KR20220159640A - 전극의 사행 보정장치 및 전극의 사행 보정방법 - Google Patents

전극의 사행 보정장치 및 전극의 사행 보정방법 Download PDF

Info

Publication number
KR20220159640A
KR20220159640A KR1020210067485A KR20210067485A KR20220159640A KR 20220159640 A KR20220159640 A KR 20220159640A KR 1020210067485 A KR1020210067485 A KR 1020210067485A KR 20210067485 A KR20210067485 A KR 20210067485A KR 20220159640 A KR20220159640 A KR 20220159640A
Authority
KR
South Korea
Prior art keywords
eps
electrode
epc
value
line
Prior art date
Application number
KR1020210067485A
Other languages
English (en)
Inventor
김동욱
최승훈
김민욱
이용균
박종식
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to KR1020210067485A priority Critical patent/KR20220159640A/ko
Priority to EP22760021.0A priority patent/EP4152457A1/en
Priority to PCT/KR2022/002609 priority patent/WO2022182105A1/ko
Priority to CN202280005154.2A priority patent/CN115997313A/zh
Priority to US18/011,720 priority patent/US20230318010A1/en
Priority to CN202280005125.6A priority patent/CN115812258A/zh
Priority to EP22760022.8A priority patent/EP4152458A1/en
Priority to PCT/KR2022/002610 priority patent/WO2022182106A1/ko
Priority to US18/011,719 priority patent/US20230318019A1/en
Publication of KR20220159640A publication Critical patent/KR20220159640A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명의 전극의 사행 보정장치는, 권심에 권취되어 젤리롤 전극조립체를 형성하는 전극의 롤투롤 이송시의 사행 보정장치로서, 전극을 권심 측으로 이송하며 상기 전극의 에지 위치를 조절하는 라인 EPC 롤러를 구비한 라인 EPC(Line Edge Position Control)부; 상기 라인 EPC 롤러로부터 이송되어오는 전극의 에지 위치를 판정 EPS 에지 위치값으로서 측정하는 판정 EPS(Edge Position Sensor)와, 상기 전극의 에지 위치를 판정 EPS 에지 기준값에 일치하도록 조절하는 파이널 EPC 롤러를 구비한 파이널 EPC부; 및 상기 라인 EPC부 및 파이널 EPC부를 제어하는 제어부를 포함하고, 상기 제어부는, 상기 판정 EPS 에지 위치값이 판정 EPS 에지 기준값에 일치하도록 상기 전극의 에지 위치를 피드백 제어하고, 상기 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC롤러로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부를 피드백 제어한다.
또한, 본 발명은 권심에 권취되어 젤리롤 전극조립체를 형성하는 전극 이송시의 사행 보정방법을 제공한다.

Description

전극의 사행 보정장치 및 전극의 사행 보정방법{ELECTRODE MEANDERING CORRECTION DEVICE AND ELECTRODE MEANDERING CORRECTION METHOD THEREOF}
본 발명은 전극 이송시의 사행 보정장치 및 사행 보정방법에 관한 것이다. 보다 상세하게는 권심에 권취되어 젤리롤 전극조립체를 형성하기 위하여 권심으로 롤투롤 이송되는 전극 이송시의 사행 보정장치 및 사행 보정방법에 관한 것이다.
모바일, 자동차 및 에너지 저장 장치 분야에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 이러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고 또한 상용화되어 널리 사용되고 있다.
특히, 리튬 이차전지는 작동 전압이 3.6V 이상으로서, 휴대용 전자 기기의 전원으로 많이 사용되고 있는 니켈-카드뮴 전지나 니켈-수소 전지보다 3배나 높고, 단위 중량당 에너지 밀도가 높다는 측면에서 급속하게 신장되고 있는 추세이다.
이차전지는 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는데, 대표적으로는 긴 시트형의 양극들과 음극들은 분리막이 개재된 상태에서 권취한 구조의 젤리롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막에 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 바이셀(Bi-cell) 또는 풀셀(Full cell) 등의 단위셀들을 권취한 구조의 스택-폴딩형 전극 조립체 등을 들 수 있다.
이 중 젤리롤 전극 조립체는 제조가 용이하고 중량당 에너지 밀도가 높은 장점을 가지고 있다. 특히, 고에너지 밀도를 갖는 젤리롤형 전극 조립체는 원통형 금속 캔에 내장되어 원통형의 이차전지를 구성할 수 있으며, 이러한 원통형 전지는 전기자동차와 같이 고용량의 이차전지의 적용이 필요한 분야에서 널리 적용되고 있다.
도 1은 전극이 롤투롤 이송되고 권심에서 권취되어 젤리롤 전극 조립체를 형성하는 것을 나타낸 개략측면도 및 평면도이다. 도시된 바와 같이, 전극(1)은 라인 EPC(Line Edge Position Control)부(10)를 통과하여 투입 클램프부(20)로 이송되고, 이후 파이널 EPC부(40)와 파이널 롤러(50)를 통과하여 권심(60)에 권취되어 젤리롤 전극 조립체를 형성한다. 구체적으로는 양극, 음극 등의 전극과 함께, 분리막(도시하지 않음)도 이송되어 상기 권심에서 같이 권취되어 젤리롤 전극조립체를 형성한다.
상기 전극(1)은 권심(60)으로 이송될 때, 설정된 에지 기준값에 일치하도록 똑바로 진행하는 것이 이상적이다. 그러나, 실제로는 상기 전극 이송시에 설정된 에지 기준값을 벗어나 진행하는 사행 진행이 불가피하게 발생한다. 따라서, 상기 사행 진행을 보정하기 위하여, 상기 라인 EPC부(10)와 파이널 EPC부(40)에서 제어부가 전극의 에지 위치를 제어한다. 상기 라인 EPC부(10)와 파이널 EPC부(40)는 전극의 에지 위치를 감지하는 센서들(즉, 라인 EPS(Edge Position Sensor)(12) 및 판정 EPS(42))과, 전극을 파지하여 이동시키는 EPC 롤러들(라인 EPC 롤러(11) 및 파이널 EPC 롤러(41))과 상기 EPC 롤러들을 제어하는 제어부들(16,46)을 구비하고 있다. 상기 각 센서(EPS)에 의하여 감지된 전극의 에지 위치가 설정된 기준 에지 위치와 상이할 경우, 그 에지 위치를 기준 에치 위치와 일치하도록 상기 제어부(16,46)는 상기 EPC 롤러들(11,41)로 하여금 전극의 에지 위치를 조절하도록 하고 있다. 예컨대, 상기 전극 이송방향(X방향)을 가로지르도록 설치된 EPC 롤러들(예컨대, 닙롤러)이 그 롤러들의 축방향(Y방향)으로 전극을 파지하여 이동시킴으로써, 전극의 에지 위치가 조절된다.
도 1(b) 및 도 2는 상기한 EPC 롤러들에 의하여 전극의 에지 위치가 조절되는 것을 구체적으로 도시한 개략 사시도이다. 예컨대, 라인 EPC 롤러(11) 또는 파이널 EPC 롤러(41)의 상하 롤러 축(11a,41a)을 모터(15,45)와 기계적으로 연결하고, 컨트롤러(16,46)가 모터(16,46)를 구동시키는 것에 의하여 상기 상하 롤러 축(11a,41a)을 전극 이송방향(X방향)에 수직으로 좌우로 이동시켜 전극의 에지 위치를 조절할 수 있다. 도 2에 도시된 예에서는, 상하 롤러 축(11a,41a)이 공통의 브라켓(13,43)에 각각 결합되고 상기 브라켓이 모터(15,45)와 축(14,44)에 의하여 각각 연결되어 있다. 모터(15,45)가 회전구동하면, 예컨대 볼 스크류인 축(14,44)이 전후진하여 상기 브라켓(13,43) 및 이 브라켓에 연결된 상하 롤러 축(11a,41a)이 Y방향으로 이동함으로써, 이 상하 롤러에 맞물린 전극이 Y방향으로 이동된다. 도시된 실시예에서는, 상하 롤러 축이 공통의 브라켓 및 모터에 연결되어 있지만, 상부와 하부의 각각의 롤러 축이 별개의 브라켓 및 모터에 연결되어 구동될 수 있다. 또한, 도 2에 도시되지 않은 다른 형태의 직선이동기구로 상기 롤러 축들을 이동시킬 수 있음은 물론이다.
그런데, 종래의 전극 사행 보정장치는, 라인 EPC부(10)와 파이널 EPC부(40)에서 각각 전극 에지 위치를 조절하는 바, 상기 양 EPC부가 서로 연계되어 제어되지 않거나 혹은 적어도 권심 전의 최종 에지 위치 조절기구인 파이널 EPC부(40)에서의 에지 위치를 고려하여 상기 라인 EPC부(10)가 적절히 제어되지 않았다. 이로 인하여, 파이널 EPC부(40)에서 전극의 에지 위치를 기준 에지 위치인 판정 EPS 기준값에 일치하도록 피드백 제어하더라도, 상기 파이널 EPC부(40)에서 불가피하게 전극의 사행이 발생하는 문제가 있었다.
도 3은 종래의 전극 사행 보정장치 및 보정방법을 나타낸 개략도이고, 도 4는 파이널 EPC부에서 전극의 에지 위치가 조절된 상태를 나타내는 개략도이다.
도 3에 도시된 바와 같이, 라인 EPC 롤러(11)로부터 투입 클램프 롤러(21)로 이송된 전극(1)은 권심(60)을 향하여 진행하며, 파이널 롤러(50)를 거쳐 권심(60)에서 권취되어 분리막과 함께 젤리롤 전극조립체를 형성한다. 권심(60)에 의한 권취시 전극의 투입측 단부는 커터(30)에 의하여 절단되며, 이 절단된 단부까지 권심(60)에 권취되어 젤리롤 전극조립체를 형성하게 된다.
종래의 전극 사행 보정장치는 투입 클램프 롤러(21)의 전방에서 라인 EPC부(10)를 구비하여 그 라인 EPC 롤러(11)로 전극의 에지 위치를 조절한다. 또한, 파이널 롤러(50)의 전방에 파이널 EPC부(40)를 구비하여 전극의 사행 진행을 최종 보정하고 있다.
즉, 전극은 라인 EPC부(10)에서 에지 위치가 제어되며 상기 라인 EPC부(10)의 라인 EPC 롤러(11)는 예컨대 그 제어부인 컨트롤러(16)로 소정의 롤러 위치로 보정된 기준 보정값(라인 EPC 보정값(B))을 가지도록 위치 설정된다.
다음, 파이널 EPC부(40)는 권심(60) 전의 소정 위치(Q: 예컨대 권심 전 약 100mm 위치)에 설치된 판정 EPS(Edge Position Sensor)(42)에 의하여 전극(1)의 에지 위치를 측정한다. 이 전극(1)의 에지 위치를 판정 EPS 에지 위치값이라 칭한다. 상기 판정 EPS(42)는 투수광 센서 등의 비접촉식으로 전극 에지 위치를 측정하는 센서일 수 있다. 상기 판정 EPS 에지 위치값이 설정된 판정 EPS 에지 기준값(A)과 상이할 경우, 제어부인 컨트롤러(46)는 판정 EPC부에 구비된 EPC 롤러(41)에 의하여 전극을 폭방향(Y방향)으로 이동시켜 전극의 에지 위치를 상기 판정 EPS 에지 기준값(A)과 일치하도록 하는 피드백 제어를 행한다(도 4 참조). 이때 상기 판정 EPS 에지 기준값(A)은 0이 아니며, 전극의 롤투롤 공정 조건 등에 따라 판정 EPS에서 정해지는 설정값이다. 따라서, 공정 조건이 달라지면 상기 기준값도 변경될 수 있다. 예컨대 상기 판정 EPS 에지 기준값은 0.8mm일 수 있다.
상기 EPC 롤러(41)에 의한 전극 위치 보정은 상기 판정 EPS(42) 전의 소정 위치(P: 예컨대 권심 전 약 125mm 위치)에서 행해질 수 있다.
그런데, 상기 파이널 EPC부(40)에서 전극의 사행 진행을 보정하는 경우에도, 실제로 전극 진행시 다수의 사행 불량이 발생되는 것을 확인하였다. 특히, 음극의 사행 불량률이 높았다. 이는, 도 3 및 도 4에 도시된 바와 같이, 전극이 투입 클램프 롤러(21)로 투입되기 전인 라인 EPC 롤러(11)의 라인 EPC 보정값(B)이 파이널 EPC부(40)의 판정 EPS 에지 기준값(A)과 일치하지 않는 것이 중요한 원인으로 파악된다. 즉, 전극의 롤투롤 진행상 라인 EPC부(10)에 구비된 라인 EPS(12)와 파이널 EPC부(40)에 구비된 판정 EPS(42)의 센서 원점은 반드시 일치하는 것은 아니다. 오히려, 각 전극의 롤투롤 진행상 각 EPC부에서의 전극 위치(라인)는 일직선이 되지 않는게 통상이며, 따라서 각각의 EPC부에서 사행을 보정하는 것이다. 이상과 같이, 전극 투입 전의 라인 EPC부(10)에서 아무리 정밀하게 전극 에지 위치를 조절(보정)하더라도, 파이널 EPC부(40)에서의 판정 EPS 에지 기준값이 상기 라인 EPC부(10)의 라인 EPC 보정값과의 불일치가 불가피하게 발생할 수 밖에 없다. 이로 인하여, 도 4에 도시된 바와 같이, 사후적으로 파이널 EPC부(40)에서 사행을 보정하여도, 그 사행 보정효과에는 한계가 있기 때문에, 상기와 같이 사행 불량률이 증가하는 것이다.
또한, 상기 불일치로 인하여, 파이널 EPC부(40)에서 사후적으로 전극의 사행 진행을 해소(보정)하기 위해서 파이널 EPC 롤러(41)의 위치를 조절하는 파이널 EPC 모터(45)의 동작량이 증가하게 되므로, 모터 구동에 과도한 부하가 발생하는 단점이 있다.
따라서, 라인 EPC부와 파이널 EPC부에 의한 전극 에지 위치 제어를 연계하여 사행 불량을 개선할 수 있는 기술의 개발이 요망된다 하겠다.
대한민국 등록특허공보 제10-1113424호
본 발명은 상기와 같은 문제를 해결하기 위하여 안출된 것으로, 권심에 권취되기 전의 파이널 EPC부에서 전극의 에지 위치가 피드백 제어될 때의 시간에 따라 변화하는 전극의 판정 EPS 에지 위치값 데이터들을 이용하여 라인 EPC부를 피드백 제어하여 사행 불량을 개선한 사행 보정장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 판정 EPS 에지 위치값 데이터들과 판정 EPS 에지 기준값과 대비하는 피드백 제어를 통해 라인 EPC 롤러로부터의 전극 이송방향을 보정하는 전극의 사행 보정방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위한 본 발명의 전극의 사행 보정장치는, 권심에 권취되어 젤리롤 전극조립체를 형성하는 전극의 롤투롤 이송시의 사행 보정장치로서, 전극을 권심 측으로 이송하며 상기 전극의 에지 위치를 조절하는 라인 EPC 롤러를 구비한 라인 EPC(Line Edge Position Control)부; 상기 라인 EPC 롤러로부터 이송되어오는 전극의 에지 위치를 판정 EPS 에지 위치값으로서 측정하는 판정 EPS(Edge Position Sensor)와, 상기 전극의 에지 위치를 판정 EPS 에지 기준값에 일치하도록 조절하는 파이널 EPC 롤러를 구비한 파이널 EPC부; 및 상기 라인 EPC부 및 파이널 EPC부를 제어하는 제어부를 포함하고, 상기 제어부는, 상기 판정 EPS 에지 위치값이 판정 EPS 에지 기준값에 일치하도록 상기 전극의 에지 위치를 피드백 제어하고, 상기 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC롤러로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부를 피드백 제어하는 것을 특징으로 한다.
하나의 예로서, 상기 파이널 EPC 롤러는 상기 판정 EPS 설치위치의 소정간격 앞에 배치될 수 있다.
구체적인 예로서, 상기 제어부는, 상기 판정 EPS 에지 위치값이 판정 EPS 에지 기준값에 일치하도록 상기 파이널 EPC 롤러를 조절하여 상기 전극의 에지 위치를 피드백 제어하는 제1 제어부; 상기 제1 제어부의 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC롤러로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부를 피드백 제어하는 제2 제어부를 포함할 수 있다.
또한, 상기 제어부는, 상기 제2 제어부의 피드백 제어에 의하여 상기 라인 EPC 롤러의 위치를 조절하여 전극의 에지 위치를 제어하는 제3 제어부를 더 포함할 수 있다.
또한, 본 발명의 일 실시예의 전극의 사행 보정장치는, 상기 라인 EPC부와 상기 파이널 EPC부 사이에 설치되며, 상기 라인 EPC 롤러로부터 전극을 전달받아 파이널 EPC부 측으로 투입하는 투입 클램프부를 더 구비할 수 있다.
구체적인 예로서, 상기 제어부는, 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴할 때까지 일정 시간 간격으로 소정 회수 측정된 상기 판정 EPS 에지 위치값 데이터들 중 측정 중기 및 후기에 측정된 데이터값들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC부를 피드백 제어할 수 있다.
더욱 구체적인 예로서, 상기 측정 중기 및 후기의 각 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값의 차이값들을 구하고, 상기 차이값들을 평균한 값을 라인 EPC 부의 피드백 제어를 위한 로직값으로 규정하고, 상기 제어부는, 상기 전극이 소정 회수 투입되었을 때 각 전극의 상기 로직값들을 평균한 값을 상기 라인 EPC부의 라인 EPC 롤러 보정치로 산출하여 상기 전극의 소정 회수 투입마다 상기 라인 EPC롤러의 위치를 상기 보정치만큼 보정하도록 피드백 제어할 수 있다.
하나의 예로서, 상기 라인 EPC 롤러는 소정의 롤러 위치로 보정된 기준 보정값을 가지며, 상기 제어부는 상기 기준 보정값으로 보정된 상기 라인 EPC롤러의 위치를 상기 보정치만큼 보정하도록 피드백 제어할 수 있다.
하나의 예로서, 상기 보정치의 부호가 양(+)이면 상기 라인 EPC 롤러의 기준 보정값을 상기 보정치만큼씩 차감하고, 상기 보정치의 부호가 음(-)이면 상기 라인 EPC 롤러의 기준 보정값을 상기 보정치만큼씩 가산하도록 할 수 있다.
다른 예로서, 상기 로직값에 돌발변수로 인한 판정 EPS의 측정오차를 반영하는 소정의 보정률을 곱한 값을 로직값으로 규정할 수 있다.
본 발명의 다른 측면으로서, 권심에 권취되어 젤리롤 전극조립체를 형성하는 전극의 롤투롤 이송시의 사행 보정방법은, 라인 EPC부의 라인 EPC 롤러를 통하여 이송된 전극이 권심 전에 배치된 파이널 EPC부의 판정 EPS에 도달하였을 때의 전극의 에지 위치가 상기 판정 EPS에 의하여 측정되어 판정 EPS 에지 위치값이 측정되는 단계; 상기 판정 EPS 에지 위치값이 소정의 판정 EPS 에지 기준값에 일치하도록 상기 전극의 에지 위치를 피드백 제어하는 단계; 상기 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들을 얻는 단계; 및 상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC 롤러로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부를 피드백 제어하는 단계를 포함한다.
구체적으로, 상기 시간에 따라 변화하는 상기 판정 EPS 에지 위치값 데이터들은 상기 판정 EPS 에지 기준값에 수렴할 때까지 일정 시간 간격으로 소정 회수 측정되어 얻어지는 것이고, 상기 측정된 데이터들 중 측정 중기 및 후기의 데이터값들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC부를 피드백 제어할 수 있다. 보다 구체적인 예로서, 상기 측정 중기 및 후기의 데이터값들은 판정 EPS에 의하여 21~50회째에 측정된 데이터값들이다.
본 발명에 의하면, 라인 EPC부를 파이널 EPC부에서의 판정 EPS 기준값에 부합하도록 피드백 제어하여 권심으로의 전극 투입시 안정적으로 전극을 투입하여 전극의 사행 불량을 개선할 수 있다.
이에 따라, 전극 투입시의 EPS 데이터를 안정화시키고 중기 및 후기 EPS 데이터의 편차를 줄일 수 있으므로, 전극 투입 불안정에 의한 사행 불량 및 사행 편차를 개선함으로써 전극조립체의 품질을 안정화할 수 있다는 장점이 있다.
또한, 파이널 EPC부와 연계하여 라인 EPC부가 피드백 제어됨으로 인하여, 파이널 EPC 모터의 동작량을 감소시켜 모터 구동에 걸리는 부하를 크게 저감할 수 있다는 효과가 있다.
도 1은 전극이 롤투롤 이송되고 권심에서 권취되어 젤리롤 전극 조립체를 형성하는 것을 나타낸 개략측면도 및 평면도이다.
도 2는 EPC 롤러들에 의하여 전극의 에지 위치가 조절되는 것을 구체적으로 도시한 개략 사시도이다.
도 3은 종래의 전극 사행 보정장치 및 보정방법을 나타낸 개략도이다.
도 4는 도 3의 전극 사행 보정장치에서 파이널 EPC부에서 전극의 에지 위치가 조절된 상태를 나타내는 개략도이다.
도 5는 파이널 EPC부에서 전극의 에지 위치를 피드백 제어할 때 시간에 따라 변화되는 판정 EPS 에지 위치값의 데이터들을 나타내는 그래프이다.
도 6은 본 발명에 의한 전극의 사행 보정장치를 나타낸 개략도이다.
도 7은 본 발명에 의한 전극의 사행 보정방법의 순서를 나타내는 흐름도이다.
도 8은 본 발명의 일 실시형태에 의하여 라인 EPC 롤러의 위치를 보정하기 위한 피드백 제어의 순서를 나타내는 흐름도이다.
도 9는 도 8에 의한 피드백 제어과정을 로직값 산출과정과 관련하여 나타낸 개략도이다.
도 10은 본 발명의 다른 실시형태에 의한 라인 EPC 롤러의 위치를 보정하기 위한 피드백 제어의 순서를 나타내는 흐름도이다.
도 11은 본 발명의 사행 보정방법에 의하여 라인 EPC 롤러를 보정하였을 경우 시간에 따른 판정 EPS 에지 위치값과 파이널 EPC 모터의 동작량이 안정화되어가는 상태를 나타내는 그래프이다.
도 12는 본 발명의 사행 보정방법에 의하여 피드백 제어된 경우의 파이널 EPC 모터 동작량의 크기와 편차를 나타낸 그래프이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부뿐 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
이하 본 발명에 대해 자세히 설명한다.
도 5는 파이널 EPC부(40)에서 전극의 에지 위치를 피드백 제어할 때 시간에 따라 변화되는 판정 EPS 에지 위치값의 데이터들을 나타내는 그래프이다.
도 3 및 도 4와 관련하여 파이널 EPC부(40)의 판정 EPS(42)에서 전극(1)의 에지 위치를 측정하고, 이를 판정 EPS 에지 기준값(A)에 일치하도록 파이널 EPC부(40)의 파이널 EPC롤러(41)로 전극의 에지 위치를 조정하여 사행을 보정하는 것을 설명하였다. 그러나, 파이널 EPC부(40)에서 사행을 보정한다 하더라도, 전극 에지 위치가 곧바로 판정 EPS 에지 기준값(A)에 도달하는 것은 아니고, 판정 EPS(42)로 진행되어 와서 상기 EPS 위치에서 연속적으로 측정되는 전극의 에지 위치값(이하,'판정 EPS 에지 위치값'이라 칭한다)은 도 5와 같이 시간에 따라 변화하여 점차적으로 판정 EPS 에지 기준값(A)에 수렴하게 된다.
도 5는 판정 EPS(42)에서 에지 위치를 측정하는 소정의 프로그램(프로그램명 'BOIS')에 의하여, 측정된 EPS 데이터로서 판정 EPS 에지 기준값(A)에 수렴할 때까지 총 50회 EPS 데이터를 측정한 것을 나타낸 것이다. BOIS 프로그램은 상기 EPS 데이터의 홀수번째 또는 짝수번째 데이터만을 도시하여 보여주므로, 도 5와 같이 상기 프로그램 상에서는 판정 EPS 에지 위치값이 판정 EPS 기준값(A)에 수렴할 때까지 총 25회 측정된 것을 나타내고 있다. 부언하면, 도 5의 X축은 판정 EPS 기준값(A)에 수렴할 때까지 일정 시간 간격으로 측정된 측정회수 내지 측정순번을 나타내며, Y축은 각 측정순번에서 판정 EPS에 의하여 측정된 전극 위치인 판정 EPS 에지 위치값들이다.
도 5에 나타난 바와 같이, 상기 판정 EPS 에지 위치값들은 측정순번 1~3회째(총 1~5회째의 판정 EPS 위치 데이터 중 홀수번째 측정순번)에서 크게 변동(감소)하며, 이후에는 약간의 파동적 흐름을 나타내며 점차 판정 EPS 에지 기준값(A)(예컨대, 0.80mm)에 수렴해간다. 이와 같이 판정 EPS 에지 위치값 데이터들 중 초기 데이터값들이 크게 변동하는 것은 전극 투입 시 오버슈팅(overshooting)에 의한 것으로 판단된다. 즉, 전극 투입시 투입 클램프(20)의 투입 클램프 롤러(21)가 기울어져 전극의 투입 기울기가 잘못 설정되거나 돌발적인 투입 불안정 발생으로, 투입시 전극(1)이 좌우로 출렁거려 사행이 발생하기 때문에, 파이널 EPC부(40)에서 이를 보정하더라도 EPS 위치에서 측정되는 판정 EPS 에지 위치값의 초기 데이터들이 도 5와 같이 크게 변동되는 것이다.
한편, 초기 데이터에 비해서는 변동이 크지 않지만, 상기 판정 EPS 에지 위치값들 중 측정순번 11~25회째(총 1~50회째의 판정 EPS 위치 데이터 중 21~50회째의 측정데이터 중 홀수번째 데이터)에서도 상기 판정 EPS 에지 위치값들은 기준값에 완전히 수렴하지 않는다. 즉, 상기 판정 EPS 에지 위치값들 중 측정순번으로 중기 및 후기의 데이터값들은, 판정 EPS 에지 기준값(예컨대 0.8mm)보다 작은 값으로 치우쳐 있다. 만약 상기 판정 EPS 에지 기준값(0.8mm)의 위치를 원점(0)으로 취할 경우, 판정 EPS에서의 감지된 전극의 위치는 음(-)의 방향으로 치우쳐서 사행 진행되고 있다는 것을 의미한다. 도 5의 측정 EPS 에지 위치값 데이터들 중 초기 데이터값들(측정순번 1~3회째(총 1~5회째의 판정 EPS 위치 데이터 중 홀수번째 측정순번)의 데이터값들)은 상기한 바와 같이, 전극 투입 클램프의 기울기에 의한 투입 시의 오버슈팅에 의한 영향을 나타낸다. 그런데, 도 5의 측정순번 11~25회째(총 1~50회째의 판정 EPS 위치 데이터 중 21~50회째의 측정데이터 중 홀수번째 데이터)에 나타난 바와 같이, 투입 시의 영향이 해소된 후에도 상기 판정 EPS 에지 위치값들은 완전히 판정 EPS 에지 기준값과 일치하지 않는다. 이는, 투입 클램프 롤러(21)에 투입하기 전의 라인 EPC 롤러(11)의 라인 EPC 기준 보정값(B)이 상기 판정 EPS 에지 기준값(A)과 애초에 일치하지 않았기 때문에 발생하는 현상이다. 즉, 도 1 및 도 3에 나타난 바와 같이, 라인 EPC부(10)가 투입 클램프 롤러(21) 전에 소정의 기준 보정값(B)을 가지도록 상기 라인 EPC 롤러(11)를 보정하였으나, 이 보정값(B)이 상기 판정 EPS 에지 기준값(A)과 일치하지 않으므로, 상기 도 5와 같은 궤적의 EPS 데이터 변동을 나타내는 것이다.
따라서, 상기 중기 및 후기 데이터값들을 상기 판정 EPS 에지 기준값(A)에 보다 근접하게 수렴하도록 한다면, 상기와 같이 라인 EPC부(10)에 유래하여 발생하는 사행 불량을 감소시킬 수 있다. 본 발명자들은 이러한 점에 착안하여, 라인 EPC부(10)의 라인 EPC 보정값(B)의 영향에 의하여 변동되는 데이터값들을 상기 판정 EPS 위치값 데이터들로부터 선택하고, 이 데이터값들과 판정 EPS 에지 기준값(A)과 대비하는 피드백 제어를 통해 상기 라인 EPC 롤러(11)로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부(10)를 피드백 제어함으로써, 사행 불량을 개선하고자 한 것이다.
도 6은 본 발명에 의한 전극의 사행 보정장치(100)를 나타낸 개략도이다.
본 발명에 있어서, 도 3 및 도 4의 종래의 사행 보정장치와 동일한 구성요소에 대하여는 동일한 부호를 붙여 나타내기로 한다.
본 실시예는 전극(1)을, 권심(60) 측으로, 구체적으로는 투입 클램프 롤러(21) 측으로 이송하는 라인 EPC 롤러(11)를 구비한 라인 EPC부(10)를 구비하고 있다. 상기 라인 EPC 롤러(11)는 상기 전극을 이송방향에 대하여 이동시켜 전극의 에지 위치를 조절한다. 구체적으로 상기 라인 EPC부(10)는 도 1과 같이, 전극의 에지 위치를 검출하는 라인 EPS(12)와, 전극의 에지 위치를 조절하는 라인 EPC 롤러(11)와, 상기 라인 EPC 롤러의 위치를 조절하기 위하여 구동되는 라인 EPC 모터(15)와, 상기 라인 EPS에서 검출된 전극의 에지 위치를 기초로 상기 라인 EPC 모터를 구동하여 상기 라인 EPC 롤러의 위치를 조절하여 전극의 에지 위치를 제어하는 컨트롤러(16)를 구비하고 있다. 통상 에지 위치 제어부(Edge Position Control)로서의 EPC부는 상기와 같이, 에지 위치 감지센서(EPS)와 에지 위치 조절부재인 롤러(예컨대 닙 롤러) 및 구동부(예컨대, 모터), 그리고 이를 제어하는 컨트롤러를 구비하고 있다.
따라서, 상기 라인 EPC부(10)는 라인 EPC 롤러(11)의 위치를 조절하여 전극(1)의 에지 위치를 제어할 수 있다. 본 실시예에서는, 상기 라인 EPC 롤러(11)는 라인 EPC부(10)(구체적으로 컨트롤러(16))에 의하여 소정의 롤러 위치로 보정되어 있다. 즉, 라인 EPC 롤러(11)는 라인 EPC에서의 사행을 보정하고 후술하는 파이널 EPC부(40)로의 전극 투입을 고려하여 기준 보정값(B)으로 그 롤러 위치가 보정되어 있다.
또한, 본 실시예의 사행 보정장치(100)는 상기 라인 EPC 롤러(11)로부터 전극을 전달받아 권심 측으로 투입하는 투입 클램프부(20)를 구비하고 있다. 상기 투입 클램프부(20)에는 투입 클램프 롤러(21)가 설치되어 있다. 도 1에 도시된 바와 같이, 상기 투입 클램프 롤러(21) 부근에도 센서(22)를 설치하여 투입 클램프 롤러(21) 내지 그 인접부에서의 전극 에지 위치를 확인할 수 있다. 필요하다면 전극 투입 시의 불안정성을 해소하기 위하여 상기 투입 클램프 롤러(21)의 기울기를 보정할 수 있다. 도 1에는 상기 기울기를 보정하기 위한 구동축 및 모터가 도시되어 있다. 투입 클램프 롤러의 기울기 보정도 파이널 EPC부에서의 전극의 사행 보정을 위해서 필요한 요소이지만, 본 발명과 관련되는 주제는 아니므로, 그에 관한 구체적인 설명은 생략하기로 한다.
본 발명은 또한 파이널 EPC부(40)에서의 피드백 제어를 전제로 한 것이므로, 파이널 EPC부(40)를 구비하고 있다. 즉, 본 발명의 사행 보정장치(100)는, 권심(60) 전에 배치되어 전극(1)의 에치 위치를 판정하여 판정 EPS 에지 위치값으로 기록하는 판정 EPS(42)와, 상기 전극의 에지 위치를 조절하는 파이널 EPC 롤러(41)를 구비하는 파이널 EPC부(40)를 포함한다. 상기 파이널 EPC부(40)는 권심(60) 전에 배치되며 판정 EPS 에지 위치값이 판정 EPS 에지 기준값(A)에 일치하도록 상기 파이널 EPC 롤러(41)를 조절하여 상기 전극의 에지 위치를 피드백 조절할 수 있다. 전극 에지 위치를 조절할 수 있도록 파이널 EPC부(40)도 상기 라인 EPC부(10)와 동일하게 상기 파이널 EPC 롤러의 위치를 조절하기 위하여 구동되는 파이널 EPC 모터(45)와, 상기 파이널 EPC 모터를 구동하여 상기 파이널 EPC 롤러의 위치를 조절하여 전극의 에지 위치를 제어하는 컨트롤러(46)를 구비하고 있다.
상기 라인 EPC 모터(15)에 의한 라인 EPC 롤러(11)의 위치 조절, 파이널 EPC 모터(45)에 의한 파이널 EPC 롤러(41)의 위치 조절은, 도 1 및 도 2에 도시된 바와 같이, 구동모터 등에 의한 회전운동을 직선운동으로 전환하는 변환기구(예컨대, 볼 스크류와 볼 너트)에 의해서 행할 수 있다. 즉, 모터에 연결된 볼 스크류의 직선 운동에 의해서 상기 볼 스크류와 연결된 EPC 롤러 축들을 전극 이동방향에 대하여 수직으로 이동시킴으로써, EPC 롤러 및 전극의 에지 위치를 조절할 수 있다. 혹은 피스톤이 공기압에 의하여 실린더로부터 직선이동할 수 있는 공기압 실린더를 채용하여 상기 피스톤과 롤러 축을 연결하여 피스톤의 직선이동에 의하여 상기 롤러 축의 기울기를 조절할 수 있다. 이러한 직선이동기구는 기계분야에서 통상적으로 알려져 있는 것이기 때문에, 그 자세한 설명은 생략한다. 중요한 것은, EPC 롤러 축을 이동시켜 전극의 에지 위치를 조절할 수 있다면 그 구동기구의 기계적 내지 전자적인 구성은 특정하게 한정할 필요가 없다.
본 발명은, 상기 라인 EPC부(10) 및 파이널 EPC부(40)를 제어하는 제어부를 포함한다. 상기 제어부는, 상기 판정 EPS 에지 위치값이 판정 EPS 에지 기준값에 일치하도록 상기 전극의 에지 위치를 피드백 제어한다. 또한, 상기 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값(A)에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC 롤러(11)로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부(10)를 피드백 제어한다.
상기 파이널 EPC 롤러(41)는 상기 판정 EPS(42)의 설치위치(Q: 예컨대, 권심으로부터 100mm 위치)의 소정간격 앞의 위치(P: 예컨대, 권심으로부터 125mm 떨어진 위치)에 설치되는 것이 바람직하다. 판정 EPS(42)에서 측정된 전극(1)의 위치가 판정 EPS 에지 기준값(A)과 상이할 경우, 파이널 EPC부(40)는 상기 EPC 롤러(41)로 하여금 판정 EPS(42)의 소정간격 앞에서 전극(1)의 위치를 조정하도록 한다. 따라서, 하나의 전극이 연속적으로 판정 EPS(42)로 이동되어 올 때 판정 EPS(42)에서는 이 조정된 전극(1)의 위치가 후속적으로 측정될 수 있다.
도 6과 관련된 실시예에서는 상기, 라인 EPC부(10)의 컨트롤러(16)가 라인 EPC 롤러(11)의 위치를 조절(피드백 제어)하고, 상기 파이널 EPC부(40)의 컨트롤러(46)가 파이널 EPC 롤러(41)의 위치를 각각 조절(피드백 제어)하는 것으로 도시하였다. 하지만, 상기 각각의 컨트롤러(16,46) 없이, 상기 제어부가 직접 라인 EPC부(10) 내지 라인 EPC 롤러(11) 및 파이널 EPC부(40) 내지 파이널 EPC 롤러(41)를 피드백 제어하는 것도 가능하다. 즉, 본 발명에서 (광의의) 제어부는 도 6의 일점 쇄선으로 표시된 박스에 포함되는 컨트롤러(16,46)와 제어부(70)(협의의 제어부)를 모두 포괄하는 개념이다. 컨트롤러(16,46)가 없는 경우에는 광의의 제어부가 파이널 EPC부(40)를 피드백 제어하고 이 피드백 제어에 따라 라인 EPC부(10)를 연계 제어하는 형태가 된다. 컨트롤러(16,46)가 있는 경우에는 파이널 EPC 롤러(11)를 조절하여 전극의 에지 위치를 제어하는 컨트롤러(46)가 제1 제어부, 상기 협의의 제어부(70)가, 제1 제어부의 피드백 제어에 의하여 도출된 데이터들을 이용하여 상기 라인 EPC부(10)를 피드백 제어하는 제2 제어부가 된다. 또한, 라인 EPC부(10)의 컨트롤러(16)가 상기 제2 제어부의 피드백 제어에 의하여 상기 라인 EPC 롤러(11)의 위치를 조절하여 전극의 에지 위치를 제어하는 제3 제어부가 된다.
본 발명의 사행 보정장치(100)는, 상기와 같이 파이널 EPC부(40)에 대하여 피드백 제어를 행하고, 상기 피드백 제어에 의하여 얻어진 판정 EPS 에지 위치값 데이터들과 판정 EPS 에지 기준값(A)을 대비하여 상기 라인 EPC 롤러(11)를 피드백 제어하는 제어부를 포함하고 있으므로, 라인 EPC부(10)로부터의 전극 이송방향이 판정 EPS 에지 기준값(A)에 더욱 가까워지므로, 라인 EPC부(10)로부터 초래되는 사행 불량을 저감할 수 있다.
이상과 같이, 본 발명은 파이널 EPC부(40)의 피드백 제어와 연계하여 상기 라인 EPC부(10)를 피드백 제어하여 전극 이송 방향을 도 6의 판정 EPS 기준값(A)에 일치 내지 수렴하도록 라인 EPC 롤러(11)의 기준 보정값을 보정하는 피드백 제어를 행하는 것을 특징으로 하고 있다.
본 발명의 전극의 사행 보정장치가 포함하는 제어부에 의한 구체적인 제어는 하기 본 발명에 의한 전극의 사행 보정방법과 관련하여 보다 구체적으로 설명하기로 한다.
본 발명은 또한 권심(60)에 권취되어 젤리롤 전극조립체를 형성하는 전극의 롤투롤 이송시의 사행 보정방법을 제공한다.
도 7은 본 발명에 의한 전극의 사행 보정방법의 순서를 나타내는 흐름도이다.
도시된 바와 같이, 먼저 (a) 단계에서 라인 EPC부(10)의 라인 EPC 롤러(11)를 통하여 이송된 전극(1)이 권심(60) 전에 배치된 파이널 EPC부(40)의 판정 EPS(42)에 도달하였을 때의 전극의 에지 위치가 상기 판정 EPS(42)에 의하여 측정되어 판정 EPS 에지 위치값이 측정된다.
이후, (b) 단계에서 상기 판정 EPS 에지 위치값이 소정의 판정 EPS 에지 기준값(A)에 일치하도록 제어부에 의하여 상기 전극의 에지 위치가 피드백 제어된다.
다음, (c)단계에서 상기 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값(A)에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들을 얻는다.
다음 (d) 단계에서 상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC 롤러(11)로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부(10)를 피드백 제어한다.
상기 시간에 따라 변화하는 판정 EPS 에지 위치값 데이터들은 상기 판정 EPS 에지 기준값(A)에 수렴할 때까지 일정 시간 간격으로 소정 회수 측정하여 얻을 수 있다. 도 5에 도시된 바와 같이, 상기 판정 EPS 에지 위치값 데이터들은 예컨대 50회 측정하여 얻을 수 있다. 도 5에 나타난 바와 같이, 상기 위치값 데이터들 중 라인 EPC부(10)로부터의 전극 이송방향에 의하여 변화되는 데이터값들은 상기 판정 EPS 에지 위치값 데이터들 중 측정 중기 및 후기에 변동되는 데이터값들이다. 예컨대, 상기 중기 및 후기의 데이터값들은 판정 EPS 에지 기준값에 수렴할 때까지 판정 EPS 에지 위치값을 50회 측정하였을 때, 판정 EPS(42)에 의하여 21~50회째 측정된 데이터값들일 수 있다. 다만, 상술한 바와 같이, 판정 EPS(42)에서 에지 위치를 측정하는 소정의 프로그램(프로그램명 'BOIS')에 의하여 송출되는 홀수번째의 데이터만을 기준으로 하면 판정 EPS의 측정순번 11~25회째의 데이터값들일 수 있다.
본 발명의 사행 보정방법은 상기 중기 및 후기 데이터값들을 판정 EPS 에지 기준값(A)과 대비하여 피드백 제어를 통해 라인 EPC 롤러(11)를 피드백 제어하는 바, 상기 피드백 제어의 구체적인 실시형태를 이하에서 설명한다.
(제1 실시형태)
도 8은 본 발명의 일 실시형태에 의하여 라인 EPC 롤러(11)의 위치를 보정하기 위한 피드백 제어의 순서를 나타내는 흐름도이다.
도 9는 도 8에 의한 피드백 제어과정을 로직값 산출과정과 관련하여 나타낸 개략도이다.
먼저 (d1)단계에서 상기 판정 EPS 에지 위치값 데이터들 중 중기 및 후기의 각 판정 EPS 에지 위치값과 상기 판정 EPS 에지 기준값(A)을 대비한다. 상기 중기 및 후기의 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값의 차이값들을 평균한 값을 라인 EPC 피드백 제어를 위한 로직값으로 규정한다. 중기 및 후기의 데이터값의 단일값과 판정 EPS 에지 기준값의 차이값보다는 상기 차이값들의 평균값이 라인 EPC부(10)에 의한 영향을 더욱 효과적으로 반영할 수 있다. 이에 따라 예컨대, 도 5의 측정순번 21회~50회째(Bois 프로그램에서는 11회~25회째)의 (중기 및 후기) 판정 EPS 에지 위치값들과 판정 EPS 에지 기준값(A)의 차이값을 계산하고, 이 차이값들을 평균한 값을 피드백 제어를 위한 소정의 로직값(Ylogic)으로 규정하며 이를 식으로 표시하면 하기 식 1과 같다. 상기 로직값이 크다는 것은 라인 EPC부로부터 전극 투입에 의한 불안정성이 크다는 것을 의미하며, 따라서 이 로직값의 크기에 대응하여 상기 라인 EPC부의 라인 EPC 롤러의 위치를 보정할 수 있다.
Ylogic= [(21회째 판정 EPS 에지 위치값- 판정 EPS 에지 기준값)+ … + (50번째 판정 EPS 에지 위치값- 판정 EPS 에지 기준값)/30]
---- 식 1
본 실시형태에서는 단일 전극 투입시의 로직값으로 라인 EPC 롤러(11)를 보정하는 데서 더 나아가서, 복수개의 전극 투입시의 로직값들의 평균값을 이용하여 전극의 사행을 보정함으로써, 사행 보정의 신뢰성을 더욱 향상시키는 것을 도모하고 있다. 즉, (d2) 단계에서, 전극이 소정 회수 투입되었을 때, 각 전극의 로직값들을 평균한 평균 로직값(평균 Ylogic : 하기 식 2 참조)을 산정한다.
전극을 n회 투입했을 때의 평균 Ylogic= Y1+ Y2+ … +Yn-1+ Yn/n -- 식 2
상기 평균 로직값은 복수개의 전극이 투입되었을 때의 각 로직값들을 평균한 것이므로, 라인 EPC부(10)에 의한 영향을 더 잘 지시하고 있다. 따라서, 상기 평균 로직값의 크기에 대응하여 상기 라인 EPC 롤러(11)의 위치를 상기 전극의 소정 회수의 투입마다 보정한다면 라인 EPC부(10)로부터의 전극 투입으로부터 유래하는 불안정성을 보다 효과적으로 해소할 수 있다. 본 실시형태에서는, 예컨대 전극을 5회 투입하였을 때의 평균 Ylogic을 구하고, 이 평균 Ylogic을 라인 EPC 롤러 보정치로 산출하고 있다.
(d3)단계에서, 산출된 상기 라인 EPC 롤러 보정치 만큼 상기 라인 EPC 롤러(11)의 위치를 보정하도록 피드백 제어한다. 즉, 예컨대 전극을 5회 투입할 때마다 계산된 평균 Ylogic을 라인 EPC 롤러 보정치로 산출하여, 전극을 5회 투입할 때마다 상기 라인 EPC롤러(11)의 위치를 상기 보정치만큼 보정하도록 피드백 제어할 수 있다.
도 9는 도 8에 의한 피드백 제어과정을 로직값 산출과정과 관련하여 나타낸 개략도이다. 도 9에 잘 나타난 바와 같이, 젤리롤 전극조립체 5개를 형성하는 각 전극의 투입마다 계산된 로직값(Y1,Y2,Y3,Y4,Y5)을 평균하여 보정치 1을 구하고, 상기 보정치 1만큼 라인 EPC 롤러(11)의 위치를 보정한다. 구체적으로, 상기 라인 EPC부에 의하여 소정의 롤러 위치로 보정된 기준 보정값이 있을 경우, 이 기준 보정값으로 보정된 상기 라인 EPC 롤러(11)의 위치를 상기 보정치 1만큼 보정한다.
그 다음으로 젤리롤 전극조립체 5개를 형성하는 각 전극의 투입마다 계산된 로직값(Y6, Y7, Y8, Y9, Y10)을 평균하여 보정치 2를 구하고, 이 보정치 2만큼 상기 라인 EPC 롤러(11)의 위치를 보정한다.
이하, 전극의 5회 투입마다 상기와 같이 평균 로직값을 구하여 보정치를 계속 구하고 그 구해진 보정치만큼 라인 EPC 롤러(11)의 위치를 계속 보정하는 피드백 제어를 행한다(도 8의 (e) 단계 참조).
상기 (d3) 단계에서와 같이, 라인 EPC 롤러(11)의 보정주기는 전극의 소정 회수 투입마다 1회씩 보정할 수 있다. 즉, 상기 보정주기는 적절한 소정 전극 투입 회수마다 선정된 디폴트값으로 주어질 수 있다. 예컨대, 본 실시형태에서와 같이, 전극을 5회 투입할 때마다 1회씩 보정할 수 있다.
한편, 상기 보정치(평균 로직값)는 계산에 따라 양(+) 또는 음(-)의 부호를 가질 수 있다. 상기 보정치의 부호가 양(+)이라면, 상기 라인 EPC 롤러(11)의 기준 보정값이 판정 EPS 에지 기준값(A)에 대하여 양의 방향으로 치우쳤다는 것을 의미하므로, 상기 라인 EPC 롤러(11)의 기준 보정값을 상기 보정치만큼씩 차감하도록 상기 라인 EPC 롤러(11)를 피드백 제어한다. 예컨대, 보정치가 0.05인 경우, 상기 라인 EPC의 기준 보정값을 -0.05mm 차감한다.
반대로, 상기 보정치의 부호가 음(-)이라면, 상기 라인 EPC 롤러의 기준 보정값이 판정 EPS 에지 기준값(A)에 대하여 음의 방향으로 치우쳤다는 것을 의미하므로, 상기 라인 EPC 롤러(11)의 기준 보정값을 상기 보정치만큼씩 가산하도록 상기 라인 EPC 롤러(11)를 피드백 제어한다. 예컨대, 보정치가 -0.05인 경우, 상기 라인 EPC 롤러(11)의 기준 보정값을 0.05mm 만큼 가산한다.
이후 (e) 단계에서 상기 (d1)~(d3)단계를 반복함으로써, 라인 EPC부(10)에 의하여 도입되는 복수개의 전극마다 순차적으로 라인 EPC 롤러(11)의 기준 보정값을 변경하는 피드백 보정을 한다. 이러한 피드백 보정을 반복하여 궁극적으로 라인 EPC 롤러(11)의 위치를 판정 EPC 에지 기준값(A)에 가깝게 함으로써, 라인 EPC 롤러(11)로부터의 전극 이송방향을 파이널 EPS(42)에서의 판정 에지 위치 데이터와 가까워지도록 할 수 있다.
한편, 라인 EPC 롤러(11)의 위치를 조절하는 라인 EPC 모터(15)는 파이널 EPC 모터(45)에 비하여 구동력이 약하고, 또한 전극 투입시 투입 클램프 롤러(21)에 의한 영향에 비하여 상기 라인 EPC 롤러(11) 위치의 영향에 의한 판정 EPS 에지 위치값의 편차는 그렇게 크지 않다(도 5 참조). 이러한 점을 고려하여, 상기 평균 로직값인 라인 EPC 롤러(11)의 보정치는 그 상한치를 제한하는 것이 바람직하다. 예컨대, 파이널 EPC 모터(45)에 의한 파이널 EPC 롤러(41)의 전극 이송방향에 대한 좌우 방향(Y방향) 이동폭은 ±3.5mm에 달한다. 반면, 라인 EPC 모터(15)에 의하여 라인 EPC 롤러(11)로 1회 조절할 수 있는 범위는 좌우 방향(Y방향) 이동폭이 ±0.05mm로 제한된다. 따라서, 상기 보정치가 절대값으로 0.05를 초과하는 경우에도, 최대 위치 조정폭은 ±0.05mm로 제한하는 것이 바람직하다. 상기 상한치를 초과하여 라인 EPC 롤러(11)의 위치를 보정 제어하는 경우에는, 라인 EPC 모터(15)에 과도한 부하가 걸리고, 파이널 EPC부(40)에서 측정되는 판정 EPS 에지 위치값의 편차가 오히려 커질 수 있기 때문이다.
(제2 실시형태)
도 10은 본 발명의 다른 실시형태에 의한 라인 EPC 롤러(11)의 위치를 보정하기 위한 피드백 제어의 순서를 나타내는 흐름도이다.
본 실시형태는 로직값(Ylogic)의 정의가 제1 실시형태와 상이하다.
먼저 (d1)'단계에서 상기 판정 EPS 에지 위치값 데이터들 중 중기 및 후기의 각 판정 EPS 에지 위치값과 상기 판정 EPS 에지 기준값(A)을 대비하는 점은 제1 실시형태와 동일하다. 다만, 제2 실시형태에서는 상기 중기 및 후기의 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값의 차이값들을 평균한 값에 소정 보정률을 곱한 값을 라인 EPC 피드백 제어를 위한 로직값으로 규정하는 점이 상이하다.
전극은 전극 생산 및 권취라인으로부터 연속적으로 이송되어 권심으로 이송 및 권취되어 젤리롤 전극조립체를 형성한다. 이 과정에서 원인을 알 수 없는 헌팅(hunting) 내지 오버슈팅이 발생할 수 있다. 혹은 EPS 등의 센서가 오염되거나, 극단적인 경우는 전극이 권심으로부터 빠져버리거나 하여 판정 EPS 측정값에 오차가 생길 수 있다. 이러한 돌발변수로 인한 판정 EPS의 측정오차를 고려하지 않으면, 피드백 제어시 어쩔 수 없게 발생하는 측정오차를 반영하지 못하여 시스템의 불안정성에 의한 영향을 정확하게 평가할 수 없는 경우가 생긴다. 따라서, 제2 실시형태는 이러한 돌발변수로 인한 판정 EPS(42)의 측정오차를 반영하는 소정의 보정률을 곱한 값을 로직값으로 한 것이다. 이러한 보정률은 그 보정률(이하, Plogic이라 함)을 종속변수로 하고, 예컨대 판정 EPS 에지 위치값 데이터와 판정 EPS 에지 기준값(A)의 차이값들의 평균값을 독립변수로 하는 소정의 2차 함수 모델을 적용하여 구할 수 있다.
하기 표 1에는, 소정의 2차 함수 모델에 따라 계산된 상기 차이값들의 평균값에 따른 보정률의 일례를 나타내고 있다.
[표1]
Figure pat00001
표 1에 도시된 바와 같이, 상기 보정률은 상기 각 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값의 차이값들의 평균값의 크기에 따라 다르게 결정된다. 표 1에 적용된 소정의 2차 함수 모델에 따르면 상기 보정률은 상기 평균값들이 증가함에 따라 증가하는 경향을 나타낸다.
본 실시형태에 의하면, Ylogic은 다음 식 3과 같이 계산된다.
Ylogic= [(21회째 판정 EPS 에지 위치값- 판정 EPS 에지 기준값)+ … + (50 번째 판정 EPS 에지 위치값- 판정 EPS 에지 기준값)/30]×Plogic
---- 식 3
이후, (d2)단계에서, 전극이 소정 회수 투입되었을 때, 각 전극의 로직값들을 평균한 평균 로직값(평균 Ylogic)은 상기 식 2에 기초하여 산정한다.
본 실시형태에서도, 예컨대 전극을 5회 투입하였을 때의 평균 Ylogic을 구하고, 이 평균 Ylogic을 라인 EPC 롤러 보정치로 산출할 수 있다.
(d3)단계에서, 산출된 상기 라인 EPC 롤러 보정치 만큼 상기 라인 EPC 롤러(11)의 위치를 보정하도록 피드백 제어한다.
상기 보정치(평균 로직값)의 부호에 따라 상기 라인 EPC 롤러(11)의 기준 보정값은 그 보정치 만큼 가산 또는 차감하여 라인 EPC 롤러(11)의 위치를 보정하도록 피드백 제어한다.
이후 (e) 단계에서 상기 (d1)'~(d3)단계를 반복함으로써, 라인 EPC부(10)에 의하여 도입되는 복수개의 전극마다 순차적으로 라인 EPC 롤러(11)의 기준 보정값을 변경하는 피드백 보정을 한다. 이러한 피드백 보정을 반복하여 궁극적으로 라인 EPC 롤러(11)의 위치를 판정 EPC 에지 기준값에 가깝게 함으로써, 라인 EPC 롤러(11)로부터의 전극 이송방향을 파이널 EPS(42)에서의 전극 에지 위치 데이터와 가까워지도록 할 수 있다.
도 11은 본 발명의 사행 보정방법에 의하여 라인 EPC 롤러를 보정하였을 경우 시간에 따른 판정 EPS 에지 위치값과 파이널 EPC 모터(45)의 동작량이 안정화되어가는 상태를 나타내는 그래프이다.
도 11(a)는 라인 EPC 롤러(11)의 기준 보정값을 -0.8mm로 하고, 복수개의 전극을 라인 EPC부(10)로부터 권심 측으로 투입하였을 때의 판정 EPS 에지 위치값 데이터의 변화와 파이널 EPC 모터(45)의 동작량의 변화를 나타낸 것이다. 즉, 판정 EPS 에지 위치값이 판정 EPC 에지 기준값과 일치하도록 파이널 EPC부(40)의 파이널 EPC 롤러(41)를 조절하여 전극 에지 위치를 피드백 제어한 경우의 시간에 따른 판정 EPS 에지 위치값 데이터의 변화와 상기 파이널 EPC 롤러(41)를 조절하기 위하여 동작된 파이널 EPC 모터(45)의 동작량의 변화를 나타낸 것이다.
도시된 바와 같이, 상기 기준 보정값 하의 라인 EPC 롤러(11)로부터 전극이 투입되는 경우는, 11회째 이후에 측정된 판정 EPS 에지 위치값 데이터들이 판정 EPS 에지 기준값(0.8mm)보다도 작은 값으로 치우쳐 있고, 파이널 EPC 모터(45)의 동작량은 양(+)의 방향으로 치우쳐 있다. 또한, 복수개의 전극의 판정 EPC 에지 데이터와 파이널 EPC 모터(45)의 동작량의 편차가 큰 것을 알 수 있다.
반면, 도 11(b) 및 도 11(c)는, 본 발명의 제어방법에 따라, 파이널 EPC부(40)의 피드백 제어와 연계하여 라인 EPC부(10)의 라인 EPC 롤러(11)(의 기준 보정값)을 평균 로직값으로 계산되는 보정치만큼 소정 전극 회수 투입마다 보정하도록 피드백 제어한 결과를 나타낸 것이다. 도 11(b)는 라인 EPC 롤러(11)의 기준 보정값이 -0.8mm에서 -0.5mm로 복수회 보정되었을 때, 도 11(c)는 라인 EPC 롤러(11)의 기준 보정값이 -0.5m에서 -0.25mm로 복수회 보정되었을 때, 판정 EPS 에지 위치값 데이터 변화와 파이널 EPC모터(45)의 동작량 변화의 추이를 나타낸 것이다. 도 11(b)는 도 11(a)에 비하여 판정 EPS 에지 위치값 데이터가 판정 EPS 기준값에 보다 근접하게 수렴하고, 파이널 EPC 모터(45)의 동작량 변화도 보다 작게 되었다. 도 11(c)는 도 11(b)에 비하여 판정 EPS 에지 위치값 데이터가 판정 EPS 기준값에 거의 근접하게 수렴하고, 파이널 EPC 모터(45)의 동작량 변화가 훨씬 줄어들었음을 알 수 있다.
도 12는 본 발명의 사행 보정방법에 의하여 복수개의 전극에 대하여 라인 EPC 롤러를 피드백 제어하기 전후의 파이널 EPC 모터 동작량의 편차를 나타낸 그래프이다.
도 12(a)에 나타난 바와 같이, 수천개의 투입 전극에 대하여 피드백 제어하기 전보다 피드백 제어한 경우의 파이널 EPC 모터의 동작량이 최소화되고 그 편차도 크게 줄어든 것을 알 수 있다.
도 12(b)는 이러한 편차를 보다 단순화하여 나타낸 것으로서 많은 개수의 전극을 피드백 제어한 경우에 그 파이널 EPC 모터 최대 동작량이 크게 줄어든 것을 나타낸다..
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
1: 전극
10: 라인 EPC부
11: 라인 EPC 롤러
11a: 라인 EPC 롤러축
12: 라인 EPS
13: 브라켓
14: 라인 EPC 모터축
15: 라인 EPC 모터
16: 라인 EPC 컨트롤러(제3 제어부)
20: 투입 클램프부
21: 투입 클램프 롤러
22: 투입 클램프 센서
30: 커터
40: 파이널 EPC부
41: 파이널 EPC 롤러
41a: 파이널 EPC 롤러축
42: 판정 EPS
43: 브라켓
44: 파이널 EPC 모터축
45: 파이널 EPC 모터
46: 파이널 EPC 컨트롤러(제1 제어부)
50: 파이널 롤러
60: 권심
70: 제어부(제2 제어부)
X: 전극 이송방향
Y: 롤러 이송방향
A: 판정 EPS 에지 기준값
B: 라인 EPC 기준보정값
100:사행보정장치

Claims (18)

  1. 권심에 권취되어 젤리롤 전극조립체를 형성하는 전극의 롤투롤 이송시의 사행 보정장치로서,
    전극을 권심 측으로 이송하며 상기 전극의 에지 위치를 조절하는 라인 EPC 롤러를 구비한 라인 EPC(Line Edge Position Control)부;
    상기 라인 EPC 롤러로부터 이송되어오는 전극의 에지 위치를 판정 EPS 에지 위치값으로서 측정하는 판정 EPS(Edge Position Sensor)와, 상기 전극의 에지 위치를 판정 EPS 에지 기준값에 일치하도록 조절하는 파이널 EPC 롤러를 구비한 파이널 EPC부; 및
    상기 라인 EPC부 및 파이널 EPC부를 제어하는 제어부를 포함하고,
    상기 제어부는, 상기 판정 EPS 에지 위치값이 판정 EPS 에지 기준값에 일치하도록 상기 전극의 에지 위치를 피드백 제어하고, 상기 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC롤러로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부를 피드백 제어하는 전극의 사행 보정장치.
  2. 제1항에 있어서,
    상기 파이널 EPC 롤러는 상기 판정 EPS 설치위치의 소정간격 앞에 배치되는 전극의 사행 보정장치.
  3. 제1항에 있어서,
    상기 제어부는,
    상기 판정 EPS 에지 위치값이 판정 EPS 에지 기준값에 일치하도록 상기 파이널 EPC 롤러를 조절하여 상기 전극의 에지 위치를 피드백 제어하는 제1 제어부;
    상기 제1 제어부의 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC롤러로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부를 피드백 제어하는 제2 제어부를 포함하는 전극의 사행 보정장치.
  4. 제3항에 있어서,
    상기 제어부는, 상기 제2 제어부의 피드백 제어에 의하여 상기 라인 EPC 롤러의 위치를 조절하여 전극의 에지 위치를 제어하는 제3 제어부를 더 포함하는 전극의 사행 보정장치.
  5. 제1항에 있어서,
    상기 라인 EPC부와 상기 파이널 EPC부 사이에 설치되며, 상기 라인 EPC 롤러로부터 전극을 전달받아 파이널 EPC부 측으로 투입하는 투입 클램프부를 더 구비한 전극의 사행 보정장치.
  6. 제1항에 있어서,
    상기 제어부는, 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴할 때까지 일정 시간 간격으로 소정 회수 측정된 상기 판정 EPS 에지 위치값 데이터들 중 측정 중기 및 후기에 측정된 데이터값들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC부를 피드백 제어하는 전극의 사행 보정장치.
  7. 제6항에 있어서,
    상기 측정 중기 및 후기의 각 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값의 차이값들을 구하고, 상기 차이값들을 평균한 값을 라인 EPC 부의 피드백 제어를 위한 로직값으로 규정하고,
    상기 제어부는, 상기 전극이 소정 회수 투입되었을 때 각 전극의 상기 로직값들을 평균한 값을 상기 라인 EPC부의 라인 EPC 롤러 보정치로 산출하여 상기 전극의 소정 회수 투입마다 상기 라인 EPC롤러의 위치를 상기 보정치만큼 보정하도록 피드백 제어하는 전극의 사행 보정장치.
  8. 제7항에 있어서,
    상기 라인 EPC 롤러는 소정의 롤러 위치로 보정된 기준 보정값을 가지며,
    상기 제어부는 상기 기준 보정값으로 보정된 상기 라인 EPC롤러의 위치를 상기 보정치만큼 보정하도록 피드백 제어하는 전극의 사행 보정장치.
  9. 제8항에 있어서,
    상기 보정치의 부호가 양(+)이면 상기 라인 EPC 롤러의 기준 보정값을 상기 보정치만큼씩 차감하고,
    상기 보정치의 부호가 음(-)이면 상기 라인 EPC 롤러의 기준 보정값을 상기 보정치만큼씩 가산하는 전극의 사행 보정장치.
  10. 제7항에 있어서,
    상기 로직값에 돌발변수로 인한 판정 EPS의 측정오차를 반영하는 소정의 보정률을 곱한 값을 로직값으로 규정하는 전극의 사행 보정장치.
  11. 권심에 권취되어 젤리롤 전극조립체를 형성하는 전극의 롤투롤 이송시의 사행 보정방법에 있어서,
    라인 EPC부의 라인 EPC 롤러를 통하여 이송된 전극이 권심 전에 배치된 파이널 EPC부의 판정 EPS에 도달하였을 때의 전극의 에지 위치가 상기 판정 EPS에 의하여 측정되어 판정 EPS 에지 위치값이 측정되는 단계;
    상기 판정 EPS 에지 위치값이 소정의 판정 EPS 에지 기준값에 일치하도록 상기 전극의 에지 위치를 피드백 제어하는 단계;
    상기 피드백 제어에 의하여 상기 판정 EPS 에지 위치값이 상기 판정 EPS 에지 기준값에 수렴하도록 시간에 따라 변화할 때의 상기 판정 EPS 에지 위치값 데이터들을 얻는 단계; 및
    상기 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC 롤러로부터의 전극 이송방향을 보정하도록 상기 라인 EPC부를 피드백 제어하는 단계를 포함하는 전극의 사행 보정방법.
  12. 제11항에 있어서,
    상기 시간에 따라 변화하는 상기 판정 EPS 에지 위치값 데이터들은 상기 판정 EPS 에지 기준값에 수렴할 때까지 일정 시간 간격으로 소정 회수 측정되어 얻어지는 것이고,
    상기 측정된 데이터들 중 측정 중기 및 후기의 데이터값들과 상기 판정 EPS 에지 기준값을 대비하여 상기 라인 EPC부를 피드백 제어하는 전극의 사행 보정방법.
  13. 제12항에 있어서,
    상기 측정 중기 및 후기의 데이터값들은 판정 EPS에 의하여 21~50회째에 측정된 데이터값들인 전극의 사행 보정방법.
  14. 제12항에 있어서,
    상기 측정 중기 및 후기의 각 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값의 차이값들을 구하고, 상기 차이값들을 평균한 값을 라인 EPC부의 피드백 제어를 위한 로직값으로 규정하고,
    상기 전극이 소정 회수 투입되었을 때 각 전극의 상기 로직값들을 평균한 값을 상기 라인 EPC부의 라인 EPC 롤러 보정치로 산출하여 상기 전극의 소정 회수 투입마다 상기 라인 EPC롤러의 위치를 상기 보정치만큼 보정하도록 피드백 제어하는 전극의 사행 보정방법.
  15. 제14항에 있어서,
    상기 라인 EPC 롤러는 소정의 롤러 위치로 보정된 기준 보정값을 가지며, 상기 기준 보정값으로 보정된 상기 라인 EPC롤러의 위치를 상기 보정치만큼 보정하도록 피드백 제어하는 전극의 사행 보정방법.
  16. 제15항에 있어서,
    상기 보정치의 부호가 양(+)이면 상기 라인 EPC 롤러의 기준 보정값을 상기 보정치만큼씩 차감하고,
    상기 보정치의 부호가 음(-)이면 상기 라인 EPC 롤러의 기준 보정값을 상기 보정치만큼씩 가산하는 전극의 사행 보정방법.
  17. 제14항에 있어서,
    상기 로직값에 돌발변수로 인한 판정 EPS의 측정오차를 반영하는 소정의 보정률을 곱한 값을 로직값으로 규정하는 전극의 사행 보정방법.
  18. 제17항에 있어서,
    상기 보정률은 상기 각 판정 EPS 에지 위치값 데이터들과 상기 판정 EPS 에지 기준값의 차이값들의 평균값의 크기에 따라 다르게 결정되는 전극의 사행 보정방법.
KR1020210067485A 2021-02-26 2021-05-26 전극의 사행 보정장치 및 전극의 사행 보정방법 KR20220159640A (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020210067485A KR20220159640A (ko) 2021-05-26 2021-05-26 전극의 사행 보정장치 및 전극의 사행 보정방법
EP22760021.0A EP4152457A1 (en) 2021-02-26 2022-02-22 Meandering correction device for electrode and meandering correction method for electrode
PCT/KR2022/002609 WO2022182105A1 (ko) 2021-02-26 2022-02-22 전극의 사행 보정장치 및 전극의 사행 보정방법
CN202280005154.2A CN115997313A (zh) 2021-02-26 2022-02-22 电极的蛇行校正设备和电极的蛇行校正方法
US18/011,720 US20230318010A1 (en) 2021-02-26 2022-02-22 Meandering correction device for electrode and meandering correction method for electrode
CN202280005125.6A CN115812258A (zh) 2021-02-26 2022-02-22 用于电极的蛇行校正装置和用于电极的蛇行校正方法
EP22760022.8A EP4152458A1 (en) 2021-02-26 2022-02-22 Meandering correction device for electrode and meandering correction method for electrode
PCT/KR2022/002610 WO2022182106A1 (ko) 2021-02-26 2022-02-22 전극의 사행 보정장치 및 전극의 사행 보정방법
US18/011,719 US20230318019A1 (en) 2021-02-26 2022-02-22 Meandering correction device for electrode and meandering correction method for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210067485A KR20220159640A (ko) 2021-05-26 2021-05-26 전극의 사행 보정장치 및 전극의 사행 보정방법

Publications (1)

Publication Number Publication Date
KR20220159640A true KR20220159640A (ko) 2022-12-05

Family

ID=84392128

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210067485A KR20220159640A (ko) 2021-02-26 2021-05-26 전극의 사행 보정장치 및 전극의 사행 보정방법

Country Status (1)

Country Link
KR (1) KR20220159640A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117163722A (zh) * 2023-11-02 2023-12-05 宁德时代新能源科技股份有限公司 夹持装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113424B1 (ko) 2010-08-19 2012-03-02 삼성에스디아이 주식회사 이차전지 권취기용 사행보정장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113424B1 (ko) 2010-08-19 2012-03-02 삼성에스디아이 주식회사 이차전지 권취기용 사행보정장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117163722A (zh) * 2023-11-02 2023-12-05 宁德时代新能源科技股份有限公司 夹持装置
CN117163722B (zh) * 2023-11-02 2024-04-05 宁德时代新能源科技股份有限公司 夹持装置

Similar Documents

Publication Publication Date Title
US10141587B2 (en) Fuel cell system with cathode bypass valve and control method for fuel cell system
KR100986934B1 (ko) 연료전지의 금속분리판 용접장치
KR20220159640A (ko) 전극의 사행 보정장치 및 전극의 사행 보정방법
KR100828677B1 (ko) 연료 전지 스택 적층 시스템 및 그 방법
US20170317365A1 (en) Method for operating a fuel cell system
KR20090045331A (ko) 액체 전해질 배터리의 제조 방법
US20230318019A1 (en) Meandering correction device for electrode and meandering correction method for electrode
KR20150144827A (ko) 연료전지용 스택 조립장치
KR20220159641A (ko) 전극의 사행 보정장치 및 전극의 사행 보정방법
KR20170007046A (ko) 핫프레스 장치 및 그 방법
US20230318010A1 (en) Meandering correction device for electrode and meandering correction method for electrode
JP4910345B2 (ja) 燃料電池システム
US11088376B2 (en) Controlling method and device of fuel cell system with multiple stack towers
CN106124504A (zh) 用于检查膜电极组件的质量的系统及其质量检查方法
KR20220122097A (ko) 전극의 사행 보정장치 및 전극의 사행 보정방법
KR102521066B1 (ko) 단위셀의 이송방법 및 이송장치
KR20200131614A (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
KR20200118289A (ko) 연료전지 스택의 압력 제어 방법 및 시스템
JP5234485B2 (ja) 燃料電池システム
CN113611899A (zh) 一种燃料电池系统空气压力的控制方法
JP2006156017A (ja) 燃料電池システム
JP5043559B2 (ja) 燃料電池システム
US20210351457A1 (en) Metal-air battery apparatus and method of controlling temperature thereof
KR20210157213A (ko) 단위셀의 제조방법
KR20230096511A (ko) 전해액 주입장치 및 이를 이용한 전해액 주입 방법