KR20220162912A - Carbon implant and Manufacturing method of the same - Google Patents

Carbon implant and Manufacturing method of the same Download PDF

Info

Publication number
KR20220162912A
KR20220162912A KR1020210070759A KR20210070759A KR20220162912A KR 20220162912 A KR20220162912 A KR 20220162912A KR 1020210070759 A KR1020210070759 A KR 1020210070759A KR 20210070759 A KR20210070759 A KR 20210070759A KR 20220162912 A KR20220162912 A KR 20220162912A
Authority
KR
South Korea
Prior art keywords
implant
carbon
carbon sheet
manufacturing
weave
Prior art date
Application number
KR1020210070759A
Other languages
Korean (ko)
Other versions
KR102608168B1 (en
Inventor
한갑수
최효석
Original Assignee
전북대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교병원 filed Critical 전북대학교병원
Priority to KR1020210070759A priority Critical patent/KR102608168B1/en
Priority to PCT/KR2022/006149 priority patent/WO2022255650A1/en
Publication of KR20220162912A publication Critical patent/KR20220162912A/en
Application granted granted Critical
Publication of KR102608168B1 publication Critical patent/KR102608168B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30734Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/08Carbon ; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/024Carbon; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00911Material properties transparent or translucent for fields applied by a magnetic resonance imaging system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00915Material properties transparent or translucent for radioactive radiation
    • A61B2017/0092Material properties transparent or translucent for radioactive radiation for X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30734Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
    • A61F2002/30736Augments or augmentation pieces, e.g. wedges or blocks for bridging a bone defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30957Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30971Laminates, i.e. layered products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

The present invention relates to a carbon material implant and a method for manufacturing the same and, more particularly, to a carbon material implant manufactured by using a carbon sheet, and a method for manufacturing the same. According to the present invention, the method for manufacturing a carbon material implant comprises: a preparation step of cutting and preparing a carbon sheet according to the shape of implant; an impregnation step of impregnating the carbon sheet with a resin; a lamination step of placing the plurality of carbon sheets impregnated with the resin into a mold and laminating the carbon sheets; a heating step of heating and baking the laminated carbon sheets; and a post-processing step of processing the external shape of the implant formed by curing the carbon sheets by the heating step. According to the present invention, treatment and surgery can be performed smoothly without removing the implant.

Description

탄소소재 임플란트 및 이의 제조방법 { Carbon implant and Manufacturing method of the same }Carbon material implant and its manufacturing method { Carbon implant and Manufacturing method of the same }

본 발명은 탄소소재 임플란트 및 이의 제조방법에 관한 것으로서, 특히 탄소시트를 이용하여 제조된 탄소소재 임플란트 및 이의 제조방법에 관한 것이다.The present invention relates to a carbon material implant and a manufacturing method thereof, and more particularly to a carbon material implant manufactured using a carbon sheet and a manufacturing method thereof.

금속재료가 생체용으로 사용되기 위해서는 독성이나 발암성이 없고 부작용이나 인체 거부반응이 없는 생체적합성(biocompatibility)이 우수해야 하며, 인장강도, 탄성률, 내마모성 등 기계적 성질이 양호해야 할 뿐만 아니라 인체 내에서 조성되는 부식 환경을 견딜 수 있는 강력한 내식성을 갖추어야 한다. In order for metal materials to be used for living things, they must have excellent biocompatibility without toxicity or carcinogenicity, no side effects or rejection by the human body, and good mechanical properties such as tensile strength, modulus of elasticity, and abrasion resistance, as well as good It must have strong corrosion resistance that can withstand the corrosive environment that is created.

따라서 이러한 요건을 고려할 때, 적당한 생체용 금속재료는 스테인리스 강, 코발트계 합금, 티타늄 및 그 합금계 등이 사용되고 있다.Therefore, considering these requirements, stainless steel, cobalt-based alloys, titanium and its alloys are used as suitable metal materials for living organisms.

특히, 이 중에서도 기계적 강도 및 부식 저항성 등을 감안하여 임플란트의 재료로 티타늄이 널리 사용되고 있는데, 티타늄은 임플란트로 가공되는 과정에서 표면이 공기 중에 노출되면 산소와 반응하여 수천분의 일초 내에 수나노미터 두께의 티타늄 산화막이 형성된다. In particular, titanium is widely used as a material for implants in consideration of its mechanical strength and corrosion resistance. Titanium reacts with oxygen when its surface is exposed to the air in the process of being processed into an implant, and is several nanometers thick within a few thousandths of a second. A titanium oxide film of is formed.

그러나, 이러한 종래의 금속성 임플란트는 X-ray와 MRI 촬영시 투과되지 않기 때문에, 진료, 수술 등을 위해 X-ray 또는 MRI 촬영시 금속성 임플란트를 제거해야 되는 등의 문제가 있었다.However, since these conventional metallic implants are not transmitted during X-ray and MRI imaging, there is a problem in that the metallic implant must be removed during X-ray or MRI imaging for medical treatment, surgery, and the like.

