기판의 적어도 한 면 상에 배치된 사각 코일 권선(squared coil winding)을 포함하는 유도성 1차 코일을 더 포함할 수 있다. 공진 커패시터는 사각 코일 권선의 제1 단부에 직렬로 연결될 수 있고, 사각 코일 권선의 제2 단부는 접지에 연결될 수 있다. 결과적으로, 사각 코일 권선은 접지에 대하여 공진 커패시터 양단 전압의 1/2만큼의 공통 모드 전압을 가질 수 있으며, 그에 의해 사각 코일 권선은 용량성 전자기 간섭 방사체(radiator)이다.
다른 샘플 실시예들에서, 제1 공진 커패시터는 사각 코일 권선의 제1 단부에 직렬로 연결될 수 있고, 제2 공진 커패시터는 사각 코일 권선의 제2 단부에 직렬로 연결될 수 있다. 그러한 구성에서, 사각 코일 권선의 제1 및 제2 단부들 사이의 사각 코일 권선의 중간점은 사실상 접지되며, 그에 의해 사각 코일 권선은 전자기 간섭을 용량적으로 방사하지 않는다.
추가의 샘플 실시예들에서, 공진 네트워크가 언밸런싱될 때 방사되는 용량성 전자기 간섭(EMI; electromagnetic interference)을 완화하기 위한 기법들이 제공된다. 제1 기법에 따르면, 전기 차량의 타이어들에는 충전 동안 EMI를 접지하는 전도성 비아들(vias)이 제공된다. 제2 기법에 따르면, 전기 차량은 충전 동안 EMI를 접지하는 접지 케이블을 포함한다. 제3 기법에 따르면, 전기 차량은 충전 동안 상이한 위상 전압들(out-of-phase voltages)을 상쇄하는, 전기 차량의 배터리에 의해 전력을 공급받는 회로를 포함한다.
다른 양태들에 따르면, 유도성 1차 코일로부터 수신된 자기장을 교류(AC) 신호로 변환하는 전기 차량 상의 유도성 2차 코일을 포함하는 공진 네트워크 - 공진 네트워크는 용량성 전자기 간섭(EMI)을 방사하도록 언밸런싱됨 -, 전기 차량의 배터리에 인가하기 위한 직류(DC) 신호를 생성하기 위해 AC 신호를 정류하는 동기 정류기, 및 충전 동안 EMI를 접지하기 위한 수단을 포함하는, 전기 차량의 배터리를 충전하기 위한 자기 유도성 공진 충전 회로가 제공된다. 샘플 실시예들에서, 충전 동안 EMI를 접지하기 위한 수단은 전기 차량의 타이어들을 포함할 수 있고, 여기서 타이어들은 충전 동안 EMI를 접지하는 전도성 비아들을 갖는다. 대안적으로, 충전 동안 EMI를 접지하기 위한 수단은 충전 동안 EMI를 접지하기 위해 전기 차량에 연결된 접지 케이블을 포함할 수 있다. 다른 실시예에서, 충전 동안 EMI를 접지하기 위한 수단은 충전 동안 상이한 위상 전압들을 상쇄하는, 전기 차량의 배터리에 의해 전력을 공급받는 회로를 포함할 수 있다.
이 요약 섹션은 본 발명 대상의 양태들을 간략화된 형태로 소개하기 위해 제공되며, 본 발명 대상의 추가 설명은 상세한 설명의 텍스트에 후속한다. 이 요약 섹션은 청구된 발명 대상의 필수적인 또는 요구된 특징들을 확인해주는 것으로 의도되어 있지 않으며, 이 요약 섹션에 열거된 요소들의 특정의 조합 및 순서가 청구된 발명 대상의 요소들에 대한 제한을 제공하는 것으로 의도되어 있지 않다. 오히려, 이하의 섹션이 이하의 상세한 설명에 설명된 실시예들 중 일부의 요약된 예들을 제공한다는 것을 잘 알 것이다.
본 발명의 전술한 및 다른 유익한 특징들 및 이점들은 첨부된 도면들과 관련하여 다음의 상세한 설명으로부터 명백해질 것이다:
도 1은 안전이 강화된 자기 공진 유도 시스템의 하이-레벨 회로 구현을 개략적으로 도시한다.
도 2는 무효 부하(reactive load)를 갖는 전압원에 대한 일반적인 안전 회로를 개략적으로 도시한다.
도 3은 무효 부하를 갖는 전류원에 대한 일반적인 안전 회로를 개략적으로 도시한다.
도 4a는 복소 부하 임피던스를 갖는 교류 전압원의 스위치-기반 동기 정류를 개략적으로 도시한다.
도 4b는 복소 부하 임피던스를 갖는 교류 전류원의 스위치-기반 동기 정류를 개략적으로 도시한다.
도 4c는 직류 전압 부하를 갖는 교류 전압원의 스위치-기반 동기 정류를 개략적으로 도시한다.
도 4d는 직류 전압 부하를 갖는 교류 전류원의 스위치-기반 동기 정류를 개략적으로 도시한다.
도 5a는 임피던스 부하를 갖는 교류 전압원의 수동 정류를 개략적으로 도시한다.
도 5b는 임피던스 부하를 갖는 교류 전류원의 수동 정류를 개략적으로 도시한다.
도 5c는 임피던스 부하를 갖는 교류 전류원의 수동 정류의 대안적인 실시예를 개략적으로 도시한다.
도 6은 임피던스 부하를 갖는 교류 전류원의 스위치-기반 동기 정류의 대안적인 실시예를 개략적으로 도시한다.
도 7a는 병렬-병렬 공진 유도 회로를 개략적으로 도시한다.
도 7b는 언밸런싱된 직렬-직렬 공진 유도 회로를 개략적으로 도시한다.
도 7c는 하이브리드 병렬-언밸런싱된 직렬 공진 유도 회로를 개략적으로 도시한다.
도 7d는 하이브리드 언밸런싱된 직렬-병렬 공진 유도 회로를 개략적으로 도시한다.
도 7e는 하이브리드 병렬-밸런싱된 직렬 공진 유도 회로를 개략적으로 도시한다.
도 7f는 하이브리드 밸런싱된 직렬-병렬 공진 유도 회로를 개략적으로 도시한다.
도 7g는 밸런싱된 직렬-직렬 공진 유도 회로를 개략적으로 도시한다.
도 8은 자기 공진 유도성 전력 시스템에서 사용하기 위한 코일을 기하학적으로 도시한다.
도 9는 공진 유도성 전력 시스템에서 사용하기 위한 평면 코일의 언밸런싱된 회로 등가물을 개략적으로 도시한다.
도 10은 공진 유도성 전력 시스템에서 사용하기 위한 평면 코일의 밸런싱된 회로 등가물을 개략적으로 도시한다.
도 11은 언밸런싱된 공진 네트워크를 갖는 전기 차량의 공진 유도성 전력 시스템에 대한 기생 전기장을 도시한다.
본 발명의 예시적인 실시예들이 도면들과 관련하여 설명될 것이다. 본 명세서에 설명된 전류원 안전 회로 및 연관된 방법은 본 개시 내용의 일부를 형성하는 첨부 도면들 및 예들과 관련하여 취해진 다음의 상세한 설명을 참조하여 더 쉽게 이해될 수 있다. 이 설명이 본 명세서에 설명되고 그리고/또는 도시된 특정 제품들, 방법들, 조건들 또는 파라미터들로 제한되지 않는다는 것과, 본 명세서에 사용된 용어가 특정의 실시예들을 단지 예로서 설명하기 위한 것이고 임의의 청구된 발명 대상을 제한하는 것으로 의도되어 있지 않다는 것을 잘 알 것이다. 이와 유사하게, 개선을 위한 가능한 메커니즘 또는 동작 모드 또는 이유에 관한 임의의 설명은 예시적인 것에 불과하고, 본 명세서에 설명되는 발명 대상은 개선을 위한 임의의 이러한 제안된 메커니즘 또는 동작 모드 또는 이유의 정확성 또는 부정확성에 의해 제약되어서는 안 된다. 이 텍스트 전체에 걸쳐, 설명은 방법들 및 이러한 방법들을 구현하기 위한 시스템/소프트웨어 양쪽 모두를 참조하는 것으로 인식된다.
예시적인 실시예들의 상세한 설명이 이제 도 1 내지 도 11을 참조하여 설명될 것이다. 이러한 설명은 가능한 구현들의 상세한 예를 제공하지만, 이러한 상세들은 예시적인 것을 의도하며, 본 발명 대상의 범위를 결코 한정하지 않는다는 점에 유의해야 한다.
개방 에어-변압기를 사용하는 무선 전력 전송 시스템에서, 자기/무선 충전을 위해 사용되는 공진 네트워크(즉, 1차/송신기 및 2차/수신기)는 차량 상의 정류를 위한 교류 전원을 생성한다. 전류원을 갖는 것은 전력 공급을 위한 가정 및 산업적 사용 시나리오들에서 전압원들을 대표하는 대부분의 관례들을 반전시킨다. 이러한 시나리오들과의 주요 차이점은 전압원에서 단락 회로들이 불량하다는 것이다. 그 결과, 전력 변환 토폴로지들은 단락을 회피하기 위해 정상 오프 디바이스들(normally off devices)로 구축된다. 그러나, 전류원들의 경우, 그 반대가 참이다: 개방 회로들은 불량하다. 이것은 전형적인 정류 기술들이 바람직하지 않다는 것을 의미한다. 직선 수동(예를 들어, 다이오드-기반) 정류기는 어떠한 보호도 제공하지 않는다. 종래의 동기 정류기는, 디바이스들을 턴온시키기 위해 디바이스들에 에너지를 공급하는 신뢰성 있는 수단이 존재하는 한에만, 보호를 제공할 수 있다.
도 1은 자기 유도 공진을 이용하는 직류 배터리 충전 회로에 대한 하이-레벨 개략도를 개략적으로 도시한다. 공진 네트워크(101)(수신기 또는 2차측이라고도 함)는 밸런싱된 커패시턴스들(105 및 106)을 갖는 유도성 2차 코일(104)로 구성된다. 2차 코일(104)은 충전 송신기(도시되지 않음)로부터의 자기장을, 전압 도메인에서 밸런싱된 커패시턴스들(105 및 106)과 직렬 공진하는 교류(AC) 신호로 변환한다. 도 7a 내지 도 7g에 대해 하기에 설명될 바와 같이, 공진 네트워크의 1차측은 밸런싱되거나 언밸런싱될 수 있다. 공진 네트워크(101)로부터의 AC 신호는 이후 정류 스테이지(102)에서 직류(DC) 신호로 정류된다. 정류 스테이지(102)는 쌍을 이루는 정상 열림(NO; normally open) 스위치들(107 및 108) 및 쌍을 이루는 정상 닫힘(NC; normally closed) 스위치들(109 및 110)을 이용하는, 동기 정류 회로로 구성된다. 후술하는 바와 같이, 쌍을 이루는 NC 스위치들(109 및 110)은 고장의 경우에 2차 코일(104)을 션트하도록 기능한다. DC 신호는 조절 회로부(111)에 전달된다. 조절 회로부(111)의 출력은 배터리(112)를 충전하는 데 이용되는 조절된 DC 신호이다.
정류기 제어기(115)는 (예를 들어, 검출된 제로 크로싱들에 대해) 정류기 스위치들(107 내지 110)의 타이밍을 제어하기 위한 기준으로서 제1 전류 및 전압 센서(113)에서의 공진 네트워크 전류에 위상 고정한다. 정류기 제어기(115)(명목상 필드 프로그래머블 게이트 어레이(FPGA; Field Programmable Gate Array) 또는 종래의 마이크로제어기)는, AC 파형이 충분한 진폭을 갖고 스위칭 주파수가 그 취득 범위 내에 있을 때마다 제1 전류 및 전압 센서(113)를 통해 2차 코일(104)로부터 입력 AC 파형의 진폭, 주파수, 및 순시 위상의 추정치를 생성한다. 정류기 제어기(115)는 또한 제2 전류 및 전압 센서(114)를 통해, 배터리(112)에 인가되는 출력 DC 전류 파형의 진폭을 모니터링한다.
차량 충전 프로세서(116)(명목상 마이크로프로세서 상에서 실행되는 소프트웨어로서 구현됨)는 인터페이스들(예를 들어, 계측 제어기 통신망(CAN; controller area network) 버스)을 통해 내부(무선 전력 전송(WPT; wireless power transfer) 시스템에 대해) 서브시스템들 및 외부 차량 시스템들과의 통신들을 핸들링하고 정류기 제어기(115)의 액션들을 명령할 수 있다. 예를 들어, 차량 충전 프로세서(116)에 의해 질의될(queried) 때, 정류기 제어기(115)는 입력 AC 신호 진폭, 입력 AC 신호 주파수, DC 출력 전압 및 전류, 및 스위칭 디바이스들의 온도를 보고할 수 있다. 보고된 입력 스위칭 주파수가 허용된 폐쇄 범위(예를 들어, 79 ㎑ 내지 90 ㎑) 내에 있고, AC 제곱 평균 제곱근(RMS)이 임계치(예를 들어, 5 암페어) 초과이고, 검출된 고장들이 없을 경우, 차량 충전 프로세서(116)는 정류의 효율을 최대화하기 위하여 입력 AC 파형의 적절한 제로-크로싱들에서 NO 스위치들의 상부 쌍(107 및 108) 및 NC 스위치들의 하부 쌍(109 및 110)을 턴 온-및-오프할 것을 정류기 제어기(115)에 명령할 수도 있다. 공칭 상태(nominal state)는 "시동(startup)" 또는 "안전(safe)"이며, 여기서 NO 스위치들(107 및 108)의 상부 쌍이 열리고, NC 스위치들(109 및 110)의 하부 쌍이 닫힌다. 2차 코일(104)이 포지티브 신호를 생성하고 있을 때, 스위치들(107 및 109)의 제1 세트는 열리고, 스위치들(108 및 110)의 제2 세트는 닫힌다. 2차 코일(104)로부터의 신호가 반전될 때, 스위치들(107 및 109)의 제1 세트는 닫히고, 스위치들(108 및 110)의 제2 세트는 열린다. 이 시퀀스가 반복되고, 그 결과 수학적으로 입력 AC 신호의 절대값인 출력 신호가 얻어진다.
차량 충전 프로세서(116)에 의해 무능화되면, 정류기 제어기(115)는 상부 NO 스위치 쌍(107 및 108)을 오프로 유지하고 하부 NC 스위치 쌍(109 및 110)을 온으로 유지한다. 또한, 과전압, 과전류 고장 조건이 전류 및 전압 센서(114)에서 검출되거나 또는 과온 고장 조건이 온도 센서(117)에서 검출되면, 정류기 제어기(115)는 2차 코일(104)로부터의 전류를 션트하기 위해 상부 NO 스위치 쌍(107 및 108)을 오프 및 하부 NC 스위치들 쌍(109 및 110)을 온으로 유지한다.
정류기 제어기(115)는 전류 및 전압 센서(114)를 통해 정류 스테이지(102)로부터의 출력 DC 전압을 모니터링한다. 정류기 제어기(115)는 또한 전류 및 전압 센서(114)를 통해 출력 DC 전류를 측정하고, 시스템이 배터리(112)에 전달되는 총 전력을 계산할 수 있도록 차량 충전 프로세서(116)에 출력 DC 전류를 보고한다. 또한, 정류기 제어기(115)는 정류기의 스위칭 디바이스들(107 내지 110)의 마운팅 플레이트의 온도를 측정하는, 온도 센서 또는 센서들(예를 들어, 서미스터 또는 서미스터들의 네트워크)(117)을 모니터링할 수 있다. 이 마운팅 플레이트 온도는 스위칭 디바이스들(107 내지 110)의 케이스 온도를 나타내고, 이는 스위칭 디바이스들(107 내지 110)을 통한 전력 손실들과 관련된다.
직렬-직렬 공진 송신기(도시되지 않음)와 쌍을 이룰 때, 공진 네트워크(101)는 AC 전류원이다. 공진 네트워크(101)를 개방(open circuits)하는 임의의 조건은 안전하지 않은 조건을 초래한다. 그러나, 동기 정류 스테이지(102)에 대한 NO 스위치들(107 및 108) 및 NC 스위치들(109 및 110)의 선택은 본질적으로 안전한 시스템을 야기한다. 부수적으로 또는 구체적으로 제어되는 정상 상태에서, NC 스위치들(109 및 110)은 닫히게 되어 2차 코일(104)을 션트할 수 있고, 따라서 공진 네트워크(101)의 AC 전류원을 션트하기 위한 수단을 제공한다. NO 스위치들(107 및 108)은 출력 네트워크(103), 특히 배터리(112)의 단락을 방지한다.
고장의 경우에, 배터리(112)는 신호 조절 회로부(111)로부터 분리되고, 조절 회로부(111)로부터의 전류 흐름은 0으로 감소되는 한편, 조절 회로부(111)로의 전류 흐름은 변하지 않는다. 이것은 조절 회로부(111) 및 정류 스테이지(102) 양단의 전압이 조절 회로부(111)의 임피던스 및 정류된 전류에 비례하는 레이트로 증가하게 할 것이다.
정류기 제어기(115)는 배터리(112)의 분리를 검출하기 위해 전류 및 전압 센서(114)를 사용하여 전압 및/또는 전류를 모니터링한다. 고장의 경우에, 정류기 제어기(115)는 NO 스위치들(107 및 108)을 열고 NC 스위치들(109 및 110)을 닫음으로써 응답할 수 있다. 이는 조절 회로부(111) 및 배터리(112)로부터 공진 네트워크(101)를 분리하도록 동작한다. 정류 스테이지(102)로부터 조절 회로부(111)로 정류된 전류가 흐를 때 전력 전송이 즉시 중단될 것이고, 배터리(112)는 NO 스위치들(107 및 108)에 의해 차단될 것이며, 공진 네트워크(101)로부터의 전류 흐름은 NC 스위치들(109 및 110)을 통해 션트될 것이다.
제어기를 동작시키거나 동기적으로 정류하기 위한 제어 전력이 없는 수동 상태에서, NO 스위치들(107 및 108)은 출력 네트워크(103)를 개방하는 반면, NC 스위치들(109 및 110)은 공진 네트워크(101)를 션트한다. 이것은 스퓨리어스 에너지(spurious energy)가 우발적인지 또는 악성인지에 관계없이, 공진 네트워크(101)에 의해 픽업된 스퓨리어스 에너지로부터 충전기, 부하, 및 서비스 요원을 보호한다.
도 2는 무효 부하를 갖는 전압원에 대한 일반적인 안전 회로를 개략적으로 도시한다. 도 2에서, 전압원(201) 및 부하(202)가 공통 접지(203)를 공유하는 일반적인 전압원 공급 보호 솔루션이 도시된다. 전압원(201)은 소싱된(sourced) 전류의 고정된 전압 불변량(invariant)을 제공한다. 소스 전류는 부하(202)의 부하 임피던스에 의해 설정된다. 전류 센서(205)는 소스 전류를 모니터링한다. 소스 전류가 허용 가능한 한계를 초과하는 경우, 전류 센서(205)는 정상 열림 스위치(204)를 그의 열림 상태로 트리거함으로써 보호 기능을 제공한다. 정상 열림 스위치(204)는 리셋될 때까지 열림 상태로 유지된다. 정상 열림 스위치(204)의 분리가 트리거되면, 부하(202) 양단의 전압 및 부하를 통한 전류 흐름은 0으로 구동된다. 여기에 도시된 정상 열림(NO) 스위치(204) 및 전류 센서(205)는 광범위한 사용에서 다양한 릴레이들, 회로 차단기들, 및 퓨즈들을 갖는 하나의 구현 옵션일뿐이다. 사실상 모든 전원 및 분배 네트워크들은 전압원과 함께 동작하고, 도 2에 도시된 바와 같은 소정 형태의 차단기 또는 퓨즈를 이용하여 소정 종류의 전류 제한 방안을 구현한다. 전압원 전력 시스템에서, 개방 회로들은 양호하고 단락 회로들은 불량하다는 것을 알 것이다.
도 3에 도시된 전류원 공급은 훨씬 덜 일반적인 구현이다. 정전류 공급은 더 흔한 전압원 공급의 안전 보호에서 모든 최상의 실시들의 미러를 요구한다. 전류원 전력 시스템에서, 전압원 전력 시스템과 달리, 개방 회로들은 불량하고 션트들(의도적인 단락 회로들)은 양호한 실시라는 것을 알 것이다. 따라서, 본 명세서에 설명된 안전 회로의 상이한 실시예들은 전원이 전류원 전력 시스템인지 또는 전압원 전력 시스템인지에 기초하여 고려되어야 한다.
도 3은 무효 부하를 갖는 전류원에 대한 일반적인 안전 회로를 개략적으로 도시한다. 전류원(301)은 그 양단의 전압에 관계없이 무효 부하(302)에 전류를 공급한다. 이 예에서, 모든 회로 경로들은 공통 접지(303)를 공유한다. 전류원(301)은 전압 전류의 고정된 전류 불변량을 제공한다.
전류 션트 및 소스로부터의 부하의 격리(및 그 반대)를 제공하기 위해, 전압-감지 분리가 무효 부하(302)와 병렬로 배치된다. 도 3에 도시된 정상 닫힘(NC) 스위치 션트(304) 및 전압 센서(305)는 광범위한 사용에서 다양한 스위치들, 릴레이들, 회로 차단기들, 및 퓨즈들을 가지는 션트 수단의 단지 하나의 구현 옵션이다. NC 스위치 션트(304)가 전압 센서(305)에 의해 트리거되면, NC 스위치 션트(304)는 열리게 되어, 무효 부하(302)를 통한 전압 및 전류 흐름을 0으로 구동한다.
도 4a 내지 도 4d는 모두 무선 전력 전송을 위해 필요한 안전 정류 회로 및 추가적인 서브시스템들의 대안적인 실시예들을 도시한다.
도 4a는 복소 부하 임피던스를 갖는 교류 전압원의 스위치-기반 동기 정류를 개략적으로 도시한다. 특히, 도 4a는 직류(DC) 전압원을 생성하기 위한, 종래의 교류(AC) 전압원 및 안전-향상 동기 정류 회로를 도시한다. AC 전압원(401)은 정상 열림(NO) 스위치들(402, 403, 404, 및 405)의 세트에 의해 동기적으로 정류된다. 전력 조절 네트워크(406)는 정류된 DC 전압을 부하(407)에 대한 DC 전압원으로 필터링하는 것을 제공한다. 고장의 경우에, NO 스위치들은 열리지 않고, 이는 AC 전압원(401)으로부터 부하(407)를 분리하고 보호한다.
도 4b는 샘플 실시예에서 복소 부하 임피던스를 갖는 교류 전류원의 스위치-기반 동기 정류를 개략적으로 도시한다. 특히, 도 4b는 DC 전류원을 생성하기 위한, AC 전류원 및 안전-향상 동기 정류 회로를 도시한다. AC 전류원(410)은 NO 스위치들(403 및 404) 및 정상 닫힘(NC) 스위치들(408 및 409)의 세트에 의해 동기적으로 정류된다. 전력 조절 네트워크(406)는 정류된 전류를 부하(407)에 대한 DC 전류원으로 필터링하는 것을 제공한다. AC 전류원(410)은 NC 스위치들(408 및 409)의 세트가, 고장의 경우에 전류를 션트하기 위한 수단을 제공하도록 개방될 것을 필요로 한다. 고장 상태에서, 닫힘 스위치들(408 및 409)은 전력의 임의의 백 피드(back feed)를 방지하기 위해 AC 전류원(410)으로부터 부하(407)를 분리시킨다.
도 4c는 직류 전압 부하를 갖는 교류 전압원의 스위치-기반 동기 정류를 개략적으로 도시한다. 특히, 도 4c는 배터리를 충전하기 위한 DC 전압원을 생성하기 위한, AC 전압원 및 안전-향상 동기 정류 회로를 도시한다. AC 전압원(401)은 NO 스위치들(402, 403, 404, 및 405)의 세트에 의해 동기적으로 정류된다. 전력 조절 네트워크(406)는 정류된 전압을 전력 변환 스테이지(411)에 대한 DC 전압원으로 필터링하는 것을 제공한다. 전력 변환 스테이지(411)는 배터리(412)를 충전하는 데 필요한 전압에 DC 전압원을 적응시킨다.
도 4d는 샘플 실시예에서 직류 전압 부하를 갖는 교류 전류원의 스위치-기반 동기 정류를 개략적으로 도시한다. 특히, 도 4d는 배터리를 충전하기 위한 DC 전압원을 생성하기 위한, AC 전류원 및 안전-향상 동기 정류 회로를 도시한다. AC 전류원(410)은 NO 스위치들(402 및 403) 및 NC 스위치들(408 및 409)의 세트에 의해 동기적으로 정류된다. 전력 조절 네트워크(406)는 정류된 전류를 배터리(412)에 대한 DC 전류원으로 필터링하는 것을 제공한다. AC 전류원(410)은 NC 스위치들(408 및 409)의 세트가, 고장의 경우에 전류를 션트하기 위한 수단을 제공할 것을 필요로 한다. 그러나, 시스템이 전류원에 의해 전력을 공급받으므로, 도 4c의 전력 변환 스테이지(411)는 배터리 충전에 대해 필요하지 않는다.
도 5a는 임피던스 부하를 갖는 교류 전압원의 수동 정류를 개략적으로 도시한다. 특히, 도 5a는 AC 전압원(501)을 위한 종래의 수동 전파(full-wave) 정류기 회로를 개략적으로 도시한다. 다이오드들(502, 503, 504, 및 505)은 단방향 게이트들로서 작용하여, AC 신호의 전파 정류를 생성한다. 전력 조절 스테이지(506)는 부하(507)에 인가되는 정류기 전압 출력을 평활화하는 역할을 하여, 부하(507)가 충전되게 한다.
모든 다이오드 회로들과 같이, 순방향 바이어스 조건에서의 전압 강하 및 역방향 복구 시간은 정류 회로의 효율에 영향을 미친다. 수동 정류기 회로는 제어기 스테이지를 필요로 하지 않는다. 그러나, 고장의 경우, AC 전압원(501)은 여전히 전력 조절 스테이지(506)를 통해 부하(507)에 연결되어 부하(507)를 전압원 고장들에 노출시킨다(그리고 그 반대도 마찬가지이다).
도 5b는 샘플 실시예에서 임피던스 부하를 갖는 교류 전류원의 수동 정류를 개략적으로 도시한다. 특히, 도 5b는 AC 전류원(508)의 정류를 위한 안전-강화 회로의 하이브리드 실시예를 도시한다. 풀-브리지(full-bridge) 수동 정류기 다이오드들(502, 503, 510, 및 512)은 정상 닫힘(NC) 스위치들(509 및 511)에 의해 보충된다. 다이오드들(502, 503, 510, 및 512)은 단방향 게이트들로서 작용하여 전파 정류를 생성한다. NC 스위치들(509 및 511)은 고장의 경우에 션트하기 위한 수단으로서 작용하여, AC 전류원(508)에 대한 그리고 다이오드들(502, 503, 510, 및 512)에 걸친 과전압 손상을 방지한다. 전력 조절 스테이지(506)는 부하(507)에 인가되는 정류기 전압 출력을 평활화하는 역할을 하여, 부하(507)가 충전되게 한다.
모든 다이오드-기반 정류 회로들과 같이, 순방향 바이어스 조건에서의 전압 강하 및 역방향 복구 시간은 정류 회로의 효율에 영향을 미친다. 수동 정류기 회로는 제어기 스테이지를 필요로 하지 않지만, NC 스위치들(509 및 511)에 명령하기 위해 제어기(예를 들어, 정류기 제어기(115))가 필요하다.
도 5c는 샘플 실시예에서의 임피던스 부하를 갖는 교류 전류원의 대안적인 수동 정류를 개략적으로 도시한다. 특히, 도 5c는 AC 전류원(508)을 위한 전파 안전-강화 정류기 회로의 대안적인, 반수동(semi-passive) 실시예를 도시한다. 다이오드들(502, 503, 510, 및 512)은 단방향 게이트들로서 작용하여, 전파 정류를 생성한다. 전력 조절 스테이지(506)는 부하(507)에 인가되는 정류기 전압 출력을 평활화하는 역할을 하여, 부하(507)가 충전되게 한다. 이 실시예에서, 정상 닫힘(NC) 션트 스위치(513)가 회로 내에 배치된다. 고장 또는 명령 옵션의 경우, 션트 스위치(513)는 정류기 회로 내의 전류를 션트하여, 전력 조절 스테이지(506) 및 부하(507)에 대한 손상을 방지한다.
이 실시예는 더 간단한 제어들을 갖는 더 저렴한 구현이다. 그러나, 덜 효율적이다. 추가적으로, 그것은 션트 스위치(513)에 대한 격리된 제어 경계를 가로질러 높은 dV/dt를 배치한다. 모든 다이오드-기반 정류 회로들과 마찬가지로, 순방향 바이어스 조건에서의 전압 강하 및 역방향 복구 시간은 정류 회로의 효율에 영향을 미친다.
도 6은 샘플 실시예에서 임피던스 부하를 갖는 교류 전류원의 대안적인 스위치-기반 동기 정류를 개략적으로 도시한다. 특히, 도 6은 AC 전류원(601)의 능동 정류를 위한 대안적인 안전 회로를 도시한다. 전력 조절 스테이지(606)는 충전될 부하(607)에 인가되는 정류기 전압 출력을 평활화하는 역할을 한다. 전파 정류는 AC 전류원(601)의 정현파 출력의 제로 크로싱에서 교대로 스위칭함으로써 달성된다. 정상 닫힘(NC) 안전 스위치(608)는 정상 열림(NO) 상부 정류 스위치들(602 및 604)과 하부 정상 열림(NO) 정류 스위치들(603 및 605) 사이에 설치되고, 이는 고장 또는 명령된 옵션의 경우에 정류기 회로의 전류를 션트하기 위한 수단을 제공하여, 전력 조절 스테이지(606) 및 부하(607)에 대한 손상을 방지한다.
고장 상태 또는 정류 제어의 손실에서, NO 정류 스위치들(602, 603, 604, 및 605)은 열림 상태로 고장나고(또는 명령받고), 반면 NC 안전 스위치(608)는 닫힘 상태로 고장난다. 따라서, 전류가 AC 전류원(601)으로 다시 션트되고, 반면 NC 안전 스위치(608)에 의해 부하가 격리된다. 본 실시예는 추가적인 스위치(608)를 희생하여 정상 닫힘(NC) 스위치들에 대한 요구를 감소시킨다.
공진 유도 무선 충전을 위해, 4개의 잠재적인 2 극점(two pole) 네트워크들이 있다. 병렬-병렬 공진 네트워크(PPRN; parallel-parallel resonant network) 및 직렬-직렬 공진 네트워크(SSRN; series-series resonant network)가 존재한다. 갈바니 절연(galvanic isolation)으로 인해, 병렬-직렬 공진 네트워크(PSRN) 및 직렬-병렬 공진 네트워크(SPRN)를 생성하는 것도 가능하다. PPRN, PSRN, 및 SPRN은 부하 임피던스가 네트워크 임피던스에 비해 클 때는 모두 AC 전압 제어 전압원들(VCVS; Voltage Controlled Voltage Sources)로서 거동하고, 부하 임피던스가 네트워크 임피던스에 비해 작을 때는 모두 AC 전압 제어 전류원들(VCCS; Voltage Controlled Current Sources)로서 거동한다. 한편, SSRN은 모든 부하 임피던스들에 대해 VCCS로서 거동한다. 정전압 부하, 예를 들어 배터리는 전력 레벨이 변함에 따라 가변 부하 임피던스로서 나타난다. 낮은 전력들에서, 배터리는 높은 임피던스 부하로서 나타날 것이고, 높은 전력들에서 그것은 낮은 임피던스로서 나타날 것이다. 높은 전력에서, 4개의 공진 네트워크들 모두는 VCCS로서 거동할 것이다.
VCCS로서 동작할 때, PPRN은 볼트당 암페어 단위로 k/(w*L)의 트랜스컨덕턴스(G)를 가지며, 여기서 k는 0 내지 1의 범위 내의 1차 및 2차 인덕터들의 자기 커플링 계수이며 단위가 없고, w는 초당 라디안 단위의 네트워크의 공진 주파수이고, L은 헨리 단위의 1차 및 2차 인덕터들의 기하 평균이다. VCCS로서 동작할 때, PSRN, SPRN, 및 SSRN은 1/(w*L*k)의 G를 갖는다. 이것은 고정된 G에 대해 PPRN의 인덕터가 k2 배만큼 더 작은 인덕터를 갖고 PPRN의 커패시터가 k-2 배만큼 더 크다는 것을 의미한다. 이것은 커패시터가 훨씬 더 비싼 컴포넌트이므로 바람직하지 않다.
공진 네트워크는 P/k에 비례하는 양의 전력(S)을 공진시키며, 여기서 P는 네트워크를 통한 전력이다. k의 통상적인 값들(예를 들어, 0.05 내지 0.2)에 대해, S는 P보다 5배 내지 20배 높을 것이다. 병렬 공진 분기들에서, 공진 전력은 용량성 및 유도성 요소들을 통한 전류로서 보여진다. 직렬 공진 분기들에서, 공진 전력은 용량성 및 유도성 요소들 양단의 추가적인 전압으로서 보여진다. 예를 들어, k가 0.1인 500V 및 125A 시스템에서, 병렬 공진에서는 인덕터 및 커패시터에서 125A/0.1 또는 1,250A가 공진하는 반면, 직렬 공진에서는 인덕터 및 커패시터에 걸쳐 500V/0.1 또는 5,000V가 공진할 것이다. 더 높은 전압들이 추가적인 절연을 필요로 하는 반면, 더 높은 전류들은 추가적인 도체들을 필요로 하므로, 더 높은 전압들은 더 가볍고 더 콤팩트한 제품을 가능하게 하기 때문에 직렬 공진의 경우가 바람직하다.
이러한 고려사항들을 염두에 두고, PSRN, SPRN, 및 SSRN 각각은 밸런싱된 및 언밸런싱된 토폴로지 모두를 가질 수 있다. PPRN은 밸런싱된 토폴로지만을 갖는다. 이러한 토폴로지들 각각은 도 7a 내지 도 7g에 도시된다.
도 7a는 샘플 실시예에서의 밸런싱된 PPRN 회로를 개략적으로 도시한다. 이 공진 네트워크는 접지 유도성 코일(701), 접지 병렬 공진 커패시터(703), 차량 유도성 코일(702), 및 차량 병렬 공진 커패시터(704)를 포함한다.
도 7b는 샘플 실시예에서의 언밸런싱된 SSRN 회로를 개략적으로 도시한다. 이 공진 네트워크는 접지 유도성 코일(701), 접지 직렬 공진 커패시터(705), 차량 유도성 코일(702), 및 차량 직렬 공진 커패시터(706)를 포함한다.
도 7c는 샘플 실시예에서의 언밸런싱된 PSRN 회로를 개략적으로 도시한다. 이 공진 네트워크는 접지 유도성 코일(701), 접지 병렬 공진 커패시터(707), 차량 유도성 코일(702), 및 차량 직렬 공진 커패시터(708)를 포함한다.
도 7d는 샘플 실시예에서의 언밸런싱된 SPRN 회로를 개략적으로 도시한다. 이 공진 네트워크는 접지 유도성 코일(701), 접지 직렬 공진 커패시터(709), 차량 유도성 코일(702), 및 차량 병렬 공진 커패시터(710)를 포함한다.
도 7e는 샘플 실시예에서의 밸런싱된 PSRN 회로를 개략적으로 도시한다. 이 공진 네트워크는 접지 유도성 코일(701), 접지 병렬 공진 커패시터(711), 차량 유도성 코일(702), 및 한 쌍의 차량 직렬 공진 커패시터들(712 및 713)을 포함한다.
도 7f는 샘플 실시예에서의 밸런싱된 SPRN 회로를 개략적으로 도시한다. 이 공진 네트워크는 접지 유도성 코일(701), 한 쌍의 접지 직렬 공진 커패시터들(714 및 715), 차량 유도성 코일(702), 및 차량 병렬 공진 커패시터(716)를 포함한다.
도 7g는 샘플 실시예에서의 밸런싱된 SSRN 회로를 개략적으로 도시한다. 이 공진 네트워크는 접지 유도성 코일(701), 한 쌍의 접지 직렬 공진 커패시터들(717 및 718), 차량 유도성 코일(702), 및 한 쌍의 차량 직렬 공진 커패시터들(719 및 720)을 포함한다.
도 8은 샘플 실시예에서 자기 공진 유도성 전력 시스템에서 1차 코일로서 사용하기 위한 평면 코일(801)을 기하학적으로 도시한다. 정사각형 코일로서 도시되어 있지만, 다른 기하형상들(예를 들어, 고전적인 원형 코일 또는 직사각형)도 가능하다. 코일 권선(803)은 절연성 기판(805) 상에 배치되며, 개별 전도성 리본들(예를 들어, 인쇄 회로 보드), 절연 와이어 스트랜드들(예를 들어, 리츠 와이어(Litz wire)), 또는 그와 유사한 것을 포함할 수 있다. 비아들(802 및 804)은 절연 기판(805)의 반대측 상의 다른 코일과의 연결을 허용한다.
도 9는 샘플 실시예에서 직렬 공진 네트워크(901)에서 사용하기 위한 평면 코일(801)의 언밸런싱된 회로 등가물을 개략적으로 도시한다. 직렬 공진 네트워크(901)는 송신기이다. 네트워크의 단자들(906 및 907)은 인버터에 연결된다. 직렬 공진 네트워크(901)가 공진될 때, 공진 커패시터(905)는 그 양단에 고전압 고주파 전압을 갖는다. 이 동일한 전압이 인덕터(903) 양단에 보인다. 인덕터(903)의 제1 단자(904)는 사실상 접지 전위로 유지된다. 인덕터의 제2 단자(902)는 접지에 대해 공진 커패시터(905)의 최대 전압에 노출된다. 즉, 인덕터(903)의 전압은 접지에 대하여 공진 커패시터(905) 양단 전압의 1/2만큼의 공통 모드 전압을 가지며, 이는 인덕터(903)를 용량성 전자기 간섭(EMI) 방사체로 만든다. 이 구성에서, 도 11에 관하여 이하에서 언급되는 바와 같이, EMI 방사를 완화하기 위한 기술들이 요구된다.
도 10은 샘플 실시예에서 직렬 공진 네트워크(1001)에서 사용하기 위한 평면 코일(801)의 밸런싱된 회로 등가물을 개략적으로 도시한다. 직렬 공진 네트워크(1001)는 또한 송신기이다. 네트워크의 단자들(1007 및 1008)은 인버터에 연결된다. 직렬 공진 네트워크(1001)가 공진될 때, 커패시터들(1005 및 1006)은 그들 양단에 고전압 고주파 전압을 갖는다. 그 전압들의 합은 인덕터(1003)에 걸쳐 보여진다. 그러나, 직렬 공진 네트워크(1001)가 밸런싱됨에 따라, 단자들(1002 및 1004) 사이의 인덕터(1003)의 중간점은 사실상 접지이다. 따라서, 인덕터(1003) 양단에 차동 전압(differential voltage)이 존재하지만, 접지에 대한 고주파 공통 모드 전압은 존재하지 않는다. 인덕터(1003)는 EMI를 용량성으로 방사하지 않고, EMI를 핸들링하기 위한 메커니즘이 요구되지 않는다.
도 11은 샘플 실시예에서 EMI 방사로 이어지는 언밸런싱된 공진 네트워크를 갖는 전기 차량(1101)의 공진 유도성 전력 시스템에 대한 기생 전기장을 도시한다. 전기 차량들(1101)은 타이어들(1102)을 통해 섀시(1106)와 접지(1108) 사이에 한계 컨덕턴스(marginal conductance)를 갖는다. 고주파수들에서 섀시(1106)와 접지(1108) 사이의 어드미턴스는 섀시(1106)와 접지(1108) 사이의 커패시턴스에 의해 지배된다. 섀시(1106)와 접지(1108) 사이의 갭(1107)에서 발생된 전기장(1105)이 커패시턴스를 활성화하고 섀시(1106)에 전압을 도입할 것이기 때문에, 송신기(1104) 또는 수신기(1103)에 의해 생성된 공통 모드 용량성 EMI는 최소화되어야 한다. 최소한, 이 용량성 커플링은 EMI 문제를 확장할 수 있고, 최악의 경우 충격 위험을 야기할 수 있다.
섀시 전압은 충전이 진행 중인 동안 EMI를 접지하기 위한 수단으로서 기능하는, 접지로의 전도성 경로(들)를 추가하는 것에 의해 감소될 수 있다. 타이어들의 이미 전도성인 재료들(카본 블랙)은 타이어 재료를 통한 더 낮은 저항의 전도성 비아들의 추가에 의해 향상될 수 있다. 접지 케이블 또는 와이어 '테일(tail)'의 배치는 또한 충전 동안 섀시 전압들을 완화하기 위해 사용될 수 있다. 충전 동안 상이한 위상 전압들을 상쇄하는, 무선 충전 시스템 또는 차량 배터리 시스템에 의해 전력을 공급받는 회로의 추가에 의해 섀시 전압은 또한 완화될 수 있다.
본 명세서에 설명된 실시예들은 충전 동안 전기 충격의 가능성을 최소화하기 위해 고장의 경우에 직류 파형을 션트하기 위한 다양한 수단을 제공한다는 것이 본 기술분야의 통상의 기술자에 의해 이해될 것이다. 기술들은 밸런싱된 또는 언밸런싱된 공진 네트워크 토폴로지들에 대해 사용될 수 있다. 정류 회로는 고장의 경우에 전력을 션트하도록 설계된 구성들에서 다이오드들 및/또는 스위치들을 포함할 수 있고, 이는 특히 전기 차량들의 충전과 같은 높은 전력 전송 응용들에 대해, 충전 프로세스 동안 증가된 안전성을 초래한다.
본 명세서에 논의된 바와 같이, 본 명세서에 설명된 방법들의 양태들을 구현하는 로직, 커맨드들, 또는 명령어들은 데스크톱 또는 노트북 개인용 컴퓨터들과 같은 컴퓨팅 시스템, 태블릿들, 넷북들, 및 스마트폰들과 같은 모바일 디바이스들, 클라이언트 단말기들, 및 서버-호스트 머신 인스턴스들, 및 그와 유사한 것에 대한 임의의 수의 폼 팩터들을 포함하는 컴퓨팅 시스템에서 제공될 수 있다. 본 명세서에서 논의된 또 다른 실시예는, 본 명세서에서 논의된 기술들을 프로그램된 로직, 하드웨어 구성들, 또는 전문화된 컴포넌트들이나 모듈들을 포함하는 다른 형태로의 병합을 포함하며, 이는 이러한 기술들의 기능들을 수행하는 각각의 수단을 갖는 장치를 포함한다. 이러한 기술들의 기능들을 구현하는 데 사용되는 각자의 알고리즘들은 첨부 도면들 및 이하의 상세한 설명에 도시된 다른 양태들 또는 본 명세서에 설명된 전자적 동작들의 일부 또는 전부의 시퀀스를 포함할 수 있다. 본 명세서에 설명된 방법들을 구현하기 위한 명령어들을 포함하는 그러한 시스템들 및 컴퓨터-판독가능 매체들은 또한 샘플 실시예들을 구성한다.
본 명세서에 설명된 모니터링 및 제어 기능들은 일 실시예에서 소프트웨어로 구현될 수 있다. 소프트웨어는 로컬 또는 네트워킹된 하나 이상의 비일시적 메모리 또는 다른 유형의 하드웨어-기반 저장 디바이스와 같은 컴퓨터 판독가능 매체 또는 컴퓨터 판독가능 저장 디바이스 상에 저장된, 컴퓨터 실행가능 명령어들로 이루어질 수 있다. 또한, 이러한 기능들은 소프트웨어, 하드웨어, 펌웨어, 또는 이들의 임의의 조합일 수 있는 모듈들에 대응한다. 다수의 기능들은 원하는 대로 하나 이상의 모듈에서 수행될 수 있고, 설명된 실시예들은 단지 예들이다. 소프트웨어는 디지털 신호 프로세서, ASIC, 마이크로프로세서, 또는 개인용 컴퓨터, 서버, 또는 다른 컴퓨터 시스템과 같은 컴퓨터 시스템 상에서 동작하는 다른 타입의 프로세서 상에서 실행되어, 그러한 컴퓨터 시스템을 구체적으로 프로그래밍된 기계로 전환할 수 있다.
본 명세서에 설명된 예들은 프로세서들, 로직, 또는 다수의 컴포넌트들, 모듈들, 또는 메커니즘들(본 명세서에서 "모듈들")을 포함할 수 있거나, 또는 이들 상에서 동작할 수 있다. 모듈들은 특정된 동작들을 수행할 수 있는 유형의(tangible) 개체들(예를 들어, 하드웨어)이고, 특정 방식으로 구성되거나 배열될 수 있다. 일례에서, 회로들은 모듈로서 특정된 방식으로(예를 들어, 내부적으로 또는 다른 회로들과 같은 외부 개체들에 대하여) 배열될 수도 있다. 일례에서, 하나 이상의 컴퓨터 시스템(예를 들어, 독립형, 클라이언트 또는 서버 컴퓨터 시스템) 또는 하나 이상의 하드웨어 프로세서의 전부 또는 일부는 특정된 동작들을 수행하도록 동작하는 모듈로서 펌웨어 또는 소프트웨어(예를 들어, 명령어들, 애플리케이션 부분, 또는 애플리케이션)에 의해 구성될 수 있다. 일례에서, 소프트웨어는 머신 판독가능 매체 상에 상주할 수 있다. 소프트웨어는, 모듈의 기본 하드웨어에 의해 실행될 때, 하드웨어가 특정된 동작들을 수행하게 한다.
따라서, "모듈"이라는 용어는, 유형의 하드웨어 및/또는 소프트웨어 개체, 즉 특정된 방식으로 동작하거나 본 명세서에 설명된 임의의 동작의 일부 또는 전부를 수행하도록 물리적으로 구성되거나, 구체적으로 구성되거나(예를 들어, 하드웨어에 내장된(hardwired)), 또는 일시적으로(예를 들어, 일시적으로(transitorily)) 구성되는(예를 들어, 프로그래밍되는) 개체를 포괄하는 것으로 이해된다. 모듈들이 일시적으로 구성되는 예들을 고려하면, 모듈들 각각은 임의의 한 순간에 인스턴스화될 필요는 없다. 예를 들어, 모듈들이 소프트웨어를 사용하여 구성된 범용 하드웨어 프로세서를 포함하는 경우, 범용 하드웨어 프로세서는 상이한 시간들에서 각각의 상이한 모듈들로서 구성될 수 있다. 따라서, 소프트웨어는, 예를 들어, 하나의 시간 인스턴스에서 특정 모듈을 구성하고 상이한 시간 인스턴스에서 상이한 모듈을 구성하도록 하드웨어 프로세서를 구성할 수 있다.
이 분야의 통상의 기술자들은 본 명세서에서 설명되는 토폴로지 및 회로 구현 방법이 단일 주문형 집적 회로로서 효과적인 실현을 가능하게 한다는 것을 알 것이다. 또한, 본 명세서에 포함된 개시내용은 차량들에의 전력의 제공에 관한 것이지만, 이것은 많은 가능한 응용들 중 하나일 뿐이고, 비-차량 응용들을 포함하는 다른 실시예들이 가능하다는 것을 이해해야 한다. 예를 들어, 본 기술분야의 통상의 기술자는, 칫솔들, 셀룰러 전화기들, 및 다른 디바이스들을 충전하기 위해 사용되는 것들(예를 들어, PowerMat™)과 같은, 휴대용 소비자 전자 디바이스 충전기들과 같은 비-차량 유도성 충전 응용들에서 전류원 안전 회로를 제공하는 다수의 응용들이 있다는 것을 이해할 것이다. 따라서, 이들 및 다른 그러한 응용들은 아래의 청구항들의 범위 내에 포함된다.

Claims (34)

  1. 자기 유도 공진 충전 회로로서,
    유도 1차 코일로부터 수신된 자기장을 교류(AC) 신호로 변환하는 유도 2차 코일을 포함하는 공진 네트워크; 및
    충전될 부하에 인가하기 위한 직류(DC) 신호를 생성하기 위해 상기 AC 신호를 정류하는 동기 정류기 - 상기 동기 정류기는 고장의 경우에 상기 AC 신호를 션트하기 위한 수단을 포함함 -
    를 포함하는, 충전 회로.
  2. 제1항에 있어서, 상기 공진 네트워크는 AC 전류원인, 충전 회로.
  3. 제1항에 있어서, 상기 공진 네트워크는 상기 2차 코일의 각각의 단부들에 직렬로 연결된 제1 및 제2 밸런싱된 커패시터들을 더 포함하고, 그에 의해 상기 AC 신호는 상기 제1 및 제2 커패시터들과 직렬 공진하는, 충전 회로.
  4. 제3항에 있어서, 상기 동기 정류기는 한 쌍의 정상 열림 스위치들(normally open switches) 및 한 쌍의 정상 닫힘 스위치들(normally closed switches)을 포함하고, 상기 한 쌍의 정상 열림 스위치들 중 하나 및 상기 한 쌍의 정상 닫힘 스위치들 중 하나는 상기 제1 밸런싱된 커패시터에 연결되고, 상기 한 쌍의 정상 열림 스위치들 중 다른 하나 및 상기 한 쌍의 정상 닫힘 스위치들 중 다른 하나는 상기 제2 밸런싱된 커패시터에 연결되며, 상기 션트하기 위한 수단은, 고장의 경우에 상기 2차 코일을 션트하는 상기 정상 닫힘 스위치들을 포함하는, 충전 회로.
  5. 제4항에 있어서, 상기 정상 열림 스위치들은 고장의 경우에 상기 부하의 단락을 방지하도록 구성되는, 충전 회로.
  6. 제4항에 있어서, 상기 부하에 인가하기 위해 상기 DC 신호를 조절된 DC 신호로 조절하는 신호 조절 회로부(signal conditioning circuitry)를 더 포함하는, 충전 회로.
  7. 제6항에 있어서, 상기 공진 네트워크로부터 상기 동기 정류기에 입력되는 상기 AC 신호를 모니터링하는 제1 전류 및 전압 센서, 및 상기 부하에 인가되는 상기 조절된 DC 신호를 모니터링하는 제2 전류 및 전압 센서를 더 포함하는, 충전 회로.
  8. 제7항에 있어서, 상기 제1 전류 및 전압 센서와 상기 제2 전류 및 전압 센서에 의해 측정된 값들에 응답하여, 상기 공진 네트워크에 의해 출력된 AC 신호에 위상 고정하고, 상기 측정된 값들에 응답하여 상기 한 쌍의 정상 열림 스위치들과 상기 한 쌍의 정상 닫힘 스위치들의 스위칭을 제어하는 제어 신호들을 제공하는 정류기 제어기를 더 포함하는, 충전 회로.
  9. 제8항에 있어서, 상기 동기 정류기의 과온 고장 조건을 검출하고 검출 신호를 상기 정류기 제어기에 제공하는 온도 센서를 더 포함하는, 충전 회로.
  10. 제9항에 있어서, 상기 정류기 제어기로부터 입력 AC 신호 진폭, 입력 AC 신호 주파수, 조절된 DC 파형 전압, 조절된 DC 파형 전류, 및 상기 동기 정류기의 온도 중 적어도 하나를 수신하고 상기 정류기 제어기의 동작들을 명령하는 충전 프로세서를 더 포함하는, 충전 회로.
  11. 제10항에 있어서, 상기 충전 프로세서는, 상기 AC 신호 주파수가 허용된 범위 내에 있고, AC 신호 제곱 평균 제곱근이 임계치 위이며, 어떠한 고장도 검출되지 않았을 때, 상기 공진 네트워크로부터의 상기 AC 신호의 근사화된 제로-크로싱들에서 상기 한 쌍의 정상 열림 스위치들과 상기 한 쌍의 정상 닫힘 스위치들을 턴온 및 턴오프하도록 상기 정류기 제어기에 지시하는, 충전 회로.
  12. 제10항에 있어서, 고장 조건이 검출될 때, 상기 충전 프로세서는 상기 정류기 제어기를 무능화시키고, 이는 상기 한 쌍의 정상 열림 스위치들을 오프 상태로 유지하고 상기 한 쌍의 정상 닫힘 스위치들을 온 상태로 유지하는, 충전 회로.
  13. 제10항에 있어서, 상기 정류기 제어기는, 상기 제2 전류 및 전압 센서에 의해 과전압, 과전류 고장 조건이 검출되거나 상기 온도 센서에 의해 과온 고장 조건이 검출될 때, 상기 한 쌍의 정상 열림 스위치들을 오프 상태로 유지하고 상기 한 쌍의 정상 닫힘 스위치들을 온 상태로 유지하는, 충전 회로.
  14. 제2항에 있어서, 상기 동기 정류기는 상기 AC 전류원의 제1 및 제2 리드들에 각각 연결되는 제1 한 쌍의 다이오드들, 및 상기 AC 전류원의 상기 제1 및 제2 리드들에 각각 연결되는 제2 한 쌍의 다이오드들을 포함하고, 상기 션트 수단은 상기 제2 한 쌍의 다이오드들 중 제1 다이오드와 병렬로 연결되는 제1 정상 닫힘 스위치, 및 상기 제2 한 쌍의 다이오드들 중 제2 다이오드와 병렬로 연결되는 제2 정상 닫힘 스위치를 포함하고, 상기 제1 및 제2 정상 닫힘 스위치들은 고장의 경우에 상기 AC 전류원을 션트하는, 충전 회로.
  15. 제2항에 있어서, 상기 동기 정류기는 상기 AC 전류원의 제1 및 제2 리드들에 각각 연결된 제1 한 쌍의 다이오드들 및 상기 AC 전류원의 상기 제1 및 제2 리드들에 각각 연결된 제2 한 쌍의 다이오드들을 포함하고, 상기 션트 수단은 상기 제1 한 쌍의 다이오드들과 상기 제2 한 쌍의 다이오드들 사이에 연결된 정상 닫힘 안전 스위치를 포함하고, 상기 정상 닫힘 안전 스위치는 고장의 경우에 상기 AC 전류원을 션트하는, 충전 회로.
  16. 제2항에 있어서, 상기 동기 정류기는 상기 AC 전류원의 제1 및 제2 리드들에 각각 연결되는 제1 한 쌍의 정상 열림 스위치들, 및 상기 AC 전류원의 상기 제1 및 제2 리드들에 각각 연결되는 제2 한 쌍의 정상 열림 스위치들을 포함하고, 상기 션트 수단은 상기 제1 한 쌍의 정상 열림 스위치들과 상기 제2 한 쌍의 정상 열림 스위치들 사이에 연결되는 정상 닫힘 안전 스위치를 포함하고, 상기 정상 닫힘 안전 스위치는 고장의 경우에 상기 AC 전류원을 션트하는, 충전 회로.
  17. 제1항에 있어서, 상기 공진 네트워크는 유도 1차 코일, 상기 1차 코일과 병렬인 제1 공진 커패시터, 상기 2차 코일, 및 상기 2차 코일과 병렬인 제2 공진 커패시터를 포함하는, 충전 회로.
  18. 제1항에 있어서, 상기 공진 네트워크는 유도 1차 코일, 상기 1차 코일과 직렬인 제1 공진 커패시터, 상기 2차 코일, 및 상기 2차 코일과 직렬인 제2 공진 커패시터를 포함하는, 충전 회로.
  19. 제1항에 있어서, 상기 공진 네트워크는 유도 1차 코일, 상기 1차 코일과 병렬인 제1 공진 커패시터, 상기 2차 코일, 및 상기 2차 코일과 직렬인 제2 공진 커패시터를 포함하는, 충전 회로.
  20. 제1항에 있어서, 상기 공진 네트워크는 유도 1차 코일, 상기 1차 코일과 직렬인 제1 공진 커패시터, 상기 2차 코일, 및 상기 2차 코일과 병렬인 제2 공진 커패시터를 포함하는, 충전 회로.
  21. 제1항에 있어서, 상기 공진 네트워크는 유도 1차 코일, 상기 1차 코일과 병렬인 제1 공진 커패시터, 상기 2차 코일, 상기 2차 코일의 제1 단부에서 상기 2차 코일과 직렬인 제2 공진 커패시터, 및 상기 2차 코일의 제2 단부에서 상기 2차 코일과 직렬인 제3 공진 커패시터를 포함하는, 충전 회로.
  22. 제1항에 있어서, 상기 공진 네트워크는 유도 1차 코일, 상기 1차 코일의 제1 단부에서 상기 1차 코일과 직렬인 제1 공진 커패시터, 상기 1차 코일의 제2 단부에서 상기 1차 코일과 직렬인 제2 공진 커패시터, 상기 2차 코일, 및 상기 2차 코일과 병렬인 제3 공진 커패시터를 포함하는, 충전 회로.
  23. 제1항에 있어서, 상기 공진 네트워크는 유도 1차 코일, 상기 1차 코일의 제1 단부에서 상기 1차 코일과 직렬인 제1 공진 커패시터, 상기 1차 코일의 제2 단부에서 상기 1차 코일과 직렬인 제2 공진 커패시터, 상기 2차 코일, 상기 2차 코일의 제1 단부에서 상기 2차 코일과 직렬인 제3 공진 커패시터, 및 상기 2차 코일의 제2 단부에서 상기 2차 코일과 직렬인 제4 공진 커패시터를 포함하는, 충전 회로.
  24. 제1항에 있어서, 상기 공진 네트워크는 절연성 기판의 적어도 한 면 상에 배치된 사각 코일 권선(squared coil winding)을 포함하는 유도 1차 코일을 더 포함하는, 충전 회로.
  25. 제24항에 있어서, 상기 사각 코일 권선의 제1 단부 및 접지에 연결된 상기 사각 코일 권선의 제2 단부에 직렬로 연결된 공진 커패시터를 더 포함하고, 상기 사각 코일 권선은 접지에 대하여 상기 공진 커패시터 양단 전압의 1/2만큼의 공통 모드 전압을 가지며, 그에 의해 상기 사각 코일 권선은 용량성 전자기 간섭 방사체인, 충전 회로.
  26. 제24항에 있어서, 상기 사각 코일 권선의 제1 단부에 직렬로 연결된 제1 공진 커패시터 및 상기 사각 코일 권선의 제2 단부에 직렬로 연결된 제2 공진 커패시터를 더 포함하고, 상기 사각 코일 권선의 상기 제1 및 제2 단부들 사이의 상기 사각 코일 권선의 중간점은 사실상 접지되며, 그에 의해 상기 사각 코일 권선은 전자기 간섭을 용량적으로 방사하지 않는, 충전 회로.
  27. 제1항에 있어서, 상기 2차 코일은 전기 차량에 장착되고, 상기 부하는 상기 전기 차량의 배터리인, 충전 회로.
  28. 제27항에 있어서, 상기 공진 네트워크는 용량성 전자기 간섭(EMI)을 방사하도록 언밸런싱되고, 상기 전기 차량은 충전 동안 상기 EMI를 접지하는 전도성 비아들을 갖는 타이어들을 포함하는, 충전 회로.
  29. 제27항에 있어서, 상기 공진 네트워크는 용량성 전자기 간섭(EMI)을 방사하도록 언밸런싱되고, 상기 전기 차량은 충전 동안 상기 EMI를 접지하는 접지 케이블을 포함하는, 충전 회로.
  30. 제27항에 있어서, 상기 공진 네트워크는 용량성 전자기 간섭(EMI)을 방사하도록 언밸런싱되고, 상기 전기 차량은 충전 동안 상이한 위상 전압들(out-of-phase voltages)을 상쇄하는, 상기 전기 차량의 배터리에 의해 전력을 공급받는 회로를 포함하는, 충전 회로.
  31. 전기 차량의 배터리를 충전하기 위한 자기 유도 공진 충전 회로로서,
    유도 1차 코일로부터 수신된 자기장을 교류(AC) 신호로 변환하는 상기 전기 차량 상의 유도 2차 코일을 포함하는 공진 네트워크 - 상기 공진 네트워크는 용량성 전자기 간섭(EMI)을 방사하도록 언밸런싱됨 -;
    상기 전기 차량의 상기 배터리에 인가하기 위한 직류(DC) 신호를 생성하기 위해 상기 AC 신호를 정류하는 동기 정류기; 및
    충전 동안 상기 EMI를 접지하기 위한 수단
    을 포함하는, 충전 회로.
  32. 제31항에 있어서, 충전 동안 상기 EMI를 접지하기 위한 상기 수단은 상기 전기 차량의 타이어들을 포함하고, 상기 타이어들은 충전 동안 상기 EMI를 접지하는 전도성 비아들을 갖는, 충전 회로.
  33. 제31항에 있어서, 충전 동안 상기 EMI를 접지하기 위한 상기 수단은 충전 동안 상기 EMI를 접지하기 위해 상기 전기 차량에 연결된 접지 케이블을 포함하는, 충전 회로.
  34. 제31항에 있어서, 충전 동안 상기 EMI를 접지하기 위한 상기 수단은 충전 동안 상이한 위상 전압들을 상쇄하는, 상기 전기 차량의 배터리에 의해 전력을 공급받는 회로를 포함하는, 충전 회로.
KR1020227019962A 2020-04-16 2020-12-29 무선 전력 전송을 위한 안전 회로들 KR20230002268A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237034438A KR20230147756A (ko) 2020-04-16 2020-12-29 무선 전력 전송을 위한 페일세이프 안전 회로들

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063010771P 2020-04-16 2020-04-16
US63/010,771 2020-04-16
US16/952,933 2020-11-19
US16/952,933 US11936196B2 (en) 2020-04-16 2020-11-19 Failsafe safety circuits for protection from faults or loss of rectification control during wireless power transfer
PCT/US2020/067339 WO2021211177A1 (en) 2020-04-16 2020-12-29 Safety circuits for wireless power transfer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237034438A Division KR20230147756A (ko) 2020-04-16 2020-12-29 무선 전력 전송을 위한 페일세이프 안전 회로들

Publications (1)

Publication Number Publication Date
KR20230002268A true KR20230002268A (ko) 2023-01-05

Family

ID=78082264

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237034438A KR20230147756A (ko) 2020-04-16 2020-12-29 무선 전력 전송을 위한 페일세이프 안전 회로들
KR1020227019962A KR20230002268A (ko) 2020-04-16 2020-12-29 무선 전력 전송을 위한 안전 회로들

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020237034438A KR20230147756A (ko) 2020-04-16 2020-12-29 무선 전력 전송을 위한 페일세이프 안전 회로들

Country Status (8)

Country Link
US (2) US11936196B2 (ko)
EP (2) EP4136663A1 (ko)
JP (2) JP2023521262A (ko)
KR (2) KR20230147756A (ko)
CN (2) CN114830272A (ko)
CA (1) CA3163694A1 (ko)
MX (1) MX2022007157A (ko)
WO (1) WO2021211177A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11581800B2 (en) * 2020-09-08 2023-02-14 Commscope Technologies Llc Apparatuses and methods for averting human harm due to high voltage powerlines
US11764621B1 (en) * 2021-09-10 2023-09-19 Apple Inc. Wireless power transfer with integrated communications
WO2023243847A1 (ko) * 2022-06-17 2023-12-21 삼성전자 주식회사 무선으로 전력을 수신하는 전자 장치와 이의 동작 방법
JP2024000330A (ja) * 2022-06-20 2024-01-05 株式会社デンソー 受電装置、非接触給電システムおよび非接触給電方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045770A (en) * 1988-02-04 1991-09-03 Magellan Corporation (Aust.) Pty. Ltd. Shunt regulator for use with resonant input source
JP2006271136A (ja) * 2005-03-24 2006-10-05 Denso Corp Dc−dcコンバータ装置
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8764621B2 (en) * 2011-07-11 2014-07-01 Vascor, Inc. Transcutaneous power transmission and communication for implanted heart assist and other devices
JP6382818B2 (ja) * 2012-09-11 2018-08-29 フィリップス アイピー ベンチャーズ ビー ヴィ 無線電力制御
FR2996372B1 (fr) * 2012-10-01 2015-05-15 Renault Sa Systeme de charge sans contact d'une batterie de vehicule automobile
JP6379660B2 (ja) * 2013-06-27 2018-08-29 Tdk株式会社 ワイヤレス受電装置、及び、ワイヤレス電力伝送装置
US9755423B2 (en) * 2014-03-13 2017-09-05 Infineon Technologies Ag Overvoltage protection for a synchronous power rectifier
US9634514B2 (en) * 2014-05-30 2017-04-25 Infineon Technologies Austria Ag Single stage rectification and regulation for wireless charging systems
US9739844B2 (en) 2014-07-25 2017-08-22 Qualcomm Incorporated Guidance and alignment system and methods for electric vehicle wireless charging systems
US9640976B2 (en) * 2015-02-26 2017-05-02 Ut-Battelle, Llc Overvoltage protection system for wireless power transfer systems
US10923952B2 (en) 2015-04-05 2021-02-16 Chargedge, Inc. Secondary-side output boost technique in power converters and wireless power transfer systems
MY177839A (en) * 2016-05-18 2020-09-23 Nissan Motor Coil unit
WO2017205371A1 (en) 2016-05-27 2017-11-30 Witricity Corporation Voltage regulation in wireless power receivers
JP6880172B2 (ja) * 2016-08-08 2021-06-02 ワイトリシティ コーポレーションWitricity Corporation 磁束消去のための共有材料を有するインダクタシステム
US11059380B2 (en) 2017-09-21 2021-07-13 Utah State University Dynamic inductive wireless power transmitter system with a power transmitter module
JP6907897B2 (ja) * 2017-11-20 2021-07-21 トヨタ自動車株式会社 受電装置およびそれを備えた非接触電力伝送システム
JP6904280B2 (ja) * 2018-03-06 2021-07-14 オムロン株式会社 非接触給電装置
US10840742B2 (en) * 2018-06-18 2020-11-17 Efficient Power Conversion Corporation Wireless power receiver synchronization detection circuit
EP3599700B1 (en) * 2018-07-25 2020-12-30 Wiferion GmbH Safe operation in wireless power transmission systems
CN111668941A (zh) * 2019-03-05 2020-09-15 恩智浦美国有限公司 用于无线电力接收器的过电压保护电路系统
CN110912278B (zh) * 2019-10-30 2023-10-20 华为技术有限公司 一种无线充电的接收端、保护方法及系统

Also Published As

Publication number Publication date
MX2022007157A (es) 2022-07-11
US11936196B2 (en) 2024-03-19
CN114830272A (zh) 2022-07-29
JP2023521262A (ja) 2023-05-24
CN117239948A (zh) 2023-12-15
JP2023179602A (ja) 2023-12-19
US20210328443A1 (en) 2021-10-21
EP4136663A1 (en) 2023-02-22
US20230411970A1 (en) 2023-12-21
EP4273897A2 (en) 2023-11-08
WO2021211177A1 (en) 2021-10-21
EP4273897A3 (en) 2024-03-06
CA3163694A1 (en) 2021-10-21
KR20230147756A (ko) 2023-10-23

Similar Documents

Publication Publication Date Title
US11936196B2 (en) Failsafe safety circuits for protection from faults or loss of rectification control during wireless power transfer
CN107431382B (zh) 无线受电装置和无线电力传输装置
KR102181510B1 (ko) 자동차 배터리를 충전하기 위한 비접촉식 충전 시스템
US20170093225A1 (en) Power-receiving device, wireless power-transmitting system, and power-transmission device
WO2012030963A2 (en) Overvoltage protection for ac power source
EP3648274B1 (en) Protection coordination technique for power converters
Chen et al. A comparative study of SS and LCC-S compensation topology of inductive power transfer systems for EV chargers
WO2012062929A2 (en) Power inverter for feeding electric energy from a dc power generator into an ac grid with two power lines
CN105099001A (zh) 用于无接触地传输能量的装置
Stengert On-board 22 kW fast charger “NLG6”
US20190067969A1 (en) Device for charging an electric energy store, and method for initializing a charging process for an electric energy store
US20220379746A1 (en) Dc link charging of capacitor in a wireless power transfer pad
KR20210144897A (ko) 절연 컨버터
CN204809833U (zh) 一种欠压保护电路及无线电能传输装置
US11695271B2 (en) Protection circuits for wireless power receivers
CN105098704A (zh) 一种欠压保护电路、欠压保护方法及无线电能传输装置
US20160221462A1 (en) System and method for charging a traction battery limiting the current draw of parasitic capacitances
EP2638627B1 (en) Power inverter for feeding electric energy from a dc power generator into an ac grid with two power lines
KR101409352B1 (ko) 지하철 변전소에 사용되는 기기의 전원 공급용 써지 보호 회로를 구비한 전원 장치
CN111907352A (zh) 车辆接地故障检测
EP4102678A1 (en) Multi-functional current limiter for energy storage devices
CN210608949U (zh) 变压整流电路及充电器
JP2017169410A (ja) 受電装置
CN209447712U (zh) 交流断路器
CN117799455A (zh) 车辆充电方法、车辆充电系统和车辆