KR20230000389A - Sintering-promoting agent for preparing silica bricks, compound silica brick, and preparation method therefor - Google Patents

Sintering-promoting agent for preparing silica bricks, compound silica brick, and preparation method therefor Download PDF

Info

Publication number
KR20230000389A
KR20230000389A KR1020210119977A KR20210119977A KR20230000389A KR 20230000389 A KR20230000389 A KR 20230000389A KR 1020210119977 A KR1020210119977 A KR 1020210119977A KR 20210119977 A KR20210119977 A KR 20210119977A KR 20230000389 A KR20230000389 A KR 20230000389A
Authority
KR
South Korea
Prior art keywords
silica
optionally
parts
fine powder
fused quartz
Prior art date
Application number
KR1020210119977A
Other languages
Korean (ko)
Other versions
KR102696844B1 (en
Inventor
용 리우
보 동
얀 첸
Original Assignee
시노스틸 루오나이 머티리얼즈 테크놀로지 코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 시노스틸 루오나이 머티리얼즈 테크놀로지 코퍼레이션 filed Critical 시노스틸 루오나이 머티리얼즈 테크놀로지 코퍼레이션
Publication of KR20230000389A publication Critical patent/KR20230000389A/en
Application granted granted Critical
Publication of KR102696844B1 publication Critical patent/KR102696844B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to the field of producing silica stone bricks, and more specifically, to a sintering-promoting agent for preparing silica bricks, a compound silica brick and a preparing method thereof, and an amorphous-crystalline form composite silica brick prepared by using the sintering-promoting agent and a preparing method thereof. The sintering-promoting agent of the present invention includes silica sol, aluminum hydroxide and titanium bag. The silica brick prepared by using the same can simultaneously exhibit high SiO_2 content, low toxicity, high bonding strength, low-temperature volume stability, and high-temperature masonry integrity of a kiln, and has a long high-temperature lifespan.

Description

규석벽돌 제조용 소결 촉진제, 복합 규석벽돌 및 이의 제조 방법 {Sintering-promoting agent for preparing silica bricks, compound silica brick, and preparation method therefor}Sintering-promoting agent for preparing silica bricks, compound silica brick, and preparation method therefor}

본 발명은 규석벽돌 제조 분야에 관한 것으로, 구체적으로 규석벽돌 제조용 소결 촉진제 및 이의 제조 방법, 및 상기 소결 촉진제를 사용하여 제조된 비결정질 형태-결정질 형태 복합 규석벽돌 및 이의 제조 방법에 관한 것이다.The present invention relates to the field of silica stone brick manufacturing, and more specifically, to a sintering accelerator for producing silica stone bricks and a method for producing the same, and to a composite amorphous-crystalline form silica stone brick manufactured using the sintering accelerator and a method for producing the same.

전통적인 규석벽돌은 분쇄된 천연 석영암(quartzite)을 주요 원료로 사용하고, 생산시 소결 과정에서의 석영의 부피 팽창을 완화하기 위해, 광화제로 산화칼슘, 산화제일철, 산화알루미늄, 이산화망간 등 성분을 추가함으로써, 소결시 실리카와 함께 작용하여 유리상(glass phase)을 형성하고, 석영 입자 주위를 감싸고 석영 입자에 침윤되어, 석영의 소결 팽창을 크게 감소시킴으로써 제품이 조밀 구조를 형성하도록 한다. 그러나, 이러한 방법에 있어서, 상기와 같이 추가된 광화제 성분은 고온 사용시 매우 해롭다는 단점이 있다.Traditional silica bricks use crushed natural quartzite as the main raw material, and add calcium oxide, ferrous oxide, aluminum oxide, manganese dioxide, etc. as mineralizers to mitigate the volumetric expansion of quartz during the sintering process during production. By doing so, during sintering, it acts together with the silica to form a glass phase, wraps around the quartz particles and infiltrates the quartz particles, greatly reducing the sintering expansion of the quartz, so that the product forms a dense structure. However, in this method, there is a disadvantage that the mineralizer component added as described above is very harmful when used at high temperatures.

이러한 상황에서, 본 분야 규석벽돌 관련 기술은 두가지 방향으로 발전했다. 하나의 방향으로는, 전통적인 석영암을 원료로 하되, 광화제 첨가량을 줄이고, 소결 시간을 연장하여 소결 과정에서 석영의 팽창을 완화시키는 것이나, 이러한 방법에 따른 효과는 제한적이고, 생성된 규석벽돌 중 SiO2 함량이 일반적으로 97%를 초과하지 못하며, 미시적 구조를 볼 때, 석영 입자가 충분히 침윤되지 않아 균열이 생겨 사용 효과에 영향을 미치며; 다른 하나의 발전 방향으로는, 석영암에 대해 전처리를 진행하는 것인데, 즉 산 세척하고 고온 용융 후 용융 석영(용융 석영은 유리 상태이고, 비결정질 구조이며, 용융 석영 중 SiO2 함량은 99.5% 및 그 이상에 달할 수 있음)을 제조하고, 이로 제조된 제품은 SiO2 함량이 99% 이상에 달할 수 있으며, 1000℃ 이하에서 부피가 안정적이고, 팽창율이 기본상 0이나, 상기 방법의 단점은 고온(1000℃ 이상) 사용 과정에서 비결정질 형태에서 석영으로 점차 변하고, 변화 과정에서 0.9%의 부피 수축이 동반되는데, 이는 가마(kiln)의 사용에 있어서 아주 위험한 바, 가마 변형이나 "가마 벽돌 돌출"과 같은 위험을 쉽게 유발한다.Under these circumstances, the technology related to silica stone bricks in this field has developed in two directions. One direction is to use traditional quartz rock as a raw material, reduce the amount of mineralizer added, and extend the sintering time to alleviate the expansion of quartz during the sintering process, but the effect of this method is limited, and among the produced silica stone bricks The SiO 2 content generally does not exceed 97%, and in terms of the microscopic structure, the quartz particles are not sufficiently infiltrated, resulting in cracks, which affects the use effect; Another direction of development is pretreatment of quartz rock, that is, fused quartz after pickling and high-temperature melting (the fused quartz is in a glassy state and has an amorphous structure, and the SiO 2 content in the fused quartz is 99.5% and its can reach the above), and the product made thereof can have a SiO 2 content of more than 99%, is stable in volume at 1000 ° C or less, and has an expansion rate of basically 0, but the disadvantages of the method are high temperature ( 1000 ℃ or more) in the process of use, it gradually changes from an amorphous form to quartz, and in the process of change, a volume shrinkage of 0.9% is accompanied, which is very dangerous in the use of a kiln, such as kiln deformation or "kiln brick extrusion" risk easily.

따라서, 규석벽돌 제조용 소결 촉진제 및 이를 이용하여 제조된 규석벽돌에 대한 개발이 급히 요구되고 있다. 상기 규석벽돌은 유해성분을 줄일 수 있고, 저온 부피 안정성을 보장할 뿐만 아니라, 가마의 고온 조적체 일체성을 보장할 수 있어, 가마 변형이나 "드로잉" 등 현상의 위험을 줄이는 동시에, 고온 수명도 증가시킬 수 있다.Therefore, there is an urgent need to develop a sintering accelerator for producing silica stone bricks and silica stone bricks manufactured using the same. The silica stone brick can reduce harmful components, ensure low-temperature volume stability, and ensure the integrity of the kiln's high-temperature masonry body, thereby reducing the risk of phenomena such as kiln deformation or "drawing", and at the same time, high-temperature lifespan can increase

이를 고려하여 본 발명을 제출한다.Considering this, the present invention is submitted.

본 발명의 첫 번째 목적은, 선행기술에서의 규석벽돌의 독성이 높고, 결합 강도가 약하며, 고온 수명이 짧은 기술적 문제를 해결할 수 있는 규석벽돌 제조용 신규 소결 촉진제를 제공하는 것이다.A first object of the present invention is to provide a novel sintering accelerator for producing silica stone bricks that can solve the technical problems of high toxicity, low bonding strength, and short lifespan at high temperatures of silica stone bricks in the prior art.

본 발명의 두 번째 목적은, 조작이 용이하고, 재현성이 좋으며, 제조된 규석벽돌의 독성이 약하고, 결합 강도가 높으며, 고온 수명이 길어지게 하는 상기 소결 촉진제의 제조 방법을 제공하는 것이다.A second object of the present invention is to provide a method for preparing the sintering accelerator, which is easy to operate, has good reproducibility, has low toxicity, high bonding strength, and long life at high temperature.

본 발명의 세 번째 목적은, 선행기술에서 규석벽돌의 독성이 높고, 결합 강도가 낮으며, 저온 부피 안정성, 가마의 고온 조적체 일체성을 잘 구현하기 어렵고, 고온 수명이 짧은 기술적 문제를 해결할 수 있는 규석벽돌을 제공하는 것이다.The third object of the present invention is to solve the technical problems of high toxicity of silica stone bricks in the prior art, low bonding strength, low-temperature volume stability, difficulty in implementing high-temperature masonry integrity of the kiln, and short high-temperature lifespan. It is to provide a silica stone brick.

본 발명의 네 번째 목적은, 조작이 용이하고, 재현성이 좋은 규석벽돌의 제조 방법을 제공하되, 상기 방법으로 제조된 규석벽돌은 독성이 약하고, 결합 강도가 높으며, 저온 부피 안정성, 가마의 고온 조적체 일체성을 동시에 구현할 수 있고, 고온 수명이 길다.The fourth object of the present invention is to provide a method for manufacturing silica stone bricks that is easy to operate and has good reproducibility, but the silica stone bricks produced by the above method have low toxicity, high bonding strength, low-temperature volume stability, and high-temperature furnace of the kiln Stack integrity can be realized at the same time, and high-temperature life is long.

본 발명의 상기 목적을 구현하기 위해 다음과 같은 기술수단을 채택하였다:In order to implement the above object of the present invention, the following technical means were adopted:

본 발명의 제1 실시양태에 따른 소결 촉진제는 실리카졸, 수산화알루미늄 및 티탄백을 포함할 수 있다. 선택적으로, 상기 실리카졸은 나노 스케일 실리카 콜로이드성 입자를 포함한다. 상기 소결 촉진제는 규석벽돌의 제조에 사용될 수 있다.The sintering accelerator according to the first embodiment of the present invention may include silica sol, aluminum hydroxide, and titanium bag. Optionally, the silica sol comprises nanoscale silica colloidal particles. The sintering accelerator may be used in the manufacture of silica stone bricks.

본 발명의 제1 실시양태에 따른 소결 촉진제로 규석벽돌을 제조하는 경우, 성형시 복합물의 초미세 구조로 인해 결합 강도가 형성될 수 있다. 사용 과정에서, 1300℃ 이상의 온도 조건에서 뮬라이트 휘스커(mullite whisker)가 형성될 수 있어 제품의 결합 강도를 향상시킨다. 소결 촉진제의 산화티타늄은 용융 석영의 결정 석출 전환 속도를 효과적으로 안정화시킬 수 있다. 구체적으로, 본 발명의 실리카졸, 특히 실리카졸의 나노 실리카 콜로이드성 입자는 생산 과정에서 결합 역할을 할 수 있어, 소결 과정에서 수산화알루미늄 미세 분말과 국부적으로 뮬라이트상을 형성하여 벽돌 소지(green body)의 강도를 향상시킬 수 있으며, 또한, 티탄백을 추가하면 비결정질 형태 실리카 전환을 억제하여, 제품의 부피 안정성을 향상시키는 효과를 얻을 수 있다.In the case of manufacturing a silica stone brick with the sintering accelerator according to the first embodiment of the present invention, bonding strength may be formed due to the ultrafine structure of the composite during molding. In the process of use, a mullite whisker can be formed under a temperature condition of 1300° C. or higher, which improves the bonding strength of the product. Titanium oxide in the sintering accelerator can effectively stabilize the crystallization conversion rate of fused quartz. Specifically, the silica sol of the present invention, in particular, the nano-silica colloidal particles of the silica sol can play a bonding role in the production process, forming a local mullite phase with the aluminum hydroxide fine powder during the sintering process to obtain a green body It is possible to improve the strength of the product, and also, when a titanium bag is added, the conversion of amorphous silica is suppressed, thereby improving the volume stability of the product.

이로써, 본 발명의 소결 촉진제를 사용하여 제조된 규석벽돌은 독성을 낮추고, 제품 결합 강도를 높이며, 가마 변형 위험을 크게 감소시킬 수 있으며, 고온 수명을 길게 연장할 수 있다.As a result, the silica stone brick manufactured using the sintering accelerator of the present invention can lower toxicity, increase product bonding strength, greatly reduce the risk of kiln deformation, and extend its high-temperature life span.

선택적으로, 본 발명의 제1 실시양태에 있어서, 상기 소결 촉진제의 실리카졸 함량은 40~80%이고, 수산화알루미늄 함량은 15~50%이며, 티탄백 함량은 1~10%이다. 예를 들어, 상기 소결 촉진제에서, 실리카졸 함량은 40%, 42%, 44%, 46%, 48%, 50%, 52%, 54%, 56%, 58%, 60%, 62%, 64%, 66%, 68%, 70%, 72%, 74%, 76%, 78%, 80% 등일 수 있지만, 이에 한정되지 않고; 상기 소결 촉진제에서, 수산화알루미늄의 함량은 15%, 17%, 19%, 21%, 23%, 25%, 27%, 29%, 31%, 33%, 35%, 37%, 39%, 41%, 43%, 45%, 47%, 49%, 50% 등일 수 있지만, 이에 한정되지 않으며; 상기 소결 촉진제에서, 티탄백 함량은 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10% 등일 수 있지만, 이에 한정되지 않는다.Optionally, in the first embodiment of the present invention, the silica sol content of the sintering accelerator is 40-80%, the aluminum hydroxide content is 15-50%, and the titanium bag content is 1-10%. For example, in the sintering accelerator, the silica sol content is 40%, 42%, 44%, 46%, 48%, 50%, 52%, 54%, 56%, 58%, 60%, 62%, 64% %, 66%, 68%, 70%, 72%, 74%, 76%, 78%, 80%, etc., but is not limited thereto; In the sintering accelerator, the content of aluminum hydroxide is 15%, 17%, 19%, 21%, 23%, 25%, 27%, 29%, 31%, 33%, 35%, 37%, 39%, 41 %, 43%, 45%, 47%, 49%, 50%, etc., but is not limited thereto; In the sintering accelerator, the titanium bag content may be 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, etc., but is not limited thereto.

선택적으로, 상기 실리카졸, 수산화알루미늄 및 티탄백의 질량비율은 40~80 : 15~50 : 1~10이고, 40 : 15 : 1, 50 : 20 : 3, 60 : 30 : 5, 70 : 40:7, 80 : 50 : 10, 40 : 50 : 1, 50 : 45 : 3, 60 : 35:5, 70 : 25 : 7, 80 : 15 : 10 등일 수 있으며, 여기서, 최적의 질량비는 10 : 3 : 0.5이고, 이때, 본 발명의 효과가 가장 좋다.Optionally, the mass ratio of the silica sol, aluminum hydroxide and titanium bag is 40-80: 15-50: 1-10, 40: 15: 1, 50: 20: 3, 60: 30: 5, 70: 40: 7, 80:50:10, 40:50:1, 50:45:3, 60:35:5, 70:25:7, 80:15:10, etc., where the optimal mass ratio is 10:3 : 0.5, and at this time, the effect of the present invention is the best.

선택적으로, 본 발명의 제1 실시양태에 있어서, 상기 실리카졸의 고형분 함량은 20~30%일 수 있고, 예를 들어, 20%, 22%, 24%, 26%, 28%, 30% 등일 수 있지만, 이에 한정되지 않는다.Optionally, in the first embodiment of the present invention, the solid content of the silica sol may be 20 to 30%, for example, 20%, 22%, 24%, 26%, 28%, 30%, etc. may, but is not limited thereto.

본 발명의 제2 실시양태에 따른 소결 촉진제 제조 방법은 실리카졸, 수산화알루미늄, 티탄백을 혼합하여 공동 밀링(co-milling)하는 단계를 포함할 수 있다. 상기 소결 촉진제는 규석벽돌의 제조에 사용될 수 있다.The method for preparing a sintering accelerator according to the second embodiment of the present invention may include co-milling a mixture of silica sol, aluminum hydroxide, and titanium bag. The sintering accelerator may be used in the manufacture of silica stone bricks.

선택적으로, 본 발명의 제2 실시양태에 있어서, 상기 공동 밀링 시간은 2시간 이상이고, 예를 들어, 2시간, 2.5시간, 3시간, 4시간, 5시간 또는 그 이상일 수 있으나, 이에 한정되지 않는다.Optionally, in the second embodiment of the present invention, the co-milling time is 2 hours or more, for example, 2 hours, 2.5 hours, 3 hours, 4 hours, 5 hours or more, but is not limited thereto. don't

본 발명의 제2 실시양태에 따른 다른 구체적인 내용은 제1 실시양태의 구체적인 기재 내용을 참조할 수 있다. 본 발명의 제2 실시양태의 소결 촉진제 제조 방법은 제조 조작이 간단할 뿐만 아니라, 재현성이 좋고, 이를 사용하여 제조된 규석벽돌은 독성이 낮으며, 제품 결합 강도가 높고, 고온 수명이 길다. 또한, 가마 변형 위험도 크게 감소시킬 수 있다.For other specific details according to the second embodiment of the present invention, reference can be made to the specific description of the first embodiment. The manufacturing method of the sintering accelerator of the second embodiment of the present invention is not only simple in manufacturing operation, but also has good reproducibility, and the silica stone brick produced using it has low toxicity, high product bonding strength, and long high-temperature life. In addition, the risk of kiln deformation can be greatly reduced.