또한, 도 1(a)에 도시된 바와 같이 금속(티타늄 등) 임플란트를 골절부위에 적용할 경우, 금속의 매우 높은 강도로 인해 도 1(a)에서 화살표로 표시한 바와 같이 대부분의 하중(자극)이 뼈가 아닌 임플란트를 통해 전달되게 된다.In addition, when a metal (titanium, etc.) implant is applied to the fracture site as shown in FIG. 1 (a), most of the load (stimulus) as indicated by the arrow in FIG. ) is delivered through the implant rather than the bone.

이렇게 되면, 골절된 뼈로 가해지는 하중(자극)이 작아지면서 골 재생성(Bone remodeling)이 저하되고, 결국 도 1(b)에 도시된 바와 같이 뼈가 얇아지면서 골흡수(Bone resorption) 현상이 발생하게 되는 문제가 있었다.In this case, as the load (stimulus) applied to the fractured bone decreases, bone remodeling decreases, and eventually, as shown in FIG. 1(b), the bone becomes thin and bone resorption occurs. there was a problem with

공개특허 10-2012-0125838Patent Publication 10-2012-0125838

본 발명은 전술한 문제점을 해결하기 위한 것으로서, X-ray와 MRI 촬영시 투과성이 높아 임플란트의 제거없이 진료, 수술 등을 원활하게 할 수 있고, 임플란트를 골절부위에 적용하여 하였을 때 골흡수 현상이 발생되는 것을 지연시킬 수 있는 탄소소재 임플란트 및 이의 제조방법을 제공하는데 그 목적이 있다.The present invention is intended to solve the above-described problems, and has high permeability during X-ray and MRI imaging, so that treatment and surgery can be performed smoothly without removing the implant, and bone resorption occurs when the implant is applied to a fracture site. Its purpose is to provide a carbon material implant that can delay the occurrence and a manufacturing method thereof.

상기 목적을 달성하기 위하여 본 발명의 탄소소재 임플란트의 제조방법은, 임플란트 형상에 맞게 탄소시트를 절단하여 준비하는 준비단계와; 탄소시트를 레진에 함침시키는 함침단계와; 레진이 함침된 다수개의 탄소시트를 금형에 넣어 적층하는 적층단계와; 적층된 탄소시트를 가열하여 굽는 히팅단계와; 상기 히팅단계에 의해 탄소시트가 경화되어 형성된 임플란트의 외형을 가공하는 후가공단계;를 포함하여 이루어진 것을 특징으로 한다.In order to achieve the above object, the manufacturing method of a carbon material implant of the present invention includes a preparation step of cutting and preparing a carbon sheet to suit the shape of the implant; an impregnation step of impregnating the carbon sheet into the resin; A lamination step of stacking a plurality of carbon sheets impregnated with resin into a mold; a heating step of heating and baking the stacked carbon sheets; and a post-processing step of processing the outer shape of the implant formed by hardening the carbon sheet by the heating step.

상기 탄소시트는, 평직, 능직, 단방향(Unidirectional)직물 중 어느 하나의 형태로 이루어진다.The carbon sheet is made of any one of plain weave, twill weave, and unidirectional weave.

상기 적층단계에서는, 평직 또는 능직 중 어느 하나 형태의 탄소시트와, 단방향(Unidirectional)직물 형태의 탄소시트를 적층한다.In the laminating step, a carbon sheet in either a plain weave or a twill weave form and a carbon sheet in a unidirectional weave form are laminated.

상기 적층단계에서는, 하부에 탄소시트를 배치하고, 그 위에 금속재질의 심재를 배치한 후, 상기 심재 위에 다시 탄소시트를 배치하되, 상기 히팅단계 완료 후 상기 심재는 외부로 비노출된다.In the lamination step, a carbon sheet is disposed below, a core material made of metal is disposed thereon, and then a carbon sheet is again disposed on the core material. After the heating step is completed, the core material is not exposed to the outside.

상기 히팅단계 이후에 상기 심재를 구부려 소성변형시키는 벤딩단계;를 더 포함하여 이루어지되, 상기 벤딩단계에 의해 임플란트는 그 형상이 변형된다.A bending step of bending and plastically deforming the core material after the heating step is further included, and the shape of the implant is deformed by the bending step.

상기 탄소시트는 단방향직물 형태로 이루어지되, 상기 적층단계에서는, 단방향직물 형태의 탄소시트를 상기 벤딩단계에서 상기 임플란트가 벤딩될 방향을 단방향으로 하여 배치된다.The carbon sheet is made in the form of a unidirectional fabric, and in the stacking step, the carbon sheet in the form of a unidirectional fabric is disposed in a unidirectional direction in which the implant is to be bent in the bending step.

또한, 상기 목적을 달성하기 위하여 본 발명의 탄소소재 임플란트는, 다수개의 탄소시트가 적층되고 가열된 후 경화되어 이루어진다.In addition, in order to achieve the above object, the carbon material implant of the present invention is formed by curing after a plurality of carbon sheets are laminated and heated.

상기 탄소시트는, 평직, 능직, 단방향(Unidirectional)직물 중 어느 하나의 형태로 이루어진다.The carbon sheet is made of any one of plain weave, twill weave, and unidirectional weave.

적층된 상기 탄소시트의 안쪽에는 금속재질의 심재가 비노출 형태로 배치되어 있되, 외력에 의해 상기 심재가 벤딩되어 소성변형되면, 상기 심재를 감싸고 있는 경화된 탄소시트도 함께 벤딩되면서 변형된다.Inside the laminated carbon sheet, a metal core material is disposed in an unexposed form, and when the core material is bent and plastically deformed by an external force, the hardened carbon sheet surrounding the core material is also bent and deformed.

이상에서 설명한 바와 같은 본 발명의 탄소소재 임플란트 및 이의 제조방법에 따르면 다음과 같은 효과가 있다.According to the carbon material implant and the manufacturing method of the present invention as described above, the following effects are obtained.

본 발명의 임플란트는 금속재질이 없기 때문에, X-ray와 MRI 촬영시 투과성이 높아, 임플란트의 제거없이 진료, 수술 등을 원활하게 할 수 있다.Since the implant of the present invention does not have a metal material, it has high permeability during X-ray and MRI imaging, so that medical treatment and surgery can be performed smoothly without removing the implant.

금속재질의 심재를 포함하고 있는 경우에도, 상기 심재의 크기가 매우 작기 때문에, 기존 금속만으로 이루어진 임플란트보다 X-ray와 MRI 촬영시 투과성이 높아, 임플란트의 제거없이 진료, 수술 등을 원활하게 할 수 있다.Even in the case of including a metal core material, since the size of the core material is very small, the permeability is higher during X-ray and MRI imaging than conventional implants made of only metal, so that treatment and surgery can be performed smoothly without removing the implant. have.

또한, 금속재질의 심재에 의해 임플란트를 필요에 따라 벤딩시켜 사용할 수 있어, 다양한 조건에서도 적합하게 변경하여 사용할 수 있다.In addition, since the implant can be bent and used as needed by the metal core material, it can be suitably changed and used under various conditions.

뿐만 아니라, 본 발명은 탄소소재의 임플란트이기 때문에, 이러한 임플란트를 골절부위에 적용할 경우, 상기 임플란트의 강도를 뼈와 유사한 강도로 조절하여, 기존 금속을 이용한 임플란트를 골절부위에 적용할 때 발생되는 문제점 즉 골흡수 현상이 발생하는 것을 최대한 지연시킬 수 있는 효과가 있다.In addition, since the present invention is an implant made of carbon material, when such an implant is applied to a fracture site, the strength of the implant is adjusted to a strength similar to that of bone, and the implant using an existing metal is applied to the fracture site. There is an effect that can delay the occurrence of the problem, namely bone resorption, as much as possible.

도 1은 종래의 금속 임플란트를 골절부위에 적용하였을 때의 구조도,
도 2은 본 발명의 실시예에 따른 탄소소재 임플란트 제조방법의 과정도,
도 3는 본 발명의 실시예에 따른 탄소소재 임플란트 제조방법 중 적층단계를 간략하게 도시한 과정도,
도 4은 본 발명의 실시예에 따른 탄소소재 임플란트 제조방법 중 적층단계 및 벤딩단계를 간략하게 도시한 과정도.
도 5는 종래의 금속 임플란트를 골절부위에 적용하였을 때의 구조도,
1 is a structure diagram when a conventional metal implant is applied to a fracture site;
2 is a process diagram of a method for manufacturing a carbon material implant according to an embodiment of the present invention;
Figure 3 is a process diagram briefly showing the lamination step of the carbon material implant manufacturing method according to an embodiment of the present invention;
Figure 4 is a process diagram briefly showing the lamination step and the bending step of the carbon material implant manufacturing method according to an embodiment of the present invention.
Figure 5 is a structure diagram when a conventional metal implant is applied to a fracture site;

본 발명의 탄소소재 임플란트의 제조방법은, 도 2에 도시된 바와 같이, 준비단계(S1)와, 함침단계(S2)와, 적층단계(S3)와, 히팅단계(S4)와, 후가공단계(S6)를 포함하여 이루어진다.As shown in FIG. 2, the method of manufacturing a carbon material implant of the present invention includes a preparation step (S1), an impregnation step (S2), a lamination step (S3), a heating step (S4), and a post-processing step ( S6) is included.

상기 준비단계(S1)는 임플란트(30) 형상에 맞게 탄소시트(10)를 절단하여 준비하는 단계이다.The preparation step (S1) is a step of preparing by cutting the carbon sheet 10 according to the shape of the implant 30.

상기 탄소시트(10)는, 평직, 능직, 단방향(Unidirectional)직물 중 어느 하나의 형태로 이루어진다.The carbon sheet 10 is made of any one of plain weave, twill weave, and unidirectional weave.

이러한 직물 형태의 상기 탄소시트(10)는 외력에 의해 휘어질 수 있는 상태에 있다.The carbon sheet 10 in the form of a fabric is in a state in which it can be bent by an external force.

평직, 능직, 단방향직물 등에 대한 구체적인 구조는, 종래의 공지된 기술을 이용하면 충분하기 때문에 이에 대한 구체적은 설명은 생략한다.Since a specific structure for plain weave, twill weave, unidirectional weave, etc. is sufficient using a conventionally known technique, a detailed description thereof will be omitted.

상기 함침단계(S2)는 탄소시트(10)를 레진에 함침시키는 단계이다.The impregnation step (S2) is a step of impregnating the carbon sheet 10 into the resin.

이때 상기 레진은 인체 내에 사용할 수 있는 재질로 이루어지도록 한다.At this time, the resin is made of a material that can be used in the human body.

상기 준비단계(S1) 이후에 상기 함침단계(S2)를 수행할 수도 있고, 상기 함침단계(S2) 이후에 상기 준비단계(S1)를 수행할 수도 있다,The impregnation step (S2) may be performed after the preparation step (S1), or the preparation step (S1) may be performed after the impregnation step (S2),

즉, 탄소시트(10)의 절단 후 레진에 함침하거나, 레진에 함침된 탄소시트(10)를 절단할 수 있다.That is, after cutting the carbon sheet 10, it may be impregnated with resin or the carbon sheet 10 impregnated with resin may be cut.

상기 적층단계(S3)는 레진이 함침된 다수개의 탄소시트(10)를 금형에 넣어 적층하는 단계이다.The lamination step (S3) is a step of stacking a plurality of carbon sheets 10 impregnated with resin into a mold.

이때, 상기 적층단계(S3)에서는 성형될 임플란트(30)의 종류 등에 따라, 탄소시트(10)의 직물 구조 종류를 변경하여 적층하도록 한다.At this time, in the lamination step (S3), the fabric structure type of the carbon sheet 10 is changed according to the type of implant 30 to be molded, and the like is laminated.

즉, 도 3에 도시된 바와 같이, 평직, 능직, 단방향직물 등으로 이루어진 탄소시트(10)를 그 직물 구조의 종류에 따라 적층함으로서, 완성될 임플란트(30)의 무게, 강도, 탄성 등을 조절하게 된다.That is, as shown in FIG. 3, by laminating carbon sheets 10 made of plain weave, twill weave, unidirectional weave, etc. according to the type of fabric structure, the weight, strength, elasticity, etc. of the implant 30 to be completed are controlled. will do

바람직하게는, 평직 또는 능직 중 어느 하나 형태의 탄소시트(10)와, 단방향직물 형태의 탄소시트(10)를 적층하도록 함이 바람직하다.Preferably, the carbon sheet 10 in either a plain weave or twill weave form and the carbon sheet 10 in a unidirectional weave form are laminated.

이때, 단방향직물 형태의 탄소시트(10)를 방향 전환하여 사용하게 되면, 하중을 받는 방향에 따라 강도를 보강할 수 있다.At this time, when the direction of the carbon sheet 10 in the form of a unidirectional fabric is changed and used, the strength can be reinforced according to the direction in which the load is applied.

물론, 경우에 따라 단방향직물 형태 없이 평직 또는 능직 중 어느 하나 형태의 탄소시트(10)로 이루어진 것을 사용할 수도 있다.Of course, in some cases, a carbon sheet 10 made of either a plain weave or a twill weave without a unidirectional weave may be used.

상기 히팅단계(S4)는 적층된 탄소시트(10)를 고온으로 가열하여 굽는 단계이다.The heating step (S4) is a step of heating and baking the stacked carbon sheets 10 at a high temperature.

상기 히팅단계(S4)에 의해 상기 탄소시트(10)는 딱딱하게 경화되어 임플란트(30)로 성형되게 된다.By the heating step (S4), the carbon sheet 10 is hardened and molded into an implant 30.

상기 후가공단계(S6)는 상기 히팅단계(S4)에 의해 탄소시트(10)가 경화되어 형성된 상기 임플란트(30)의 외형을 가공하는 단계이다.The post-processing step (S6) is a step of processing the outer shape of the implant 30 formed by hardening the carbon sheet 10 by the heating step (S4).

위와 같은 방법에 의해 제조된 본 발명의 탄소소재 임플란트(30)는 금속재질이 없기 때문에, X-ray와 MRI 촬영시 투과성이 높아, 임플란트(30)의 제거없이 진료, 수술 등을 원활하게 할 수 있다.Since the carbon material implant 30 of the present invention manufactured by the above method does not have a metal material, it has high permeability during X-ray and MRI imaging, so that it is possible to smoothly perform medical treatment and surgery without removing the implant 30. have.

한편 본 발명은 벤딩단계(S5)를 더 포함하여 이루어질 수도 있다.Meanwhile, the present invention may further include a bending step (S5).

이때에는, 상기 적층단계(S3)에서 탄소섬유 사이에 금속재질의 심재(20)를 더 배치하도록 한다,At this time, in the lamination step (S3), a metal core 20 is further disposed between the carbon fibers.

도 4(a)에 도시된 바와 같이, 상기 적층단계(S3)에서는, 하부에 탄소시트(10)를 배치하고, 그 위에 금속재질의 상기 심재(20)를 배치한 후, 상기 심재(20) 위에 다시 탄소시트(10)를 배치하도록 한다.As shown in FIG. 4(a), in the stacking step (S3), after disposing the carbon sheet 10 on the lower side and disposing the core material 20 made of metal thereon, the core material 20 The carbon sheet 10 is placed on top again.

이렇게 탄소시트(10)와 심재(20)가 적층된 상태에서, 상기 히팅단계(S4)를 수행하게 되면, 상기 심재(20)는 경화된 상기 탄소시트(10)의 내부에 배치되면서 외부로 노출되지 않게 된다.When the heating step (S4) is performed in a state where the carbon sheet 10 and the core material 20 are stacked in this way, the core material 20 is exposed to the outside while being disposed inside the hardened carbon sheet 10. will not become

상기 벤딩단계(S5)는 상기 히팅단계(S4) 이후에 상기 심재(20)를 외력으로 구부려 소성변형시키는 단계이다.The bending step (S5) is a step of plastically deforming the core material 20 by bending it with an external force after the heating step (S4).

상기 벤딩단계(S5)에 의해 성형된 임플란트(30)는 그 형상이 변형되게 된다.The shape of the implant 30 formed by the bending step (S5) is deformed.

도 4(b)에 도시된 바와 같이, 성형된 임플란트(30)가 외력에 의해 벤딩되게 되면, 경화된 상기 탄성시트의 탄성복원력에 의해 임플란트(30)는 원래의 형태로 복원되려고 하지만 벤딩되면서 소성변형된 상기 심재(20)에 의해 원래의 형태로 복원되지 못하고 벤딩된 상태를 그대로 유지하게 된다.As shown in FIG. 4(b), when the molded implant 30 is bent by an external force, the implant 30 tries to restore its original shape by the elastic restoring force of the hardened elastic sheet, but plasticity while bending Due to the deformed core 20, it cannot be restored to its original shape and remains bent.

이를 위해 소성 변형되어 벤딩된 상기 심재(20)의 강성은, 경화된 탄성시트의 탄성복원력보다 더 커야 한다.To this end, the rigidity of the core material 20 plastically deformed and bent must be greater than the elastic restoring force of the hardened elastic sheet.

그리고, 위와 같이 상기 심재(20)를 더 포함하는 경우, 상기 탄소시트(10)는 단방향직물 형태로 이루어지도록 함이 바람직하다.In addition, when the core material 20 is further included as described above, it is preferable that the carbon sheet 10 is made in the form of a unidirectional fabric.

이때, 상기 적층단계(S3)에서는 단방향직물 형태의 탄소시트(10)를 상기 벤딩단계(S5)에서 상기 임플란트(30)가 벤딩될 방향을 단방향으로 하여 배치하도록 한다.At this time, in the stacking step (S3), the carbon sheet 10 in the form of a unidirectional fabric is placed so that the direction in which the implant 30 is to be bent is unidirectional in the bending step (S5).

즉, 임플란트(30)가 벤딩될 방향과 같은 방향으로 단방향직물 형태의 탄소시트(10)의 원사가 배치되어, 임플란트(30)의 벤딩시 벤딩이 원활하게 이루어질 수 있도록 한다.That is, yarns of the carbon sheet 10 in the form of a unidirectional fabric are disposed in the same direction as the direction in which the implant 30 is to be bent, so that the bending of the implant 30 can be smoothly performed.

위와 같은 과정에 의해 제조된 본 발명의 탄소소재 임플란트(30)는 비록 금속재질의 심재(20)를 포함하고 있지만, 상기 심재(20)의 크기가 매우 작기 때문에, 기존 금속만으로 이루어진 임플란트(30)보다 X-ray와 MRI 촬영시 투과성이 높아, 임플란트(30)의 제거없이 진료, 수술 등을 원활하게 할 수 있다.Although the carbon material implant 30 of the present invention manufactured by the above process includes the core material 20 made of metal, since the size of the core material 20 is very small, the implant 30 made of only the existing metal Since the permeability is higher during X-ray and MRI imaging, medical treatment and surgery can be performed smoothly without removing the implant 30.

또한, 금속재질의 심재(20)에 의해 임플란트(30)를 필요에 따라 벤딩시켜 사용할 수 있어, 다양한 조건에서도 적합하게 변경하여 사용할 수 있다.In addition, the implant 30 can be bent and used as needed by the core material 20 made of metal, so that it can be suitably changed and used under various conditions.

뿐만 아니라, 본 발명의 임플란트(30)는 탄소소재로 이루어져 있기 때문에, 도 5(a)에 도시된 바와 같이 본 발명의 임플란트(30)를 골절부위에 적용할 경우, 제조되는 상기 임플란트(30)의 강도를 필요에 따라 다양하게 조절할 수 있다.In addition, since the implant 30 of the present invention is made of a carbon material, as shown in FIG. 5 (a), when the implant 30 of the present invention is applied to a fracture site, the implant 30 manufactured The intensity of the can be varied as needed.

따라서, 임플란트(30)의 강도를 뼈의 강도와 유사하게 조절하여, 도 5(a)에 도시된 바와 같이 골절부위에 적용하게 되면, 임플란트(30)의 강도와 뼈의 강도가 거의 동일하기 때문에, 화살표로 표시한 바와 같이 가하지는 하중(자극)이 임플란트(30)와 골절된 뼈로 거의 균일하게 전달된다.Therefore, when the strength of the implant 30 is adjusted to be similar to that of the bone and applied to the fracture site as shown in FIG. 5 (a), the strength of the implant 30 and the strength of the bone are almost the same. As indicated by arrows, the applied load (stimulus) is almost uniformly transmitted to the implant 30 and the fractured bone.

이로 인해, 도 1에 도시된 기존 금속 임플란트(1)를 골절부위에 적용할 때보다, 도 5에 도시된 바와 같이 골절된 뼈로 가해지는 하중(자극)이 커져, 골 재생성(Bone remodeling)을 향상시킬 수 있고, 이를 결국 도 5(b)에 도시된 바와 같이 기존의 뼈가 얇아지면서 골흡수(Bone resorption) 현상이 발생하게 되는 것을 방지하거나 최대한 지연시킬 수 있게 된다.As a result, the load (stimulus) applied to the fractured bone is greater as shown in FIG. 5 than when the conventional metal implant 1 shown in FIG. 1 is applied to the fracture site, thereby improving bone remodeling As shown in FIG. 5 (b), it is possible to prevent or maximally delay the occurrence of bone resorption as the existing bone becomes thinner.

즉, 본 발명은 임플란트(30)의 강도를 기존 금속재질의 강도보다 낮추어, 응력방폐현상을 줄이고, 이로 인해 골흡수 현상을 늦추어 임플란트(30)와 뼈의 수명을 늘이게 되는 효과가 있다.That is, according to the present invention, the strength of the implant 30 is lowered than that of conventional metal materials to reduce the stress release phenomenon, thereby slowing down the bone resorption phenomenon, thereby increasing the lifespan of the implant 30 and the bone.

이때, 본 발명의 임플란트(30)의 강도는, 상술한 적층단계(S3)에서 적층하는 탄소시트(10)의 종류, 구조 및 적층 배열 등을 통해 필요에 따라 적절하게 조절하면 된다.At this time, the strength of the implant 30 of the present invention may be appropriately adjusted as necessary through the type, structure, and stacking arrangement of the carbon sheets 10 stacked in the above-described stacking step (S3).

본 발명인 탄소소재 임플란트 및 이의 제조방법은 전술한 실시예에 국한하지 않고, 본 발명의 기술 사상이 허용되는 범위 내에서 다양하게 변형하여 실시할 수 있다.The present invention, the carbon material implant and its manufacturing method, is not limited to the above-described embodiment, and can be variously modified and implemented within the scope permitted by the technical spirit of the present invention.

10 : 탄소시트,
20 : 심재,
30 : 임플란트.
S1 : 준비단계, S2 : 함침단계, S3 : 적층단계, S4 : 히팅단계, S5 : 벤딩단계, S6 : 후가공단계.
10: carbon sheet,
20: heartwood,
30: Implants.
S1: preparation step, S2: impregnation step, S3: lamination step, S4: heating step, S5: bending step, S6: post-processing step.

Claims (9)

임플란트 형상에 맞게 탄소시트를 절단하여 준비하는 준비단계와;
탄소시트를 레진에 함침시키는 함침단계와;
레진이 함침된 다수개의 탄소시트를 금형에 넣어 적층하는 적층단계와;
적층된 탄소시트를 가열하여 굽는 히팅단계와;
상기 히팅단계에 의해 탄소시트가 경화되어 형성된 임플란트의 외형을 가공하는 후가공단계;를 포함하여 이루어진 것을 특징으로 하는 탄소소재 임플란트의 제조방법.
a preparation step of cutting and preparing the carbon sheet according to the shape of the implant;
an impregnation step of impregnating the carbon sheet into the resin;
A lamination step of stacking a plurality of carbon sheets impregnated with resin into a mold;
a heating step of heating and baking the stacked carbon sheets;
A method of manufacturing a carbon material implant comprising a; post-processing step of processing the outer shape of the implant formed by hardening the carbon sheet by the heating step.
청구항1에 있어서,
상기 탄소시트는,
평직, 능직, 단방향(Unidirectional)직물 중 어느 하나의 형태로 이루어진 것을 특징으로 하는 탄소소재 임플란트의 제조방법.
In claim 1,
The carbon sheet,
A method of manufacturing a carbon material implant, characterized in that made of any one of plain weave, twill weave, and unidirectional weave.
청구항2에 있어서,
상기 적층단계에서는,
평직 또는 능직 중 어느 하나 형태의 탄소시트와, 단방향(Unidirectional)직물 형태의 탄소시트를 적층하는 것을 특징으로 하는 탄소소재 임플란트의 제조방법.
In claim 2,
In the layering step,
A method of manufacturing a carbon material implant, characterized in that a plain weave or twill weave carbon sheet and a unidirectional weave carbon sheet are laminated.
청구항2에 있어서,
상기 적층단계에서는,
하부에 탄소시트를 배치하고, 그 위에 금속재질의 심재를 배치한 후, 상기 심재 위에 다시 탄소시트를 배치하되,
상기 히팅단계 완료 후 상기 심재는 외부로 비노출되는 것을 특징으로 하는 탄소소재 임플란트의 제조방법.
In claim 2,
In the layering step,
A carbon sheet is placed on the lower part, a core material made of metal is placed thereon, and then a carbon sheet is placed again on the core material,
After the heating step is completed, the core material is a manufacturing method of a carbon material implant, characterized in that not exposed to the outside.
청구항4에 있어서,
상기 히팅단계 이후에 상기 심재를 구부려 소성변형시키는 벤딩단계;를 더 포함하여 이루어지되,
상기 벤딩단계에 의해 임플란트는 그 형상이 변형되는 것을 특징으로 하는 탄소소재 임플란트의 제조방법.
In claim 4,
A bending step of bending and plastically deforming the core material after the heating step;
The method of manufacturing a carbon material implant, characterized in that the shape of the implant is deformed by the bending step.
청구항5에 있어서,
상기 탄소시트는 단방향직물 형태로 이루어지되,
상기 적층단계에서는,
단방향직물 형태의 탄소시트를 상기 벤딩단계에서 상기 임플란트가 벤딩될 방향을 단방향으로 하여 배치하는 것을 특징으로 하는 탄소소재 임플란트의 제조방법.
The method of claim 5,
The carbon sheet is made in the form of a unidirectional fabric,
In the layering step,
A method of manufacturing a carbon material implant, characterized in that in the bending step, the carbon sheet in the form of a unidirectional fabric is disposed so that the direction in which the implant is to be bent is unidirectional.
다수개의 탄소시트가 적층되고 가열된 후 경화되어 이루어진 것을 특징으로 하는 탄소소재 임플란트.A carbon material implant, characterized in that a plurality of carbon sheets are laminated, heated, and then hardened. 청구항7에 있어서,
상기 탄소시트는
평직, 능직, 단방향(Unidirectional)직물 중 어느 하나의 형태로 이루어진 것을 특징으로 하는 탄소소재 임플란트.
The method of claim 7,
The carbon sheet is
Carbon material implant, characterized in that made of any one of plain weave, twill weave, unidirectional weave.
청구항8에 있어서,
적층된 상기 탄소시트의 안쪽에는 금속재질의 심재가 비노출 형태로 배치되어 있되,
외력에 의해 상기 심재가 벤딩되어 소성변형되면, 상기 심재를 감싸고 있는 경화된 탄소시트도 함께 벤딩되면서 변형되는 것을 특징으로 하는 탄소소재 임플란트.

In claim 8,
Inside the laminated carbon sheets, a core material made of metal is disposed in a non-exposed form,
Carbon material implant characterized in that when the core material is bent and plastically deformed by an external force, the hardened carbon sheet surrounding the core material is also bent and deformed.

KR1020210070759A 2021-06-01 2021-06-01 Carbon implant and Manufacturing method of the same KR102608168B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210070759A KR102608168B1 (en) 2021-06-01 2021-06-01 Carbon implant and Manufacturing method of the same
PCT/KR2022/006149 WO2022255650A1 (en) 2021-06-01 2022-04-29 Carbon material implant and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210070759A KR102608168B1 (en) 2021-06-01 2021-06-01 Carbon implant and Manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20220162912A true KR20220162912A (en) 2022-12-09
KR102608168B1 KR102608168B1 (en) 2023-12-04

Family

ID=84324238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210070759A KR102608168B1 (en) 2021-06-01 2021-06-01 Carbon implant and Manufacturing method of the same

Country Status (2)

Country Link
KR (1) KR102608168B1 (en)
WO (1) WO2022255650A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892552A (en) * 1984-03-30 1990-01-09 Ainsworth Robert D Orthopedic device
US5240773A (en) * 1992-01-13 1993-08-31 Mutual Industries, Inc. Fabric reinforced thermoplastic resins
JP2004537337A (en) * 2001-02-28 2004-12-16 エスディージーアイ・ホールディングス・インコーポレーテッド Woven orthopedic implant
JP2007259955A (en) * 2006-03-27 2007-10-11 Mizuho Co Ltd Implant to be embedded in body, and manufacturing method thereof
KR101027252B1 (en) * 2003-04-16 2011-04-06 하우메디카 오스테오닉스 코포레이션 Craniofacial implant
KR20120125838A (en) 2011-05-09 2012-11-19 동국대학교 산학협력단 Medical Implant and Method for Manufacturing the Same
KR20130009920A (en) * 2011-07-16 2013-01-24 태광금속 Methord of hot-forging for titanium artificial-joint of thereof
JP5684789B2 (en) * 2010-03-17 2015-03-18 株式会社ビー・アイ・テック Structure and manufacturing method of stem for composite hip prosthesis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892552A (en) * 1984-03-30 1990-01-09 Ainsworth Robert D Orthopedic device
US5240773A (en) * 1992-01-13 1993-08-31 Mutual Industries, Inc. Fabric reinforced thermoplastic resins
JP2004537337A (en) * 2001-02-28 2004-12-16 エスディージーアイ・ホールディングス・インコーポレーテッド Woven orthopedic implant
KR101027252B1 (en) * 2003-04-16 2011-04-06 하우메디카 오스테오닉스 코포레이션 Craniofacial implant
JP2007259955A (en) * 2006-03-27 2007-10-11 Mizuho Co Ltd Implant to be embedded in body, and manufacturing method thereof
JP5684789B2 (en) * 2010-03-17 2015-03-18 株式会社ビー・アイ・テック Structure and manufacturing method of stem for composite hip prosthesis
KR20120125838A (en) 2011-05-09 2012-11-19 동국대학교 산학협력단 Medical Implant and Method for Manufacturing the Same
KR20130009920A (en) * 2011-07-16 2013-01-24 태광금속 Methord of hot-forging for titanium artificial-joint of thereof

Also Published As

Publication number Publication date
KR102608168B1 (en) 2023-12-04
WO2022255650A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
Bradley et al. Carbon fibre reinforced epoxy as a high strength, low modulus material for internal fixation plates
CA2669807C (en) Shape memory alloy articles with improved fatigue performance and methods therefor
JP3040335B2 (en) Composite structure and method of manufacturing the same
EP2921565B1 (en) Thermochemically treated miniature tubes as semifinished products for vascular stents
EP3324897B1 (en) Method for manufacturing a prosthetic socket and prosthetic socket
JP2015083135A (en) Method of transmitting improved fatigue strength to wire composed of shape memory alloy and medical device composed of the wire
Schaffer et al. Cold-drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of mechanical strength and fatigue durability
KR20220047215A (en) Magnesium-based absorbent alloy
KR20150126655A (en) Elastomeric leaflet for prosthetic heart valves
Huang et al. Fabrication of a new composite orthodontic archwire and validation by a bridging micromechanics model
Mehboob et al. Effect of air plasma treatment on mechanical properties of bioactive composites for medical application: Composite preparation and characterization
KR20220162912A (en) Carbon implant and Manufacturing method of the same
Shi et al. Design and performance evaluation of porous titanium alloy structures for bone implantation
EP4382143A1 (en) Rod for spinal brace
Kollerov et al. Mechanical Properties of a Carbon Fiber Reinforced Plastic–Titanium Nickelide Functional Composite Material
KR101856342B1 (en) Biodegradable composite material for the use of for bone fracture treatment
Li et al. A study on the impact behaviors of Mg wires/PLA composite for orthopedic implants
JP2022056131A (en) Rod for spinal fixture
Glenna Utilizing Additive Manufacturing for Surgical Hernia Meshes to Obtain More Desirable Mechanical Properties
RU2710681C1 (en) Metal-polymer composite material with two-way shape memory effect and a method of producing articles therefrom
Kontaxis et al. Flexural creep behavior of epoxy/cotton composite materials before and after saline absorption for orthopedics applications
CN210331219U (en) Degradable porous iron-based bone fracture plate
CN113081396B (en) Skull repairing material and preparation method thereof
EP0270168A2 (en) Orthopedic prosthesis for the reduction of bone fractures, material for manufacturing it and processes to obtain them
JP2002371461A (en) Ultra high strength carbon fiber and high strength carbon fiber-reinforced carbon composite material

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant