JP2007259955A - Implant to be embedded in body, and manufacturing method thereof - Google Patents

Implant to be embedded in body, and manufacturing method thereof Download PDF

Info

Publication number
JP2007259955A
JP2007259955A JP2006086229A JP2006086229A JP2007259955A JP 2007259955 A JP2007259955 A JP 2007259955A JP 2006086229 A JP2006086229 A JP 2006086229A JP 2006086229 A JP2006086229 A JP 2006086229A JP 2007259955 A JP2007259955 A JP 2007259955A
Authority
JP
Japan
Prior art keywords
implant
shaped material
shape
bending
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006086229A
Other languages
Japanese (ja)
Other versions
JP4714875B2 (en
Inventor
Shuji Hanada
田 修 治 花
Hiroaki Matsumoto
本 洋 明 松
Sadao Watanabe
辺 貞 夫 渡
Tadashi Abumiya
屋 匡 鐙
Yoshio Asano
野 義 夫 浅
Tadashi Hasegawa
正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Mizuho Ika Kogyo KK
Original Assignee
Tohoku University NUC
Mizuho Ika Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Mizuho Ika Kogyo KK filed Critical Tohoku University NUC
Priority to JP2006086229A priority Critical patent/JP4714875B2/en
Publication of JP2007259955A publication Critical patent/JP2007259955A/en
Application granted granted Critical
Publication of JP4714875B2 publication Critical patent/JP4714875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an implant by cold forging without performing any complicated and multidiscipline hot treatment. <P>SOLUTION: A manufacturing method of the implant to be embedded in the body has: a preliminary forming process 9 of working material made of a Ti-Nb-Sn alloy to be a straight bar material of a prescribed shape; a curving work process of performing curving work of fitting the straight bar material to the shape of the implant; a cold press forming process 11 of putting the curve-worked material between a pair of dies and performing cold forging work to the material to be in a prescribed shape of the implant; and a finishing work process 13 of performing prescribed finishing work after forming work. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に人体の骨部の補修用として体内に埋設して使用されるインプラント、およびその製造方法に関する。   The present invention relates to an implant that is used by being embedded in a body mainly for repairing a bone part of a human body, and a method for manufacturing the same.

人工骨をはじめ、股関節損傷等の補修、その他人体内に埋設して使用されるインプラントは、人体に対する生体適合性の観点から従来Ti−Al−V(チタン−アルミ−バナジウム)合金が素材として使用されている。この素材は、Tiをベースとし、Al:6%、V:4%の合金が一般的に用いられている。   Ti-Al-V (titanium-aluminum-vanadium) alloys have been used as raw materials for artificial bones, hip joint damage repairs, and other implants that are embedded in the human body from the viewpoint of biocompatibility with the human body. Has been. This material is based on Ti, and an alloy of Al: 6% and V: 4% is generally used.

図7を参照して、従来のTi−Al−V合金からなる素材を用いてインプラントの従来の製造方法について説明する。ここで、図7に例示するインプラントは、骨折した大腿骨の接合具を構成するプレート21である。図5及び図6に示すように、この接合具20はプレート21とラグスクリュウ22を有し、骨頭部25と骨幹部26とに骨折した大腿骨24を接続するものである。   With reference to FIG. 7, the conventional manufacturing method of an implant using the raw material which consists of a conventional Ti-Al-V alloy is demonstrated. Here, the implant illustrated in FIG. 7 is a plate 21 that constitutes a joint device for a fractured femur. As shown in FIGS. 5 and 6, the connector 20 includes a plate 21 and a lug screw 22, and connects a fractured femur 24 to a bone head 25 and a diaphysis 26.

上記の素材によりインプラント21(プレート)を製造するには、まず、予備工程として、棒状部材はかなり太い必要があり、無駄になる材料量も無視できなかった。   In order to manufacture the implant 21 (plate) using the above-mentioned material, first, as a preliminary process, the rod-shaped member needs to be quite thick, and the amount of material that is wasted cannot be ignored.

さらに、従来では図7にその工程を示しているように、前記素材を丸棒状に加工する工程aと、当該素材が熱間鍛造する際の高温化で酸化しやすい性質を有するため素材の表面にセラミック液を塗布する工程(セラミック液槽中への浸漬工程)bと、セラミック塗布後、炉内で高温(900℃)で加熱処理してセラミック膜を形成するとともに素材を軟化させ、次いで加熱して鍛造を行う熱間鍛造工程cと、同工程により形成されたインプラント1の所定箇所を機械加工を行う機械加工工程dと、最終の仕上げ工程eとを経て製造されている。   Further, as shown in FIG. 7 in the prior art, the surface of the material because the material has a property of being easily oxidized at a high temperature when the material is hot forged, and the step a for processing the material into a round bar shape. A step of applying a ceramic solution to the substrate (immersion step in a ceramic solution tank) b, and after applying the ceramic, heat treatment is performed in a furnace at a high temperature (900 ° C.) to form a ceramic film and soften the material, and then heating The forging is performed through a hot forging step c for performing forging, a machining step d for machining a predetermined portion of the implant 1 formed by the same step, and a final finishing step e.

上記熱間鍛造工程cは、加熱温度約900℃、2500tonクラスのプレス機械が用いられている。すなわちプレス型間に素材fを装入して第1次精密鍛造gを行い、次いで素材fを再加熱してプレス型間で第2次精密鍛造gを行い、ここで再びセラミック液を塗布したのち再加熱hして第3次精密鍛造g、再加熱iして第4次精密鍛造gを行うという極めて多くの工程を経る多工程熱間鍛造に基づいている。 In the hot forging step c, a press machine having a heating temperature of about 900 ° C. and a 2500 ton class is used. That is, the material f is inserted between the press dies and the first precision forging g 1 is performed, and then the material f is reheated and the second precision forging g 2 is performed between the press dies. This is based on multi-step hot forging which undergoes an extremely large number of steps of applying the third precision forging g 3 after application and reheating h to perform the third precision forging g 3 , and reheating i to perform the fourth precision forging g 4 .

これは前述の素材fはヤング率が大きいため、プレス加工による素材の変形量が小さく、特に曲げ加工部位が30度〜50度程度を要する対象物ではその変形加工は極めて困難であり、無理にプレスすると割れを生じてしまう。   This is because the above-mentioned material f has a large Young's modulus, so the amount of deformation of the material due to press working is small, especially for an object that requires a bending portion of about 30 to 50 degrees, which is extremely difficult to deform. Cracking occurs when pressed.

それ故前記のように熱間でかつ多段階に分けてプレス加工を行わなければならないという問題があった。   Therefore, there has been a problem that as described above, it is necessary to perform the hot working in multiple stages.

また塗着されて硬化したセラミックはプレス加工時に割れてしまうので、一連のプレス加工の途中段階で塗着し直さなければならず、一層工程数が増すという問題を伴っている。   In addition, since the ceramic that has been applied and hardened is cracked during press processing, it must be reapplied in the middle of a series of press processing, which is accompanied by a problem that the number of processes is further increased.

プレス加工によらないでインプラントを得ようとするには、素材ブロックから削り出しによって所定のインプラント形状に加工することは可能であっても、それには極めて多くの手数および時間を要するという問題がある。   In order to obtain an implant without using press processing, it is possible to process into a predetermined implant shape by cutting out from a material block, but this requires a great amount of work and time. .

このように従来のインプラントの製造には著しく多くの種々の工程を必要とし、その製造が容易でないばかりでなく、所望する形状のインプラントを得ることが容易でなかった。
特許第3521253号公報 特開2001−329325号公報 特開2005−40250号公報
As described above, the manufacture of a conventional implant requires a remarkably many different steps, and the manufacture thereof is not only easy, but it is not easy to obtain an implant having a desired shape.
Japanese Patent No. 3512253 JP 2001-329325 A Japanese Patent Laying-Open No. 2005-40250

本発明は上記従来の諸問題点に着目し、これを改善することを課題としてなされたもので、複雑多岐にわたる熱間処理工程を経ることなくインプラントを冷間により極めて少ない工程で得られるようになされたものである。   The present invention has been made with a focus on the above-mentioned conventional problems, and has been made to improve the problem, so that an implant can be obtained in an extremely small number of steps without going through complicated and various hot processing steps. It was made.

すなわち本件発明者らは、合金組成と加工熱処理条件を最適化することにより、低ヤング率と高強度を同時に達成し得るインプラント素材としてβTi−Nb−Sn合金を開発した。   That is, the present inventors have developed a βTi—Nb—Sn alloy as an implant material that can simultaneously achieve a low Young's modulus and a high strength by optimizing the alloy composition and the thermomechanical treatment conditions.

そして加工プロセスとして、冷間で強加工することにより生成される加工誘起マルテンサイトをその後の熱処理によりβ単相に逆変態させ、高転位密度組織を維持したままでβ結晶粒を微細化させるとともにα相を微細に析出させている。   Then, as a processing process, the processing-induced martensite generated by the strong processing in the cold is reversely transformed into a β single phase by subsequent heat treatment, and the β crystal grains are refined while maintaining a high dislocation density structure. The α phase is finely precipitated.

したがって本発明によれば、βTi−Nb−Sn合金の優れた冷間加工性と時効硬化性を利用して人工股関節用インプラントをはじめ、各種用途に適合するインプラントを容易に得ることができるようにしたことにある。   Therefore, according to the present invention, by utilizing the excellent cold workability and age hardenability of βTi—Nb—Sn alloy, it is possible to easily obtain implants suitable for various uses, including implants for artificial hip joints. It is to have done.

そして本発明により得たインプラントは、人体骨に近いヤング率(低ヤング等)を有し、細胞毒性がなく、しかも室温(常温)において加工することができ、著しく低コストで所望の形状のインプラントの提供を可能とする。   The implant obtained by the present invention has a Young's modulus (low Young, etc.) close to that of a human bone, has no cytotoxicity, can be processed at room temperature (room temperature), and has a desired shape at an extremely low cost. Can be provided.

そこで本発明体に係る内埋設用インプラントの製造方法は、Ti−Nb−Sn合金からなる素材を所定形状の直棒状素材に加工する予備形成工程と、前記直棒状素材を一対の金型間に装入して所定のインプラント形状に冷間鍛造加工を行う冷間プレス成形工程と、成形加工後所定の仕上げ加工を行う仕上げ加工工程とを有することを特徴とする。   Therefore, the method for manufacturing an implant for implant according to the present invention includes a preliminary forming step of processing a raw material made of a Ti—Nb—Sn alloy into a straight rod-shaped material having a predetermined shape, and the straight rod-shaped material between a pair of molds. It is characterized by having a cold press forming process of inserting and cold forging into a predetermined implant shape, and a finishing process of performing a predetermined finishing process after the forming process.

ここで、上記インプラントが「く」の字状に屈曲した形状である場合、前記予備成形の後に冷間による曲げ工程を加えることができる。   Here, in the case where the implant is bent in a “<” shape, a cold bending step can be added after the preforming.

また、前記曲げ加工工程は、前記直棒状素材を第2の一対の型間に装入して行うことを特徴とする。前記曲げ加工工程は、前記直棒状素材の一端部近傍を他部に対し折れ曲げることによって行うことでもよい。   Further, the bending step is performed by inserting the straight bar material between a second pair of molds. The bending process may be performed by bending the vicinity of one end of the straight bar-shaped material with respect to the other part.

前記曲げ加工工程において、前記直棒状素材の曲げ角度が30度から50度の角度範囲にあることを特徴とする。   In the bending step, the bending angle of the straight bar material is in an angle range of 30 to 50 degrees.

前記素材はTiをベースとし、Nbを20〜40W%、Snを4〜13W%含有している合金であることを特徴とする。   The material is an alloy containing Ti as a base and containing 20 to 40 W% Nb and 4 to 13 W% Sn.

前記直棒状素材は、所定長さに切断した丸棒状素材を加工したものであることを特徴とする。   The straight bar-shaped material is obtained by processing a round bar-shaped material cut into a predetermined length.

前記丸棒状素材は、Ti−Nb−Sn合金を水冷銅鋳型を用いて高周波誘導溶解炉により溶解し、熱間鍛造により円柱状に形成したものであることを特徴とする。   The round bar-shaped material is characterized in that a Ti—Nb—Sn alloy is melted by a high frequency induction melting furnace using a water-cooled copper mold and formed into a cylindrical shape by hot forging.

また、本発明に係る体内埋設用インプラントは、TiをベースとしたTi−Nb−Sn合金からなり、インプラントとしての所定の形状に冷間鍛造により形成されていることを特徴とする。   Moreover, the implant for implantation according to the present invention is made of a Ti—Nb—Sn alloy based on Ti, and is formed by cold forging into a predetermined shape as an implant.

なおこの直棒状への予備成形に関しては、切削加工により形成するようにしてもよい。またインプラントの形状によっては必ずしも断面真円の丸棒状でなくともよく、後の加工に便ならしめる形状とすることは任意である。   In addition, you may make it form by the cutting process regarding this preforming to a straight bar shape. Also, depending on the shape of the implant, it does not necessarily have a round bar shape with a perfect cross section, and it is arbitrary to have a shape that facilitates subsequent processing.

本発明によれば、素材のインプラント形状への加工を、セラミック塗着など加熱に伴う酸化防止対策を講ずることなく冷間鍛造のみによって製造することができるので、製造に要する工程数が著しく少くてすみ、低コストで得ることができ、インプラントを安価に提供することができる。   According to the present invention, the processing of the raw material into the implant shape can be performed only by cold forging without taking anti-oxidation measures accompanying heating such as ceramic coating, so the number of steps required for manufacturing is remarkably small. It can be obtained at low cost, and the implant can be provided at low cost.

また素材であるTi−Nb−Sn合金はヤング率が小さいことから冷間での曲げ加工が可能であり、複雑な形状乃至は所要の角度をもって屈曲する形状のインプラントであっても冷間鍛造により容易に製造することができる。この結果、必要以上の太い棒材を使用する必要がなくなり、また無駄になる材料量を減らすことができる。   The Ti-Nb-Sn alloy, which is a raw material, has a low Young's modulus, so it can be bent in the cold, and even a complex shape or an implant that bends at a desired angle can be cold forged. It can be manufactured easily. As a result, it is not necessary to use a thicker bar than necessary, and the amount of wasted material can be reduced.

以下に図面を参照して、本件発明に実施形態について説明する。図1は本発明が対象とする体内埋設用インプラントの一形態例として股関節補修用インプラント1を示したものである。インプラント1は人工関節のステムである。図4に例示するように、人工関節はステムであるインプラント1と、骨盤4に係合される関節球(ヘッド)5を有する。ステムであるインプラント1は、人体の大腿骨2に添着される杆部3と関節球(ヘッド)5を連結して支持するための軸筒部6とを有し、これら杆部3と軸筒部4とは所定の角度θをもって屈曲されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an implant 1 for repairing a hip joint as an embodiment of an implant for implantation in the body of the present invention. The implant 1 is a stem of an artificial joint. As illustrated in FIG. 4, the artificial joint includes an implant 1 that is a stem, and an articular ball (head) 5 that is engaged with the pelvis 4. An implant 1 that is a stem has a heel part 3 attached to a femur 2 of a human body and a shaft tube part 6 for connecting and supporting a joint ball (head) 5, and these heel part 3 and the shaft tube. The portion 4 is bent at a predetermined angle θ.

上記インプラント1の構成素材は、Ti(チタン)−Nb(ニオブ)−Sn(錫)の合金が用いられる。この素材は、冷間鍛造による塑性加工が可能であり、そのうえ優れた切削性を有している。   As the constituent material of the implant 1, an alloy of Ti (titanium) -Nb (niobium) -Sn (tin) is used. This material can be plastic-worked by cold forging and has excellent machinability.

上記インプラント1の製造に関しては、図2にその製造工程図を、図3(A)〜(E)に具体的技術手段を例示するように、Ti−Nb−Sn合金からなる丸棒状素材7を所定形状の直線状の直棒状素材8に加工する予備形成工程9と、直棒状素材8を上下の型10,10間に装入して所定のインプラント形状に冷間鍛造によりプレス加工を行う冷間プレス成形工程11と、成型後機械加工12を含む所定の仕上げ加工を行う仕上げ加工工程13とからなっている。   Regarding the manufacture of the implant 1, a round bar-shaped material 7 made of a Ti—Nb—Sn alloy is used as illustrated in FIG. 2 and a specific technical means in FIGS. 3 (A) to (E). A pre-forming step 9 for processing a straight straight bar material 8 having a predetermined shape, and a cold process in which the straight bar material 8 is inserted between the upper and lower molds 10 and 10 and pressed into a predetermined implant shape by cold forging. It consists of an intermediate press forming process 11 and a finishing process 13 for performing a predetermined finishing process including post-molding machining 12.

インプラント1の屈曲角θが例えば30〜50度と大きい場合(本実施の形態では、約40度)、冷間プレス成形工程11のみでは対応が難しいときは、当該工程11の前に図3(C)のように第2の一対の型間に装入して曲げ加工を行う曲げ加工工程14を加えることができる。これによれば、任意所望の屈曲角θに正確に曲げることができ、より精度の高いインプラントを得ることができる。なお、第2の一対の型間に装入することに代えて、曲げ加工工程において直棒状素材8の一端部近傍を他部に対し折れ曲げることによって行うことも可能である。   When the bending angle θ of the implant 1 is as large as, for example, 30 to 50 degrees (about 40 degrees in the present embodiment), when it is difficult to cope with only the cold press forming step 11, FIG. The bending process 14 which inserts between 2nd pair type | molds and performs a bending process like C) can be added. According to this, it is possible to accurately bend at any desired bending angle θ, and it is possible to obtain an implant with higher accuracy. Instead of inserting between the second pair of molds, it is also possible to perform bending by bending the vicinity of one end of the straight bar-shaped material 8 with respect to the other part in the bending process.

上記の丸棒状素材7は、Ti−Nb−Sn合金を水冷銅鋳型を用いて高周波誘導溶解炉により溶解し、熱間鍛造により円柱状に形成したものである。   The round bar-shaped material 7 is formed by melting a Ti—Nb—Sn alloy with a high-frequency induction melting furnace using a water-cooled copper mold and forming it into a cylindrical shape by hot forging.

また、本発明に係る体内埋設用インプラントは、TiをベースとしたTi−Nb−Sn合金からなり、インプラントとしての所定の形状に冷間鍛造により形成されていることを特徴とする。   Moreover, the implant for implantation according to the present invention is made of a Ti—Nb—Sn alloy based on Ti, and is formed by cold forging into a predetermined shape as an implant.

上記の曲げ加工を含む冷間鍛造加工は、いずれも素材のTi−Nb−Sn合金のヤング率が小さく(人体骨と略同等)、そのため冷間であっても十分に曲げや成形加工が可能であり、冷間鍛造に用いるプレス機も200tonクラスで十分に対応することができ、従来用いられていたプレス(2500ton)の1/10以下に落すことができる。   All of the cold forging processes including the above bending process have a small Young's modulus of the raw material Ti-Nb-Sn alloy (substantially the same as human bones), so it can be bent and molded sufficiently even in cold conditions. Therefore, the press machine used for cold forging can sufficiently cope with the 200 ton class, and can be reduced to 1/10 or less of a conventionally used press (2500 ton).

前記素材は、Tiをベースとし、Nbが20〜40w%、Snが4〜13w%とすることが加工上好ましく、さらに好ましくはNbが25〜35w%、Snが4〜11w%である。   The material is based on Ti, preferably Nb is 20 to 40 w%, and Sn is 4 to 13 w%, more preferably Nb is 25 to 35 w%, and Sn is 4 to 11 w%.

成型後機械加工12を含む所定の仕上げ加工を行う仕上げ加工工程13では、冷間プレス成形工程11で形成され得る予肉を削除加工したり、インプラント1の軸筒部6を関節球5との接続するためにテーパ仕上げしたりすることが行われる。   In the finishing process 13 for performing a predetermined finishing process including the post-molding machining 12, the preliminary meat that can be formed in the cold press molding process 11 is deleted, or the shaft cylinder part 6 of the implant 1 is connected to the joint ball 5. A taper finish or the like is performed for connection.

上記のようにして形成されたインプラント1は、人体内に埋設して使用しても生体適合性に優れ、支障なく使用することができる。   The implant 1 formed as described above is excellent in biocompatibility and can be used without any trouble even if it is used by being embedded in a human body.

上述の例では、インプラント1(ステム1)を例にとり説明したが、本願発明に係るインプラントは、人工関節におけるステム1に限らず、図5及び図6に示すように、大腿骨の接合具を構成するプレート21であってもよい。   In the above-described example, the implant 1 (stem 1) has been described as an example. However, the implant according to the present invention is not limited to the stem 1 in an artificial joint, and as shown in FIGS. The plate 21 which comprises may be sufficient.

また、本願発明は、直線状の棒部材を屈曲させて形成される屈曲部を有するインプラントであれば、ステム1やプレート21に限らず、他のインプラントにも適用可能である。   The present invention can be applied not only to the stem 1 and the plate 21 but also to other implants as long as the implant has a bent portion formed by bending a linear bar member.

本発明による体内埋設用インプラントの一形状例を示す側面図。The side view which shows one example of a shape of the implant for internal implantation by this invention. 本発明による体内埋設用インプラントの製造工程図。The manufacturing process figure of the implant for internal implantation by this invention. (A)〜(E)は同具体的技術手段を示すもので、(A)は丸棒状素材、(B)は予備形成された直棒状素材、(C)は曲げ加工工程、(D)は冷間プレス工程を示し、(E)は(D)のX−X線視断面図。(A) to (E) show the same technical means, (A) is a round bar-shaped material, (B) is a preformed straight bar-shaped material, (C) is a bending step, (D) is The cold press process is shown, (E) is a cross-sectional view taken along line XX of (D). 図1のインプラントを人体の股関節に適用した状態を示す説明図。Explanatory drawing which shows the state which applied the implant of FIG. 1 to the hip joint of a human body. 本発明による体内埋設用インプラントの他の例である大腿骨の接続具を示す斜視図。The perspective view which shows the connection tool of the femur which is another example of the implant for internal implantation by this invention. 図5のインプラントを人体の大腿骨に適用した状態を示す説明図。Explanatory drawing which shows the state which applied the implant of FIG. 5 to the femur of a human body. 従来のインプラントの製造工程図。The manufacturing process figure of the conventional implant.

符号の説明Explanation of symbols

1 体内埋設用インプラント
3 杆部
5 関節球
6 軸筒部
7 丸棒状素材
8 直棒状素材
9 予備形成工程
10 型
11 冷間プレス成形工程
12 機械加工
13 仕上げ加工工程
14 曲げ加工工程
21 プレート
DESCRIPTION OF SYMBOLS 1 Implant 3 Implant 3 Hip part 5 Joint ball 6 Shaft cylinder part 7 Round bar-shaped material 8 Straight bar-shaped material 9 Pre-formation process 10 Mold 11 Cold press molding process 12 Machining 13 Finishing process 14 Bending process 21 Plate

Claims (9)

Ti−Nb−Sn合金からなる素材を所定形状の直棒状素材に加工する予備形成工程と、
前記直棒状素材を一対の金型間に装入して所定のインプラント形状に冷間鍛造加工を行う冷間プレス成形工程と、
成形加工後所定の仕上げ加工を行う仕上げ加工工程と
を有することを特徴とする体内埋設用インプラントの製造方法。
A preliminary forming step of processing a raw material made of a Ti-Nb-Sn alloy into a straight rod-shaped material having a predetermined shape;
A cold press forming step of inserting the straight rod-shaped material between a pair of molds and performing cold forging into a predetermined implant shape;
And a finishing process for performing a predetermined finishing process after the molding process.
Ti−Nb−Sn合金からなる素材を所定形状の直線状の直棒状素材に加工する予備形成工程と、
前記直棒状素材をインプラント形状に即すべく曲げ加工を行う曲げ加工工程と、
曲げ加工された前記素材を一対の金型間に装入して所定のインプラント形状に冷間鍛造加工を行う冷間プレス成形工程と、
成形加工後所定の仕上げ加工を行う仕上げ加工工程と
を有することを特徴とする体内埋設用インプラントの製造方法。
A pre-forming step of processing a raw material made of a Ti-Nb-Sn alloy into a straight straight bar-shaped material having a predetermined shape;
Bending process for bending the straight rod-shaped material to conform to the implant shape;
A cold press molding process in which the bent material is inserted between a pair of molds and cold forging into a predetermined implant shape; and
And a finishing process for performing a predetermined finishing process after the molding process.
前記曲げ加工工程は、前記直棒状素材を第2の一対の型間に装入して行う
ことを特徴とする請求項2記載の体内埋設用インプラントの製造方法。
The method for producing an implant for implanting in-body according to claim 2, wherein the bending step is performed by inserting the straight rod-shaped material between a second pair of molds.
前記曲げ加工工程は、前記直棒状素材の一端部近傍を他部に対し折れ曲げることによって行う
ことを特徴とする請求項2記載の体内埋設用インプラントの製造方法。
The method for producing an implant for implanting in-body according to claim 2, wherein the bending step is performed by bending the vicinity of one end portion of the straight rod-shaped material with respect to the other portion.
前記曲げ加工工程において、前記直棒状素材の曲げ角度が30度から50度の角度範囲にある
ことを特徴とする請求項2記載の体内埋設用インプラントの製造方法。
The method for producing an implant for implanting in-body according to claim 2, wherein, in the bending step, the bending angle of the straight rod-shaped material is in an angle range of 30 degrees to 50 degrees.
前記素材はTiをベースとし、Nbを20〜40W%、Snを4〜13W%含有している合金である
ことを特徴とする請求項1または2記載の体内埋設用インプラントの製造方法。
3. The method for producing an implant for implanting an in-vivo implant according to claim 1, wherein the material is an alloy containing Ti as a base, Nb in an amount of 20 to 40 W%, and Sn in an amount of 4 to 13 W%.
前記直棒状素材は、所定長さに切断した丸棒状素材を加工したものである
ことを特徴とする請求項1または2記載の体内埋設用インプラントの製造方法。
The method for manufacturing an implant for in-vivo implantation according to claim 1 or 2, wherein the straight bar-shaped material is obtained by processing a round bar-shaped material cut into a predetermined length.
前記丸棒状素材は、Ti−Nb−Sn合金を水冷銅鋳型を用いて高周波誘導溶解炉により溶解し、熱間鍛造により円柱状に形成したものである
ことを特徴とする請求項7記載の体内埋設用インプラントの製造方法。
8. The internal body according to claim 7, wherein the round bar-shaped material is formed by melting a Ti—Nb—Sn alloy with a high-frequency induction melting furnace using a water-cooled copper mold and forming a cylindrical shape by hot forging. A method for manufacturing an implant for implantation.
TiをベースとしたTi−Nb−Sn合金からなり、インプラントとしての所定の形状に冷間鍛造により形成されていることを特徴とする体内埋設用インプラント。   An implant for implantation in the body, which is made of a Ti-Nb-Sn alloy based on Ti and formed by cold forging into a predetermined shape as an implant.
JP2006086229A 2006-03-27 2006-03-27 Implant for in-vivo implantation and method for producing the same Active JP4714875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086229A JP4714875B2 (en) 2006-03-27 2006-03-27 Implant for in-vivo implantation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086229A JP4714875B2 (en) 2006-03-27 2006-03-27 Implant for in-vivo implantation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007259955A true JP2007259955A (en) 2007-10-11
JP4714875B2 JP4714875B2 (en) 2011-06-29

Family

ID=38633552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086229A Active JP4714875B2 (en) 2006-03-27 2006-03-27 Implant for in-vivo implantation and method for producing the same

Country Status (1)

Country Link
JP (1) JP4714875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226071A (en) * 2008-03-24 2009-10-08 Mizuho Co Ltd Implant to be embedded in body and its production method
CN102294422A (en) * 2011-06-29 2011-12-28 宁夏东方钽业股份有限公司 Method for processing novel niobium-alloy deformed hollow forging
KR20220162912A (en) * 2021-06-01 2022-12-09 전북대학교병원 Carbon implant and Manufacturing method of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741889A (en) * 1991-09-27 1995-02-10 Agency Of Ind Science & Technol Titanium alloy for living body
JPH09239482A (en) * 1996-03-05 1997-09-16 Kiyouhou Seisakusho:Kk Manufacture of cylindrical part
JPH10156480A (en) * 1996-11-20 1998-06-16 Fuse Rashi:Kk Production of inner ring for rubber vibration insulator
JP2004190516A (en) * 2002-12-09 2004-07-08 Koyo Seiko Co Ltd Rocker arm
JP2004351457A (en) * 2003-05-28 2004-12-16 Kobe Steel Ltd Electromagnetic forming coil, and electromagnetic forming method
JP2005113227A (en) * 2003-10-09 2005-04-28 Sumitomo Metal Ind Ltd Low young's modulus titanium alloy
JP2006274319A (en) * 2005-03-28 2006-10-12 Sumitomo Metal Ind Ltd High strength low young's modulus titanium alloy and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741889A (en) * 1991-09-27 1995-02-10 Agency Of Ind Science & Technol Titanium alloy for living body
JPH09239482A (en) * 1996-03-05 1997-09-16 Kiyouhou Seisakusho:Kk Manufacture of cylindrical part
JPH10156480A (en) * 1996-11-20 1998-06-16 Fuse Rashi:Kk Production of inner ring for rubber vibration insulator
JP2004190516A (en) * 2002-12-09 2004-07-08 Koyo Seiko Co Ltd Rocker arm
JP2004351457A (en) * 2003-05-28 2004-12-16 Kobe Steel Ltd Electromagnetic forming coil, and electromagnetic forming method
JP2005113227A (en) * 2003-10-09 2005-04-28 Sumitomo Metal Ind Ltd Low young's modulus titanium alloy
JP2006274319A (en) * 2005-03-28 2006-10-12 Sumitomo Metal Ind Ltd High strength low young's modulus titanium alloy and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226071A (en) * 2008-03-24 2009-10-08 Mizuho Co Ltd Implant to be embedded in body and its production method
CN102294422A (en) * 2011-06-29 2011-12-28 宁夏东方钽业股份有限公司 Method for processing novel niobium-alloy deformed hollow forging
KR20220162912A (en) * 2021-06-01 2022-12-09 전북대학교병원 Carbon implant and Manufacturing method of the same
KR102608168B1 (en) * 2021-06-01 2023-12-04 전북대학교병원 Carbon implant and Manufacturing method of the same

Also Published As

Publication number Publication date
JP4714875B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
EP2330227B1 (en) METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
CN103667800A (en) Precise forging method for CoCrMo alloy artificial joint
US7168283B2 (en) Cobalt chrome forging of femoral knee implants and other components
CN110369654B (en) Forging method of titanium alloy tibial plateau artificial joint implant
CN103659186A (en) Medical titanium alloy artificial joint precise forging method
CN104878245A (en) Biomedical high-strength and toughness Ti-6Al-4V titanium alloy bar and preparation method thereof
JP4041774B2 (en) Method for producing β-type titanium alloy material
JP4714875B2 (en) Implant for in-vivo implantation and method for producing the same
CN110193580A (en) A kind of H13 material forging mold technique
Chandrasekaran Forging of metals and alloys for biomedical applications
CN111575539A (en) Preparation method of hot-working cobalt-based alloy rod wire
TW200640432A (en) Process for producing an implant from a titanium alloy, and corresponding implant
CN105951015A (en) Preparation method of Ti6Al7Nb titanium alloy fine-grain wire material
CN108284299A (en) A kind of aluminum alloy complex component electric arc increases material and hot extrusion composite manufacturing method
JP2019511254A (en) Precipitation hardening or solid solution strengthening-use of a biocompatible cobalt based alloy and method of making an implant or prosthesis by material removal processing
JP5267973B2 (en) Implant for in-vivo implantation and method for producing the same
CN112338118A (en) Precision forging forming method of titanium alloy femoral stem
CN109158515A (en) A kind of manufacturing method of titanium alloy TC 4 bone plate and TC4ELI bone plate
CN112247046A (en) Forging method of alloy femoral stem forging
CN108687162B (en) Special-shaped flat tube forming process
CN111745105A (en) Forging forming method of artificial shoulder humerus handle
KR20130009920A (en) Methord of hot-forging for titanium artificial-joint of thereof
CN109158516A (en) A kind of manufacturing method of titanium alloy T C20 bone plate
CN113000622A (en) Manufacturing method of orthopedic implant connecting rod
CN107427898A (en) Forging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4714875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250