본 발명의 제3 실시양태에 따른 규석벽돌은 규소 함유 재료 및 본 발명 제1 실시양태의 소결 촉진제를 포함할 수 있다.The silica stone brick according to the third embodiment of the present invention may include the silicon-containing material and the sintering accelerator of the first embodiment of the present invention.

본 발명의 제3 실시양태에 있어서, 상기 규소 함유 재료는 용융 석영 및 석영암 미세 분말을 포함할 수 있고, 선택적으로, 상기 규소 함유 재료는 용융 석영 골재, 용융 석영 미세 분말 및 석영암 미세 분말을 포함할 수 있다. 이로써, 본 발명에 따르면 비결정질 형태-결정질 형태의 복합 규석벽돌을 제조할 수 있고, 상기 규석벽돌은 SiO2 함량이 전통적인 규석벽돌보다 높으며, 고온에서 장기간 사용하여도 수축되지 않고, 미시적 구조가 안정적인 장점이 있다. 또한, 전통적인 방법에서 단일적인 석영암 원료 또는 단일적인 용융 석영을 원료를 추가하는 것과 달리, 본 발명은 저온 영역에서의 안정성을 보장할 뿐만 아니라, 사용 온도에서 가마 조적체 일체성도 보장할 수 있다. 본 발명의 제3 실시양태에 따른 규석벽돌은 높은 SiO2 함량, 약한 독성, 높은 결합 강도, 저온 부피 안정성, 가마의 고온 조적체 일체성을 동시에 구현할 수 있으며, 가마가 변형되는 위험을 크게 줄일 수 있고 고온 수명이 길다.In the third embodiment of the present invention, the silicon-containing material may include fused quartz and fine quartzite powder, and optionally, the silicon-containing material may include fused quartz aggregate, finely fused quartz powder and fine quartzite powder. can include Thus, according to the present invention, it is possible to manufacture composite silica stone bricks of amorphous form-crystalline form, and the silica stone bricks have a higher SiO 2 content than traditional silica stone bricks, do not shrink even when used for a long time at high temperatures, and have a stable microscopic structure. there is In addition, unlike adding a single quartz rock raw material or a single fused quartz raw material in the traditional method, the present invention can ensure not only stability in the low temperature region, but also the integrity of the kiln brick body at the operating temperature. The silica stone brick according to the third embodiment of the present invention can simultaneously realize high SiO 2 content, low toxicity, high bonding strength, low-temperature volume stability, and high-temperature masonry integrity of the kiln, and greatly reduce the risk of deformation of the kiln. and has a long life at high temperatures.

선택적으로, 본 발명에서, 용융 석영 골재는 실리카 함량이 96% 이상이고, 비결정질 형태 실리카 함량이 85% 이상이며, 그 임계 입도는 3mm인 것으로, 구체적인 특징은, 입도가 3~1mm인 백분율 함량은 40~55%이고, 입도가 1~0.5mm인 백분율 함량은 21~38%이며, 입도가 0.5~0mm인 백분율 함량은 21~38%이고; 상기 용융 석영 미세 분말의 입도≤0.088mm이며, 실리카 함량≥90%이고; 상기 석영암 미세 분말의 입도는 0.088mm 이하이며, 실리카 함량은 90% 이상이다.Optionally, in the present invention, the fused quartz aggregate has a silica content of 96% or more, an amorphous form silica content of 85% or more, and a critical particle size of 3 mm. 40-55%, the percentage content of 1-0.5mm particle size is 21-38%, and the percentage content of 0.5-0mm particle size is 21-38%; The particle size of the fused quartz fine powder is ≤ 0.088 mm, and the silica content is ≥ 90%; The particle size of the quartz rock fine powder is 0.088 mm or less, and the silica content is 90% or more.

용융 석영 골재에서, 실리카 함량은 예를 들어 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5% 등일 수 있지만 이에 한정되지 않는다.In the fused quartz aggregate, the silica content may be, for example, but not limited to, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5%, etc.

용융 석영 골재에서, 비결정질 형태 실리카 함량은 예를 들어 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 등일 수 있지만 이에 한정되지 않는다.In fused quartz aggregate, the amorphous form silica content is for example 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% %, 98%, 99%, etc., but is not limited thereto.

용융 석영 골재에서, 입도가 3~1mm인 백분율 함량은 예를 들어 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55% 등일 수 있지만 이에 한정되지 않고; 입도가 1~0.5mm인 백분율 함량은 예를 들어 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38% 등일 수 있지만 이에 한정되지 않으며; 입도가 0.5~0mm인 백분율 함량은 예를 들어 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38% 등일 수 있지만 이에 한정되지 않는다.In fused quartz aggregate, the percentage content with a grain size of 3 to 1 mm is, for example, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, etc. but not limited thereto; Percentage content with a particle size of 1 to 0.5 mm is, for example, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33 %, 34%, 35%, 36%, 37%, 38%, etc., but is not limited thereto; Percentage content with a particle size of 0.5 to 0 mm is, for example, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33% , 34%, 35%, 36%, 37%, 38%, etc., but is not limited thereto.

상기 용융 석영 미세 분말은 입도는 0.088mm 이하이고, 실리카 함량은 90% 이상이다. 여기서, 입도는 예를 들어 0.088mm, 0.086mm, 0.084mm, 0.082mm, 0.08mm, 0.07 mm, 0.06 mm, 0.05 mm 등일 수 있지만 이에 한정되지 않고; 실리카 함량은 예를 들어 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 등일 수 있지만 이에 한정되지 않는다.The fused quartz fine powder has a particle size of 0.088 mm or less, and a silica content of 90% or more. Here, the particle size may be, for example, 0.088mm, 0.086mm, 0.084mm, 0.082mm, 0.08mm, 0.07mm, 0.06mm, 0.05mm, etc., but is not limited thereto; The silica content may be, for example, but not limited to, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and the like.

상기 석영암 미세 분말은 입도는 0.088mm 이하이고, 실리카 함량은 90% 이상이다. 여기서, 입도는 예를 들어 0.088mm, 0.086mm, 0.084mm, 0.082mm, 0.08mm, 0.07 mm, 0.06 mm, 0.05 mm 등일 수 있지만 이에 한정되지 않고; 실리카 함량은 예를 들어 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 등일 수 있지만 이에 한정되지 않는다.The quartz rock fine powder has a particle size of 0.088 mm or less, and a silica content of 90% or more. Here, the particle size may be, for example, 0.088mm, 0.086mm, 0.084mm, 0.082mm, 0.08mm, 0.07mm, 0.06mm, 0.05mm, etc., but is not limited thereto; The silica content may be, for example, but not limited to, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and the like.

선택적으로, 본 발명의 제3 실시양태에 있어서, 카복시메틸셀룰로스나트륨(Sodium Carboxymethylcellulose)을 더 포함할 수 있다.Optionally, in the third embodiment of the present invention, sodium carboxymethylcellulose may be further included.

선택적으로, 본 발명의 제3 실시양태에 있어서, 상기 규석벽돌은 45~65부의 용융 석영 골재, 10~35부의 용융 석영 미세 분말, 10~30부의 석영암 미세 분말, 3~6부의 소결 촉진제, 0~0.5부의 카복시메틸셀룰로스나트륨을 포함한다. 예를 들어, 용융 석영 골재는 45부, 47부, 49부, 51부, 53부, 55부, 57부, 59부, 61부, 63부, 65부 등일 수 있지만 이에 한정되지 않고; 용융 석영 미세 분말은 10부, 12부, 14부, 16부, 18부, 20부, 22부, 24부, 26부, 28부, 30부, 32부, 34부, 35부 등일 수 있지만 이에 한정되지 않으며; 석영암 미세 분말은 10부, 12부, 14부, 16부, 18부, 20부, 22부, 24부, 26부, 28부, 30부 등일 수 있지만 이에 한정되지 않고, 소결 촉진제는 3부, 3.5부, 4부, 4.5부, 5부, 5.5부, 6부 등일 수 있지만 이에 한정되지 않으며; 카복시메틸셀룰로스나트륨은 0.1부, 0.2부, 0.3부, 0.4부, 0.5부 등일 수 있지만 이에 한정되지 않는다.Optionally, in the third embodiment of the present invention, the silica stone brick comprises 45 to 65 parts of fused quartz aggregate, 10 to 35 parts of fused quartz fine powder, 10 to 30 parts of quartz rock fine powder, 3 to 6 parts of sintering accelerator, 0-0.5 parts sodium carboxymethylcellulose. For example, the fused quartz aggregate may be, but is not limited to, 45 parts, 47 parts, 49 parts, 51 parts, 53 parts, 55 parts, 57 parts, 59 parts, 61 parts, 63 parts, 65 parts, etc.; The fused quartz fine powder may be 10 parts, 12 parts, 14 parts, 16 parts, 18 parts, 20 parts, 22 parts, 24 parts, 26 parts, 28 parts, 30 parts, 32 parts, 34 parts, 35 parts, etc. not limited; The quartz rock fine powder may be, but is not limited to, 10 parts, 12 parts, 14 parts, 16 parts, 18 parts, 20 parts, 22 parts, 24 parts, 26 parts, 28 parts, 30 parts, etc., and the sintering accelerator is 3 parts , 3.5 parts, 4 parts, 4.5 parts, 5 parts, 5.5 parts, 6 parts, etc., but is not limited thereto; Sodium carboxymethylcellulose may be, but is not limited to, 0.1 part, 0.2 part, 0.3 part, 0.4 part, 0.5 part, and the like.

본 발명의 제4 실시양태에 따른 규석벽돌의 제조 방법은, 용융 석영 골재를 교반하고, 계속하여 소결 촉진제를 넣어 교반한 후, 용융 석영 미세 분말 및 석영암 미세 분말을 넣어 교반하여 성형될 혼합물재를 얻는 단계1); 단계1)에서 얻은 혼합물재를 원하는 모양의 소지로 압착 성형하는 단계2); 및 단계2)의 성형 소지에 대해 건조하고 소결하는 단계3)를 포함한다.In the method for producing silica stone bricks according to the fourth embodiment of the present invention, the fused quartz aggregate is stirred, and then the sintering accelerator is added and stirred, and then the fused quartz fine powder and quartz rock fine powder are added and stirred to form a mixture material. Step 1) to obtain ; Step 2) of compressing and molding the mixture obtained in step 1) into a base having a desired shape; and step 3) of drying and sintering the molded body of step 2).

선택적으로, 본 발명의 제4 실시양태에 있어서, 단계 1)에서, 상기 교반은 믹서밀에서 진행되고, 상기 믹서밀은 예를 들어 플라나타리(Planetary) 믹서밀 또는 강제 믹서기일 수 있지만 이에 한정되지 않는다.Optionally, in the fourth embodiment of the present invention, in step 1), the stirring is performed in a mixer mill, and the mixer mill may be, for example, a Planetary mixer mill or a forced mixer, but is not limited thereto. don't

선택적으로, 본 발명의 제4 실시양태에 있어서, 단계1)에서, 용융 석영 골재를 믹서밀에 넣은 후 1분 동안 교반하고, 소결 촉진제를 넣은 후 1~3분 동안(예를 들어, 1분, 1.5분, 2분, 2.5분, 3분 등일 수 있지만 이에 한정되지 않음) 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 15~20분 동안(예를 들어, 15분, 16분, 17분, 18분, 19분, 20분 등일 수 있지만 이에 한정되지 않음) 교반한다.Optionally, in the fourth embodiment of the present invention, in step 1), the fused quartz aggregate is put into the mixer mill and stirred for 1 minute, and the sintering accelerator is added and then stirred for 1 to 3 minutes (for example, 1 minute , 1.5 minutes, 2 minutes, 2.5 minutes, 3 minutes, etc.) while stirring, after adding the fused quartz fine powder and quartz rock fine powder, for 15 to 20 minutes (eg, 15 minutes, 16 minutes , 17 minutes, 18 minutes, 19 minutes, 20 minutes, etc., but not limited to) stirring.

선택적으로, 단계1)에서의 총 교반 시간은 20분 이상이고, 예를 들어 25분, 30분, 35분, 40분, 45분, 50분 또는 그 이상일 수 있지만 이에 한정되지 않는다.Optionally, the total stirring time in step 1) is 20 minutes or more, for example, but not limited to, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes or more.

선택적으로, 단계1)에서 45~65부의 용융 석영 골재, 10~35부의 용융 석영 미세 분말, 10~30부의 석영암 미세 분말, 3~6부의 소결 촉진제, 0~0.5부의 카복시메틸셀룰로스나트륨을 혼합한다.Optionally, in step 1), 45 to 65 parts of fused quartz aggregate, 10 to 35 parts of fused quartz fine powder, 10 to 30 parts of fine quartz rock powder, 3 to 6 parts of sinter accelerator, and 0 to 0.5 parts of sodium carboxymethylcellulose are mixed. do.

선택적으로, 상기 단계2)에서, 압착 성형시의 성형 압력은 300톤 이상이고, 예를 들어 300톤, 320톤, 340톤, 360톤, 380톤, 400톤, 500톤, 600톤, 700톤, 800톤, 900톤, 1000톤 등일 수 있지만, 이에 한정되지 않는다. 선택적으로, 상기 단계 2)에서 성형프레스기에 의해 성형되고, 선택적으로, 상기 성형프레스기는 톤수가 300톤 이상인 마찰프레스기, 전기프로그램제어프레스기 또는 유압프레스기이다.Optionally, in the above step 2), the molding pressure during compression molding is 300 tons or more, for example, 300 tons, 320 tons, 340 tons, 360 tons, 380 tons, 400 tons, 500 tons, 600 tons, or 700 tons. , 800 tons, 900 tons, 1000 tons, etc., but is not limited thereto. Optionally, it is formed by a molding press in step 2), and optionally, the molding press is a friction press, an electric program control press or a hydraulic press having a tonnage of 300 tons or more.

선택적으로, 상기 단계3)에서, 상기 단계2)의 성형 소지는 120℃ 이하의 온도 환경에서 20시간 이상 건조되고, 소성가마에 넣어 35℃/시간 이하의 승온 속도로 소결된다. 선택적으로, 상기 단계3)에서의 소성가마는 전기가열식 또는 가스식 셔틀가마이다. 선택적으로, 상기 단계3)의 소결 온도는 800~1050℃일 수 있고, 예를 들어, 800℃, 850℃, 900℃, 950℃, 1000℃, 1050℃ 등일 수 있지만 이에 한정되지 않는다.Optionally, in step 3), the molded body of step 2) is dried in a temperature environment of 120° C. or less for 20 hours or more, put into a calcining kiln and sintered at a temperature rising rate of 35° C./hour or less. Optionally, the firing kiln in step 3) is an electric heating type or gas type shuttle kiln. Optionally, the sintering temperature of step 3) may be 800 to 1050 ° C, for example, 800 ° C, 850 ° C, 900 ° C, 950 ° C, 1000 ° C, 1050 ° C, etc., but is not limited thereto.

본 발명의 제4 실시양태에 따른 규석벽돌 제조 방법은 조작이 간단할 뿐만 아니라, 재현성이 좋고, 제조된 규석벽돌은 높은 SiO2 함량, 약한 독성, 높은 결합 강도, 저온 부피 안정성, 가마의 고온 조적체 일체성을 동시에 실현할 수 있으며, 고온 수명이 길다.The method for producing silica stone bricks according to the fourth embodiment of the present invention is simple in operation and has good reproducibility, and the produced silica bricks have high SiO 2 content, low toxicity, high bonding strength, low-temperature volume stability, high-temperature furnace in the kiln Stack integrity can be realized at the same time, and high-temperature life is long.

선행기술 대비, 본 발명의 유익한 효과는 하기와 같다:Compared to the prior art, the beneficial effects of the present invention are as follows:

본 발명에 따른 규석벽돌 제조용 신규 소결 촉진제는 제조 조작이 용이하고, 재현성이 좋으며, 이를 사용하여 제조된 규석벽돌은 독성이 낮고, 제품 결합 강도가 높으며, 고온 수명이 길다.The novel sintering accelerator for producing silica bricks according to the present invention is easy to manufacture and has good reproducibility, and the silica stone bricks manufactured using the same have low toxicity, high product bonding strength, and long life at high temperatures.

본 발명에 따른 신규 규석벽돌은 제조 조작이 용이하고, 재현성이 좋으며, 제조된 규석벽돌은 높은 SiO2 함량, 약한 독성, 높은 결합 강도, 저온 부피 안정성, 가마의 고온 조적체 일체성을 동시에 구현할 수 있으며, 고온 수명이 길다.The new silica stone brick according to the present invention is easy to manufacture and has good reproducibility, and the manufactured silica stone brick has high SiO 2 content, low toxicity, high bonding strength, low-temperature volume stability, and high-temperature masonry integrity of the kiln. and has a long high-temperature life.

아래, 본 발명의 기술수단은 발명을 실시하기 위한 구체적인 형태에 결부하여 더 명확하고 완전하게 설명될 것이지만, 본 분야 당업자는 하기에서 설명되는 실시예는 본 발명의 전부 실시예가 아닌 일부 실시예이며, 단지 본 발명을 설명하기 위한 것으로, 본 발명의 범위를 제한하는 것으로 간주되어서는 아니되는 것을 이해할 것이다. 본 발명의 실시예에 기반하여 본 분야 당업자가 창의적인 노동이 필요없이 얻은 모든 다른 실시예들도 전부 본 발명의 보호 범위 내에 속한다. 실시예에서 구체적인 조건이 표시되지 않은 경우, 통상적인 조건 또는 제조업체에서 건의하는 조건에 따라 수행된다. 제조업체의 표시없이 사용되는 모든 시약 또는 기기는 시중에서 구입하여 얻을 수 있는 통상적인 제품이다.In the following, the technical means of the present invention will be more clearly and completely described in conjunction with specific modes for carrying out the invention, but those skilled in the art will understand that the embodiments described below are not all embodiments of the present invention, but some embodiments, It will be understood that the present invention is illustrative only and should not be regarded as limiting the scope of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative labor also fall within the protection scope of the present invention. If specific conditions are not indicated in the examples, it is performed according to normal conditions or conditions suggested by the manufacturer. All reagents or instruments used without manufacturer's indication are commercially available commercially available products.

실시예 1Example 1

용융 석영 골재 48부, 용융 석영 미세 분말 18부, 석영암 미세 분말 28.4부, 소결 촉진제 5.5부, 카복시메틸셀룰로스나트륨 0.1부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 10 : 3 : 0.5이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 850℃의 셔틀가마(shuttle kiln)에서 소성하였다.48 parts of fused quartz aggregate, 18 parts of fused quartz fine powder, 28.4 parts of quartzite fine powder, 5.5 parts of sintering accelerator, and 0.1 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 10:3:0.5. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press having a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 850 ° C.

실시예 2Example 2

용융 석영 골재 52부, 용융 석영 미세 분말 19부, 석영암 미세 분말 23.8부, 소결 촉진제 5.0부, 카복시메틸셀룰로스나트륨 0.2부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 10 : 3 : 0.5이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 880℃의 셔틀가마에서 소성하였다.52 parts of fused quartz aggregate, 19 parts of fused quartz fine powder, 23.8 parts of quartzite fine powder, 5.0 parts of sintering accelerator, and 0.2 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 10:3:0.5. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 880 ° C.

실시예 3Example 3

용융 석영 골재 58부, 용융 석영 미세 분말 25부, 석영암 미세 분말 12.1부, 소결 촉진제 4.5부, 카복시메틸셀룰로스나트륨 0.4부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 10 : 3 : 0.5이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 900℃의 셔틀가마에서 소성하였다.58 parts of fused quartz aggregate, 25 parts of fused quartz fine powder, 12.1 parts of quartzite fine powder, 4.5 parts of sintering accelerator, and 0.4 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 10:3:0.5. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 900 ° C.

실시예 4Example 4

용융 석영 골재 45부, 용융 석영 미세 분말 21부, 석영암 미세 분말 29.7부, 소결 촉진제 4.0부, 카복시메틸셀룰로스나트륨 0.3부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 10 : 3 : 0.5이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 950℃의 셔틀가마에서 소성하였다.45 parts of fused quartz aggregate, 21 parts of fused quartz fine powder, 29.7 parts of quartzite fine powder, 4.0 parts of sintering accelerator, and 0.3 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 10:3:0.5. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 950 ° C.

실시예 5Example 5

용융 석영 골재 65부, 용융 석영 미세 분말 10부, 석영암 미세 분말 21.9부, 소결 촉진제 3.0부, 카복시메틸셀룰로스나트륨 0.1부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 10 : 3 : 0.5이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 1000℃의 셔틀가마에서 소성하였다.65 parts of fused quartz aggregate, 10 parts of fused quartz fine powder, 21.9 parts of quartzite fine powder, 3.0 parts of sintering accelerator, and 0.1 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 10:3:0.5. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 1000 ° C.

실시예 6Example 6

용융 석영 골재 52부, 용융 석영 미세 분말 19부, 석영암 미세 분말 23.8부, 소결 촉진제 5.0부, 카복시메틸셀룰로스나트륨 0.2부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 8.5 : 4 : 1이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 630톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 1050℃의 셔틀가마에서 소성하였다52 parts of fused quartz aggregate, 19 parts of fused quartz fine powder, 23.8 parts of quartzite fine powder, 5.0 parts of sintering accelerator, and 0.2 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 8.5:4:1. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 630 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 1050 ° C.

실시예 7Example 7

용융 석영 골재 52부, 용융 석영 미세 분말 19부, 석영암 미세 분말 23.8부, 소결 촉진제 5.0부, 카복시메틸셀룰로스나트륨 0.2부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 7 : 5.5 : 1이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 630톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 850℃의 셔틀가마에서 소성하였다.52 parts of fused quartz aggregate, 19 parts of fused quartz fine powder, 23.8 parts of quartzite fine powder, 5.0 parts of sintering accelerator, and 0.2 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 7:5.5:1. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 630 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 850 ° C.

실시예 8Example 8

용융 석영 골재 52부, 용융 석영 미세 분말 19부, 석영암 미세 분말 23.8부, 소결 촉진제 5.0부, 카복시메틸셀룰로스나트륨 0.2부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 6 : 6.5 : 0.5이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 630톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 850℃의 셔틀가마에서 소성하였다.52 parts of fused quartz aggregate, 19 parts of fused quartz fine powder, 23.8 parts of quartzite fine powder, 5.0 parts of sintering accelerator, and 0.2 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 6:6.5:0.5. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 630 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 850 ° C.

비교예 1Comparative Example 1

용융 석영 골재 52부, 용융 석영 미세 분말 19부, 석영암 미세 분말 23.8부, 소결 촉진제 5.0부, 카복시메틸셀룰로스나트륨 0.2부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 5 : 7 : 1이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 10분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 850℃의 셔틀가마에서 소성하였다.52 parts of fused quartz aggregate, 19 parts of fused quartz fine powder, 23.8 parts of quartzite fine powder, 5.0 parts of sintering accelerator, and 0.2 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 5:7:1. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 10 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 850 ° C.

비교예 2Comparative Example 2

용융 석영 골재 48부, 용융 석영 미세 분말 38부, 석영암 미세 분말 8.8부, 소결 촉진제 5.0부, 카복시메틸셀룰로스나트륨 0.2부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 5 : 7 : 1이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 10분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 850℃의 셔틀가마에서 소성하였다.48 parts of fused quartz aggregate, 38 parts of fused quartz fine powder, 8.8 parts of quartzite fine powder, 5.0 parts of sintering accelerator, and 0.2 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 5:7:1. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 10 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 850 ° C.

비교예 3Comparative Example 3

용융 석영 골재 48부, 용융 석영 미세 분말 38부, 석영암 미세 분말 8.8부, 소결 촉진제 5.5부, 카복시메틸셀룰로스나트륨 0.1부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 10 : 3 : 0.5이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 10분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 850℃의 셔틀가마에서 소성하였다.48 parts of fused quartz aggregate, 38 parts of fused quartz fine powder, 8.8 parts of quartzite fine powder, 5.5 parts of sintering accelerator, and 0.1 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 10:3:0.5. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 10 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 850 ° C.

비교예 4Comparative Example 4

용융 석영 골재 45부, 용융 석영 미세 분말 21부, 석영암 미세 분말 29.7부, 소결 촉진제 4.0부, 카복시메틸셀룰로스나트륨 0.3부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 10 : 3 : 0.5이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 750℃의 셔틀가마에서 소성하였다.45 parts of fused quartz aggregate, 21 parts of fused quartz fine powder, 29.7 parts of quartzite fine powder, 4.0 parts of sintering accelerator, and 0.3 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 10:3:0.5. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 750 ° C.

비교예 5Comparative Example 5

용융 석영 골재 52부, 용융 석영 미세 분말 19부, 석영암 미세 분말 23.8부, 소결 촉진제 5.0부, 카복시메틸셀룰로스나트륨 0.2부를 이용한다. 여기서, 소결 촉진제에서 실리카졸, 수산화알루미늄 및 티탄백의 질량비는 7 : 5.5 : 1이다. 용융 석영 골재를 믹서밀에 넣은 후 2분 동안 교반하고, 소결 촉진제를 넣은 후 3분 동안 교반하며, 용융 석영 미세 분말 및 석영암 미세 분말을 넣은 후 17분 동안 교반하고; 성형 압력이 400톤인 성형프레스기로 성형하며, 110℃의 환경에서 24시간 동안 건조하고, 1150℃의 셔틀가마에서 소성하였다.52 parts of fused quartz aggregate, 19 parts of fused quartz fine powder, 23.8 parts of quartzite fine powder, 5.0 parts of sintering accelerator, and 0.2 part of sodium carboxymethylcellulose are used. Here, the mass ratio of silica sol, aluminum hydroxide, and titanium white in the sintering accelerator is 7:5.5:1. The fused quartz aggregate is put into the mixer mill and stirred for 2 minutes, the sintering accelerator is added and stirred for 3 minutes, and the fused quartz fine powder and quartz rock fine powder are added and stirred for 17 minutes; It was molded with a molding press with a molding pressure of 400 tons, dried for 24 hours in an environment of 110 ° C, and fired in a shuttle kiln at 1150 ° C.

실험예 1Experimental Example 1

실리카의 측정은 GB/T 6901 실리카질 내화재 화학 분석 방법의 규정에 따라 진행하였다.Silica was measured according to GB/T 6901 method for chemical analysis of siliceous refractories.

실험예 2Experimental Example 2

내압 강도의 검측은 GB/T 5072 내화재 상온 내압 강도 시험 방법의 규정에 따라 진행하였다.The pressure resistance test was performed in accordance with GB/T 5072 Standard Room Temperature Pressure Resistance Test Method for Fire Resistant Materials.

실험예 3Experimental Example 3

기공률과 부피 밀도의 측정은 GB/T 2997 조밀 정형 내화 제품 부피 밀도, 겉보기 기공률 및 참기공률 시험 방법의 규정에 따라 진행하였다.The porosity and bulk density were measured according to the GB/T 2997 test methods for bulk density, apparent porosity and true porosity of densely shaped refractory products.

실험예 4Experimental Example 4

선열팽창율의 검측은 GB/T 7320 내화재 열팽창 시험 방법의 규정에 따라 진행하였다.The linear thermal expansion coefficient was measured according to the GB/T 7320 refractory thermal expansion test method.

실험예 5Experimental Example 5

하중연화점의 검측은 YB/T 370 내화 제품 하중연화점 시험 방법(비시차(non-differential)-승온법)의 규정에 따라 진행하였다.The detection of the softening point under load was performed according to the YB/T 370 test method for softening point under load for refractory products (non-differential-rising temperature method).

상기 실험예에 기반하여, 실시예 1~8 및 비교예 1~5를 측정하였고, 그 결과는 하기표 1~3에 나타낸 바와 같다.Based on the experimental example, Examples 1 to 8 and Comparative Examples 1 to 5 were measured, and the results are shown in Tables 1 to 3 below.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실리카, %Silica, % 98.4298.42 98.8098.80 99.0199.01 98.0798.07 내압 강도, MPapressure strength, MPa 4242 4545 3939 4848 기공률, %Porosity, % 18.518.5 18.418.4 18.118.1 17.817.8 부피 밀도, g/cm3 Bulk Density, g/cm 3 1.851.85 1.861.86 1.881.88 1.901.90 선열팽창율1000℃Linear Thermal Expansion 1000℃ 0.720.72 0.680.68 0.730.73 0.650.65 하중연화점, 0.2MPaХT0.6, ℃Softening point under load, 0.2MPaХT0.6, ℃ 16711671 16811681 16761676 16781678

실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 실리카, %Silica, % 99.1299.12 98.6398.63 98.9898.98 98.6098.60 내압 강도, MPapressure strength, MPa 4646 4343 4949 4646 기공률, %Porosity, % 18.318.3 18.418.4 18.918.9 17.617.6 부피 밀도, g/cm3 Bulk Density, g/cm 3 1.871.87 1.861.86 1.831.83 1.911.91 선열팽창율1000℃Linear Thermal Expansion 1000℃ 0.700.70 0.690.69 0.720.72 0.680.68 하중연화점, 0.2MPaХT0.6, ℃Softening point under load, 0.2MPaХT0.6, ℃ 16751675 16861686 16731673 16851685

비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 실리카, %Silica, % 98.0698.06 97.6997.69 97.7297.72 97.6397.63 98.0898.08 내압 강도, MPapressure strength, MPa 2626 2525 3030 2828 3232 기공률, %Porosity, % 20.120.1 18.518.5 19.819.8 19.619.6 20.220.2 부피 밀도, g/cm3 Bulk Density, g/cm 3 1.781.78 1.881.88 1.841.84 1.861.86 1.781.78 선열팽창율1000℃Linear Thermal Expansion 1000℃ 0.930.93 0.860.86 0.890.89 1.021.02 1.281.28 하중연화점, 0.2MPaХT0.6, ℃Softening point under load, 0.2MPaХT0.6, ℃ 16581658 16651665 16521652 16621662 16681668

이상의 실시예 1~8 및 비교예 1~5의 내용을 참조하면, 본 발명의 실시예에 따라 제조된 규석벽돌은 비교예의 방법에 따라 제조된 규석벽돌보다 실리카 함량, 내압 강도, 부피 밀도, 하중연화점이 높고, 기공률, 선열팽창율이 낮은 것을 알 수 있다. 특히, 본 발명의 실시예에 따른 규석벽돌은 비교예에 의해 제조된 규석벽돌보다 내압 강도, 선열팽창율, 실리카 함량의 증가가 현저하다. 이로부터, 본 발명에 따른 규석벽돌은 광화제로 산화칼슘, 산화제일철, 산화알루미늄, 이산화망간 등을 추가로 사용할 필요 없어, 이로 인한 위험을 방지할 수 있는 바, 즉 독성을 줄일 수 있음을 알 수 있다. 이 기초 상에서, 본 발명의 규석벽돌의 실리카 함량은 98% 이상으로 될 수 있고, 심지어 99% 이상에 달할 수 있으며, 내압 강도, 부피 밀도, 하중연화점이 높고, 기공률, 선열팽창율이 낮아, 아주 우수한 내마모성, 내수축성, 경도 등 물리적 및 화학적 특성을 가지며, 결합 강도가 높고, 고온 수명이 길어진다. 다시 말한 즉, 본 발명에 따라 제조된 규석벽돌은 높은 SiO2 함량, 약한 독성, 높은 결합 강도, 저온 부피 안정성, 가마의 고온 조적체 일체성을 동시에 구현할 수 있으며, 고온 수명도 길다.Referring to the contents of Examples 1 to 8 and Comparative Examples 1 to 5, the silica stone bricks prepared according to the examples of the present invention have higher silica content, pressure resistance, bulk density, and load than the silica stone bricks prepared according to the method of Comparative Examples. It can be seen that the softening point is high and the porosity and coefficient of linear thermal expansion are low. In particular, the silica stone bricks according to the examples of the present invention have significantly increased pressure strength, coefficient of linear thermal expansion, and silica content compared to the silica stone bricks prepared according to the comparative example. From this, it can be seen that the silica brick according to the present invention does not need to additionally use calcium oxide, ferrous oxide, aluminum oxide, manganese dioxide, etc. as a mineralizer, so that the risk caused by this can be prevented, that is, toxicity can be reduced. . On this basis, the silica content of the silica stone bricks of the present invention can be as high as 98% or more, even as high as 99% or more, with high pressure resistance, bulk density, high load softening point, low porosity and linear thermal expansion, and excellent performance. It has physical and chemical properties such as abrasion resistance, shrinkage resistance, and hardness, has high bonding strength, and has a long life at high temperature. In other words, the silica stone bricks manufactured according to the present invention can simultaneously realize high SiO 2 content, low toxicity, high bonding strength, low-temperature volume stability, and high-temperature masonry integrity of the kiln, and have a long high-temperature lifespan.

더 나아가, 실시예 2, 실시예 6~8 및 비교예 1을 비교하면, 일정 질량비 범위의 실리카졸, 수산화알루미늄 및 티탄백을 소결 촉진제로 사용하는 경우, 해당 범위를 초과하는 비교예 1 대비, 규석벽돌의 실리카 함량, 내압 강도, 부피 밀도, 하중연화점을 높이고, 기공률, 선열팽창율을 낮출 수 있음을 알 수 있다.Furthermore, when comparing Example 2, Examples 6 to 8 and Comparative Example 1, when silica sol, aluminum hydroxide and titanium bag in a certain mass ratio range are used as sintering accelerators, compared to Comparative Example 1 exceeding the corresponding range, It can be seen that the silica content, pressure-resistant strength, bulk density, softening point under load of silica brick can be increased, and the porosity and coefficient of linear thermal expansion can be decreased.

이 외에, 실시예 1 및 비교예 3을 비교하면, 소결 촉진제로 첨가된 조성비가 동일한 경우, 용융 석영 분말과 석영암 미세 분말의 함량이 일정 범위를 초과하는 비교예 3 대비, 규석벽돌의 실리카 함량, 내압 강도, 부피 밀도, 하중연화점이 낮아지고, 기공률, 선열팽창율이 높아짐을 알 수 있다.In addition, comparing Example 1 and Comparative Example 3, when the composition ratio added as the sintering accelerator is the same, compared to Comparative Example 3 in which the contents of the fused quartz powder and the fine quartz rock powder exceed a certain range, the silica content of the silica stone bricks , it can be seen that the pressure-resistant strength, bulk density, and softening point under load are lowered, and the porosity and coefficient of linear thermal expansion are increased.

마지막으로, 실시예 2, 실시예 7 및 비교예 5 등을 비교하면, 소성 온도가 너무 높으면, 본 발명의 기술적 효과를 얻지 못할 수도 있다. 즉, 측정된 각각의 파라미터가 급격히 떨어질 수 있음을 알 수 있다.Finally, comparing Example 2, Example 7 and Comparative Example 5, etc., if the firing temperature is too high, the technical effect of the present invention may not be obtained. That is, it can be seen that each measured parameter may drop rapidly.

마지막으로 설명할 것은: 이상의 각 실시예는 단지 본 발명의 기술수단을 설명하기 위해 사용된 것이지 제한적인 것이 아니며; 상기 각 실시예를 참조하여 본 발명에 대해 상세하게 설명하였으나, 본 분야 당업자는 상기 각 실시예에 기재된 기술수단을 수정하거나, 일부 또는 전부 기술특징을 균등하게 대체할 수 있고; 이러한 수정 또는 대체는 해당 기술수단의 본질이 본 발명의 각 실시예 기술수단의 범위로부터 벗어나게 하지 않음을 이해해야 한다.Finally, it should be noted that: each of the above embodiments is only used to illustrate the technical means of the present invention, and is not restrictive; Although the present invention has been described in detail with reference to each of the above embodiments, a person skilled in the art may modify the technical means described in each of the above embodiments or equally replace some or all of the technical features; It should be understood that such modification or substitution does not cause the essence of the technical means to deviate from the scope of the technical means of each embodiment of the present invention.

Claims (10)

실리카졸, 수산화알루미늄 및 티탄백을 포함하는 것을 특징으로 하는 규석벽돌 제조용 소결 촉진제.A sintering accelerator for producing silica bricks comprising silica sol, aluminum hydroxide and titanium bag. 제1항에 있어서,
선택적으로, 상기 소결 촉진제에서 실리카졸 함량은 40~80%이고, 수산화알루미늄 함량은 15~50%이며, 티탄백 함량은 1~10%이고,
선택적으로, 상기 실리카졸, 수산화알루미늄 및 티탄백의 질량비율은 40~80 : 15~50 : 1~10의 범위 내에 있으며, 최적의 질량비는 10 : 3 : 0.5인 것을 특징으로 하는 규석벽돌 제조용 소결 촉진제.
According to claim 1,
Optionally, in the sintering accelerator, the silica sol content is 40 to 80%, the aluminum hydroxide content is 15 to 50%, and the titanium bag content is 1 to 10%,
Optionally, the mass ratio of the silica sol, aluminum hydroxide and titanium bag is in the range of 40 to 80: 15 to 50: 1 to 10, and the optimal mass ratio is 10: 3: 0.5 Sintering accelerator for producing silica stone bricks .
제1항 또는 제2항에 있어서,
선택적으로, 상기 실리카졸는 나노 스케일 실리카 콜로이드성 입자를 포함하고,
상기 실리카졸의 고형분 함량은 20~30%인 것을 특징으로 하는 규석벽돌 제조용 소결 촉진제.
According to claim 1 or 2,
Optionally, the silica sol comprises nanoscale silica colloidal particles;
Sintering accelerator for producing silica stone bricks, characterized in that the solid content of the silica sol is 20 to 30%.
제1항에 있어서,
상기 소결 촉진제는 규석벽돌 제조용인 것을 특징으로 하는 규석벽돌 제조용 소결 촉진제.
According to claim 1,
The sintering accelerator is a sintering accelerator for producing silica stone bricks, characterized in that for producing silica stone bricks.
실리카졸, 수산화알루미늄, 티탄백을 혼합하여 공동 밀링하는 단계를 포함하고,
선택적으로, 상기 공동 밀링 시간은 2시간 이상이며,
선택적으로, 상기 실리카졸은 나노 실리카 콜로이드성 입자를 포함하고,
선택적으로, 상기 소결 촉진제에서 실리카졸 함량은 40~80%이며, 수산화알루미늄 함량은 15~50%이고, 티탄백 함량은 1~10%이며,
선택적으로, 상기 실리카졸, 수산화알루미늄 및 티탄백의 질량비율은 10:3:0.5이고,
선택적으로, 상기 실리카졸의 고형분 함량은 20~30%이며,
선택적으로, 상기 소결 촉진제는 규석벽돌 제조용인 것을 특징으로 하는 규석벽돌 제조용 소결 촉진제의 제조 방법.
Mixing and co-milling silica sol, aluminum hydroxide, and titanium bag,
Optionally, the co-milling time is greater than or equal to 2 hours;
Optionally, the silica sol comprises nano silica colloidal particles;
Optionally, in the sintering accelerator, the silica sol content is 40 to 80%, the aluminum hydroxide content is 15 to 50%, and the titanium bag content is 1 to 10%,
Optionally, the mass ratio of the silica sol, aluminum hydroxide and titanium bag is 10:3:0.5,
Optionally, the solid content of the silica sol is 20 to 30%,
Optionally, the sintering accelerator is a method for producing a sintering accelerator for producing a silica stone brick, characterized in that for producing a silica stone brick.
규소 함유 재료 및 제1항 내지 제5항 중 어느 한 항에 따른 소결 촉진제를 포함하는 것을 특징으로 하는 규석벽돌.A silica stone brick comprising a silicon-containing material and a sintering accelerator according to any one of claims 1 to 5. 제6항에 있어서,
상기 규소 함유 재료는 용융 석영 및 석영암 미세 분말을 포함하고,
선택적으로, 상기 규소 함유 재료는 용융 석영 골재, 용융 석영 미세 분말 및 석영암 미세 분말을 포함하며,
용융 석영 골재는 실리카 함량이 96% 이상이고, 비결정질 형태 실리카 함량이 85% 이상이며, 임계 입도는 3mm이고, 입도가 3~1mm인 백분율 함량은 40~55%이며, 입도가1~0.5mm인 백분율 함량은 21-38%이고, 입도가 0.5~0mm인 백분율 함량은 21~38%이며, 상기 용융 석영 미세 분말의 입도는 0.088mm 이하이고, 실리카 함량은 90% 이상이며; 상기 석영암 미세 분말의 입도는 0.088mm 이하이고, 실리카 함량은 90% 이상이며,
선택적으로, 카복시메틸셀룰로스나트륨(Sodium Carboxymethylcellulose)을 더 포함하는 것을 특징으로 하는 규석벽돌.
According to claim 6,
The silicon-containing material includes fused quartz and quartzite fine powder;
Optionally, the silicon-containing material comprises fused quartz aggregate, fused quartz fine powder and quartzite fine powder;
The fused quartz aggregate has a silica content of 96% or more, a silica content in an amorphous form of 85% or more, a critical particle size of 3 mm, a percentage content of 40-55% with a particle size of 3 to 1 mm, and a particle size of 1 to 0.5 mm. The percentage content is 21-38%, the particle size is 0.5-0 mm, the percentage content is 21-38%, the particle size of the fused quartz fine powder is 0.088 mm or less, and the silica content is 90% or more; The particle size of the quartz rock fine powder is 0.088 mm or less, the silica content is 90% or more,
Optionally, a silica stone brick further comprising sodium carboxymethylcellulose.
제7항에 있어서,
상기 규석벽돌은 45~65부의 용융 석영 골재, 10~35부의 용융 석영 미세 분말, 10~30부의 석영암 미세 분말, 3~6부의 소결 촉진제, 0~0.5부의 카복시메틸셀룰로스나트륨을 포함하는 것을 특징으로 하는 규석벽돌.
According to claim 7,
The silica stone brick comprises 45 to 65 parts of fused quartz aggregate, 10 to 35 parts of fused quartz fine powder, 10 to 30 parts of quartz rock fine powder, 3 to 6 parts of sintering accelerator, and 0 to 0.5 parts of sodium carboxymethylcellulose. Silica stone bricks made of.
용융 석영 골재를 교반하고, 계속하여 소결 촉진제를 넣어 교반한 후, 용융 석영 미세 분말 및 석영암 미세 분말을 넣어 교반하여 성형될 혼합물재를 얻는 단계1);
단계1)에서 얻은 혼합물재를 원하는 모양의 소지로 압착 성형하는 단계2); 및
단계2)의 성형 소지에 대해 건조하고 소결하는 단계3);을 포함하는 것을 특징으로 하는 청구항 6 내지 청구항 8 중 어느 한 항에 따른 규석벽돌의 제조 방법.
Step 1) to obtain a mixture material to be molded by stirring the fused quartz aggregate, continuously adding and stirring a sintering accelerator, and then adding and stirring the fused quartz fine powder and quartz rock fine powder;
Step 2) of compressing and molding the mixture obtained in step 1) into a base having a desired shape; and
The method for manufacturing a silica stone brick according to any one of claims 6 to 8, comprising a step 3) of drying and sintering the molding base of step 2).
제9항에 있어서,
선택적으로, 단계1)에서, 상기 교반은 믹서밀에서 진행되고,
선택적으로, 단계1)에서, 용융 석영 골재를 믹서밀에 넣어 1~3분 동안 교반하며, 소결 촉진제를 넣어 1~3분 동안 교반하고, 용융 석영 미세 분말 및 석영암 미세 분말을 넣어 15~20분 동안 교반하며,
선택적으로, 상기 단계1)에서의 총 교반 시간은 20분 이상이고,
선택적으로, 상기 단계1)에서, 상기 믹서밀은 플라나타리(Planetary) 믹서밀 또는 강제 믹서기이며,
선택적으로, 상기 단계1)에서 45~65부의 용융 석영 골재, 10~35부의 용융 석영 미세 분말, 10~30부의 석영암 미세 분말, 3~6부의 소결 촉진제, 0~0.5부의 카복시메틸셀룰로스나트륨을 혼합하고,
선택적으로, 상기 단계2)에서, 압착 성형시의 성형 압력은 300톤 이상이며,
선택적으로, 상기 단계2)에서 성형프레스기에 의해 성형되고,
선택적으로, 상기 성형프레스기는 톤수가 300톤 이상인 마찰프레스기, 전기프로그램제어프레스기 또는 유압프레스기이며,
선택적으로, 상기 단계3)에서, 상기 단계2)의 성형 소지를 120℃ 이하의 환경에서 20시간 이상 건조시키고, 소성가마에 넣어 35℃/시간 이하의 승온 속도로 소결하며,
선택적으로, 상기 단계3)에서의 소성가마는 전기가열식 또는 가스식 셔틀가마이고,
선택적으로, 상기 단계3)의 소결 온도는 800~1050℃인 것을 특징으로 하는 규석벽돌의 제조 방법.
According to claim 9,
Optionally, in step 1), the stirring is performed in a mixer mill,
Optionally, in step 1), the fused quartz aggregate is put into a mixer mill and stirred for 1 to 3 minutes, a sinter accelerator is added and stirred for 1 to 3 minutes, and fused quartz fine powder and quartz rock fine powder are added and stirred for 15 to 20 minutes. Stir for 1 minute,
Optionally, the total stirring time in step 1) is 20 minutes or more,
Optionally, in step 1), the mixer mill is a planetary mixer mill or a forced mixer,
Optionally, in step 1), 45 to 65 parts of fused quartz aggregate, 10 to 35 parts of fused quartz fine powder, 10 to 30 parts of fine quartz rock powder, 3 to 6 parts of sintering accelerator, and 0 to 0.5 parts of sodium carboxymethylcellulose are added. mix,
Optionally, in step 2), the molding pressure during compression molding is 300 tons or more,
Optionally, it is molded by a molding press in step 2),
Optionally, the molding press is a friction press, an electric program control press or a hydraulic press with a tonnage of 300 tons or more,
Optionally, in step 3), the molding material of step 2) is dried in an environment of 120 ° C or less for 20 hours or more, put in a calcining kiln and sintered at a heating rate of 35 ° C / hour or less,
Optionally, the firing kiln in step 3) is an electric heating type or gas type shuttle kiln,
Optionally, the method for producing a silica stone brick, characterized in that the sintering temperature in step 3) is 800 ~ 1050 ℃.
KR1020210119977A 2021-06-24 2021-09-08 Sintering-promoting agent for preparing silica bricks, compound silica brick, and preparation method therefor KR102696844B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110701772.8A CN113292346B (en) 2021-06-24 2021-06-24 Sintering promoting agent for preparing silica brick, composite silica brick and preparation method of composite silica brick
CN202110701772.8 2021-06-24

Publications (2)

Publication Number Publication Date
KR20230000389A true KR20230000389A (en) 2023-01-02
KR102696844B1 KR102696844B1 (en) 2024-08-19

Family

ID=77329265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210119977A KR102696844B1 (en) 2021-06-24 2021-09-08 Sintering-promoting agent for preparing silica bricks, compound silica brick, and preparation method therefor

Country Status (3)

Country Link
JP (1) JP7197654B1 (en)
KR (1) KR102696844B1 (en)
CN (1) CN113292346B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262234B (en) * 2021-12-31 2023-07-04 洛阳安耐克科技股份有限公司 Special dense silica brick for blast furnace hot blast stove and preparation method thereof
CN114920541B (en) * 2022-05-28 2023-03-17 河北浩锐陶瓷制品有限公司 High-wear-resistance ceramic material for ceramic tiles, preparation method of high-wear-resistance ceramic material and high-wear-resistance ceramic tiles
CN117964385B (en) * 2024-01-08 2024-06-25 郑州硅姆热能技术有限公司 High-strength light silica brick and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722173A (en) * 1980-07-17 1982-02-05 Asahi Glass Co Ltd Silicon carbide ceramics
KR20030001310A (en) * 2001-06-22 2003-01-06 가부시키가이샤 무라타 세이사쿠쇼 Method for making raw ceramic powder, raw ceramic powder, dielectric ceramic produced using raw ceramic powder, and monolithic ceramic electronic component using dielectric ceramic
CN104628399A (en) * 2015-02-11 2015-05-20 江苏中正耐火材料有限公司 Crack-resistant and zero-expansion fused-silica brick and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3906620C1 (en) * 1989-03-02 1990-10-25 Didier-Werke Ag, 6200 Wiesbaden, De
CN1073059C (en) * 1997-03-14 2001-10-17 冶金工业部钢铁研究总院 Fused quartz ceramic material
JP3949408B2 (en) * 2001-08-10 2007-07-25 住友金属工業株式会社 Silica brick for hot repair and its manufacturing method
JP2004323249A (en) * 2003-04-21 2004-11-18 National Institute Of Advanced Industrial & Technology High-void-content ceramic foam molded article and preparation method therefor
CN100516001C (en) * 2007-10-26 2009-07-22 孙邢哲 Resintered fused silica brick and method of producing the same
CN101323530A (en) * 2008-07-01 2008-12-17 山东中齐耐火材料集团有限公司 Fused quartz block for coke oven hot repair
JP6795357B2 (en) 2016-09-06 2020-12-02 イソライト工業株式会社 Inorganic fiber insulation and its manufacturing method
CN107867868B (en) * 2017-12-02 2020-10-13 山东鲁桥新材料股份有限公司 Ultra-compact high-thermal-conductivity silica brick and preparation method thereof
CN109796214A (en) * 2019-04-03 2019-05-24 洛阳迈乐耐火材料有限公司 A kind of high-purity cristobalite high alkali resistance low thermal expansion silica brick and preparation method thereof
CN111995427A (en) * 2020-08-20 2020-11-27 郑州东豫新材料科技有限公司 Thermal shock resistant special-shaped bulk silica brick and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722173A (en) * 1980-07-17 1982-02-05 Asahi Glass Co Ltd Silicon carbide ceramics
KR20030001310A (en) * 2001-06-22 2003-01-06 가부시키가이샤 무라타 세이사쿠쇼 Method for making raw ceramic powder, raw ceramic powder, dielectric ceramic produced using raw ceramic powder, and monolithic ceramic electronic component using dielectric ceramic
CN104628399A (en) * 2015-02-11 2015-05-20 江苏中正耐火材料有限公司 Crack-resistant and zero-expansion fused-silica brick and preparation method thereof

Also Published As

Publication number Publication date
KR102696844B1 (en) 2024-08-19
JP7197654B1 (en) 2022-12-27
JP2023004797A (en) 2023-01-17
CN113292346A (en) 2021-08-24
CN113292346B (en) 2022-11-29

Similar Documents

Publication Publication Date Title
KR20230000389A (en) Sintering-promoting agent for preparing silica bricks, compound silica brick, and preparation method therefor
CN116332631B (en) Chromium-aluminum-magnesium-zirconium refractory brick and preparation method thereof
CN105130468B (en) A kind of flame-proof thermal insulation material and preparation method thereof
CN109369181B (en) Volume-stable high-purity zirconia refractory product
CN103626503A (en) Longevous mullite brick for hot blast stove and preparation method thereof
CN109400191A (en) A kind of high-purity zirconia heat insulation refractory product
CN106518043A (en) Preparing method of low-cost Al-Ca-Si tin bath bottom block
CN111302769A (en) Low-aluminum-magnesium composite unburned brick and preparation method thereof
CN111718200A (en) Bottom creep clay brick for hot blast stove and preparation method thereof
CN1303036C (en) Process for preparing high strength corundum refractory material by low temperature sintering
JPS5913470B2 (en) Silica brick manufacturing method
CN108285350B (en) Ternary composite silicon carbide refractory material and preparation method thereof
JP2599896B2 (en) Alumina-chromium-zirconia refractory and method for producing the same
CN112209739A (en) Lightweight high-strength magnesium aluminate spinel hollow sphere porous ceramic and preparation method thereof
CN117303919B (en) Unfired chrome corundum refractory brick and preparation method thereof
CN110981474B (en) Zirconia light heat-preservation refractory product
CN116283315B (en) Carbon-free inorganic pressed spinel sliding plate brick and preparation method thereof
KR960004393B1 (en) Castable composition
JPH082980A (en) Zirconia-based refractory for heat insulation and its production
CN111003954B (en) High-purity calcium aluminate cement, preparation method and application thereof
JPH0925157A (en) Refractory material for casting
CN111908905A (en) Zirconium self-flow castable
JPH02164767A (en) Production of zirconia refractory
CN113480296A (en) Modified refractory brick with high thermal shock stability
CN117486622A (en) Shaped refractory material resistant to impact corrosion

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant