KR20230002184A - A manufacturing method of carbon fibers from cellulose fiber or cellulose derivative fiber - Google Patents
A manufacturing method of carbon fibers from cellulose fiber or cellulose derivative fiber Download PDFInfo
- Publication number
- KR20230002184A KR20230002184A KR1020220174328A KR20220174328A KR20230002184A KR 20230002184 A KR20230002184 A KR 20230002184A KR 1020220174328 A KR1020220174328 A KR 1020220174328A KR 20220174328 A KR20220174328 A KR 20220174328A KR 20230002184 A KR20230002184 A KR 20230002184A
- Authority
- KR
- South Korea
- Prior art keywords
- fibers
- cellulose
- cellulose derivative
- lyocell
- fiber
- Prior art date
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 60
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000000835 fiber Substances 0.000 title claims description 34
- 229920002678 cellulose Polymers 0.000 title claims description 32
- 239000001913 cellulose Substances 0.000 title claims description 32
- 229920003043 Cellulose fiber Polymers 0.000 title claims 16
- 229920000433 Lyocell Polymers 0.000 claims abstract description 62
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 238000003763 carbonization Methods 0.000 claims abstract description 16
- 230000005855 radiation Effects 0.000 claims abstract description 15
- 238000010000 carbonizing Methods 0.000 claims abstract description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 28
- 239000004744 fabric Substances 0.000 claims description 17
- 229920000578 graft copolymer Polymers 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- 229920000297 Rayon Polymers 0.000 claims description 4
- 239000002964 rayon Substances 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 3
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 2
- 238000010884 ion-beam technique Methods 0.000 claims description 2
- -1 polyethylimine Chemical compound 0.000 claims description 2
- 229920001661 Chitosan Polymers 0.000 claims 1
- 229920000742 Cotton Polymers 0.000 claims 1
- 238000004108 freeze drying Methods 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 claims 1
- 230000006641 stabilisation Effects 0.000 abstract description 7
- 238000011105 stabilization Methods 0.000 abstract description 7
- 239000003431 cross linking reagent Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 11
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 6
- 229920002239 polyacrylonitrile Polymers 0.000 description 6
- 238000002411 thermogravimetry Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- 239000003063 flame retardant Substances 0.000 description 4
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- IVNPXOUPZCTJAK-UHFFFAOYSA-N 4-methylmorpholin-4-ium;hydroxide Chemical compound O.CN1CCOCC1 IVNPXOUPZCTJAK-UHFFFAOYSA-N 0.000 description 1
- 229920000875 Dissolving pulp Polymers 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000021962 pH elevation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/16—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C7/00—Heating or cooling textile fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/001—Treatment with visible light, infrared or ultraviolet, X-rays
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/008—Treatment with radioactive elements or with neutrons, alpha, beta or gamma rays
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/285—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/063—Load-responsive characteristics high strength
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
본 발명은 셀룰로오스 기반인 라이오셀 섬유를 탄화함으로써, 탄소섬유를 얻는 제조방법에 관한 것으로서, 원사인 라이오셀 섬유를 폴리아크릴아마이드(polyacrylamide, PAM)용액에 침지한 후 방사선, 가열, 가교제를 통해서 라이오셀 섬유에 그라프트화하고, 일정한 온도 범위에서 열안정화를 거쳐 난염화한 후, 고온 탄화처리를 통하여 탄소섬유를 얻는 제조 방법에 관한 것이다. The present invention relates to a manufacturing method for obtaining carbon fiber by carbonizing cellulose-based lyocell fiber, wherein lyocell fiber, which is a yarn, is immersed in a polyacrylamide (PAM) solution and then irradiated, heated, and crosslinked with a lyocell fiber. It relates to a manufacturing method of obtaining carbon fibers through high-temperature carbonization treatment after grafting to cell fibers, heat stabilization at a certain temperature range and flame retardation.
탄소 섬유는 자동차, 항공 분야나, 양질의 스포츠 용품, 풍력터빈 블레이드 등 첨단 복합재료의 보강재로 널리 사용되고 있다. 탄소 섬유의 전구체로는 폴리아크릴로니트릴 (polyacrylonitrile, PAN), 피치, 셀룰로오스로 분류되는데, 그 중, PAN 섬유는 고성능 탄소섬유의 전구체로 98% 이상을 차지한다. 그러나, PAN 섬유는 화석연료로부터 얻어지기 때문에 탄화하는 동안 다량의 유독 가스 발생 및 사용 후 폐기 처리에 대한 큰 단점을 가지고 있다. 게다가, PAN 섬유는 가격이 비싸고 국제유가 변동에 따라 다양하게 변할 수 있다. 따라서, 친환경적이면서 값이 저렴한 전구체에 대한 연구가 필요하다. Carbon fiber is widely used as a reinforcing material for high-tech composite materials such as automobiles, aviation, high-quality sporting goods, and wind turbine blades. Carbon fiber precursors are classified into polyacrylonitrile (PAN), pitch, and cellulose. Among them, PAN fibers account for more than 98% of the precursors of high-performance carbon fibers. However, since PAN fibers are obtained from fossil fuels, they have significant disadvantages of generating a large amount of toxic gases during carbonization and disposal after use. In addition, PAN fibers are expensive and can vary widely according to fluctuations in international oil prices. Therefore, there is a need for research on environmentally friendly and inexpensive precursors.
셀룰로오스는 목재나 비목재로부터 얻어지는 지구상에서 가장 풍부한 유기 물질이면서, 가장 오래된 탄소섬유의 전구체이지만, 수율 및 기계적 강도가 낮은 단점이 있다. 그럼에도 불구하고, 셀룰로오스계 탄소 섬유는 원료의 안정한 공급, 경제성 및 친환경성으로 인해 PAN계 탄소섬유 대신할 수 있도록 수율과 기계적 강도를 향상시키기 위한 연구가 계속되고 있다. Cellulose is the most abundant organic material on earth obtained from wood or non-wood and is the oldest carbon fiber precursor, but has low yield and mechanical strength. Nevertheless, cellulose-based carbon fibers are being studied to improve yield and mechanical strength so that they can replace PAN-based carbon fibers due to stable supply of raw materials, economic feasibility, and eco-friendliness.
탄소섬유의 전구체로 사용되는 셀룰로오스는 레이온 섬유와 라이오셀 섬유가 대표적이다. 레이온 섬유는 목재펄프의 섬유소를 재생하여 만든 재생섬유로서 알칼리화, 크산토겐산염화와 같은 복잡한 전처리공정이 동반되고 다양한 부산물이 발생된다. 한편, 라이오셀 섬유는 용제인 N-methylmorpholine-N-oxide(NMMO) 단독 또는 NMMO와 물을 혼합한 용액에 셀룰로오스를 직접 용해하여 얻어진 섬유로서, 단면이 동그랗고, 가늘고 긴 모양을 가진 섬유이다. 비교적 간단한 유기 용매 방사를 사용하므로 간단하고, 친환경적으로 제조가 가능하다. Cellulose used as a precursor of carbon fiber is representative of rayon fiber and lyocell fiber. Rayon fiber is a regenerated fiber made by regenerating the cellulose of wood pulp, and it is accompanied by complex pretreatment processes such as alkalinization and xanthogenation, and various by-products are generated. On the other hand, Lyocell fiber is a fiber obtained by directly dissolving cellulose in a solution of N -methylmorpholine- N -oxide (NMMO) alone or a mixture of NMMO and water, which is a solvent, and has a round cross section and a thin and long shape. Since it uses a relatively simple organic solvent spinning, it can be manufactured simply and environmentally friendly.
다만, 라이오셀 섬유와 레이온 섬유와 같은 셀룰로오스는 탄소 수율과 강도가 매우 낮기 때문에, 탄소 섬유로 전환하기 전에 난연제 처리와 같은 전처리를 수행하여 왔다. However, since cellulose such as lyocell fibers and rayon fibers have very low carbon yield and strength, pretreatment such as flame retardant treatment has been performed before conversion to carbon fibers.
이에, 본 발명은 일실시예로서 셀룰로오스의 하나인 라이오셀계 섬유를 이용한 탄소섬유를 얻되, 탄소수율과 강도를 개선하기 위한 새로운 제조방법을 착안하게 되었다. Accordingly, the present invention, as an embodiment, was focused on a new manufacturing method for obtaining carbon fibers using lyocell-based fibers, one of cellulose, and improving carbon yield and strength.
본 발명은 셀룰로오스를 이용하여 탄소섬유를 제조함에 있어서 탄소섬유의 물리적 강도와 탄화 수율을 높일 수 있는 라이오셀 섬유를 이용한 탄소섬유 제조방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method for manufacturing carbon fibers using lyocell fibers capable of increasing the physical strength and carbonization yield of carbon fibers in manufacturing carbon fibers using cellulose.
본 발명은 셀룰로오스 기반의 라이오셀을 이용하여 탄소섬유를 얻기 위해 난연제 처리를 대신할 수 있는 새로운 처리방법을 포함하는 탄소섬유 제조방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a carbon fiber manufacturing method including a new treatment method that can replace flame retardant treatment to obtain carbon fibers using cellulose-based lyocell.
상기 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention
- 셀룰로오스 기반의 라이오셀 섬유에 그라프트 고분자 용액을 침지하는 단계(S1);- dipping the graft polymer solution into the cellulose-based lyocell fiber (S1);
- 그라프트 고분자용액이 침지된 라이오셀 섬유에 방사선, 또는 가열을 통해서 그라프트화 하는 단계(S2);- Grafting the lyocell fibers soaked in the graft polymer solution through radiation or heating (S2);
- 그라프트화된 라이오셀 섬유를 건조하는 단계(S3);- drying the grafted lyocell fibers (S3);
- 상기 건조된 라이오셀 섬유를 일정한 온도 구간에서 열안정화하여 난염화하는 단계(S4); 및- Heat-stabilizing the dried lyocell fiber at a constant temperature to make it flame retardant (S4); and
- 상기 열안정화된 라이오셀 섬유를 고온에서 탄화하는 단계(S5)를 포함하는 라이오셀 섬유를 이용한 탄소섬유 제조방법이다. - It is a carbon fiber manufacturing method using lyocell fibers including the step (S5) of carbonizing the heat-stabilized lyocell fibers at a high temperature.
본 발명은 셀룰로오스 기반의 라이오셀 섬유나 직물을 이용하여 탄소 섬유 또는 직물로 제조하기 위하여 방사선 또는 가열을 이용하여 라이오셀 섬유에 폴리아크릴아마이드를 그라프팅하고, 이후 열안정화 공정을 통해 간소화하고 빠른 시간 내에 섬유를 안정화시킴으로써, 탄소섬유의 물리적 강도와 탄화 수율이 현저하게 개선되었다. The present invention grafts polyacrylamide on lyocell fibers using radiation or heating to produce carbon fibers or fabrics using cellulose-based lyocell fibers or fabrics, and then simplifies and fast-times through a heat stabilization process. By stabilizing the fibers within, the physical strength and carbonization yield of carbon fibers were significantly improved.
도 1은 본 발명의 일실시예에 따른 라이오셀계 탄소섬유 제조방법에 대한 간략도이다.
도 2는 본 발명의 일실시예에 따라 제조된 라이오셀계 탄소직물 사진이다.
도 3은 본 발명의 일실시예에 따라 제조된 라이오셀 탄소섬유의 열중량 분석 (TGA) 그래프이다.
도 4는 본 발명의 일실시예에 따라 제조된 라이오셀 탄소섬유의 주사 전자현미경 (SEM) 사진이다.
도 5는 본 발명의 일실시예에 따라 제조된 라이오셀 탄소섬유의 인장강도 측정값 그래프이다. 1 is a simplified view of a method for manufacturing lyocell-based carbon fibers according to an embodiment of the present invention.
2 is a photograph of a lyocell-based carbon fabric manufactured according to an embodiment of the present invention.
3 is a thermogravimetric analysis (TGA) graph of lyocell carbon fibers prepared according to an embodiment of the present invention.
4 is a scanning electron microscope (SEM) photograph of a lyocell carbon fiber prepared according to an embodiment of the present invention.
5 is a graph of tensile strength measurements of lyocell carbon fibers prepared according to an embodiment of the present invention.
본 발명은 셀룰로오스 기반의 라이오셀 섬유를 이용한 탄소섬유 제조방법의 바람직한 실시예는 기본적으로 다음과 같은 공정을 의한다. 여기서 라이오셀 섬유라 함은 라이오셀계 섬유 뿐만 아니라, 직물을 포함하는 것을 의미하고 탄화에 의해서 생성된 탄소섬유라 함은 탄소직물을 포함하는 것을 의미한다. 본 발명에 따른 라이오셀 섬유를 이용한 탄소섬유의 제조방법은 각 단계별 순서를 도 1에 도시하였고 이를 참조하여 설명한다.A preferred embodiment of the method for manufacturing carbon fibers using cellulose-based lyocell fibers according to the present invention basically follows the following process. Here, the term lyocell fiber means to include fabric as well as lyocell-based fibers, and the term carbon fiber produced by carbonization means to include carbon fabric. The method for manufacturing carbon fibers using lyocell fibers according to the present invention is illustrated in FIG.
- 셀룰로오스 기반의 라이오셀 섬유에 그라프트 고분자 용액을 침지하는 단계(S1);- dipping the graft polymer solution into the cellulose-based lyocell fiber (S1);
- 그라프트 고분자용액이 침지된 라이오셀 섬유에 방사선 또는 가열을 통해서 그라프트화 하는 단계(S2);- Grafting the lyocell fibers soaked in the graft polymer solution through radiation or heating (S2);
- 그라프트화된 라이오셀 섬유를 건조하는 단계(S3);- drying the grafted lyocell fibers (S3);
- 상기 건조된 라이오셀 섬유를 일정한 온도 구간에서 열안정화하여 난염화하는 단계(S4); 및- Heat-stabilizing the dried lyocell fiber at a constant temperature to make it flame retardant (S4); and
- 상기 열안정화된 라이오셀 섬유를 고온에서 탄화하는 단계(S5)를 포함하는 것을 특징으로 하는 라이오셀 섬유를 이용한 탄소섬유 제조방법이다. - It is a carbon fiber manufacturing method using lyocell fiber characterized by comprising the step (S5) of carbonizing the heat-stabilized lyocell fiber at a high temperature.
상기 탄소섬유 제조방법에 대해서 아래의 일실시예를 통해서 구체적으로 설명한다. The carbon fiber manufacturing method will be described in detail through an embodiment below.
- 1 단계(S1)는 셀룰로오스 기반의 라이오셀 섬유(또는 직물)를 가교제인 그라프트 고분자 용액에 침지하는 단계로서, 침지한 상태 그대로를 이용할 수 있으며 또는 롤러(roller) 등을 이용하여 라이오셀 섬유 또는 직물로부터 그라프트 고분자 용액을 적당량 제거한 상태를 이용할 수 있다. - Step 1 (S1) is a step of immersing cellulose-based lyocell fibers (or fabrics) in a graft polymer solution, which is a crosslinking agent. Alternatively, a state in which an appropriate amount of the graft polymer solution has been removed from the fabric may be used.
상기 그라프트 고분자 용액은 폴리아크릴아마이드, 아크릴산계 유도체, 메타크릴로니트릴, 메타크릴산글리시딜, 구연산. 에피클로히드린, 폴리에틸이민, 글루타알데하이드를 포함하는 군으로부터 1종 이상 선택될 수 있으나, 바람직하게는 폴리아크릴아마이드 용액을 사용하며 본원 발명의 실시예로서 사용하였다. 폴리아크릴아마이드 용액은 0.005 중량%~ 4 중량% 일 수 있으나, 0.05 중량%~ 0.5 중량%인 것이 바람직하다. 0.05중량% 이하이면 그 효과를 나타내기 어렵고, 0.5중량% 이상이면, 점도가 증가하여 탄소섬유가 서로 엉겨붙게 되어 섬유의 분리가 곤란하게 된다. The graft polymer solution is polyacrylamide, acrylic acid derivative, methacrylonitrile, glycidyl methacrylate, citric acid. At least one may be selected from the group including epichlorhydrin, polyethylimine, and glutaraldehyde, but preferably, a polyacrylamide solution is used and used as an example of the present invention. The polyacrylamide solution may be 0.005% by weight to 4% by weight, but preferably 0.05% by weight to 0.5% by weight. If it is less than 0.05% by weight, it is difficult to show the effect, and if it is more than 0.5% by weight, the viscosity increases and the carbon fibers become entangled with each other, making it difficult to separate the fibers.
- 2단계는 상기와 같이 그라프트 고분자 용액이 침지된 라이오셀 섬유를 방사선 또는 가열을 통해서 그라프트화하는 단계이다. - Step 2 is a step of grafting the lyocell fibers soaked in the graft polymer solution as described above through radiation or heating.
상기 라이오셀에 고분자를 그라프트화하는 방사선으로는 감마선, 전자선, 이온빔, 중성자빔, 자외선 및 X선 등을 사용할 수 있으며, 방사선 조사선량은 50 kGy ~ 500 kGy 일 수 있으나, 바람직하게는 100 kGy~300 kGy인 것이 적당하다. 한편 열에 의해서 그라프트화 하는 것은 80 ℃이상에서 가열하는 것이 바람직하다. As the radiation for grafting the polymer to the lyocell, gamma rays, electron beams, ion beams, neutron beams, ultraviolet rays, X-rays, etc. may be used, and the radiation dose may be 50 kGy to 500 kGy, but preferably 100 kGy to 300 kGy is suitable. On the other hand, grafting by heat is preferably heated at 80 ° C. or higher.
- 방사선 조사 또는 가열에 의해서 그라프트화된 라이오셀 섬유를 건조하는 단계 (S3);- drying the grafted lyocell fibers by irradiation or heating (S3);
폴리아크릴아마이드가 그라프트화된 라이오셀 섬유를 건조하는 단계로서, 그라프트화된 라이오셀 섬유는 초저온 냉동고에서 냉동 동결 건조를 하거나 자연, 실온, 가열 건조하는 것 중 어느 하나 선택하여 건조할 수 있으나, 바람직하게는 동결 건조하는 것이다.As a step of drying the polyacrylamide-grafted lyocell fibers, the grafted lyocell fibers may be freeze-dried in a cryogenic freezer or dried by selecting any one of natural, room temperature, and heat drying, but preferably It is freeze-dried.
- 상기 건조된 라이오셀 섬유를 일정한 온도 구간에서 열안정화하는 단계 (S4); - Heat-stabilizing the dried lyocell fibers at a constant temperature (S4);
상기에서 건조된 라이오셀 섬유를 일정한 온도 구간에서 열안정화를 위한 열처리단계로서, 상기 열처리단계는 분당 1~10 ℃로 하여 200~300 ℃에서 30분에서 3시간 동안 수행할 수 있다. 상기 단계들을 통하여 라이오셀은 탄화공정을 수행하는데 적합한 분자구조를 갖추게 된다. As a heat treatment step for thermal stabilization of the dried lyocell fiber in a constant temperature range, the heat treatment step may be performed at 200 to 300 ° C for 30 minutes to 3 hours at 1 to 10 ° C per minute. Through the above steps, lyocell has a molecular structure suitable for carrying out the carbonization process.
- 상기 열안정화된 라이오셀 섬유를 고온에서 탄화하는 단계 (S5)를 포함한다.- A step (S5) of carbonizing the heat-stabilized lyocell fiber at a high temperature.
상기 탄화단계는 불활성 분위기 가운데서 라이오셀 섬유 또는 직물을 탄화시키는 단계로서, 상기 탄화공정은 500~2500 ℃의 온도로 가열하여 진행되며, 승온속도는 분당 1~10℃로 하여 진행되되 1400 ℃이상 온도까지 승온하는 것이 바람직하다. 가급적 승온속도를 느리게 하는 것이 바람직하지만 승온속도가 너무 느리면 에너지 소비가 증가되는 문제가 있다. The carbonization step is a step of carbonizing lyocell fibers or fabrics in an inert atmosphere, and the carbonization process is performed by heating at a temperature of 500 to 2500 ° C, and the temperature rise rate is 1 to 10 ° C per minute. It is desirable to raise the temperature to It is desirable to slow the heating rate as much as possible, but if the heating rate is too slow, there is a problem in that energy consumption increases.
상기 단계들의 제조공정 중에서 그라프트화 농도, 방사선 조사량, 그리고 열안정화 온도 및 시간에 따라 라이오셀계 탄소섬유의 강도와 탄화수율이 결정된다. In the manufacturing process of the above steps, the strength and carbonization yield of the lyocell-based carbon fiber are determined according to the grafting concentration, the radiation dose, and the heat stabilization temperature and time.
이하, 본 발명의 실시예를 통해 더욱 상세히 설명한다. 단 하기 실시예는 본발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시 예에 한정되는 것은 아니다.Hereinafter, an embodiment of the present invention will be described in more detail. However, the following examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following examples.
<탄소섬유 비교 실시예><Carbon fiber comparative example>
- 폴리아크릴아마이드 용액을 0.05, 0.1, 0.5, 1, 2, 그리고 4 중량% 농도로 준비하고 라이오셀 직물을 침지한 후 모두 동일하게 100kGy의 전자선량으로 조사하여 5가지의 샘플을 준비하였다. 본 비교 실시예에서는 용이한 탄소섬유의 제조를 위하여 라이오셀 직물을 사용하였다. - Polyacrylamide solutions were prepared at concentrations of 0.05, 0.1, 0.5, 1, 2, and 4% by weight, and lyocell fabrics were immersed, and then irradiated with the same electron dose of 100 kGy to prepare 5 samples. In this comparative example, lyocell fabric was used for easy production of carbon fiber.
- 전자선이 조사됨으로써 폴리아크릴아마이드가 그라프트화된 라이오셀 직물을 초저온 냉동고에서 얼린 후 동결 건조하였다.- Lyocell fabric grafted with polyacrylamide by electron beam irradiation was frozen in a cryogenic freezer and then freeze-dried.
- 선택적으로 상기 건조된 샘플들은 분당 10℃로 승온한 후, 250 ℃에서 1시간 열안정화 하였다. - Optionally, the dried samples were heat-stabilized at 250 °C for 1 hour after heating at 10 °C per minute.
- 열적 안정화단계를 거치지 않은 샘플들과 열적으로 안정화처리된 샘플들을 비교하기 위해서 각각에 대해서 질소분위기하에서 탄화하였다. 바람직하게는 분당 10 ℃의 승온속도로 1400 ℃까지 승온시키는 것이 강도를 크게 하는데 도움이 되지만, 위 실험에서는 1000 ℃까지 승온시킨 후 탄화하여 탄소직물을 제조하였다. - To compare the samples that did not go through the thermal stabilization step and the thermally stabilized samples, each was carbonized under a nitrogen atmosphere. Preferably, raising the temperature to 1400 ° C at a heating rate of 10 ° C per minute helps to increase the strength, but in the above experiment, the temperature was raised to 1000 ° C and then carbonized to prepare a carbon fabric.
- 그리고 이와 같은 공정에 의해서 제조된 각각의 라이오셀계 탄소직물에 대해서 비교실험하였다. - And comparative experiments were conducted on each lyocell-based carbon fabric manufactured by the same process.
<탄소섬유 비교실험><Carbon fiber comparison test>
TGA 분석TGA analysis
방사선을 경유하여 폴리아크릴아마이드가 그라프트화되고, 열안정화된 직물의 탄화율을 알아보기 위하여 TGA 분석을 실시하였다. TGA analysis was performed to determine the carbonization rate of the fabrics grafted with polyacrylamide via radiation and heat-stabilized.
도 3의 TGA분석 그래프에서 보이는 바와 같이, 그라프트화가 없는 기본 라이오셀 직물을 탄화하는 경우, 300 ℃에서 격하게 중량감소를 보이다가 600 ℃에서 완전한 중량 감소가 발생함을 알 수 있으며, 이는 탄화에 의해서 탄소섬유를 생성할 수 없음을 말한다. As shown in the TGA analysis graph of FIG. 3, when the basic lyocell fabric without grafting is carbonized, it can be seen that a complete weight loss occurs at 600 ℃ after showing a rapid weight loss at 300 ℃, which is carbonized This means that carbon fibers cannot be produced by
반면, 폴리아크릴아마이드가 그라프화된 라이오셀 직물은 방사선 조사를 통해서 1000 ℃에서 탄화수율이 10%에서 20%까지 증가함을 보여주었다(도 3b 참조). On the other hand, the polyacrylamide-grafted lyocell fabric showed an increase in carbonization yield from 10% to 20% at 1000 ° C through irradiation (see FIG. 3b).
한편, 도 3c에서 보여주듯이 열처리에 의한 열안정화처리에 의해서 탄화수율이 증대됨과 함께 중량감소를 현저하게 완화할 수 있음을 알 수 있다. 예로 250℃에서 1시간동안 열처리한 후 TGA를 분석한 결과 탄화수율이 증가하고 중량감소가 완화되었는데, 특히 폴리아크릴아마이드가 증가할수록 40%에서 55%까지의 탄화수율이 증가하였고 중량감소도 350℃~ 650℃사이에서 서서히 나타났다. On the other hand, as shown in Figure 3c, it can be seen that the carbonization yield is increased and the weight loss can be remarkably alleviated by the thermal stabilization treatment by heat treatment. For example, as a result of TGA analysis after heat treatment at 250 ° C for 1 hour, the carbonization yield increased and the weight loss was alleviated. In particular, as the polyacrylamide increased, the carbonization yield increased from 40% to 55%, and the weight loss also increased at 350 ° C. ~ 650 ℃ appeared gradually.
2. SEM 이미지2. SEM images
도 4는 방사선을 경유하여 폴리아크릴아마이드가 그라프화 된 라이오셀 직물로부터 얻은 탄소 섬유의 단면과 표면의 사진이다. 4 is a photograph of a cross section and surface of a carbon fiber obtained from a lyocell fabric in which polyacrylamide is grafted via radiation.
이를 통해서, 0.5 중량% 이하의 폴리아크릴아마이드가 그라프화 된 라이오셀 직물로 얻은 탄소섬유들은 둥글고 단단한 단면과 매끈한 표면을 가지면서 섬유끼리 분리가 될 수 있음을 볼 수 있었으나, 1.0 중량 % 이상의 방사선을 경유하여 폴리아크릴아마이드가 그라프화된 라이오셀 직물의 단면은 대체로 둥글지만 표면은 폴리아크릴아마이드가 껍질이 벗겨지는 것처럼 보이거나 2 중량%나 4 중량% 경우 섬유끼리 붙어있음을 볼 수 있었다. 이는 섬유의 기계적 강도 값에 영향을 줄 것이라 예측이 되는 부분이다.Through this, it was found that the carbon fibers obtained from the lyocell fabric in which less than 0.5% by weight of polyacrylamide was grafted had a round and hard cross section and a smooth surface and could be separated from each other, but more than 1.0% by weight of radiation. The cross section of the lyocell fabric to which the polyacrylamide was grafted was generally round, but the surface of the polyacrylamide seemed to be peeled off or the fibers were attached to each other in the case of 2% by weight or 4% by weight. This is the part that is expected to affect the mechanical strength value of the fiber.
3. 기계적 강도3. Mechanical Strength
도 5는 방사선을 경유하여 폴리아크릴아마이드가 그라프트화된 라이오셀 직물로 얻은 탄소 섬유의 기계적 강도를 나타내었다. 5 shows the mechanical strength of carbon fibers obtained as lyocell fabrics grafted with polyacrylamide via radiation.
폴리아크릴아마이드 0.5중량% 이하까지 그라프트화된 라이오셀의 탄소섬유는 농도가 증가할수록 강도값이 증가하여 0.5중량%의 폴리아크릴아마이드로 그라프트화된 라이오셀 탄소섬유의 강도 값은 1.39 GPa까지 나타내었다. Lyocell carbon fiber grafted with less than 0.5% by weight of polyacrylamide showed an increase in strength as the concentration increased, and the strength value of lyocell carbon fiber grafted with 0.5% by weight of polyacrylamide was up to 1.39 GPa. .
1.0중량% 폴리아크릴아마이드로 그라프트화된 라이오셀의 탄소섬유는 SEM이미지에서 보는 바와 같이 약간 높은 점도로 인하여 섬유를 분리하는 작업에서 손상을 받아 강도값이 감소하였다. As shown in the SEM image, the carbon fiber of lyocell grafted with 1.0 wt% polyacrylamide was damaged in the fiber separation operation due to a slightly high viscosity, and the strength value decreased.
한편 2중량%와 4중량% 폴리아크릴아마이드로 그라프트화된 라이오셀의 탄소섬유는 높은 점도로 인해 섬유의 붙음 현상이 발생하게 되고 한가닥 섬유를 추출할 수 없어서 강도 측정이 불가하였다. On the other hand, carbon fibers of lyocell grafted with 2% by weight and 4% by weight of polyacrylamide caused adhesion of fibers due to high viscosity, and strength measurement was impossible because single fibers could not be extracted.
Claims (10)
- 그라프트 고분자용액이 침지된 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유에 방사선을 조사하거나 열을 가해 그라프트화하는 단계(S2);
- 상기 그라프트화된 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 건조하는 단계 (S3);
- 상기 건조된 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 일정한 온도 구간에서 열안정화하는 단계 (S4); 및
- 상기 열안정화된 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 고온에서 탄화하는 단계 (S5)를 포함하는 것을 특징으로 하는 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
- immersing the graft polymer solution into cellulose fibers or cellulose derivative fibers (S1);
- Grafting the cellulose fibers or cellulose derivative fibers soaked in the graft polymer solution by irradiating radiation or applying heat (S2);
- drying the grafted cellulose fibers or cellulose derivative fibers (S3);
- Heat-stabilizing the dried cellulose fibers or cellulose derivative fibers at a constant temperature (S4); and
- Carbon fiber manufacturing method using cellulose fibers or cellulose derivative fibers, characterized in that it comprises a step (S5) of carbonizing the heat-stabilized cellulose fibers or cellulose derivative fibers at a high temperature.
상기 그라프트 고분자는 폴리아크릴아마이드, 아크릴산계 유도체, 메타크릴로니트릴, 메타크릴산글리시딜, 구연산. 에피클로히드린, 폴리에틸이민, 글루타알데하이드를 포함하는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
According to claim 1,
The graft polymer is polyacrylamide, acrylic acid derivative, methacrylonitrile, glycidyl methacrylate, citric acid. A method for producing carbon fibers using cellulose fibers or cellulose derivative fibers, characterized in that at least one selected from the group consisting of epichlorhydrin, polyethylimine, and glutaraldehyde.
상기 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유는 라이오셀, 레이온계, 면직물, 키토산을 포함하는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
According to claim 1,
The method for producing carbon fibers using cellulose fibers or cellulose derivative fibers, characterized in that the cellulose fibers or cellulose derivative fibers are at least one selected from the group consisting of lyocell, rayon, cotton fabric, and chitosan.
상기 단계 S2의 방사선은 감마선, 전자선, 이온빔, 중성자 빔, 자외선 및 X선으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
According to claim 1,
The radiation of step S2 is a carbon fiber manufacturing method using cellulose fibers or cellulose derivative fibers, characterized in that selected from the group consisting of gamma rays, electron beams, ion beams, neutron beams, ultraviolet rays and X-rays.
상기 단계 S2의 방사선 총 조사량은 50~500 kGy 인 것을 특징으로 하는 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
According to claim 1,
Carbon fiber manufacturing method using cellulose fibers or cellulose derivative fibers, characterized in that the total radiation dose of step S2 is 50 to 500 kGy.
상기 단계 S2에서 열에 의해서 그라프트화 하는 것은 80 ℃이상에서 가열하는 것을 특징으로 하는 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
According to claim 1,
Grafting by heat in step S2 is a method for producing carbon fibers using cellulose fibers or cellulose derivative fibers, characterized in that heating at 80 ° C. or higher.
상기 단계 S3의 건조는 열건조, 자연건조 및 동결 건조로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
According to claim 1,
The method of manufacturing carbon fibers using cellulose fibers or cellulose derivative fibers, characterized in that the drying in step S3 is any one selected from the group consisting of heat drying, natural drying and freeze drying.
상기 단계 S2의 열처리 승온속도는 분당 1~10 ℃로 하여 200~300 ℃에서 30분에서 3시간 동안 진행되는 것을 특징으로 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
According to claim 1,
Carbon fiber manufacturing method using cellulose fibers or cellulose derivative fibers, characterized in that the heat treatment temperature increase rate of step S2 is 1 to 10 ° C per minute and proceeds at 200 to 300 ° C for 30 minutes to 3 hours.
상기 단계 S5의 탄화는 승온속도를 1~10℃/min 으로 하여 500~2500 ℃에서 진행되는 것을 특징으로 하는 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법.
According to claim 1,
The carbonization in step S5 is a method for producing carbon fibers using cellulose fibers or cellulose derivative fibers, characterized in that the temperature rise rate is 500 to 2500 ° C. at a rate of 1 to 10 ° C / min.
A cellulose-based carbon fiber produced by the carbon fiber manufacturing method according to any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220174328A KR102662920B1 (en) | 2021-03-29 | 2022-12-14 | A manufacturing method of carbon fibers from cellulose fiber or cellulose derivative fiber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210040200A KR102480304B1 (en) | 2021-03-29 | 2021-03-29 | A Manufacturing method of carbon fibers from lyocell fiber |
KR1020220174328A KR102662920B1 (en) | 2021-03-29 | 2022-12-14 | A manufacturing method of carbon fibers from cellulose fiber or cellulose derivative fiber |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210040200A Division KR102480304B1 (en) | 2021-03-29 | 2021-03-29 | A Manufacturing method of carbon fibers from lyocell fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230002184A true KR20230002184A (en) | 2023-01-05 |
KR102662920B1 KR102662920B1 (en) | 2024-05-03 |
Family
ID=83597059
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210040200A KR102480304B1 (en) | 2021-03-29 | 2021-03-29 | A Manufacturing method of carbon fibers from lyocell fiber |
KR1020220174328A KR102662920B1 (en) | 2021-03-29 | 2022-12-14 | A manufacturing method of carbon fibers from cellulose fiber or cellulose derivative fiber |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210040200A KR102480304B1 (en) | 2021-03-29 | 2021-03-29 | A Manufacturing method of carbon fibers from lyocell fiber |
Country Status (1)
Country | Link |
---|---|
KR (2) | KR102480304B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102480304B1 (en) * | 2021-03-29 | 2022-12-21 | 전주대학교 산학협력단 | A Manufacturing method of carbon fibers from lyocell fiber |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09143824A (en) * | 1995-11-21 | 1997-06-03 | Toray Ind Inc | Carbon fiber, its precursor and their production |
KR20100121386A (en) * | 2009-05-08 | 2010-11-17 | 국방과학연구소 | Method for manufacturing lyocell based carbon fiber and lyocell based carbon fabric |
KR20140048362A (en) * | 2012-10-08 | 2014-04-24 | 한국원자력연구원 | Radiation biomolecules bacterial cellulose nanofibers and method of manufacture |
KR102480304B1 (en) * | 2021-03-29 | 2022-12-21 | 전주대학교 산학협력단 | A Manufacturing method of carbon fibers from lyocell fiber |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101175329B1 (en) * | 2007-09-07 | 2012-08-20 | 코오롱인더스트리 주식회사 | Cellulose-based composition fiber, tire cord, and spinning oil |
MX2010008597A (en) * | 2008-02-15 | 2010-08-30 | Playtex Products Llc | Tampon including crosslinked cellulose fibers and improved synthesis processes for producing same. |
KR101451384B1 (en) | 2013-09-17 | 2014-10-22 | 한국과학기술연구원 | Method of preparing carbon fiber from wood waste including adhesive |
-
2021
- 2021-03-29 KR KR1020210040200A patent/KR102480304B1/en active IP Right Grant
-
2022
- 2022-12-14 KR KR1020220174328A patent/KR102662920B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09143824A (en) * | 1995-11-21 | 1997-06-03 | Toray Ind Inc | Carbon fiber, its precursor and their production |
KR20100121386A (en) * | 2009-05-08 | 2010-11-17 | 국방과학연구소 | Method for manufacturing lyocell based carbon fiber and lyocell based carbon fabric |
KR101138291B1 (en) | 2009-05-08 | 2012-04-24 | 국방과학연구소 | Method for manufacturing Lyocell based carbon fiber and Lyocell based carbon fabric |
KR20140048362A (en) * | 2012-10-08 | 2014-04-24 | 한국원자력연구원 | Radiation biomolecules bacterial cellulose nanofibers and method of manufacture |
KR102480304B1 (en) * | 2021-03-29 | 2022-12-21 | 전주대학교 산학협력단 | A Manufacturing method of carbon fibers from lyocell fiber |
Also Published As
Publication number | Publication date |
---|---|
KR102480304B1 (en) | 2022-12-21 |
KR20220134922A (en) | 2022-10-06 |
KR102662920B1 (en) | 2024-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | High-yield carbonization of cellulose by sulfuric acid impregnation | |
US20100285223A1 (en) | Method for Manufacturing Lyocell Based Carbon Fiber and Lyocell Based Carbon Fabric | |
JP6050762B2 (en) | Method for producing lignin fiber | |
Sabantina et al. | Stabilization of electrospun PAN/gelatin nanofiber mats for carbonization | |
EP2857355B1 (en) | Method for producing carbon material using catalyst, and carbon material | |
KR102662920B1 (en) | A manufacturing method of carbon fibers from cellulose fiber or cellulose derivative fiber | |
CN105683428A (en) | Activated carbon fiber and preparation method therefor | |
CN110714352B (en) | Preparation method of self-supporting porous carbon fiber network material | |
WO2019029101A1 (en) | Preparation method for activated carbon fiber | |
KR101300162B1 (en) | Natural fiber-based carbonaceous adsorbent and methode of manufacturing the same | |
CN109319783A (en) | The preparation method and poplar wood base porous carbon materials product of poplar wood base porous carbon materials | |
JP2002038334A (en) | Method for producing fine activated carbon fiber and fine activated carbon fiber produced thereby | |
Kim et al. | Cellulose-based carbon fibers prepared using electron-beam stabilization | |
JP6604118B2 (en) | Method for producing carbon fiber sheet | |
CN105421042A (en) | Light high-strength and high-toughness single green composite fiber and preparation method thereof | |
Zhang et al. | Crystal and thermal response of cellulose isolation from bamboo by two different chemical treatments | |
Zou et al. | Effects of Different Pretreatments Combined with Steam Explosion on the Properties of Bamboo Fibers. | |
JP2016164313A (en) | Method for producing carbon fiber woven fabric and carbon fiber woven fabric | |
CN109735966B (en) | Method for preparing activated carbon fiber with hollow structure from wood fiber | |
KR101285702B1 (en) | Fiber-reinforced composite material | |
KR101716142B1 (en) | Insoluble lignin nanofiber and method for menufactruing the insoluble lignin nanofiber | |
Jang et al. | Role of sulfuric acid in thermostabilization and carbonization of lyocell fibers | |
Salehi et al. | Preparation of activated carbon fabrics from cotton fabric precursor | |
CN111747747A (en) | Preparation method, product and application of carbon-based material with bionic fractal structure based on shaddock peel | |
US3556712A (en) | Method of making flame-proof fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |