KR20220155898A - Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof - Google Patents

Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof Download PDF

Info

Publication number
KR20220155898A
KR20220155898A KR1020220029474A KR20220029474A KR20220155898A KR 20220155898 A KR20220155898 A KR 20220155898A KR 1020220029474 A KR1020220029474 A KR 1020220029474A KR 20220029474 A KR20220029474 A KR 20220029474A KR 20220155898 A KR20220155898 A KR 20220155898A
Authority
KR
South Korea
Prior art keywords
virus
leu
thr
ser
val
Prior art date
Application number
KR1020220029474A
Other languages
Korean (ko)
Inventor
최병선
최장훈
이미선
장은영
이영재
남정현
Original Assignee
대한민국(질병관리청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(질병관리청장) filed Critical 대한민국(질병관리청장)
Priority to KR1020220029474A priority Critical patent/KR20220155898A/en
Publication of KR20220155898A publication Critical patent/KR20220155898A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16123Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20023Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a virus-like particle against COVID-19 virus and influenza H1N1 virus and a use thereof, and more specifically, to: a virus-like particle containing COVID-19 virus spike and influenza H1N1 virus structural protein M1; and a vaccine composition comprising the same. The virus-like particle of the present invention is structurally similar to wild-type viruses, and thus high immunogenicity is expected.

Description

코로나19 바이러스 및 인플루엔자 H1N1 바이러스에 대한 바이러스 유사입자 및 이의 용도{Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof}Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof {Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof}

본 발명은 코로나19 바이러스 및 인플루엔자 H1N1 바이러스에 대한 바이러스 유사입자 및 이의 용도에 관한 것이다.The present invention relates to virus-like particles against COVID-19 virus and influenza H1N1 virus and uses thereof.

코로나19 바이러스(severe acute respiratory syndrome-coronavirus-2, SARS-CoV-2)는 2019년 12월 중국 우한에서 처음 발생한 이후 중국 전역과 전 세계로 확산되어 대유행을 일으켜 코로나19 감염증(coronavirus-induced disease-19, COVID-19)을 유발하는 새로운 유형의 코로나바이러스이다.Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) first emerged in Wuhan, China in December 2019, then spread across China and around the world, causing a pandemic and causing a pandemic. 19, a new type of coronavirus that causes COVID-19).

SARS-CoV-2의 스파이크(spike; S) 단백질은 다른 코로나바이러스의 S 단백질과 마찬가지로 바이어스의 표면에 삼량체로 존재하며, 바이러스의 숙주세포 침입에 필요한 수용체 결합 영역(receptor binding domain)과 세포 침입 시 바이러스 막과 세포 소기관막 사이의 융합을 유도하는 fusion peptide를 가지고 있으며, 자연 숙주에서 상기 S 단백질에 대한 중화 항체를 유도하는 등의 역할을 하는 것으로 알려져 있다. 따라서 삼량체형의 S 단백질이 주요 항원으로 작용할 것으로 생각되고 중화항체 유도에 삼량체 구조가 중요한 역할을 할 것으로 사료된다. SARS-CoV-2's spike (S) protein, like the S protein of other coronaviruses, exists as a trimer on the surface of the bias, and the receptor binding domain required for virus host cell invasion and cell invasion It has a fusion peptide that induces fusion between the viral membrane and organelle membrane, and is known to play a role such as inducing neutralizing antibodies against the S protein in the natural host. Therefore, the trimeric S protein is thought to act as the main antigen, and the trimeric structure is thought to play an important role in the induction of neutralizing antibodies.

일반적으로 이중지질막(envelope)을 갖는 바이러스의 바이러스 유사 입자(VLP, virus-like particle) 제작 시, 바이러스의 표면 단백질(spike)과 바이러스의 budding에 필요한 단백질(matrix protein)을 동시에 동물세포에 발현시키면, 실제 바이러스의 외관이나 형태는 모태가 되는 바이러스와 유사하지만 유전물질을 포함하고 있지 않아 숙주 내 증식이 되지 않는 바이러스 유사 입자가 형성된다. 이러한 VLP는 particle의 형태로, 숙주 세포의 수용체와의 결합도 가능하여 야생형과 같이 감염을 모사하여 서브유닛 백신에 비해 높은 면역원성을 나타내는 것으로 알려져 있다. In general, when a virus-like particle (VLP) of a virus having a double lipid membrane is produced, the surface protein of the virus (spike) and the protein necessary for the budding of the virus (matrix protein) are expressed in animal cells at the same time. In this case, the appearance or shape of the actual virus is similar to that of the mother virus, but it does not contain genetic material, so virus-like particles that do not multiply in the host are formed. These VLPs are known to exhibit higher immunogenicity than subunit vaccines by mimicking infection in the form of particles and capable of binding to host cell receptors, like wild-type vaccines.

이에, 전 세계적으로 확산되고 있는 COVID-19 대응이 시급한 상황에서, 국내 감염확산 신속대응 및 집단면역 확보를 위하여 SARS-CoV-2 S항원 기반 바이러스 유사 입자 백신 후보물질을 개발하고자 한다.Therefore, in an urgent situation of responding to COVID-19, which is spreading around the world, we are trying to develop a SARS-CoV-2 S antigen-based virus-like particle vaccine candidate to rapidly respond to the spread of infection in Korea and secure herd immunity.

Cell (2020) 181:914-921. Cell (2020) 181:914-921. Electrophoresis (2020) 41(13-14):1137-1151. Electrophoresis (2020) 41(13-14):1137-1151. Vaccine (2011) 29(38): 6606-6613. Vaccine (2011) 29(38): 6606-6613. Virol Sin (2018) 33(5): 453-455. Virol Sin (2018) 33(5): 453-455.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 코로나19 바이러스(SARS-CoV-2)의 스파이크 및 인플루엔자 H1N1 바이러스의 M1을 포함하는 바이러스 유사 입자의 면역원성을 확인하여 본 발명을 완성하였다. The present invention was derived from the above needs, and the present inventors completed the present invention by confirming the immunogenicity of virus-like particles including spikes of the Corona 19 virus (SARS-CoV-2) and M1 of the influenza H1N1 virus. did

상기 과제를 해결하기 위하여, 본 발명은 코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자를 제공한다. In order to solve the above problems, the present invention provides a virus-like particle comprising a corona 19 virus (SARS-CoV-2) spike and influenza H1N1 viral structural protein M1.

본 발명에서 코로나19 바이러스는 BetaCoV/Korea/KCDC03/2020 및 인플루엔자 H1N1 바이러스는 A/Korea/01/2009인 것이거나 코로나19 바이러스 스파이크는 코로나19 바이러스 스파이크는 서열번호 1의 아미노산, 이를 코딩하는 핵산 또는 코돈 최적화된 핵산이고, 인플루엔자 H1N1 바이러스 구조 단백질 M1은 서열번호 2의 아미노산, 이를 코딩하는 핵산 또는 코돈 최적화된 핵산인 것일 수 있다.In the present invention, the Corona 19 virus is BetaCoV/Korea/KCDC03/2020 and the influenza H1N1 virus is A/Korea/01/2009, or the Corona 19 virus spike is the amino acid of SEQ ID NO: 1, a nucleic acid encoding it, or The codon-optimized nucleic acid, and the influenza H1N1 viral structural protein M1 may be the amino acid of SEQ ID NO: 2, a nucleic acid encoding the same, or a codon-optimized nucleic acid.

일 예로, 본 발명은 코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자를 코딩하는 핵산을 포함하는 재조합 벡터를 제공한다. As an example, the present invention provides a recombinant vector containing nucleic acids encoding virus-like particles including a corona 19 virus (SARS-CoV-2) spike and influenza H1N1 viral structural protein M1.

본 발명에서 재조합 벡터는 pCAGEN 벡터를 포함하는 것이고, 2X Flag 및 6X His를 포함하는 것일 수 있다. In the present invention, the recombinant vector includes a pCAGEN vector, and may include 2X Flag and 6X His.

다른 예로, 본 발명은 코로나19 바이러스(SARS-CoV-2)의 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자 및 면역 보조제(adjuvant)를 포함하는 백신 조성물을 제공한다.As another example, the present invention provides a vaccine composition comprising virus-like particles comprising spikes of SARS-CoV-2 and influenza H1N1 viral structural protein M1, and an immune adjuvant.

본 발명에서 면역 보조제는 알럼(aluminium hydroxide)일 수 있다.In the present invention, the immune adjuvant may be alum (aluminium hydroxide).

또한, 본 발명의 백신 조성물은 스파이크의 서브도메인인 S1 및 S2 특이 항체가 모두 유도되는 것일 수 있고, 2회 또는 3회 투여하는 것일 수 있다. In addition, the vaccine composition of the present invention may be one in which both S1 and S2 specific antibodies, which are subdomains of spike, are induced, and may be administered twice or three times.

또 다른 예로, 본 발명은 코로나19 바이러스(SARS-CoV-2) 스파이크 항원 및 인플루엔자 H1N1 바이러스의 구조 단백질 M1의 유전자 또는 아미노산 서열을 확인하는 단계; 코로나19 바이러스(SARS-CoV-2) 스파이크 항원 및 인플루엔자 H1N1 바이러스의 구조 단백질 M1의 재조합 벡터를 제조하는 단계; 를 포함하는 바이러스 유사 입자의 제조방법을 제공한다. As another example, the present invention includes the steps of identifying the gene or amino acid sequence of SARS-CoV-2 spike antigen and structural protein M1 of influenza H1N1 virus; Preparing a recombinant vector of SARS-CoV-2 spike antigen and structural protein M1 of influenza H1N1 virus; It provides a method for producing virus-like particles comprising a.

다른 예로, 본 발명은 코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자 및 면역 보조제(adjuvant)를 포함하는 백신 조성물 및 사용설명서를 포함하는 코로나19 바이러스(SARS-CoV-2) 감염증(COVID-19) 예방용 키트를 제공한다.As another example, the present invention relates to a vaccine composition comprising a virus-like particle comprising a COVID-19 virus (SARS-CoV-2) spike and influenza H1N1 viral structural protein M1 and an adjuvant, and a COVID-19 virus including instructions for use. (SARS-CoV-2) infection (COVID-19) prevention kit is provided.

본 발명에 따른 코로나19 바이러스(SARS-CoV-2)의 스파이크 및 인플루엔자 H1N1 바이러스의 M1을 포함하는 바이러스 유사 입자는 구조적으로 야생형 바이러스와 유사하여 높은 면역원성이 기대되며 실제 바이러스 감염에 따라 유도되는 항체와 유사하게 면역반응이 유도될 수 있어 신종 또는 변종 감염병 발생시 공개되는 유전정보만을 활용하여 비교적 신속하게 면역항원을 설계하고 이에 대한 면역원성 및 백신 후보물질로서의 효능을 평가할 수 있는 신속 백신 플랫폼 전략 기술 확립에 유용하게 사용할 수 있다.The virus-like particles containing the spike of the COVID-19 virus (SARS-CoV-2) and M1 of the influenza H1N1 virus according to the present invention are structurally similar to wild-type viruses, so high immunogenicity is expected, and antibodies induced according to actual viral infection are expected. Establishment of a rapid vaccine platform strategy technology that can design an immune antigen relatively quickly using only genetic information disclosed in the event of a new or variant infectious disease and evaluate its immunogenicity and efficacy as a vaccine candidate as an immune response can be induced similarly to can be useful for

도 1은 본 발명의 일 구현 예에 따른 VLP 백신 제작을 위한 코로나19 바이러스 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1 유전자 확보 결과 및 재조합 벡터의 모식도를 나타낸 것이다.
도 2는 본 발명의 일 구현 예에 따른 코로나19 바이러스 VLP 제작을 위한 코돈 최적화 결과를 나타낸 것이다.
도 3은 본 발명의 일 구현 예에 따른 코로나19 바이러스 VLP 제작을 위한 배양 조건 변화에 따른 발현량 결과를 나타낸 것이다.
도 4는 본 발명의 일 구현 예에 따른 HEK293T 세포에서 코로나19 바이러스 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1의 단백질 발현 결과를 나타낸 것이다.
도 5는 본 발명의 일 구현 예에 따른 VLP 백신 후보물질의 면역원성 평가를 위한 동물시험을 나타낸 것이다. (A) 실험 일정, (B) 실험 집단.
도 6은 본 발명의 일 구현 예에 따른 VLP 백신 후보물질의 마우스 혈청에서 스파이크 항원에 대한 특이항체 유도 분석 결과를 나타낸 것이다.
도 7은 본 발명의 일 구현 예에 따른 VLP 백신 후보물질의 마우스 혈청에서 중화항체 유도 분석 결과를 나타낸 것이다.
도 8은 본 발명의 일 구현 예에 따른 VLP 백신 후보물질의 면역에 의한 세포매개 면역반응 분석 결과를 나타낸 것이다.
도 9는 본 발명의 일 구현 예에 따른 VLP 백신 후보물질의 면역원성 평가를 위한 골든 시리안 햄스터 모델에서 동물시험을 나타낸 것이다. (A) 실험 일정, (B) 실험 집단.
도 10은 본 발명의 일 구현 예에 따른 VLP 백신 후보물질의 골든 시리안 햄스터 혈청에서 스파이크 항원에 대한 특이항체 유도 분석 결과를 나타낸 것이다.
도 11은 본 발명의 일 구현 예에 따른 VLP 백신 후보물질의 골든 시리안 햄스터 혈청에서 중화항체 유도 분석 결과를 나타낸 것이다.
도 12는 본 발명의 일 구현 예에 따른 VLP 백신 후보물질 면역 후 공격접종에 따른 골든 시리안 햄스터의 체중변화를 나타낸 것이다.
도 13은 본 발명의 일 구현 예에 따른 VLP 백신 후보물질 면역 후 공격접종에 따른 골든 시리안 햄스터의 폐 조직 분석 결과를 나타낸 것이다.
1 shows a schematic view of the result of securing the Corona 19 virus spike and influenza H1N1 virus structural protein M1 gene and a recombinant vector for VLP vaccine production according to an embodiment of the present invention.
2 shows the results of codon optimization for the production of COVID-19 virus VLPs according to an embodiment of the present invention.
3 shows the results of the expression level according to the change in culture conditions for the production of COVID-19 virus VLPs according to an embodiment of the present invention.
4 shows protein expression results of COVID-19 virus spike and influenza H1N1 viral structural protein M1 in HEK293T cells according to an embodiment of the present invention.
5 shows an animal test for immunogenicity evaluation of a VLP vaccine candidate according to an embodiment of the present invention. (A) Experiment schedule, (B) Experiment population.
6 shows the results of analysis of the induction of specific antibodies against spike antigens in mouse serum of a VLP vaccine candidate according to an embodiment of the present invention.
FIG. 7 shows the results of analysis of neutralizing antibody induction in mouse serum of a VLP vaccine candidate according to an embodiment of the present invention.
8 shows the results of analysis of cell-mediated immune responses by immunization of VLP vaccine candidates according to an embodiment of the present invention.
9 shows an animal test in a golden Syrian hamster model for immunogenicity evaluation of a VLP vaccine candidate according to an embodiment of the present invention. (A) Experiment schedule, (B) Experiment population.
10 shows the results of analysis of the induction of specific antibodies against spike antigens in golden Syrian hamster serum of a VLP vaccine candidate according to an embodiment of the present invention.
FIG. 11 shows the results of analysis of neutralizing antibody induction in golden Syrian hamster serum of a VLP vaccine candidate according to an embodiment of the present invention.
12 shows weight changes of golden Syrian hamsters according to challenge inoculation after immunization with a VLP vaccine candidate according to an embodiment of the present invention.
13 shows the lung tissue analysis results of golden Syrian hamsters following challenge inoculation after immunization with a VLP vaccine candidate according to an embodiment of the present invention.

이하, 본 발명의 바람직한 구현예에 대하여 상세히 설명한다. 또한, 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정 사항들이 도시되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, in the following description, many specific details such as specific components are shown, which are provided to help a more general understanding of the present invention, and it is common in the art that the present invention can be practiced without these specific details. It will be self-evident to those who have the knowledge of And, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.

본 발명에서 용어 "코로나19 바이러스(SARS-CoV-2)"는 2019년 12월 중국 우한에서 처음 발생한 이후 중국 전역과 전 세계로 확산되어 대유행을 일으켜 코로나19 감염증(coronavirus-induced disease-19, COVID-19)을 유발하는 새로운 유형의 코로나바이러스 로서, '사스 코로나바이러스 2', 'SARS-CoV-2' 및 'sever acute respiratory syndrome coronavirus 2'를 포함하는 다양한 용어와 동등한 개념으로 이해될 수 있을 것이다. In the present invention, the term "Corona 19 virus (SARS-CoV-2)" first occurred in Wuhan, China in December 2019, then spread throughout China and around the world, causing a pandemic, -19), it can be understood as equivalent to various terms including 'SARS coronavirus 2', 'SARS-CoV-2' and 'sever acute respiratory syndrome coronavirus 2'. .

본 발명은 코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자를 제공한다. The present invention provides a virus-like particle comprising a COVID-19 virus (SARS-CoV-2) spike and an influenza H1N1 viral structural protein M1.

본원에 사용된 용어 "바이러스 유사 입자"는 바이러스성 단백질을 수반하거나 수반하지 않는 비감염성 바이러스성 소단위체를 지칭한다. 예를 들어, 바이러스-유사 입자는 DNA 또는 RNA 게놈이 완전히 결여될 수도 있다. 추가로, 바이러스성 캡시드 단백질을 포함하는 바이러스-유사 입자는 자발적 자가 어셈블리를 진행할 수 있다. 한 양태에서는 바이러스-유사 입자의 제제가 고려되는데, 이러한 제제는 감염성 비리온이 없도록 정제한다 (또는 제제가 감염성이기에는 불충분한 수의 비리온을 갖도록 감염성 비리온이 실질적으로 없도록 정제한다).As used herein, the term "virus like particle" refers to a non-infectious viral subunit with or without viral proteins. For example, a virus-like particle may completely lack a DNA or RNA genome. Additionally, virus-like particles comprising viral capsid proteins are capable of spontaneous self-assembly. In one embodiment, preparations of virus-like particles are contemplated, such preparations being purified to be free of infectious virions (or purified to be substantially free of infectious virions such that the preparation has an insufficient number of virions to be infectious).

상기 코로나19 바이러스(SARS-CoV-2) 및 인플루엔자 H1N1 바이러스는 해당 바이러스의 전체 또는 일부 변형을 포함하는 것일 수 있고, 바람직하게는 각각 BetaCoV/Korea/KCDC03/2020 및 인플루엔자 H1N1 바이러스는 A/Korea/01/2009인 것이나, 이에 제한되는 것은 아니다. The Corona 19 virus (SARS-CoV-2) and influenza H1N1 virus may include all or partial modifications of the corresponding virus, and preferably, BetaCoV/Korea/KCDC03/2020 and influenza H1N1 virus, respectively, are A/Korea/ 01/2009, but is not limited thereto.

상기 스파이크는 코로나19 바이러스(SARS-CoV-2)의 다양한 변이를 포함하는 스파이크 단백질의 전체 또는 일부 서열을 포함하는 것일 수 있고, 포유동물 세포 발현율 증가를 위해 야생주 서열의 일부를 변경한 것(codon optimization)일 수 있으며, 바람직하게는 GISAID에 기탁된 EPI_ISL_407193일 수 있으며, 더욱 바람직하게는 서열번호 1의 아미노산, 이를 코딩하는 핵산 또는 코돈 최적화된 핵산일 수 있고, 더욱 바람직하게는 상기 서열번호 1의 아미노산을 코딩하는 핵산은 서열번호 3이며, 서열번호 1의 코돈 최적화된 핵산은 서열번호 5인 것일 수 있으나, 이에 제한되는 것은 아니다. The spike may include all or part of the sequence of the spike protein including various mutations of the Corona 19 virus (SARS-CoV-2), and part of the sequence of the wild strain is changed to increase the expression rate in mammalian cells ( codon optimization), preferably EPI_ISL_407193 deposited in GISAID, more preferably the amino acid of SEQ ID NO: 1, a nucleic acid encoding it, or a codon-optimized nucleic acid, more preferably SEQ ID NO: 1 The nucleic acid encoding the amino acid of is SEQ ID NO: 3, and the codon-optimized nucleic acid of SEQ ID NO: 1 may be SEQ ID NO: 5, but is not limited thereto.

또한, 인플루엔자 H1N1 바이러스의 구조 단백질 M1은 다양한 변이를 포함하는 구조 단백질 M1의 전체 또는 일부 서열을 포함하는 것일 수 있고, 바람직하게는 서열번호 2의 아미노산 서열, 이를 코딩하는 핵산 또는 코돈 최적화된 핵산을 포함하는 것일 수 있으며, 더욱 바람직하게는 상기 서열번호 2의 아미노산을 코딩하는 핵산은 서열번호 4이며, 서열번호 2의 코돈 최적화된 핵산은 서열번호 6인 것일 수 있으나, 이에 제한되는 것은 아니다. In addition, the structural protein M1 of the influenza H1N1 virus may include the entire or partial sequence of the structural protein M1 including various mutations, and preferably the amino acid sequence of SEQ ID NO: 2, a nucleic acid encoding the same, or a codon-optimized nucleic acid More preferably, the nucleic acid encoding the amino acid of SEQ ID NO: 2 is SEQ ID NO: 4, and the codon-optimized nucleic acid of SEQ ID NO: 2 may be SEQ ID NO: 6, but is not limited thereto.

일 예로, 본 발명은 코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자를 코딩하는 핵산을 포함하는 재조합 벡터를 제공한다. As an example, the present invention provides a recombinant vector containing nucleic acids encoding virus-like particles including a corona 19 virus (SARS-CoV-2) spike and influenza H1N1 viral structural protein M1.

본 발명의 재조합 벡터에서 뉴클레오타이드 서열은 적합한 발현 컨스트럭트(expression construct) 내에 존재하는 것이 바람직하다. 상기 발현 컨스트럭트에서, 뉴클레오타이드 서열은 프로모터에 작동적으로 연결되는 것이 바람직하다. 본 명세서에서, 용어 "작동적으로 연결된"은 핵산 발현 조절 서열(예: 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다.In the recombinant vector of the present invention, the nucleotide sequence is preferably present in a suitable expression construct. In the expression construct, the nucleotide sequence is preferably operably linked to a promoter. As used herein, the term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (eg, a promoter, signal sequence, or array of transcriptional regulator binding sites) and another nucleic acid sequence, whereby the regulation The sequence will control the transcription and/or translation of said other nucleic acid sequence.

본 발명에서 재조합 벡터는 표적 유전자를 발현할 수 있는 모든 종류의 벡터를 포함하는 것이고, 바람직하게는 pCAGEN 벡터를 포함하는 것이나, 이에 제한되는 것은 아니다. In the present invention, the recombinant vector includes all types of vectors capable of expressing a target gene, preferably including a pCAGEN vector, but is not limited thereto.

또한, 상기 재조합 벡터는 검출 및 정제를 포함하는 추가적인 벡터 제조 또는 생산과정에 필수적인 다양한 부위를 포함할 수 있고, 바람직하게는 2X Flag 및 6X His를 포함하는 것이나, 이에 제한되는 것은 아니다. In addition, the recombinant vector may include various sites necessary for an additional vector preparation or production process including detection and purification, and preferably includes 2X Flag and 6X His, but is not limited thereto.

다른 예로, 본 발명은 코로나19 바이러스(SARS-CoV-2)의 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자 및 면역 보조제(adjuvant)를 포함하는 백신 조성물을 제공한다.As another example, the present invention provides a vaccine composition comprising virus-like particles comprising spikes of SARS-CoV-2 and influenza H1N1 viral structural protein M1, and an immune adjuvant.

또한, 본 발명의 백신 조성물은 스파이크의 서브도메인인 S1 및 S2 특이 항체가 모두 유도되는 것일 수 있다. In addition, the vaccine composition of the present invention may be one in which both S1 and S2 specific antibodies, which are spike subdomains, are induced.

본 발명의 일 구현예에 백신 조성물은 코로나19 바이러스에 특이적인 중화능력을 갖는 것을 특징으로 하고, 코로나19 바이러스 감염증(COVID-19) 예방용인 것을 특징으로 하나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the vaccine composition is characterized by having a neutralizing ability specific to the Corona 19 virus, and is characterized in that it is for preventing Corona 19 virus infection (COVID-19), but is not limited thereto.

본 발명의 백신 조성물에 적합한 담체는 기술분야의 당업자에게 공지되어 있으며, 단백질, 당 등을 포함하지만, 이에 한정되는 것은 아니다. 상기의 담체는 수용액, 또는 비-수용액, 현탁액 또는 에멀젼일 수 있다. 추가적으로, 안정제, 불활화제, 항생제, 보존제 등을 포함할 수 있고, 백신 조성물의 투여 경로에 따라 증류수 또는 완충용액 등과 혼합하여 사용될 수 있다. Carriers suitable for the vaccine composition of the present invention are known to those skilled in the art and include, but are not limited to, proteins, sugars, and the like. The carrier may be an aqueous solution or a non-aqueous solution, suspension or emulsion. Additionally, it may include a stabilizer, an inactivating agent, an antibiotic, a preservative, and the like, and may be used by mixing with distilled water or a buffer solution according to the route of administration of the vaccine composition.

본 발명의 백신 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있고, 백신 조성물의 효과를 나타낼 수 있을 정도의 충분한 양과 부작용이나 심각한 또는 과도한 면역반응을 일으키지 않을 정도의 양을 의미한다. 백신 조성물의 유효량 결정시 고려되는 다양한 일반적인 사항들은 당업자에게 공지된 사항을 고려할 수 있다. A suitable dosage of the vaccine composition of the present invention may be prescribed in various ways depending on factors such as formulation method, administration method, patient's age, weight, sex, morbid condition, food, administration time, administration route, excretion rate and reaction sensitivity. It means an amount sufficient to show the effect of the vaccine composition and an amount sufficient to not cause side effects or serious or excessive immune reactions. Various general matters to be considered in determining the effective amount of a vaccine composition can be considered matters well known to those skilled in the art.

본 발명의 백신 조성물의 적합한 투여횟수는 면역반응이 나타날 수 있다면 별도로 제한되지 않으나, 바람직하게는 2회 또는 3회 투여하는 것일 수 있다.The suitable frequency of administration of the vaccine composition of the present invention is not particularly limited as long as an immune response can occur, but may preferably be administered twice or three times.

상기 백신 조성물은 인간 또는 인간을 제외한 동물에 주입되어 항원에 대한 항체 생성률을 높일 수 있으며, 상기 주입은 피하주사, 근육내 주사, 피하내 주사, 복막내 주사, 비강투여, 구강투여, 경피투여 및 경구 투여로 구성된 군에서 선택된 어느 하나의 방법으로 수행될 수 있다.The vaccine composition can be injected into a human or non-human animal to increase the rate of antibody production against the antigen, and the injection can be administered by subcutaneous injection, intramuscular injection, subcutaneous injection, intraperitoneal injection, nasal administration, oral administration, transdermal administration and It can be carried out by any one method selected from the group consisting of oral administration.

상기 백신 조성물은 개별 또는 병용하여 투여될 수 있고, 종래의 백신 조성물과는 순차적 또는 동시에 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다. The vaccine composition may be administered individually or in combination, and may be administered sequentially or simultaneously with a conventional vaccine composition. It is important to administer the amount that can obtain the maximum effect with the minimum amount without side effects in consideration of all the above factors, and can be easily determined by those skilled in the art.

본 발명의 일 구현예에 따른 백신 조성물은 효능의 증가를 위해 면역보조제, 면역증강제 또는 어쥬번트를 추가적으로 포함할 수 있다. 백신 면역보조제는 작용기전에 따라 크게 항원의 전달체, 면역증강제, 면역반응을 자극하는 동시에 항원에 대한 매트릭스로서 작용하는 것 등의 세 가지 종류로 구별된다. 백신 면역보조제를 효과적으로 사용하면 (1) 재조합 항원의 면역원성을 증가시키고, (2) 항원 투여량을 줄이거나 면역화 횟수를 줄일 수 있으며, (3) 면역력이 약한 유아와 노인에게서 면역원성을 향상시키는 등의 다양한 효과를 얻을 수 있다. 백신 면역보조제로는 이 분야에 알려진 면역보조제 성분을 사용할 수 있고, 바람직하게는 알루미늄염, MF59, AS03, AS04등을 단독 또는 조합하여 사용할 수 있고, 더욱 바람직하게는 알럼(Alum, aluminium hydroxide)을 사용할 수 있으나, 이에 한정되는 것은 아니다.The vaccine composition according to one embodiment of the present invention may additionally include an adjuvant, an immune enhancer or an adjuvant to increase efficacy. Vaccine adjuvants are largely classified into three types according to their mechanism of action: antigen carriers, immune enhancers, and those that stimulate immune responses and act as matrices for antigens. Effective use of vaccine adjuvants can (1) increase the immunogenicity of recombinant antigens, (2) reduce antigen dose or reduce the number of immunizations, and (3) improve immunogenicity in immunocompromised infants and the elderly. A variety of effects can be obtained. As the vaccine adjuvant, adjuvant components known in the field can be used, preferably aluminum salt, MF59, AS03, AS04, etc. can be used alone or in combination, more preferably alum (aluminium hydroxide) It can be used, but is not limited thereto.

또 다른 예로, 본 발명은 코로나19 바이러스(SARS-CoV-2) 스파이크 항원 및 인플루엔자 H1N1 바이러스의 구조 단백질 M1의 유전자 또는 아미노산 서열을 확인하는 단계; 코로나19 바이러스(SARS-CoV-2) 스파이크 항원 및 인플루엔자 H1N1 바이러스의 구조 단백질 M1의 재조합 벡터를 제조하는 단계; 를 포함하는 바이러스 유사 입자의 제조방법을 제공한다. As another example, the present invention includes the steps of identifying the gene or amino acid sequence of SARS-CoV-2 spike antigen and structural protein M1 of influenza H1N1 virus; Preparing a recombinant vector of SARS-CoV-2 spike antigen and structural protein M1 of influenza H1N1 virus; It provides a method for producing virus-like particles comprising a.

다른 예로, 본 발명은 코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자 및 면역 보조제(adjuvant)를 포함하는 백신 조성물 및 사용설명서를 포함하는 코로나19 바이러스(SARS-CoV-2) 감염증(COVID-19) 예방용 키트를 제공한다.As another example, the present invention relates to a vaccine composition comprising a virus-like particle comprising a COVID-19 virus (SARS-CoV-2) spike and influenza H1N1 viral structural protein M1 and an adjuvant, and a COVID-19 virus including instructions for use. (SARS-CoV-2) infection (COVID-19) prevention kit is provided.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention, and how to achieve them, will become clear with reference to the detailed description of the following embodiments. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the present embodiments will complete the disclosure of the present invention and allow common knowledge in the art to which the present invention belongs. It is provided to fully inform the holder of the scope of the invention, and the present invention is only defined by the scope of the claims.

<실시예 1> 세포 및 바이러스 <Example 1> Cells and viruses

바이러스 배양 및 바이러스 유사체 제작을 위한 Vero-E6 및 HEK293T 세포는 10% FBS, 100 U/mL penicillin을 포함하는 DEME 배지에서 배양하였다. SARS-CoV-2는 Vero-E6 세포에서 증식 및 배양되었고, 바이러스 배양, 마우스 및 햄스터 실험 등 모든 실험은 질병관리청의 생물안전 3등급(Biosafety level 3, BSL3) 시설 내에서 수행되었다. Vero-E6 and HEK293T cells for virus culture and preparation of virus analogues were cultured in DEME medium containing 10% FBS and 100 U/mL penicillin. SARS-CoV-2 was propagated and cultured in Vero-E6 cells, and all experiments, including virus culture and mouse and hamster experiments, were performed in a Biosafety level 3 (BSL3) facility of the Korea Centers for Disease Control and Prevention.

<실시예 2> 바이러스 유사체(virus-like particle, VLP) 제작<Example 2> Production of virus-like particle (VLP)

코돈 최적화(codon optimization)된 스파이크(서열번호 5)와 original sequence의 스파이크(서열번호 3)를 이용하여 형질주입 후 생성된 VLP 단백질 농도를 측정하였을 때, 코돈 최적화된 VLP에서 농도가 약간 상승하는 것으로 확인되었으며, 웨스턴 블롯 결과, 코돈 최적화된 VLP의 스파이크에서 과발현된 양상을 보였다(도 2). When the VLP protein concentration produced after transfection was measured using the codon-optimized spike (SEQ ID NO: 5) and the original sequence spike (SEQ ID NO: 3), it was found that the concentration slightly increased in the codon-optimized VLP. It was confirmed, and as a result of Western blotting, it was overexpressed in the spike of the codon-optimized VLP (FIG. 2).

바이러스 유사체를 제작하기 위하여, SARS-CoV-2 S 항원 유전자 및 influenza virus M1 항원 유전자를 동물세포 발현벡터인 pCAGEN (Addgene, Watertwon, MA, USA)에 클로닝 후, 대장균 배양 배지에서 대량 배양하고 항원 유전자의 내독소(endotoxin)을 제거하기 위하여 Endo-Free Maxi prep kit (Qiagen, Hilden, Germany)를 이용하여 항원 유전자를 확보하였다. 제작된 S, M1 유전자 발현벡터를 Lipofectamine 2000 Transfection Reagent (Thermo Fisher, Waltham, MA, USA)를 이용하여 HEK293T 세포에 형질도입 하였다. To prepare virus analogues, SARS-CoV-2 S antigen gene and influenza virus M1 antigen gene were cloned into pCAGEN (Addgene, Watertwon, MA, USA), an animal cell expression vector, and then cultured in large quantities in E. coli culture medium, followed by antigen gene In order to remove endotoxin, antigen genes were obtained using Endo-Free Maxi prep kit (Qiagen, Hilden, Germany). The prepared S and M1 gene expression vectors were transfected into HEK293T cells using Lipofectamine 2000 Transfection Reagent (Thermo Fisher, Waltham, MA, USA).

형질도입 후, 생성된 VLP의 수집시기 및 재배양에 따른 조건을 다음과 같이 달리하여 VLP 최적화 조건을 설정하였다. 1) 50 mL의 용량으로 배양 3일 후, 상층액을 수집하여 VLP 획득; 2) 50 mL의 용량을 1일간 배양 후 상층액을 수집하고, 30 mL의 배지 교환 후 2일간 재배양하여 상층액을 추가 수집하여 VLP 획득; 3) 50 mL의 용량으로 2일간 배양 후 상층액을 수집하고, 30 mL의 배지 교환 후 1일간 재배양하여 상층액을 추가 수집하여 VLP 획득. After transduction, VLP optimization conditions were set by varying the conditions according to the collection period and cultivation of the produced VLPs as follows. 1) Obtaining VLPs by collecting the supernatant after 3 days of culture in a volume of 50 mL; 2) Collecting the supernatant after culturing the 50 mL capacity for 1 day, exchanging the 30 mL medium and culturing again for 2 days to additionally collect the supernatant to obtain VLP; 3) Collect the supernatant after culturing for 2 days with a volume of 50 mL, exchange the medium for 30 mL, and re-culture for 1 day to obtain VLP by additionally collecting the supernatant.

배양 후 수집시기 및 재배양에 따른 각각의 조건으로 제작된 VLP의 최종 단백질 농도 측정 및 웨스턴블롯을 통한 발현량을 비교 분석한 결과, 형질 도입하여 2일 배양 후 상층액을 수집하여 VLP를 획득하고, 배지 교환 후, 1일간 재배양하여 상층액을 추가 수집하는 조건이 최적의 조건이었다. 따라서, 이후 실험에서는 무혈청 배지에서 48시간 동안 배양하였다. 48시간 후, 상층액을 1차 수집하고 무혈청 배지를 추가하여 24시간 동안 재배양한 후, 수집한 상층액을 모아, 2,000 rpm에서 10분 동안 원심분리하여 배양액만을 분리하였다. 최종 수집된 배양액은 초고속 원심분리기(Beckman Coulter, SW32ti rotor, Brea, CA, USA)를 이용하여, 30% sucrose cushion 방법(30% sucrose 3 mL, VLP 32 mL)으로 28,000 rpm에서 3시간 동안 원심분리하여 VLP만을 분리하고 농축하였다(도 3). After culture, the final protein concentration of VLPs produced under each condition according to the collection time and cultivation after culture was measured and the expression level was compared and analyzed through Western blot. , After exchanging the medium, culturing for 1 day and additionally collecting the supernatant was the optimal condition. Therefore, in subsequent experiments, culture was performed in a serum-free medium for 48 hours. After 48 hours, the supernatant was first collected and cultured for 24 hours by adding a serum-free medium, and then the collected supernatant was collected and centrifuged at 2,000 rpm for 10 minutes to separate only the culture medium. The final collected culture medium was centrifuged at 28,000 rpm for 3 hours using a 30% sucrose cushion method (30% sucrose 3 mL, VLP 32 mL) using an ultra-high-speed centrifuge (Beckman Coulter, SW32ti rotor, Brea, CA, USA) to isolate and concentrate only the VLPs (FIG. 3).

<실시예 3> 마우스 면역<Example 3> Mouse Immunization

마우스 면역반응은, 6주된 무균(specific pathogen-free, SPF) BALB/c 마우스(오리엔트바이오, 성남, 한국)에 면역항원(VLP)을 접종한 후 면역반응을 분석하였다. 동물은 사용하기 전에 일주일 동안 적응기간을 거쳤으며, 멸균된 사료와 물을 공급하였다. 동물 실험은 질병관리청의 기관동물관리 및 이용위원회의 승인을 받았으며, 이 위원회의 지침에 따라 모든 실험을 수행하였다. For the mouse immune response, 6-week-old specific pathogen-free (SPF) BALB/c mice (Orient Bio, Seongnam, Korea) were inoculated with the immune antigen (VLP), and then the immune response was analyzed. Animals were acclimatized for one week prior to use, and were supplied with sterile feed and water. Animal experiments were approved by the Institutional Animal Care and Use Committee of the Korea Centers for Disease Control and Prevention, and all experiments were performed according to the guidelines of this committee.

백신 접종은 6-8주령 암컷 BALB/c 마우스에 VLP (5 ㎍, 15 ㎍ 및 30 ㎍, n=5)를 근육주사 경로로 2주 간격으로 총 3회 접종하였으며, 최초 면역 후 14일, 28일째에 동일한 용량의 VLP를 2회 추가 면역(Boost)을 실시하였다. 또한 동일한 용량의 VLP 면역항원과 함께 면역 보조제를 함께 투여한 그룹으로 나눠서 실험을 수행하였으며, 면역보조제는 수산화알루미늄(Alumhydroxyde, Alum; Invitrogen, Carlsbad, CA, USA)을 사용하였다. SARS-CoV-2 S 항원 특이 면역항체(IgG)의 검출 및 바이러스 중화 반응에 대한 분석을 하기 위하여 접종 전, 1차-2차 접종 후 13일 및 3차 접종 후 20일째 채혈을 실시하여 혈청을 분리하였다. 세포성 면역반응 분석을 위하여 1차 접종 후 48일째에 부검을 통해 비장 조직 적출 및 분쇄 후 비장세포를 획득하였다. For vaccination, 6- to 8-week-old female BALB/c mice were inoculated with VLP (5 μg, 15 μg, and 30 μg, n=5) intramuscularly three times at two-week intervals, 14 days and 28 days after the first immunization. On the day, two additional immunizations (Boost) were performed with the same dose of VLP. In addition, the experiment was performed by dividing into groups administered with the same dose of VLP immune antigen and adjuvant, and aluminum hydroxide (Alumhydroxyde, Alum; Invitrogen, Carlsbad, CA, USA) was used as the adjuvant. In order to detect SARS-CoV-2 S antigen-specific immune antibody (IgG) and analyze the virus neutralization reaction, blood was collected before vaccination, 13 days after the 1st and 2nd vaccination, and 20 days after the 3rd vaccination, and serum was obtained. separated. For the analysis of cellular immune response, splenocytes were obtained after spleen tissue was harvested and pulverized through autopsy on day 48 after the first inoculation.

<실시예 4> 바이러스 특이 항체 생성 평가(Enzyme-linked immunosorbent assay, ELISA)<Example 4> Evaluation of virus-specific antibody production (Enzyme-linked immunosorbent assay, ELISA)

마우스 면역 후 SARS-CoV-2 S 특이 항체(IgG) 검출을 위해 96-well plate에 0.05 M carbonate buffer (pH 9.6)에 녹여진 코로나19 바이러스의 S full, S1 및 S2를 각각 1 ㎍/mL의 농도로 well 당 100 ㎕씩 분주하여, 4℃에서 하루 동안 인큐베이션 후, PBST (PBS + 0.05% tween 20)로 세번 세척하였다. 마우스에서 얻어진 각 그룹의 혈청을 1/50 농도로 시작으로 2배씩 단계적으로 희석하여 실온에서 2시간 반응시킨 후, HRP (Horse-radish peroxidase)가 결합된 anti-mouse-IgG (1:1,000, Southern Biotech, Birmingham, AL, USA) 2차 항체로 1시간 동안 반응하였다. 발색을 위하여 OPD 기질(0.5 mg/mL in 0.05 M phosphate citrate buffer, pH 5.0/0.03% sodium perborate, Sigma-aldrich, St. Louis, MO, USA)을 이용하여 반응을 유도하였고, 발색 확인 후 황산(0.5 M) 100 ㎕를 첨가하여 반응을 중지하였다. 이후 흡광도(495 nm)를 측정하여 항체역가를 분석하였다. To detect SARS-CoV-2 S-specific antibody (IgG) after mouse immunization, S full, S1, and S2 of COVID-19 virus dissolved in 0.05 M carbonate buffer (pH 9.6) in a 96-well plate were added at 1 μg/mL, respectively. 100 μl was dispensed per well at each concentration, incubated at 4° C. for one day, and washed three times with PBST (PBS + 0.05% tween 20). Serum from each group obtained from mice was diluted stepwise by 2-fold starting with a concentration of 1/50, reacted for 2 hours at room temperature, and then anti-mouse-IgG (1:1,000, Southern Biotech, Birmingham, AL, USA) and reacted with the secondary antibody for 1 hour. For color development, the reaction was induced using an OPD substrate (0.5 mg/mL in 0.05 M phosphate citrate buffer, pH 5.0/0.03% sodium perborate, Sigma-aldrich, St. Louis, MO, USA), and after confirming color development, sulfuric acid ( 0.5 M) was added to stop the reaction. Then, the antibody titer was analyzed by measuring the absorbance (495 nm).

<실시예 5> 바이러스 중화시험(Plaque reduction neutralization assay, PRNT)<Example 5> Virus neutralization test (Plaque reduction neutralization assay, PRNT)

바이러스 중화항체 생성 확인을 위하여, Vero-E6 세포를 12-well 세포배양 플레이트에 well 당 200,000개의 세포를 첨가하여 16 내지 20시간 동안 배양하였다. 마우스 혈청은 56℃에서 30분 동안 불활화시켰다. 2%의 FBS (Fetal bovine serum)를 포함한 DMEM을 이용하여 10배 단계 희석하여, 바이러스 현탁액과 혼합한 후 37℃에서 한시간 동안 정치시켰다. 혈청과 혼합된 바이러스 용액은 전날 준비한 세포에 분주하여 37℃에서 한시간 동안 배양하였다. 혼합물을 제거하고 세포층의 표면에 바이러스가 무차별적으로 확산되지 않도록 한천 또는 카르복시 메틸셀룰로오스층으로 덮어준 후 37℃에서 3일간 추가 배양하였다. 3일간 배양 후, 4% 파라포름알데히드로 세포를 고정하고, crystal violet으로 염색 후 plaque 수를 측정하였다. 중화역가는 Reed and Muench 방법을 이용하여 반수 중화역가(50% neutralization titer, PRNT50)로 계산되었다. To confirm the production of virus-neutralizing antibodies, Vero-E6 cells were cultured for 16 to 20 hours by adding 200,000 cells per well to a 12-well cell culture plate. Mouse serum was inactivated at 56°C for 30 minutes. It was diluted 10-fold using DMEM containing 2% FBS (Fetal bovine serum), mixed with the virus suspension, and allowed to stand at 37°C for one hour. The virus solution mixed with serum was aliquoted into cells prepared the day before and incubated at 37° C. for one hour. The mixture was removed, and the surface of the cell layer was covered with an agar or carboxymethylcellulose layer to prevent indiscriminate spread of the virus, followed by further incubation at 37°C for 3 days. After culturing for 3 days, the cells were fixed with 4% paraformaldehyde, stained with crystal violet, and the number of plaques was measured. The neutralization titer was calculated as half-water neutralization titer (50% neutralization titer, PRNT 50 ) using the Reed and Muench method.

<실시예 6> 세포성 면역 평가(Enzyme-linked immunosorbent spot, ELISPOT)<Example 6> Evaluation of cellular immunity (Enzyme-linked immunosorbent spot, ELISPOT)

세포성 면역 평가는 IFN-γ ELISPOT kit (R&D Systems, Minneapolis, MN, USA)를 사용하였다. 마우스 3차 면역 20일 후, 적출된 마우스 비장은 조직파쇄기로 파쇄하고 70 ㎛ cell strainer를 이용하여 면역세포를 분리하였다. 분리된 비장세포를 각 well에 1X106 cells/well로 넣어준 후, 코로나19 바이러스 스파이크 CD8+ T 세포 반응을 확인할 수 있는 펩타이드(5 ㎍/mL)와 음성대조군인 DMSO 및 양성 대조군인 Concanavalin A를 각각 추가하여 최종 200 ㎕가 되도록 하였고, 37℃ 및 5% CO2 배양기에서 48시간 동안 배양하였다. 배양 후 각 well에 이차 항체인 biotinylated anti-mouse IFN-γ를 반응시켰고, enzyme conjugated streptavidin-AP를 반응시킨 후, BCIP/NBT와 AEC를 차례대로 발색시켜 spot을 확인하였다. ELISPOT reader system (CTL analyzer, Cellular Technology, Cleveland, OH, USA)을 사용하여 IFN-γ를 분비하는 T 세포의 수를 측정하였다. Cellular immunity was evaluated using the IFN-γ ELISPOT kit (R&D Systems, Minneapolis, MN, USA). Twenty days after the third mouse immunization, the excised mouse spleen was disrupted with a tissue crusher and immune cells were isolated using a 70 μm cell strainer. After putting the isolated splenocytes into each well at 1X10 6 cells/well, the peptide (5 μg/mL) that can confirm the Corona 19 virus spike CD8 + T cell response, negative control DMSO, and positive control Concanavalin A Each was added to make the final 200 μl, and cultured for 48 hours in an incubator at 37° C. and 5% CO 2 . After incubation, each well was reacted with a secondary antibody, biotinylated anti-mouse IFN-γ, reacted with enzyme conjugated streptavidin-AP, and then BCIP/NBT and AEC were sequentially colored to confirm spots. The number of T cells secreting IFN-γ was measured using an ELISPOT reader system (CTL analyzer, Cellular Technology, Cleveland, OH, USA).

<실시예 7> 골든 시리안 햄스터에서 보호효능 평가<Example 7> Evaluation of protective efficacy in golden Syrian hamsters

7 내지 10 주령 수컷 SPF 골든 시리안 햄스터(코아텍, 평택, 한국)에 면역항원을 접종한 후 면역반응을 분석 및 공격접종 실험을 진행하였다. 모든 실험은 질병관리청의 BSL-3 시설에서 수행되었다. 면역은 2주 간격으로 총 3회 근육주사 경로로 15 ㎍ 용량을 접종하였다. 그룹 당 11 마리씩 면역하였으며, VLP 면역항원 단독 면역 그룹과 면역보조제인 alum을 VLP 면역항원과 동시에 투여하는 그룹으로 나누어 실험을 수행하였다. 음성 대조군으로는 PBS 만을 접종하였다. SARS-CoV-2 특이적 IgG 검출 및 항체면역 반응에 대한 분석을 위해 접종 전, 1차-2차 접종 후 13일 및 3차 접종 후 20일째 채혈을 실시하여 혈청을 분리하였다. 7- to 10-week-old male SPF golden Syrian hamsters (Coatek, Pyeongtaek, Korea) were inoculated with the immune antigen, and then the immune response was analyzed and challenge inoculation experiments were conducted. All experiments were performed at the Korea Centers for Disease Control and Prevention's BSL-3 facility. For immunization, a 15 μg dose was inoculated by intramuscular injection three times at 2-week intervals. 11 mice were immunized per group, and the experiment was conducted by dividing into a group administered with VLP immune antigen alone and a group administered with alum, an adjuvant, simultaneously with VLP immune antigen. As a negative control, only PBS was inoculated. For the detection of SARS-CoV-2 specific IgG and the analysis of the antibody immune response, blood was collected before inoculation, 13 days after the 1st and 2nd inoculations, and 20 days after the 3rd inoculations, and serum was separated.

최초 면역 48일 후, 골든 시리안 햄스터에서 SARS-CoV-2 감수성 확인을 위하여 공격접종을 다음과 같이 실시하였다. 골든 시리안 햄스터를 ketamine으로 근육 주사하여 마취시킨 후, SARS-CoV-2 (1X106/pfu)를 비강 내로 감염하였다. 감염 후 14일간 체중 측정 및 임상증상을 관찰하였다. 조직 내에서 바이러스 증식 양상 및 조직병리 소견을 확인하기 위하여 감염 후 3일에 안락사 및 부검을 실시하여 폐 조직을 적출하였고, 바이러스 역가 측정 및 폐 조직 병리 검사를 위하여 조직 슬라이드를 제작하였다. 48 days after the first immunization, challenge inoculation was performed as follows to confirm SARS-CoV-2 susceptibility in golden Syrian hamsters. Golden Syrian hamsters were anesthetized by intramuscular injection with ketamine, and then infected with SARS-CoV-2 (1X10 6 /pfu) intranasally. Weight measurement and clinical symptoms were observed for 14 days after infection. In order to confirm the virus proliferation patterns and histopathological findings in tissues, euthanasia and autopsy were performed on day 3 after infection, and lung tissues were extracted, and tissue slides were prepared for virus titer measurement and lung tissue pathology examination.

<실시예 8> 골든 시리안 햄스터 폐 조직 역가 측정<Example 8> Measurement of golden Syrian hamster lung tissue titer

바이러스 공격 접종 3일 후, 감염된 햄스터를 면역 그룹별로 3마리씩 부검하였고, 폐 조직을 적출하여 무게를 측정하였다. 적출된 폐는 항생제(1% 페니실린)가 포함된 DMEM 배지를 넣어 조직을 파쇄한 후 원심분리하여 상층액을 회수하였고, 단계적으로 희석된 상층액을 Vero-E6 세포에 접종하여 바이러스 역가를 측정하였다. Three days after virus challenge inoculation, infected hamsters were necropsied by 3 animals per immune group, and lung tissue was removed and weighed. The extracted lungs were put in DMEM medium containing antibiotics (1% penicillin), the tissue was disrupted, and the supernatant was recovered by centrifugation, and the diluted supernatant was inoculated into Vero-E6 cells to measure the virus titer. .

<시험예 1> 코로나19 바이러스 유사체(VLP) 백신 후보물질 제작<Test Example 1> Production of COVID-19 virus analogue (VLP) vaccine candidate

1. S 항원 기반 VLP 백신 후보물질 제작을 위한 항원 클로닝 및 합성1. Antigen cloning and synthesis for the production of S antigen-based VLP vaccine candidates

본 발명에서는 서브유닛 및 DNA 백신의 단점인 항원에 대한 낮은 면역원성을 개선하고 실험동물의 생체 내에서 높은 면역원성을 갖는 것으로 알려진 VLP를 기반으로 한 SARS-CoV-2에 대한 백신을 제작하기 위하여 SARS-CoV-2 S 유전자를 디자인하였다. SARS-CoV-2 당단백 항원(S) 유전정보는 GISAID (Global Initiative on Sharing All Influenza Data)에 등록되어 있는 국내 환자로부터 분리한 BetaCoV/Korea/KCDC03/2020 바이러스의 유전자 서열을 사용하여, VLP 백신 후보물질을 설계하였다. SARS-CoV-2 S와 influenza virus (H1N1)의 M1 단백질로 구성된 VLP를 제작하기 위하여 항원 유전자의 C-terminal에 2X Flag tag와 6X Histidine tag를 삽입하여 디자인하였다(도 1A). In the present invention, in order to improve the low immunogenicity of antigens, which are disadvantages of subunit and DNA vaccines, and to prepare a vaccine against SARS-CoV-2 based on VLPs known to have high immunogenicity in vivo in laboratory animals. The SARS-CoV-2 S gene was designed. SARS-CoV-2 glycoprotein antigen (S) genetic information is a VLP vaccine candidate using the gene sequence of BetaCoV/Korea/KCDC03/2020 virus isolated from a domestic patient registered in GISAID (Global Initiative on Sharing All Influenza Data) material was designed. To prepare a VLP composed of M1 proteins of SARS-CoV-2 S and influenza virus (H1N1), a 2X Flag tag and a 6X Histidine tag were inserted into the C-terminal of the antigen gene and designed (Fig. 1A).

VLP 제작을 위한 유전자는 국내분리주 BetaCoV/Korea/KCDC03/2020 바이러스의 S와 A/Korea/01/2009 바이러스의 M1 서열을 기반으로 숙주세포(동물세포) 최적 발현을 위한 유전자 암호 최적화(codon optimization)하여 합성하였다. 합성된 유전자는 VLP 제작용 동물세포 발현 벡터인 pCAGEN 벡터(Addgene)에 삽입하여, 최종적으로 pCAGEN/SARS-CoV-2 spike와 pCAGEN/H1N1 M1 항원 유전자를 확보하였다. Genes for VLP production are based on the S of domestic isolate BetaCoV/Korea/KCDC03/2020 virus and the M1 sequence of A/Korea/01/2009 virus, genetic code optimization for optimal expression in host cells (animal cells) (codon optimization) and synthesized. The synthesized gene was inserted into pCAGEN vector (Addgene), an animal cell expression vector for VLP production, and finally pCAGEN/SARS-CoV-2 spike and pCAGEN/H1N1 M1 antigen gene were obtained.

2. 동물세포 발현 시스템에서 S 항원 기반 VLP 백신 후보물질 제작2. Production of S antigen-based VLP vaccine candidates in animal cell expression system

SARS-CoV-2 S 항원 유전자를 동물세포 발현벡터에 클로닝 한 후, endotoxin을 제거하기 위하여 Endo-Free Maxi Prep kit를 이용하여 플라스미드를 정제하였다. VLP 백신 제작을 위하여 제작된 S 및 M1 유전자(벡터)를 동시에 HEK293T 세포에 형질도입(transfection)하고, 48시간 동안 배양한 후, 24시간 추가 재배양하여 총 72시간 배양한 후 원심분리하여 정제 및 분리하여 백신 후보물질을 제작하였다.After cloning the SARS-CoV-2 S antigen gene into an animal cell expression vector, the plasmid was purified using Endo-Free Maxi Prep kit to remove endotoxin. The S and M1 genes (vectors) prepared for VLP vaccine production were simultaneously transfected into HEK293T cells, cultured for 48 hours, cultured for 24 hours, cultured for a total of 72 hours, purified by centrifugation, and Vaccine candidates were prepared by isolation.

<시험예 2> 코로나19 바이러스 VLP 백신 후보물질 대량 생산 및 정제<Test Example 2> Mass production and purification of COVID-19 virus VLP vaccine candidate

1. VLP 백신 후보물질 대량 발현 최적화 조건 확립 및 정제1. Establishment and purification of conditions optimized for mass expression of VLP vaccine candidates

제작된 VLP 백신 후보물질의 대량 생산을 위하여 대장균(DH5α)에 항원 유전자를 형질전환한 후, 대장균 배양 배지에서 대량 배양하였고, 항원 유전자의 endotoxin을 제거하기 위하여 Endo-Free Maxi Prep kit를 이용하여 항원 유전자를 확보하였다. 최적의 VLP 제작을 위하여 S 및 M1 유전자(벡터)를 동시에 HEK293T 세포에 형질도입 후, 무혈청 배지에서 48시간 동안 배양하였고, 상층액을 1차 수집한 후 무혈청 배지를 추가하여 24시간 동안 재배양하였으며, 수집한 상층액을 모아 2,000 rpm에서 10분 동안 원심분리하여 배양액만을 분리하였다. 최종적으로 수집된 배양액은 초고속 원심분리기를 이용하여, 30% sucorse cushion 방법으로 28,000 rpm에서 3시간 동안 원심분리하여 VLP를 농축하였고, 상층액을 제거한 pellet을 PBS 500 ㎕에 풀어 농도를 측정하였다. After transforming the antigen gene into E. coli (DH5α) for mass production of the prepared VLP vaccine candidate, it was mass-cultured in E. coli culture medium, and to remove the endotoxin of the antigen gene, an Endo-Free Maxi Prep kit was used. Genes were obtained. For optimal VLP production, HEK293T cells were transduced with the S and M1 genes (vector) at the same time, cultured in serum-free medium for 48 hours, and after collecting the supernatant, serum-free medium was added and cultivated for 24 hours. The amount was collected, and the collected supernatant was centrifuged at 2,000 rpm for 10 minutes to separate only the culture medium. Finally, the collected culture medium was centrifuged at 28,000 rpm for 3 hours in a 30% sucorse cushion method using an ultra-high-speed centrifuge to concentrate the VLP, and the pellet from which the supernatant was removed was dissolved in 500 μl of PBS to measure the concentration.

2. 동물세포 발현 시스템에서 VLP 백신 후보물질 성상 분석2. Characterization of VLP vaccine candidates in animal cell expression systems

인간 태아 신장세포(HEK293T)에서 SARS-CoV-2 S와 인플루엔자 바이러스(H1N1) M1 발현벡터의 과발현 형질도입으로 제작된 VLP의 자가조립 후 구조적 안정성을 검증하기 위한 투과전자현미경(TEM) 분석과 단백질 발현을 확인하기 위한 웨스턴 블롯을 수행하였다. TEM 분석 결과, 실제 야생형 바이러스와 유사한 크기인 약 100 내지 200 nm 크기의 VLP가 형성되는 것을 확인하였고 웨스턴 블롯을 통하여 S와 M1 유전자가 발현되는 것을 확인하였다(도 4).Transmission electron microscopy (TEM) analysis and protein to verify structural stability after self-assembly of VLPs produced by overexpression and transduction of SARS-CoV-2 S and influenza virus (H1N1) M1 expression vectors in human fetal kidney cells (HEK293T) Western blot was performed to confirm expression. As a result of TEM analysis, it was confirmed that VLPs of about 100 to 200 nm in size, which are similar in size to the actual wild-type virus, were formed, and it was confirmed that the S and M1 genes were expressed through Western blotting (FIG. 4).

<시험예 3> 코로나19 바이러스 백신 후보물질의 실험동물에서의 면역원성 평가<Test Example 3> Evaluation of immunogenicity of COVID-19 virus vaccine candidates in experimental animals

1. VLP 백신 후보물질의 실험동물(마우스, Balb/c)에서의 면역원성 평가1. Evaluation of immunogenicity of VLP vaccine candidates in experimental animals (mouse, Balb/c)

제작된 VLP의 면역원성을 평가하기 위한 동물실험은 6주령 암컷 마우스(Balb/c)를 사용하였으며, 실험군당 5마리씩, 면역은 세 가지 용량(5, 10 및 30 ㎍)으로 실시하였다. 각 면역항원은 근육내 경로로 2주 간격으로 3회 면역하였으며, 면역항원에 대한 항체 생성을 확인하기 위하여 면역 전, 1차 면역, 2차 면역 및 3차 면역 2주 후 각각 채혈하여 혈청에서의 항체(IgG) 생성 및 중화항체 생성 등의 면역원성 평가를 실시하였다. 이때 음성대조군은 PBS를 사용하였다(도 5). Animal experiments to evaluate the immunogenicity of the prepared VLPs were performed using 6-week-old female mice (Balb/c), 5 animals per experimental group, and immunization was performed at three doses (5, 10, and 30 μg). Each immune antigen was immunized three times at 2-week intervals by the intramuscular route, and blood was collected 2 weeks after immunization, 1st immunization, 2nd immunization, and 3rd immunization to confirm the production of antibodies to the immune antigen, respectively. Immunogenicity was evaluated, such as antibody (IgG) production and neutralizing antibody production. At this time, PBS was used as the negative control group (FIG. 5).

1-1. VLP 백신 후보물질의 체액성 면역반응 분석1-1. Humoral immune response analysis of VLP vaccine candidates

제작된 VLP의 면역원성 평가는 혈청 내에서 항원 특이적인 항체 생성 여부를 ELISA로 확인하였다. 총 2회 또는 3회 면역 후 마우스에서 충분한 IgG 역가가 나타난다는 것을 확인하였으며, 본 발명의 백신에 의해 S 항원의 서브도메인인 S1 및 S2 특이 항체가 모두 생성되는 것을 확인하였다. 특히 S2에 대한 역가가 높게 생성되는 것을 확인할 수 있었다. 또한, 면역보조제(alum hydroxide)를 동시에 면역한 그룹이 동시 면역하지 않은 그룹에 비해 IgG 역가와 중화항체 역가가 높게 나타나는 것을 확인하였다(도 6).The immunogenicity of the prepared VLP was evaluated by ELISA to determine whether antigen-specific antibodies were produced in serum. After 2 or 3 immunizations, it was confirmed that a sufficient IgG titer appeared in the mouse, and it was confirmed that both S1 and S2 specific antibodies, which are subdomains of the S antigen, were produced by the vaccine of the present invention. In particular, it was confirmed that the titer for S2 was generated high. In addition, it was confirmed that the group immunized with an adjuvant (alum hydroxide) showed higher IgG titers and neutralizing antibody titers than the group not concurrently immunized (FIG. 6).

1-2. VLP 백신 후보물질의 체액성 중화항체 유도 분석1-2. Analysis of humoral neutralizing antibody induction of VLP vaccine candidates

제작된 VLP 면역 항원으로 면역된 마우스의 혈액에서 혈청을 분리한 후, 일반적으로 바이러스 중화항체를 측정하는 방법 중 "gold standard"로 알려진 Plaque reduction neutralization test (PRNT) 법을 이용하여 SARS-CoV-2에 대한 항체의 중화능을 확인하였다. 중화항체 역가를 분석하기 위하여 국가병원체자원은행(National Culture Collection for Pathogens)으로부터 분양받은 바이러스(BetaCoV/Korea/KCDC03/2020)를 이용하였고, 바이러스에 마우스 혈청(항체)을 처리한 뒤 감염률의 변화를 확인하였다.After isolating serum from the blood of mice immunized with the prepared VLP immune antigen, the Plaque reduction neutralization test (PRNT) method, commonly known as the "gold standard" among methods for measuring virus neutralizing antibodies, is used to detect SARS-CoV-2 The neutralizing ability of the antibody against was confirmed. To analyze the neutralizing antibody titer, a virus (BetaCoV/Korea/KCDC03/2020) distributed from the National Culture Collection for Pathogens was used, and the change in infection rate after treatment with mouse serum (antibody) was measured. Confirmed.

중화항체 유도는 IgG 생성결과와 유사하게 VLP 면역항원 단독으로 주입한 집단보다 면역보조제를 동시에 면역한 집단에서 더 높은 중화항체 역가를 보였으며, 낮은 농도로 면역한 혈청과 비교하여 높은 농도로 면역한 후 채취한 혈청에서 더 높은 중화항체 역가가 나타남을 확인하였다. 또한, 음성대조군인 PBS 군에서는 중화항체가 유도되지 않는 것을 확인하였다(도 7).Neutralizing antibody induction showed a higher neutralizing antibody titer in the group simultaneously immunized with adjuvants than in the group injected with VLP immune antigen alone, similar to the results of IgG production, and compared to serum immunized with a low concentration, the neutralizing antibody titer was higher in the group immunized with the adjuvant. It was confirmed that a higher neutralizing antibody titer appeared in the serum collected after the treatment. In addition, it was confirmed that neutralizing antibodies were not induced in the negative control PBS group (FIG. 7).

1-3. VLP 백신 후보물질의 세포매개 면역반응 분석1-3. Analysis of cell-mediated immune response of VLP vaccine candidates

VLP 면역항원의 면역에 대한 세포매개 면역반응의 차이를 ELISPOT 시험법을 통해 분석하였다. ELISPOT 분석을 위해 IFN-γ ELISPOT kit를 사용하였다. 세포성 면역반응은 음성대조군인 PBS군과 비교하여 VLP로 면역한 그룹에서 IFN-γ를 분비하는 T 세포의 수가 증가하였고, 항원 농도에 비례하여 증가되는 것을 확인하였다. 그러나, 면역보조제에 따른 증가효과는 나타나지 않았다. 결론적으로, VLP 면역에 의해 체액성 면역과 세포성 면역반응 모두 유도되는 것을 확인하였다(도 8).Differences in cell-mediated immune responses to immunity of the VLP immune antigens were analyzed using the ELISPOT test method. For ELISPOT analysis, IFN-γ ELISPOT kit was used. As for the cellular immune response, it was confirmed that the number of T cells secreting IFN-γ increased in the group immunized with VLP compared to the PBS group, which was a negative control group, and increased in proportion to the antigen concentration. However, the increasing effect according to the adjuvant was not shown. In conclusion, it was confirmed that both humoral and cellular immune responses were induced by VLP immunization (FIG. 8).

2. VLP 백신 후보물질의 실험동물(골든 시리안 햄스터) 모델에서의 보호효능분석2. Analysis of protective efficacy in experimental animal (Golden Syrian hamster) model of VLP vaccine candidates

마우스에서의 면역원성 확인 실험을 통해 VLP 면역항원이 바이러스 S 항원 특이 항체 유도 및 SARS-CoV-2에 대한 중화항체를 유도하는 것으로 확인되었다. 이에 SARS-CoV-2에 대한 감수성이 있는 것으로 알려진 골든 시리안 햄스터 모델을 이용하여 VLP 백신 후보물질 방어능을 평가하였다. 후보물질의 보호능 평가를 위하여 7주령 골든 시리안 햄스터 수컷으로 동물실험을 진행하였다. 실험동물은 그룹 당 11마리로 진행하였으며, VLP 면역항원 단독 면역에 비하여 높은 면역원성을 나타낼 것으로 기대되는 alum을 VLP 면역항원의 면역보조제로 사용하여 실험을 수행하였다. 실험 음성대조군으로는 PBS만을 접종하였다.Through immunogenicity confirmation experiments in mice, it was confirmed that the VLP immune antigen induces viral S antigen-specific antibodies and induces neutralizing antibodies against SARS-CoV-2. Accordingly, the protective ability of VLP vaccine candidates was evaluated using a golden Syrian hamster model known to be susceptible to SARS-CoV-2. To evaluate the protective ability of the candidate substance, animal experiments were conducted with 7-week-old Golden Syrian hamster males. Experimental animals were conducted with 11 animals per group, and the experiment was performed using alum, which is expected to exhibit higher immunogenicity compared to immunization with the VLP immune antigen alone, as an adjuvant for the VLP immune antigen. As an experimental negative control group, only PBS was inoculated.

면역은 2주 간격으로 총 3회 근육주사 경로로 마리당 15 ㎍ 용량으로 접종하였으며, VLP 면역항원에 대한 항체 생성을 확인하기 위하여 면역 전, 1차, 2차 및 3차 면역 후 채혈을 실시하여 혈청을 분리하였다(도 9). 면역된 햄스터의 혈액에서 혈청을 분리한 후, ELISA 및 PRNT 방법을 이용하여 VLP 면역항원의 면역원성을 확인하였다. Immunization was inoculated with a dose of 15 μg per animal through the intramuscular injection route three times at 2-week intervals. was isolated (FIG. 9). After separating the serum from the blood of the immunized hamster, the immunogenicity of the VLP immune antigen was confirmed using ELISA and PRNT methods.

2-1. VLP 백신 후보물질의 항체 유도 분석2-1. Analysis of antibody induction of VLP vaccine candidates

제작된 VLP 면역항원으로 면역된 햄스터의 혈액에서 혈청을 분리한 후 혈청 내에서 항원 특이적인 항체가 생성되는지 ELISA를 통해 확인하였다. 총 2회 또는 3회 마우스 면역 후 충분한 IgG 역가가 나타난다는 것을 확인하였고, 본 발명의 백신에 의해 S 항원의 서브도메인인 S1 및 S2 특이 항체가 모두 생성되었다. 또한, 면역보조제인 alum을 동시에 면역한 그룹이 동시 투여하지 않은 군에 비해 IgG 역가와 중화항체 역가가 다소 높게 나타났다(도 10). After separating serum from the blood of hamsters immunized with the prepared VLP immune antigen, it was confirmed by ELISA whether antigen-specific antibodies were produced in the serum. It was confirmed that sufficient IgG titers appeared after a total of 2 or 3 mouse immunizations, and both S1 and S2 specific antibodies, which are subdomains of the S antigen, were produced by the vaccine of the present invention. In addition, the group immunized with the adjuvant alum at the same time showed somewhat higher IgG titers and neutralizing antibody titers than the group not co-administered (FIG. 10).

2-2. VLP 백신 후보물질의 중화항체 유도 분석2-2. Analysis of neutralizing antibody induction of VLP vaccine candidates

제작된 VLP 면역항원으로 면역된 햄스터의 혈액에서 혈청을 분리한 후 PRNT법을 이용하여 SARS-CoV-2에 대한 항체의 중화능을 확인하였다. 중화항체 역가 분석 결과, IgG 생성 결과와 유사하게 VLP 면역항원만 주입한 집단과 비교하여 면역보조제를 동시에 면역한 집단에서 더 높은 중화항체 역가를 보였으며, 3차 면역 혈청에서 더 높은 중화항체가 유도되었다. 또한, 음성대조군인 PBS 그룹에서는 중화항체가 유도되지 않았다(도 11).After separating serum from the blood of hamsters immunized with the prepared VLP immune antigen, the neutralizing ability of the antibody against SARS-CoV-2 was confirmed using the PRNT method. As a result of neutralizing antibody titer analysis, similar to the results of IgG production, compared to the group injected with only VLP immune antigen, the group immunized with adjuvant showed higher neutralizing antibody titer, and higher neutralizing antibody was induced in tertiary immunization serum. It became. In addition, neutralizing antibodies were not induced in the negative control PBS group (FIG. 11).

2-3. VLP 백신 후보물질 투여에 따른 햄스터 생존율 및 체중 분석2-3. Hamster survival rate and body weight analysis according to VLP vaccine candidate administration

최초 면역 48일 후, 면역원성이 확인된 골든 시리안 햄스터에서 SARS-CoV-2 감염에 대한 보호능을 확인하기 위하여 7주령 골든 시리안 햄스터 수컷을 Ketamine 근육 주사하여 마취하였다. 바이러스와 음성대조군(PBS)을 비강내로 감염하였고, 감염 후 14일간 체중, 체온 및 임상증상을 관찰하였다.48 days after the first immunization, 7-week-old golden Syrian hamster males were anesthetized with Ketamine intramuscular injection to confirm the protective ability against SARS-CoV-2 infection in golden Syrian hamsters whose immunogenicity was confirmed. Virus and negative control group (PBS) were infected intranasally, and body weight, body temperature and clinical symptoms were observed for 14 days after infection.

감염 후 2주간 햄스터의 폐사는 없었으며, VLP 면역항원으로 면역한 햄스터에서 음성대조군과 비교하여 더 낮은 체중감소가 나타났다. 특히 VLP 면역항원과 alum을 동시에 면역한 그룹에서는 가장 낮은 체중 변화를 보였다(도 12). 이러한 결과는 VLP 백신 접종에 따라 SARS-CoV-2 바이러스 공격으로부터 보호효능이 나타난다는 것을 확인하는 결과이다.There was no death of hamsters for 2 weeks after infection, and hamsters immunized with VLP immune antigen showed lower weight loss compared to negative controls. In particular, the group immunized with VLP immune antigen and alum at the same time showed the lowest weight change (FIG. 12). These results confirm that the protective effect against SARS-CoV-2 virus attack appears according to VLP vaccination.

2-4. VLP 백신 후보물질 투여에 따른 햄스터 폐 조직 분석2-4. Analysis of hamster lung tissue according to VLP vaccine candidate administration

VLP 백신 면역 후 공격접종에 따른 폐 조직 내 바이러스 증식 양상 및 조직병리 소견을 확인하기 위하여 감염 후 3일에 부검을 진행하였고, 부검한 폐 조직 내 바이러스 역가를 측정하였다.After immunization with the VLP vaccine, an autopsy was performed on the 3rd day after infection to confirm the virus proliferation pattern and histopathological findings in the lung tissue following challenge, and the virus titer in the autopsied lung tissue was measured.

SARS-CoV-2 공격접종 후, VLP 면역항원 단독으로 면역한 경우 음성대조군과 비교하여 일부 감소된 바이러스 역가를 나타내었으나, VLP 면역항원과 면역보조제(alum)을 함께 면역한 그룹은 음성대조군과 비교하여 91% 낮은 바이러스 역가를 나타내었다(도 13). After SARS-CoV-2 challenge, immunization with VLP immune antigen alone showed some reduced viral titers compared to the negative control group, but the group immunized with VLP immune antigen and adjuvant (alum) was comparable to the negative control group. 91% low virus titer was shown (FIG. 13).

<110> KCDC <120> Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof <130> M21-0000 <160> 6 <170> KoPatentIn 3.0 <210> 1 <211> 1273 <212> PRT <213> Artificial Sequence <220> <223> SARS-CoV-2 S full <400> 1 Met Phe Val Phe Leu Val Leu Leu Pro Leu Val Ser Ser Gln Cys Val 1 5 10 15 Asn Leu Thr Thr Arg Thr Gln Leu Pro Pro Ala Tyr Thr Asn Ser Phe 20 25 30 Thr Arg Gly Val Tyr Tyr Pro Asp Lys Val Phe Arg Ser Ser Val Leu 35 40 45 His Ser Thr Gln Asp Leu Phe Leu Pro Phe Phe Ser Asn Val Thr Trp 50 55 60 Phe His Ala Ile His Val Ser Gly Thr Asn Gly Thr Lys Arg Phe Asp 65 70 75 80 Asn Pro Val Leu Pro Phe Asn Asp Gly Val Tyr Phe Ala Ser Thr Glu 85 90 95 Lys Ser Asn Ile Ile Arg Gly Trp Ile Phe Gly Thr Thr Leu Asp Ser 100 105 110 Lys Thr Gln Ser Leu Leu Ile Val Asn Asn Ala Thr Asn Val Val Ile 115 120 125 Lys Val Cys Glu Phe Gln Phe Cys Asn Asp Pro Phe Leu Gly Val Tyr 130 135 140 Tyr His Lys Asn Asn Lys Ser Trp Met Glu Ser Glu Phe Arg Val Tyr 145 150 155 160 Ser Ser Ala Asn Asn Cys Thr Phe Glu Tyr Val Ser Gln Pro Phe Leu 165 170 175 Met Asp Leu Glu Gly Lys Gln Gly Asn Phe Lys Asn Leu Arg Glu Phe 180 185 190 Val Phe Lys Asn Ile Asp Gly Tyr Phe Lys Ile Tyr Ser Lys His Thr 195 200 205 Pro Ile Asn Leu Val Arg Asp Leu Pro Gln Gly Phe Ser Ala Leu Glu 210 215 220 Pro Leu Val Asp Leu Pro Ile Gly Ile Asn Ile Thr Arg Phe Gln Thr 225 230 235 240 Leu Leu Ala Leu His Arg Ser Tyr Leu Thr Pro Gly Asp Ser Ser Ser 245 250 255 Gly Trp Thr Ala Gly Ala Ala Ala Tyr Tyr Val Gly Tyr Leu Gln Pro 260 265 270 Arg Thr Phe Leu Leu Lys Tyr Asn Glu Asn Gly Thr Ile Thr Asp Ala 275 280 285 Val Asp Cys Ala Leu Asp Pro Leu Ser Glu Thr Lys Cys Thr Leu Lys 290 295 300 Ser Phe Thr Val Glu Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val 305 310 315 320 Gln Pro Thr Glu Ser Ile Val Arg Phe Pro Asn Ile Thr Asn Leu Cys 325 330 335 Pro Phe Gly Glu Val Phe Asn Ala Thr Arg Phe Ala Ser Val Tyr Ala 340 345 350 Trp Asn Arg Lys Arg Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu 355 360 365 Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Pro 370 375 380 Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Val Tyr Ala Asp Ser Phe 385 390 395 400 Val Ile Arg Gly Asp Glu Val Arg Gln Ile Ala Pro Gly Gln Thr Gly 405 410 415 Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Thr Gly Cys 420 425 430 Val Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys Val Gly Gly Asn 435 440 445 Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser Asn Leu Lys Pro Phe 450 455 460 Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly Ser Thr Pro Cys 465 470 475 480 Asn Gly Val Glu Gly Phe Asn Cys Tyr Phe Pro Leu Gln Ser Tyr Gly 485 490 495 Phe Gln Pro Thr Asn Gly Val Gly Tyr Gln Pro Tyr Arg Val Val Val 500 505 510 Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr Val Cys Gly Pro Lys 515 520 525 Lys Ser Thr Asn Leu Val Lys Asn Lys Cys Val Asn Phe Asn Phe Asn 530 535 540 Gly Leu Thr Gly Thr Gly Val Leu Thr Glu Ser Asn Lys Lys Phe Leu 545 550 555 560 Pro Phe Gln Gln Phe Gly Arg Asp Ile Ala Asp Thr Thr Asp Ala Val 565 570 575 Arg Asp Pro Gln Thr Leu Glu Ile Leu Asp Ile Thr Pro Cys Ser Phe 580 585 590 Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Thr Ser Asn Gln Val 595 600 605 Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Glu Val Pro Val Ala Ile 610 615 620 His Ala Asp Gln Leu Thr Pro Thr Trp Arg Val Tyr Ser Thr Gly Ser 625 630 635 640 Asn Val Phe Gln Thr Arg Ala Gly Cys Leu Ile Gly Ala Glu His Val 645 650 655 Asn Asn Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala 660 665 670 Ser Tyr Gln Thr Gln Thr Asn Ser Pro Arg Arg Ala Arg Ser Val Ala 675 680 685 Ser Gln Ser Ile Ile Ala Tyr Thr Met Ser Leu Gly Ala Glu Asn Ser 690 695 700 Val Ala Tyr Ser Asn Asn Ser Ile Ala Ile Pro Thr Asn Phe Thr Ile 705 710 715 720 Ser Val Thr Thr Glu Ile Leu Pro Val Ser Met Thr Lys Thr Ser Val 725 730 735 Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ser Asn Leu 740 745 750 Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Thr 755 760 765 Gly Ile Ala Val Glu Gln Asp Lys Asn Thr Gln Glu Val Phe Ala Gln 770 775 780 Val Lys Gln Ile Tyr Lys Thr Pro Pro Ile Lys Asp Phe Gly Gly Phe 785 790 795 800 Asn Phe Ser Gln Ile Leu Pro Asp Pro Ser Lys Pro Ser Lys Arg Ser 805 810 815 Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly 820 825 830 Phe Ile Lys Gln Tyr Gly Asp Cys Leu Gly Asp Ile Ala Ala Arg Asp 835 840 845 Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu 850 855 860 Leu Thr Asp Glu Met Ile Ala Gln Tyr Thr Ser Ala Leu Leu Ala Gly 865 870 875 880 Thr Ile Thr Ser Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile 885 890 895 Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr 900 905 910 Gln Asn Val Leu Tyr Glu Asn Gln Lys Leu Ile Ala Asn Gln Phe Asn 915 920 925 Ser Ala Ile Gly Lys Ile Gln Asp Ser Leu Ser Ser Thr Ala Ser Ala 930 935 940 Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn 945 950 955 960 Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val 965 970 975 Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln 980 985 990 Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val 995 1000 1005 Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu 1010 1015 1020 Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg Val 1025 1030 1035 1040 Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ser Ala 1045 1050 1055 Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ala Gln Glu 1060 1065 1070 Lys Asn Phe Thr Thr Ala Pro Ala Ile Cys His Asp Gly Lys Ala His 1075 1080 1085 Phe Pro Arg Glu Gly Val Phe Val Ser Asn Gly Thr His Trp Phe Val 1090 1095 1100 Thr Gln Arg Asn Phe Tyr Glu Pro Gln Ile Ile Thr Thr Asp Asn Thr 1105 1110 1115 1120 Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly Ile Val Asn Asn Thr 1125 1130 1135 Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu 1140 1145 1150 Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp 1155 1160 1165 Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp 1170 1175 1180 Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu 1185 1190 1195 1200 Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Ile 1205 1210 1215 Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile 1220 1225 1230 Met Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Cys Cys 1235 1240 1245 Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val 1250 1255 1260 Leu Lys Gly Val Lys Leu His Tyr Thr 1265 1270 <210> 2 <211> 252 <212> PRT <213> Artificial Sequence <220> <223> Influenza H1N1 M1 <400> 2 Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Ile Pro 1 5 10 15 Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Ser Val Phe 20 25 30 Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr 35 40 45 Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe 50 55 60 Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val 65 70 75 80 Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Arg Ala 85 90 95 Val Lys Leu Tyr Lys Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala 100 105 110 Lys Glu Val Ser Leu Ser Tyr Ser Thr Gly Ala Leu Ala Ser Cys Met 115 120 125 Gly Leu Ile Tyr Asn Arg Met Gly Thr Val Thr Thr Glu Ala Ala Phe 130 135 140 Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg 145 150 155 160 Ser His Arg Gln Met Ala Thr Thr Thr Asn Pro Leu Ile Arg His Glu 165 170 175 Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met 180 185 190 Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Asn Gln 195 200 205 Thr Arg Gln Met Val His Ala Met Arg Thr Ile Gly Thr His Pro Ser 210 215 220 Ser Ser Ala Gly Leu Lys Asp Asp Leu Leu Glu Asn Leu Gln Ala Tyr 225 230 235 240 Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys 245 250 <210> 3 <211> 3819 <212> DNA <213> Artificial Sequence <220> <223> SARS-CoV-2 S full <400> 3 atgtttgttt ttcttgtttt attgccacta gtctctagtc agtgtgttaa tcttacaacc 60 agaactcaat taccccctgc atacactaat tctttcacac gtggtgttta ttaccctgac 120 aaagttttca gatcctcagt tttacattca actcaggact tgttcttacc tttcttttcc 180 aatgttactt ggttccatgc tatacatgtc tctgggacca atggtactaa gaggtttgat 240 aaccctgtcc taccatttaa tgatggtgtt tattttgctt ccactgagaa gtctaacata 300 ataagaggct ggatttttgg tactacttta gattcgaaga cccagtccct acttattgtt 360 aataacgcta ctaatgttgt tattaaagtc tgtgaatttc aattttgtaa tgatccattt 420 ttgggtgttt attaccacaa aaacaacaaa agttggatgg aaagtgagtt cagagtttat 480 tctagtgcga ataattgcac ttttgaatat gtctctcagc cttttcttat ggaccttgaa 540 ggaaaacagg gtaatttcaa aaatcttagg gaatttgtgt ttaagaatat tgatggttat 600 tttaaaatat attctaagca cacgcctatt aatttagtgc gtgatctccc tcagggtttt 660 tcggctttag aaccattggt agatttgcca ataggtatta acatcactag gtttcaaact 720 ttacttgctt tacatagaag ttatttgact cctggtgatt cttcttcagg ttggacagct 780 ggtgctgcag cttattatgt gggttatctt caacctagga cttttctatt aaaatataat 840 gaaaatggaa ccattacaga tgctgtagac tgtgcacttg accctctctc agaaacaaag 900 tgtacgttga aatccttcac tgtagaaaaa ggaatctatc aaacttctaa ctttagagtc 960 caaccaacag aatctattgt tagatttcct aatattacaa acttgtgccc ttttggtgaa 1020 gtttttaacg ccaccagatt tgcatctgtt tatgcttgga acaggaagag aatcagcaac 1080 tgtgttgctg attattctgt cctatataat tccgcatcat tttccacttt taagtgttat 1140 ggagtgtctc ctactaaatt aaatgatctc tgctttacta atgtctatgc agattcattt 1200 gtaattagag gtgatgaagt cagacaaatc gctccagggc aaactggaaa gattgctgat 1260 tataattata aattaccaga tgattttaca ggctgcgtta tagcttggaa ttctaacaat 1320 cttgattcta aggttggtgg taattataat tacctgtata gattgtttag gaagtctaat 1380 ctcaaacctt ttgagagaga tatttcaact gaaatctatc aggccggtag cacaccttgt 1440 aatggtgttg aaggttttaa ttgttacttt cctttacaat catatggttt ccaacccact 1500 aatggtgttg gttaccaacc atacagagta gtagtacttt cttttgaact tctacatgca 1560 ccagcaactg tttgtggacc taaaaagtct actaatttgg ttaaaaacaa atgtgtcaat 1620 ttcaacttca atggtttaac aggcacaggt gttcttactg agtctaacaa aaagtttctg 1680 cctttccaac aatttggcag agacattgct gacactactg atgctgtccg tgatccacag 1740 acacttgaga ttcttgacat tacaccatgt tcttttggtg gtgtcagtgt tataacacca 1800 ggaacaaata cttctaacca ggttgctgtt ctttatcagg atgttaactg cacagaagtc 1860 cctgttgcta ttcatgcaga tcaacttact cctacttggc gtgtttattc tacaggttct 1920 aatgtttttc aaacacgtgc aggctgttta ataggggctg aacatgtcaa caactcatat 1980 gagtgtgaca tacccattgg tgcaggtata tgcgctagtt atcagactca gactaattct 2040 cctcggcggg cacgtagtgt agctagtcaa tccatcattg cctacactat gtcacttggt 2100 gcagaaaatt cagttgctta ctctaataac tctattgcca tacccacaaa ttttactatt 2160 agtgttacca cagaaattct accagtgtct atgaccaaga catcagtaga ttgtacaatg 2220 tacatttgtg gtgattcaac tgaatgcagc aatcttttgt tgcaatatgg cagtttttgt 2280 acacaattaa accgtgcttt aactggaata gctgttgaac aagacaaaaa cacccaagaa 2340 gtttttgcac aagtcaaaca aatttacaaa acaccaccaa ttaaagattt tggtggtttt 2400 aatttttcac aaatattacc agatccatca aaaccaagca agaggtcatt tattgaagat 2460 ctacttttca acaaagtgac acttgcagat gctggcttca tcaaacaata tggtgattgc 2520 cttggtgata ttgctgctag agacctcatt tgtgcacaaa agtttaacgg ccttactgtt 2580 ttgccacctt tgctcacaga tgaaatgatt gctcaataca cttctgcact gttagcgggt 2640 acaatcactt ctggttggac ctttggtgca ggtgctgcat tacaaatacc atttgctatg 2700 caaatggctt ataggtttaa tggtattgga gttacacaga atgttctcta tgagaaccaa 2760 aaattgattg ccaaccaatt taatagtgct attggcaaaa ttcaagactc actttcttcc 2820 acagcaagtg cacttggaaa acttcaagat gtggtcaacc aaaatgcaca agctttaaac 2880 acgcttgtta aacaacttag ctccaatttt ggtgcaattt caagtgtttt aaatgatatc 2940 ctttcacgtc ttgacaaagt tgaggctgaa gtgcaaattg ataggttgat cacaggcaga 3000 cttcaaagtt tgcagacata tgtgactcaa caattaatta gagctgcaga aatcagagct 3060 tctgctaatc ttgctgctac taaaatgtca gagtgtgtac ttggacaatc aaaaagagtt 3120 gatttttgtg gaaagggcta tcatcttatg tccttccctc agtcagcacc tcatggtgta 3180 gtcttcttgc atgtgactta tgtccctgca caagaaaaga acttcacaac tgctcctgcc 3240 atttgtcatg atggaaaagc acactttcct cgtgaaggtg tctttgtttc aaatggcaca 3300 cactggtttg taacacaaag gaatttttat gaaccacaaa tcattactac agacaacaca 3360 tttgtgtctg gtaactgtga tgttgtaata ggaattgtca acaacacagt ttatgatcct 3420 ttgcaacctg aattagactc attcaaggag gagttagata aatattttaa gaatcataca 3480 tcaccagatg ttgatttagg tgacatctct ggcattaatg cttcagttgt aaacattcaa 3540 aaagaaattg accgcctcaa tgaggttgcc aagaatttaa atgaatctct catcgatctc 3600 caagaacttg gaaagtatga gcagtatata aaatggccat ggtacatttg gctaggtttt 3660 atagctggct tgattgccat agtaatggtg acaattatgc tttgctgtat gaccagttgc 3720 tgtagttgtc tcaagggctg ttgttcttgt ggatcctgct gcaaatttga tgaagacgac 3780 tctgagccag tgctcaaagg agtcaaatta cattacaca 3819 <210> 4 <211> 756 <212> DNA <213> Artificial Sequence <220> <223> Influenza H1N1 M1 <400> 4 atgagtcttc taaccgaggt cgaaacgtac gttctttcta tcatcccgtc aggccccctc 60 aaagccgaga tcgcgcagag actggaaagt gtctttgcag gaaagaacac agatcttgag 120 gctctcatgg aatggctaaa gacaagacca atcttgtcac ctctgactaa gggaatttta 180 ggatttgtgt tcacgctcac cgtgcccagt gagcgaggac tgcagcgtag acgctttgtc 240 caaaatgccc taaatgggaa tggggacccg aacaacatgg atagagcagt taaactatac 300 aagaagctca aaagagaaat aacgttccat ggggccaagg aggtgtcact aagctattca 360 actggtgcac ttgccagttg catgggcctc atatacaaca ggatgggaac agtgaccaca 420 gaagctgctt ttggtctagt gtgtgccact tgtgaacaga ttgctgattc acagcatcgg 480 tctcacagac agatggctac taccaccaat ccactaatca ggcatgaaaa cagaatggtg 540 ctggctagca ctacggcaaa ggctatggaa cagatggctg gatcgagtga acaggcagcg 600 gaggccatgg aggttgctaa tcagactagg cagatggtac atgcaatgag aactattggg 660 actcatccta gctccagtgc tggtctgaaa gatgaccttc ttgaaaattt gcaggcctac 720 cagaagcgaa tgggagtgca gatgcagcga ttcaag 756 <210> 5 <211> 3888 <212> DNA <213> Artificial Sequence <220> <223> SARS-CoV2 S full(Codon optimization) <400> 5 atgtttgttt ttcttgtgct gctcccactg gtttcctctc agtgtgttaa cctgaccact 60 cgaacccaat tgcctccggc gtacactaac agctttacca ggggggtgta ctaccccgat 120 aaagttttca ggagttccgt cctccactca acccaggacc tgtttttgcc gtttttcagt 180 aacgtgactt ggtttcatgc aatacacgta agcgggacca acggtaccaa gagattcgat 240 aaccctgtcc tcccctttaa tgatggcgta tacttcgcct ccacagagaa gagcaacatt 300 atcagaggct ggatcttcgg gacaactctc gatagcaaga cccagtctct cctgattgtg 360 aacaatgcca ccaatgtggt gataaaagtt tgcgagttcc agttttgtaa tgaccccttt 420 ctgggcgtat actaccataa aaataacaaa agttggatgg agtccgaatt tcgggtgtac 480 agttcagcca acaactgcac ctttgagtac gtgtctcagc ccttcctgat ggacctggag 540 gggaaacagg ggaacttcaa gaacctgagg gagttcgttt tcaagaacat cgacggctac 600 ttcaaaattt acagcaagca cacaccaatt aaccttgtga gagatttgcc ccaagggttt 660 agcgccttgg agccgctggt ggacctgccc atcggcatca atataaccag gttccagacg 720 ttgctggcac tgcatcgatc ttacctgacg ccaggcgata gtagttctgg gtggacggcc 780 ggggccgcgg cttactatgt cggctacctt cagcccagga cctttttgct caagtataat 840 gagaacggga caatcacgga cgctgttgat tgcgctctgg acccgctgtc tgagaccaag 900 tgcaccttga agagtttcac cgttgaaaag ggcatttacc agacctctaa ctttagagtg 960 cagcctaccg agagtattgt gcgattcccc aacatcacca acctttgtcc ttttggggag 1020 gtttttaacg cgacgaggtt tgcgtcagtg tatgcttgga acaggaaacg catcagcaac 1080 tgtgtggccg actactcagt gctttataat tccgctagct ttagtacctt caagtgctac 1140 ggggtgtctc cgactaagct gaatgatctc tgcttcacta atgtttatgc ggacagcttc 1200 gttattaggg gtgacgaagt acgacaaata gctcctggtc aaacaggcaa gatcgcagac 1260 tataactaca agctccccga tgacttcaca ggctgtgtaa tcgcgtggaa cagcaacaac 1320 cttgattcca aagtgggtgg gaactacaac tacctgtacc ggcttttccg aaagagcaat 1380 ctgaagcctt tcgaacgcga catctccaca gaaatatatc aggcagggag cacgccttgt 1440 aacggggtgg aagggttcaa ctgctacttt ccgctgcaga gttatgggtt ccagcccacc 1500 aatggcgtcg ggtaccagcc ctacagagtg gtggtgctct catttgagct gctgcacgcc 1560 ccagccacgg tgtgcgggcc gaaaaaatct accaaccttg tgaagaataa gtgtgtcaat 1620 tttaacttca atggcttgac tgggactggc gtactgactg agtccaataa aaaatttctc 1680 ccattccagc agttcggacg agacatcgct gatacaacgg acgcagttcg agacccacag 1740 acactggaga tcctcgatat aactccatgt agtttcggag gtgtctctgt aatcactccc 1800 ggaacgaaca cctcaaacca ggtggcggta ctttaccagg atgtcaattg taccgaggtg 1860 cccgtggcga tacatgctga tcaactgacc ccgacctggc gggtttatag caccgggagc 1920 aatgtttttc agacgcgggc cggctgtctg attggcgccg aacacgtgaa caacagttat 1980 gagtgcgata tccccattgg cgctggtatc tgcgccagct accaaactca aacaaatagt 2040 ccccgccgcg cccgctccgt agcctcccag agcattatcg cttacactat gtcactcggt 2100 gcggaaaact cagtggctta cagtaacaat tccattgcga ttccaactaa tttcactatt 2160 agcgtcacaa cagaaatact tcctgtctcc atgaccaaaa caagtgttga ttgcacgatg 2220 tatatttgtg gcgattctac tgaatgctct aacttgctcc ttcagtatgg ttccttctgc 2280 acccagctga accgagcatt gactggcatc gctgtggaac aggataagaa tacacaggag 2340 gtttttgctc aagttaagca gatttataag acccccccta ttaaggattt cggaggcttt 2400 aacttcagcc agatacttcc agatccctct aagccctcaa aacgctcctt tattgaggat 2460 ttgcttttta ataaggttac cctggccgat gctggtttca ttaagcagta cggggattgt 2520 cttggcgaca ttgcggcgcg cgatctgatt tgcgcacaga agtttaatgg cctgacggtg 2580 cttccgcccc tccttaccga cgaaatgata gcgcagtata cctccgctct gttggcaggc 2640 accataacgt ccggctggac ctttggagcc ggggccgcct tgcagatccc ctttgcgatg 2700 caaatggcct atcggtttaa cggcataggt gtcactcaga acgtactgta tgaaaatcaa 2760 aaacttatcg ctaaccagtt caactccgcg attggaaaaa ttcaagattc ccttagctcc 2820 acggcaagtg ccctgggtaa gttgcaagac gtagtgaacc agaatgcaca agccctgaat 2880 acgctcgtca agcagctttc atccaatttc ggtgcaatat caagtgtttt gaacgatatt 2940 ctctccaggc tcgataaagt cgaggctgag gtacagatcg acaggctgat cactggcagg 3000 ttgcagagct tgcagactta tgtcactcag caactgatcc gcgctgctga aatcagggcc 3060 agtgcgaacc tcgccgcgac aaagatgtcc gagtgtgtac tcggtcagag taaaagagtc 3120 gatttctgcg gtaaaggata tcatcttatg tctttcccgc aaagtgcccc tcatggggtg 3180 gttttcctcc acgtgaccta tgtccccgct caagagaaga attttacgac ggctcctgcc 3240 atctgccacg acgggaaggc acacttccct agagaggggg tattcgtgag caatggcact 3300 cactggttcg tgacacaaag gaatttctat gagccccaga tcataaccac ggataacact 3360 ttcgtcagcg gtaactgtga tgtggtcatt ggcatcgtga ataacacagt ctacgaccca 3420 ctgcagcctg aattggacag ttttaaagag gaactggata aatacttcaa gaatcacacc 3480 tctcctgacg tggacctcgg cgatatctcc gggattaatg ctagcgtagt caacattcag 3540 aaagaaatag acaggctgaa tgaggtggcc aaaaatctga acgaatccct catcgacctc 3600 caagaactgg gtaaatatga gcaatacatc aagtggcctt ggtatatttg gctcgggttt 3660 attgctggac tgatcgctat tgtaatggtt accatcatgc tgtgctgcat gaccagctgc 3720 tgtagctgtc tgaaggggtg ttgtagctgt ggttcatgtt gcaagtttga cgaggacgac 3780 agtgaacctg ttcttaaggg tgttaaattg cactatactg attataagga cgatgacgac 3840 aaggactata aggacgacga cgacaagcat catcatcacc atcactga 3888 <210> 6 <211> 825 <212> DNA <213> Artificial Sequence <220> <223> Infulenza H1N1 M1(Codon optimization) <400> 6 atgagcctgc tgaccgaggt ggaaacatac gtgctgagca tcatccccag cggacctctg 60 aaagccgaga tcgcccagag actggaatct gtgttcgccg gcaagaacac cgacctggaa 120 gccctgatgg aatggctgaa aacccggcct atcctgtctc ctctgacaaa gggcatcctg 180 ggcttcgtgt ttaccctgac cgtgccttct gagagaggcc tgcagcggag aagattcgtg 240 cagaacgctc tgaacggcaa cggcgacccc aacaacatgg atagagccgt gaagctgtac 300 aagaagctga agagagagat caccttccac ggcgccaaag aggtgtccct gagctattct 360 acaggcgccc tggcctcttg catgggcctg atctacaata gaatgggcac cgtgaccacc 420 gaggccgcct ttggacttgt gtgtgccaca tgcgagcaga tcgccgatag ccagcacaga 480 tctcacagac agatggccac caccaccaat cctctgatcc ggcacgagaa cagaatggtg 540 ctggcctcta caaccgccaa ggccatggaa cagatggctg gatcttctga acaggccgcc 600 gaagctatgg aagtggccaa tcagacaagg cagatggtgc acgccatgcg gacaatcgga 660 acacaccctt ctagctctgc cggcctgaag gacgacctgc tggaaaacct gcaggcttac 720 cagaaacgga tgggcgtgca gatgcagcgg ttcaaggatt ataaagatga tgatgataaa 780 gattataaag atgatgatga taaacaccac caccaccacc actaa 825 <110> KCDC <120> Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use its <130> M21-0000 <160> 6 <170> KoPatentIn 3.0 <210> 1 <211> 1273 <212> PRT <213> Artificial Sequence <220> <223> SARS-CoV-2 S full <400> 1 Met Phe Val Phe Leu Val Leu Leu Pro Leu Val Ser Ser Gln Cys Val 1 5 10 15 Asn Leu Thr Thr Arg Thr Gln Leu Pro Pro Ala Tyr Thr Asn Ser Phe 20 25 30 Thr Arg Gly Val Tyr Tyr Pro Asp Lys Val Phe Arg Ser Ser Val Leu 35 40 45 His Ser Thr Gln Asp Leu Phe Leu Pro Phe Phe Ser Asn Val Thr Trp 50 55 60 Phe His Ala Ile His Val Ser Gly Thr Asn Gly Thr Lys Arg Phe Asp 65 70 75 80 Asn Pro Val Leu Pro Phe Asn Asp Gly Val Tyr Phe Ala Ser Thr Glu 85 90 95 Lys Ser Asn Ile Ile Arg Gly Trp Ile Phe Gly Thr Thr Leu Asp Ser 100 105 110 Lys Thr Gln Ser Leu Leu Ile Val Asn Asn Ala Thr Asn Val Val Ile 115 120 125 Lys Val Cys Glu Phe Gln Phe Cys Asn Asp Pro Phe Leu Gly Val Tyr 130 135 140 Tyr His Lys Asn Asn Lys Ser Trp Met Glu Ser Glu Phe Arg Val Tyr 145 150 155 160 Ser Ser Ala Asn Asn Cys Thr Phe Glu Tyr Val Ser Gln Pro Phe Leu 165 170 175 Met Asp Leu Glu Gly Lys Gln Gly Asn Phe Lys Asn Leu Arg Glu Phe 180 185 190 Val Phe Lys Asn Ile Asp Gly Tyr Phe Lys Ile Tyr Ser Lys His Thr 195 200 205 Pro Ile Asn Leu Val Arg Asp Leu Pro Gln Gly Phe Ser Ala Leu Glu 210 215 220 Pro Leu Val Asp Leu Pro Ile Gly Ile Asn Ile Thr Arg Phe Gln Thr 225 230 235 240 Leu Leu Ala Leu His Arg Ser Tyr Leu Thr Pro Gly Asp Ser Ser Ser 245 250 255 Gly Trp Thr Ala Gly Ala Ala Ala Tyr Tyr Val Gly Tyr Leu Gln Pro 260 265 270 Arg Thr Phe Leu Leu Lys Tyr Asn Glu Asn Gly Thr Ile Thr Asp Ala 275 280 285 Val Asp Cys Ala Leu Asp Pro Leu Ser Glu Thr Lys Cys Thr Leu Lys 290 295 300 Ser Phe Thr Val Glu Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val 305 310 315 320 Gln Pro Thr Glu Ser Ile Val Arg Phe Pro Asn Ile Thr Asn Leu Cys 325 330 335 Pro Phe Gly Glu Val Phe Asn Ala Thr Arg Phe Ala Ser Val Tyr Ala 340 345 350 Trp Asn Arg Lys Arg Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu 355 360 365 Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Pro 370 375 380 Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Val Tyr Ala Asp Ser Phe 385 390 395 400 Val Ile Arg Gly Asp Glu Val Arg Gln Ile Ala Pro Gly Gln Thr Gly 405 410 415 Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Thr Gly Cys 420 425 430 Val Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys Val Gly Gly Asn 435 440 445 Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser Asn Leu Lys Pro Phe 450 455 460 Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly Ser Thr Pro Cys 465 470 475 480 Asn Gly Val Glu Gly Phe Asn Cys Tyr Phe Pro Leu Gln Ser Tyr Gly 485 490 495 Phe Gln Pro Thr Asn Gly Val Gly Tyr Gln Pro Tyr Arg Val Val Val 500 505 510 Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr Val Cys Gly Pro Lys 515 520 525 Lys Ser Thr Asn Leu Val Lys Asn Lys Cys Val Asn Phe Asn Phe Asn 530 535 540 Gly Leu Thr Gly Thr Gly Val Leu Thr Glu Ser Asn Lys Lys Phe Leu 545 550 555 560 Pro Phe Gln Gln Phe Gly Arg Asp Ile Ala Asp Thr Thr Asp Al a Val 565 570 575 Arg Asp Pro Gln Thr Leu Glu Ile Leu Asp Ile Thr Pro Cys Ser Phe 580 585 590 Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Thr Ser Asn Gln Val 595 600 605 Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Glu Val Pro Val Ala Ile 610 615 620 His Ala Asp Gln Leu Thr Pro Thr Trp Arg Val Tyr Ser Thr Gly Ser 625 630 635 640 Asn Val Phe Gln Thr Arg Ala Gly Cys Leu Ile Gly Ala Glu His Val 645 650 655 Asn Asn Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala 660 665 670 Ser Tyr Gln Thr Gln Thr Asn Ser Pro Arg Arg Ala Arg Ser Val Ala 675 680 685 Ser Gln Ser Ile Ile Ile Ala Tyr Thr Met Ser Leu Gly Ala Glu Asn Ser 690 695 700 Val Ala Tyr Ser Asn Asn Ser Ile Ala Ile Pro Thr Asn Phe Thr Ile 70 5 710 715 720 Ser Val Thr Thr Glu Ile Leu Pro Val Ser Met Thr Lys Thr Ser Val 725 730 735 Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ser Asn Leu 740 745 750 Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Thr 755 760 765 Gly Ile Ala Val Glu Gln Asp Lys Asn Thr Gln Glu Val Phe Ala Gln 770 775 780 Val Lys Gln Ile Tyr Lys Thr Pro Pro Ile Lys Asp Phe Gly Gly Phe 785 790 795 800 Asn Phe Ser Gln Ile Leu Pro Asp Pro Ser Lys Pro Ser Lys Arg Ser 805 810 815 Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly 820 825 830 Phe Ile Lys Gln Tyr Gly Asp Cys Leu Gly Asp Ile Ala Ala Arg Asp 835 840 845 Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pr o Pro Leu 850 855 860 Leu Thr Asp Glu Met Ile Ala Gln Tyr Thr Ser Ala Leu Leu Ala Gly 865 870 875 880 Thr Ile Thr Ser Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile 885 890 895 Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr 900 905 910 Gln Asn Val Leu Tyr Glu Asn Gln Lys Leu Ile Ala Asn Gln Phe Asn 915 920 925 Ser Ala Ile Gly Lys Ile Gln Asp Ser Leu Ser Ser Ser Ser Thr Ala Ser Ala 930 935 940 Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn 945 950 955 960 Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val 965 970 975 Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln 980 985 990 Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Se r Leu Gln Thr Tyr Val 995 1000 1005 Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu 1010 1015 1020 Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg Val 1025 1030 1035 1040 Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ser Ala 1045 1050 1055 Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ala Gln Glu 1060 1065 1070 Lys Asn Phe Thr Thr Ala Pro Ala Ile Cys His Asp Gly Lys Ala His 1075 1080 1085 Phe Pro Arg Glu Gly Val Phe Val Ser Asn Gly Thr His Trp Phe Val 1090 1095 1100 Thr Gln Arg Asn Phe Tyr Glu Pro Gln Ile Ile Thr Thr Asp Asn Thr 1105 1110 1115 1120 Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly Ile Val Asn Asn Thr 1125 1130 1135 Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu 1140 1145 1150 Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp 1155 1160 1165 Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp 1170 1175 1180 Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu 1185 1190 1195 1200 G ln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Ile 1205 1210 1215 Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile 1220 1225 1230 Met Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Cys Cys 1235 1240 1245 Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val 1250 1255 1260 Leu Lys Gly Val Lys Leu His Tyr Thr 1265 1270 <210> 2 <211> 252 <212> PRT < 213> Artificial Sequence <220> <223> Influenza H1N1 M1 <400> 2 Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Ile Pro 1 5 10 15 Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Ser Val Phe 20 25 30 Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr 35 40 45 Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe 50 55 60 Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val 65 70 75 80 Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Arg Ala 85 90 95 Val Lys Leu Tyr Lys Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala 100 105 110 Lys Glu Val Ser Leu Ser Tyr Ser Thr Gly Ala Leu Ala Ser Cys Met 115 120 125 Gly Leu Ile Tyr Asn Arg Met Gly Thr Val Thr Thr Glu Ala Ala Phe 130 135 140 Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg 145 150 155 160 Ser His Arg Gln Met Ala Thr Thr Thr Asn Pro Leu Ile Arg His Glu 165 170 175 Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met 180 185 190 Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Asn Gln 195 200 205 Thr Arg Gln Met Val His Ala Met Arg Thr Ile Gly Thr His Pro Ser 210 215 220 Ser Ser Ala Gly Leu Lys Asp Asp Leu Leu Glu Asn Leu Gln Ala Tyr 225 230 235 240 Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys 245 250 <210> 3 <211> 3819 <212> DNA <213> Artificial Sequence <220> <223> SARS-CoV-2 S full <400> 3 atgtttgttt ttcttgtttt attgccacta gtctctagtc agtgtgttaa tcttacaacc 60 agaactcaat taccccctgc atacactaat tctttcacac gtggtgttta ttaccctgac 120 aaagttttca gatcctcagt tttacattca actcaggact tgttcttacc tttcttttcc 180 aatgttactt ggttccatgc tatacatgtc tctgggacca atggtactaa gaggtttgat 240 aaccctgtcc taccatttaa tgatggtgtt tattttgctt ccactgagaa gtctaacata 300 ataagaggct ggatttttgg tactacttta gattcgaaga cccagtccct acttattgtt 360 aataacgcta ctaatgttgt tattaaagtc tgtgaatttc aattttgtaa tgatccattt 420 ttgggtgttt attaccacaa aaacaacaaa agttggatgg aaagtgagtt cagagtttat 480 tctagtgcga ataattgcac ttttgaatat gtctctcagc cttttcttat ggaccttgaa 540 ggaaaacagg gtaatttcaa aaatcttagg gaatttgtgt ttaagaatat tgatggttat 600 tttaaaatat attctaagca cacgcctatt aatttagtgc gtgatctccc tcagggtttt 660 tcggctttag aaccattggt agatttgcca ataggtatta acatcactag gtttcaaact 720 ttacttgctt tacatagaag ttatttgact cctggtgatt cttcttcagg ttggacagggt 78 tgcag cttattatgt gggttatctt caacctagga cttttctatt aaaatataat 840 gaaaatggaa ccattacaga tgctgtagac tgtgcacttg accctctctc agaaacaaag 900 tgtacgttga aatccttcac tgtagaaaaa ggaatctatc aaacttctaa ctttagagtc 960 caaccaacag aatctattgt tagatttcct aatattacaa acttgtgccc ttttggtgaa 1020 gtttttaacg ccaccagatt tgcatctgtt tatgcttgga acaggaagag aatcagcaac 1080 tgtgttgctg attattctgt cctatataat tccgcatcat tttccacttt taagtgttat 1140 ggagtgtctc ctactaaatt aaatgatctc tgctttacta atgtctatgc agattcattt 1200 gtaattagag gtgatgaagt cagacaaatc gctccagggc aaactggaaa gattgctgat 1260 tataattata aattaccaga tgattttaca ggctgcgtta tagcttggaa ttctaacaat 1320 cttgattcta aggttggtgg taattataat tacctgtata gattgtttag gaagtctaat 1380 ctcaaacctt ttgagagaga tatttcaact gaaatctatc aggccggtag cacaccttgt 1440 aatggtgttg aaggttttaa ttgttacttt cctttacaat catatggttt ccaacccact 1500 aatggtgttg gttaccaacc atacagagta gtagtacttt cttttgaact tctacatgca 1560 ccagcaactg tttgtggacc taaaaagtct actaatttgg ttaaaaacaa atgtgtcaat 1620 ttcaacttca atg gtttaac aggcacaggt gttcttactg agtctaacaa aaagtttctg 1680 cctttccaac aatttggcag agacattgct gacactactg atgctgtccg tgatccacag 1740 acacttgaga ttcttgacat tacaccatgt tcttttggtg gtgtcagtgt tataacacca 1800 ggaacaaata cttctaacca ggttgctgtt ctttatcagg atgttaactg cacagaagtc 1860 cctgttgcta ttcatgcaga tcaacttact cctacttggc gtgtttattc tacaggttct 1920 aatgtttttc aaacacgtgc aggctgttta ataggggctg aacatgtcaa caactcatat 1980 gagtgtgaca tacccattgg tgcaggtata tgcgctagtt atcagactca gactaattct 2040 cctcggcggg cacgtagtgt agctagtcaa tccatcattg cctacactat gtcacttggt 2100 gcagaaaatt cagttgctta ctctaataac tctattgcca tacccacaaa ttttactatt 2160 agtgttacca cagaaattct accagtgtct atgaccaaga catcagtaga ttgtacaatg 2220 tacatttgtg gtgattcaac tgaatgcagc aatcttttgt tgcaatatgg cagtttttgt 2280 acacaattaa accgtgcttt aactggaata gctgttgaac aagacaaaaa cacccaagaa 2340 gtttttgcac aagtcaaaca aatttacaaa acaccaccaa ttaaagattt tggtggtttt 2400 aatttttcac aaatattacc agatccatca aaaccaagca agaggtcatt tattgaagat 2460 ctacttttca acaaagtga c acttgcagat gctggcttca tcaaacaata tggtgattgc 2520 cttggtgata ttgctgctag agacctcatt tgtgcacaaa agtttaacgg ccttactgtt 2580 ttgccacctt tgctcacaga tgaaatgatt gctcaataca cttctgcact gttagcgggt 2640 acaatcactt ctggttggac ctttggtgca ggtgctgcat tacaaatacc atttgctatg 2700 caaatggctt ataggtttaa tggtattgga gttacacaga atgttctcta tgagaaccaa 2760 aaattgattg ccaaccaatt taatagtgct attggcaaaa ttcaagactc actttcttcc 2820 acagcaagtg cacttggaaa acttcaagat gtggtcaacc aaaatgcaca agctttaaac 2880 acgcttgtta aacaacttag ctccaatttt ggtgcaattt caagtgtttt aaatgatatc 2940 ctttcacgtc ttgacaaagt tgaggctgaa gtgcaaattg ataggttgat cacaggcaga 3000 cttcaaagtt tgcagacata tgtgactcaa caattaatta gagctgcaga aatcagagct 3060 tctgctaatc ttgctgctac taaaatgtca gagtgtgtac ttggacaatc aaaaagagtt 3120 gatttttgtg gaaagggcta tcatcttatg tccttccctc agtcagcacc tcatggtgta 3180 gtcttcttgc atgtgactta tgtccctgca caagaaaaga acttcacaac tgctcctgcc 3240 atttgtcatg atggaaaagc acactttcct cgtgaaggtg tctttgtttc aaatggcaca 3300 cactggtttg taacacaaag gaat ttttat gaaccacaaa tcattactac agacaacaca 3360 tttgtgtctg gtaactgtga tgttgtaata ggaattgtca acaacacagt ttatgatcct 3420 ttgcaacctg aattagactc attcaaggag gagttagata aatattttaa gaatcataca 3480 tcaccagatg ttgatttagg tgacatctct ggcattaatg cttcagttgt aaacattcaa 3540 aaagaaattg accgcctcaa tgaggttgcc aagaatttaa atgaatctct catcgatctc 3600 caagaacttg gaaagtatga gcagtatata aaatggccat ggtacatttg gctaggtttt 3660 atagctggct tgattgccat agtaatggtg acaattatgc tttgctgtat gaccagttgc 3720 tgtagttgtc tcaagggctg ttgttcttgt ggatcctgct gcaaatttga tgaagacgac 3780 tctgagccag tgctcaaagg agtcaaatta cattacaca 3819 <210> 4 <211> 756 <212> DNA <213> Artificial Sequence <220> <223> Influenza H1N1 M1 <400> 4 atgagtcttc taaccgaggt cgaaacgtac gttctttcta tcatcccgtc aggccccctc 60 aaagccgaga tcgcgcagag actggaaagt gtctttgcag gaaagaacac agatcttgag 120 gctctcatgg aatggctaaa gacaagacca atcttgtcac ctctgactaa gggaatttta 180 ggatttgtgt tcacgctcac cgtgcccagt gagcgaggac tgcagcgtag acgctttgtc 240 caaaatgccc taaatgggaa tggggacccg aacaac atgg atagagcagt taaactatac 300 aagaagctca aaagagaaat aacgttccat ggggccaagg aggtgtcact aagctattca 360 actggtgcac ttgccagttg catgggcctc atatacaaca ggatgggaac agtgaccaca 420 gaagctgctt ttggtctagt gtgtgccact tgtgaacaga ttgctgattc acagcatcgg 480 tctcacagac agatggctac taccaccaat ccactaatca ggcatgaaaa cagaatggtg 540 ctggctagca ctacggcaaa ggctatggaa cagatggctg gatcgagtga acaggcagcg 600 gaggccatgg aggttgctaa tcagactagg cagatggtac atgcaatgag aactattggg 660 actcatccta gctccagtgc tggtctgaaa gatgaccttc ttgaaaattt gcaggcctac 720 cagaagcgaa tgggagtgca gatgcagcga ttcaag 756 <210> 5 <211> 3888 <212> DNA <213> Artificial Sequence <220> <223> SARS-CoV2 S full(Codon optimization) <400> 5 atgtttgttt ttcttgtgct gctcccactg gtttcctctc agtgtgttaa cctgaccact 60 cgaacccaat tgcctccggc gtacactaac agctttacca ggggggtgta ctaccccgat 120 aaagttttca ggagttccgt cctccactca acccaggacc tgtttttgcc gtttttcagt 180 aacgtgactt ggtttcatgc aatacacgta agcgggacca acggtaccaa gagattcgat 240 aaccctgtcc tcccctttaa tgatggcgta tacttcgcct ccacagagaa gagcaacatt 300 atcagaggct ggatcttcgg gacaactctc gatagcaaga cccagtctct cctgattgtg 360 aacaatgcca ccaatgtggt gataaaagtt tgcgagttcc agttttgtaa tgaccccttt 420 ctgggcgtat actaccataa ataataacaaa agttattact aggcgtg 420 ctgggcgtat agttggatgg agtcgtg agttcagcca acaactgcac ctttgagtac gtgtctcagc ccttcctgat ggacctggag 540 gggaaacagg ggaacttcaa gaacctgagg gagttcgttt tcaagaacat cgacggctac 600 ttcaaaattt acagcaagca cacaccaatt aaccttgtga gagatttgcc ccaagggttt 660 agcgccttgg agccgctggt ggacctgccc atcggcatca atataaccag gttccagacg 720 ttgctggcac tgcatcgatc ttacctgacg ccaggcgata gtagttctgg gtggacggcc 780 ggggccgcgg cttactatgt cggctacctt cagcccagga cctttttgct caagtataat 840 gagaacggga caatcacgga cgctgttgat tgcgctctgg acccgctgtc tgagaccaag 900 tgcaccttga agagtttcac cgttgaaaag ggcatttacc agacctctaa ctttagagtg 960 cagcctaccg agagtattgt gcgattcccc aacatcacca acctttgtcc ttttggggag 1020 gtttttaacg cgacgaggtt tgcgtcagtg tatgcttgga acaggaaacg catcagcaac 1080 tgtgtggccg actactcagt gctttataat tccgctagct ttagtacctt caagtgctac 1140 ggggtgtctc cgactaagct gaatgatctc tgcttcacta atgtttatgc ggacagcttc 1200 gttattaggg gtgacgaagt acgacaaata gctcctggtc aaacaggcaa gatcgcagac 1260 tataactaca agctccccga tgacttcaca ggctgtgtaa tcgcgtggaa cagcaacaac 1320 cttgattcca aag tgggtgg gaactacaac tacctgtacc ggcttttccg aaagagcaat 1380 ctgaagcctt tcgaacgcga catctccaca gaaatatatc aggcagggag cacgccttgt 1440 aacggggtgg aagggttcaa ctgctacttt ccgctgcaga gttatgggtt ccagcccacc 1500 aatggcgtcg ggtaccagcc ctacagagtg gtggtgctct catttgagct gctgcacgcc 1560 ccagccacgg tgtgcgggcc gaaaaaatct accaaccttg tgaagaataa gtgtgtcaat 1620 tttaacttca atggcttgac tgggactggc gtactgactg agtccaataa aaaatttctc 1680 ccattccagc agttcggacg agacatcgct gatacaacgg acgcagttcg agacccacag 1740 acactggaga tcctcgatat aactccatgt agtttcggag gtgtctctgt aatcactccc 1800 ggaacgaaca cctcaaacca ggtggcggta ctttaccagg atgtcaattg taccgaggtg 1860 cccgtggcga tacatgctga tcaactgacc ccgacctggc gggtttatag caccgggagc 1920 aatgtttttc agacgcgggc cggctgtctg attggcgccg aacacgtgaa caacagttat 1980 gagtgcgata tccccattgg cgctggtatc tgcgccagct accaaactca aacaaatagt 2040 ccccgccgcg cccgctccgt agcctcccag agcattatcg cttacactat gtcactcggt 2100 gcggaaaact cagtggctta cagtaacaat tccattgcga ttccaactaa tttcactatt 2160 agcgtcacaa cagaaatac t tcctgtctcc atgaccaaaa caagtgttga ttgcacgatg 2220 tatatttgtg gcgattctac tgaatgctct aacttgctcc ttcagtatgg ttccttctgc 2280 acccagctga accgagcatt gactggcatc gctgtggaac aggataagaa tacacaggag 2340 gtttttgctc aagttaagca gatttataag acccccccta ttaaggattt cggaggcttt 2400 aacttcagcc agatacttcc agatccctct aagccctcaa aacgctcctt tattgaggat 2460 ttgcttttta ataaggttac cctggccgat gctggtttca ttaagcagta cggggattgt 2520 cttggcgaca ttgcggcgcg cgatctgatt tgcgcacaga agtttaatgg cctgacggtg 2580 cttccgcccc tccttaccga cgaaatgata gcgcagtata cctccgctct gttggcaggc 2640 accataacgt ccggctggac ctttggagcc ggggccgcct tgcagatccc ctttgcgatg 2700 caaatggcct atcggtttaa cggcataggt gtcactcaga acgtactgta tgaaaatcaa 2760 aaacttatcg ctaaccagtt caactccgcg attggaaaaa ttcaagattc ccttagctcc 2820 acggcaagtg ccctgggtaa gttgcaagac gtagtgaacc agaatgcaca agccctgaat 2880 acgctcgtca agcagctttc atccaatttc ggtgcaatat caagtgtttt gaacgatatt 2940 ctctccaggc tcgataaagt cgaggctgag gtacagatcg acaggctgat cactggcagg 3000 ttgcagagct tgcagactta tgtc actcag caactgatcc gcgctgctga aatcagggcc 3060 agtgcgaacc tcgccgcgac aaagatgtcc gagtgtgtac tcggtcagag taaaagagtc 3120 gatttctgcg gtaaaggata tcatcttatg tctttcccgc aaagtgcccc tcatggggtg 3180 gttttcctcc acgtgaccta tgtccccgct caagagaaga attttacgac ggctcctgcc 3240 atctgccacg acgggaaggc acacttccct agagaggggg tattcgtgag caatggcact 3300 cactggttcg tgacacaaag gaatttctat gagccccaga tcataaccac ggataacact 3360 ttcgtcagcg gtaactgtga tgtggtcatt ggcatcgtga ataacacagt ctacgaccca 3420 ctgcagcctg aattggacag ttttaaagag gaactggata aatacttcaa gaatcacacc 3480 tctcctgacg tggacctcgg cgatatctcc gggattaatg ctagcgtagt caacattcag 3540 aaagaaatag acaggctgaa tgaggtggcc aaaaatctga acgaatccct catcgacctc 3600 caagaactgg gtaaatatga gcaatacatc aagtggcctt ggtatatttg gctcgggttt 3660 attgctggac tgatcgctat tgtaatggtt accatcatgc tgtgctgcat gaccagctgc 3720 tgtagctgtc tgaaggggtg ttgtagctgt ggttcatgtt gcaagtttga cgaggacgac 3780 agtgaacctg ttcttaaggg tgttaaattg cactatactg attataagga cgatgacgac 3840 aaggactata aggacgacga cgacaagcat catcatcacc atcactga 3888 <210> 6 <211> 825 <212> DNA <213> Artificial Sequence <220> <223> Infulenza H1N1 M1(Codon optimization) <400> 6 atgagcctgc tgaccgaggt ggaaacatac gtgctgagca tcatccccag cggacctctg 60 aaagccgaga tcgcccagag actggaatct gtgttcgccg gcaagaacac cgacctggaa 120 gccctgatgg aatggctgaa aacccggcct atcctgtctc ctctgacaaa gggcatcctg 180 ggcttcgtgt ttaccctgac cgtgccttct gagagaggcc tgcagcggag aagattcgtg 240 cagaacgctc tgaacggcaa cggcgacccc aacaacatgg atagagccgt gaagctgtac 300 aagaagctga agagagagat caccttccac ggcgccaaag aggtgtccct gagctattct 360 acaggcgccc tggcctcttg catgggcctg atctacaata gaatgggcac cgtgaccacc 420 gaggccgcct ttggacttgt gtgtgccaca tgcgagcaga tcgccgatag ccagcacaga 480 tctcacagac agatggccac caccaccaat cctctgatcc ggcacgagaa cagaatggtg 540 ctggcctcta caaccgccaa ggccatggaa cagatggctg gatcttctga acaggccgcc 600 gaagctatgg aagtggccaa tcagacaagg cagatggtgc acgccatgcg gacaatcgga 660 acacaccctt ctagctctgc cggcctgaag gacgacctgc tggaaaacct gcaggcttaga 7 gacgagcttagag atgcagcgg ttcaaggatt ataaagatga tgatgataaa 780gattataaag atgatgatga taaacaccac caccaccacc actaa 825

Claims (12)

코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자
Virus-like particle containing COVID-19 virus (SARS-CoV-2) spike and influenza H1N1 viral structural protein M1
제1항에 있어서, 코로나19 바이러스는 BetaCoV/Korea/KCDC03/2020 및 인플루엔자 H1N1 바이러스는 A/Korea/01/2009인 것을 특징으로 하는 바이러스 유사 입자
The virus-like particle according to claim 1, wherein the Corona 19 virus is BetaCoV/Korea/KCDC03/2020 and the influenza H1N1 virus is A/Korea/01/2009
제1항에 있어서, 코로나19 바이러스 스파이크는 서열번호 1의 아미노산, 이를 코딩하는 핵산 또는 코돈 최적화된 핵산이고, 인플루엔자 H1N1 바이러스 구조 단백질 M1은 서열번호 2의 아미노산, 이를 코딩하는 핵산 또는 코돈 최적화된 핵산인 것을 특징으로 하는 바이러스 유사 입자
The method of claim 1, wherein the Corona 19 virus spike is an amino acid of SEQ ID NO: 1, a nucleic acid encoding the same, or a codon-optimized nucleic acid, and the influenza H1N1 viral structural protein M1 is an amino acid of SEQ ID NO: 2, a nucleic acid encoding the same, or a codon-optimized nucleic acid. Virus-like particles, characterized in that
코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자를 코딩하는 핵산을 포함하는 재조합 벡터
Recombinant vectors containing nucleic acids encoding virus-like particles comprising the COVID-19 virus (SARS-CoV-2) spike and influenza H1N1 viral structural protein M1
제4항에 있어서, 재조합 벡터는 pCAGEN 벡터를 포함하는 것을 특징으로 하는 재조합 벡터
The recombinant vector according to claim 4, wherein the recombinant vector comprises a pCAGEN vector.
제4항에 있어서, 재조합 벡터는 2X Flag 및 6X His를 포함하는 것을 특징으로 하는 재조합 벡터
The recombinant vector according to claim 4, characterized in that the recombinant vector comprises 2X Flag and 6X His.
코로나19 바이러스(SARS-CoV-2)의 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자 및 면역 보조제(adjuvant)를 포함하는 백신 조성물
A vaccine composition comprising a spike of COVID-19 virus (SARS-CoV-2) and virus-like particles comprising influenza H1N1 viral structural protein M1 and an immune adjuvant
제7항에 있어서, 면역 보조제는 알럼(aluminium hydroxide)인 것을 특징으로 하는 백신 조성물
The vaccine composition according to claim 7, wherein the adjuvant is aluminum hydroxide.
제7항에 있어서, 스파이크의 서브도메인인 S1 및 S2 특이 항체가 모두 유도되는 것을 특징으로 하는 백신 조성물
The vaccine composition according to claim 7, wherein both S1 and S2 specific antibodies, which are subdomains of Spike, are induced.
제7항에 있어서, 2회 또는 3회 투여하는 것을 특징으로 하는 백신 조성물
The vaccine composition according to claim 7, characterized in that it is administered twice or three times.
코로나19 바이러스(SARS-CoV-2) 스파이크 항원 및 인플루엔자 H1N1 바이러스의 구조 단백질 M1의 유전자 또는 아미노산 서열을 확인하는 단계;
코로나19 바이러스(SARS-CoV-2) 스파이크 항원 및 인플루엔자 H1N1 바이러스의 구조 단백질 M1의 재조합 벡터를 제조하는 단계; 를 포함하는 바이러스 유사 입자의 제조방법
Identifying the gene or amino acid sequence of SARS-CoV-2 spike antigen and structural protein M1 of influenza H1N1 virus;
Preparing a recombinant vector of SARS-CoV-2 spike antigen and structural protein M1 of influenza H1N1 virus; Method for producing virus-like particles comprising
코로나19 바이러스(SARS-CoV-2) 스파이크 및 인플루엔자 H1N1 바이러스 구조 단백질 M1을 포함하는 바이러스 유사 입자 및 면역 보조제(adjuvant)를 포함하는 백신 조성물 및 사용설명서를 포함하는 코로나19 바이러스(SARS-CoV-2) 감염증(COVID-19) 예방용 키트Corona 19 virus (SARS-CoV-2) vaccine composition including virus-like particles and immune adjuvants including spike and influenza H1N1 viral structural protein M1 and instructions for use ) Infectious disease (COVID-19) prevention kit
KR1020220029474A 2021-05-17 2022-03-08 Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof KR20220155898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220029474A KR20220155898A (en) 2021-05-17 2022-03-08 Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210063588 2021-05-17
KR1020220029474A KR20220155898A (en) 2021-05-17 2022-03-08 Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020210063588 Division 2021-05-17 2021-05-17

Publications (1)

Publication Number Publication Date
KR20220155898A true KR20220155898A (en) 2022-11-24

Family

ID=84235540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220029474A KR20220155898A (en) 2021-05-17 2022-03-08 Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof

Country Status (1)

Country Link
KR (1) KR20220155898A (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Cell (2020) 181:914-921.
Electrophoresis (2020) 41(13-14):1137-1151.
Vaccine (2011) 29(38): 6606-6613.
Virol Sin (2018) 33(5): 453-455.

Similar Documents

Publication Publication Date Title
WO2021254327A1 (en) Envelope replacement-type viral vector vaccine and construction method therefor
BE1024516B9 (en) ANTIGENS OF CYTOMEGALOVIRUS
CN111662389A (en) SARS-CoV-2 fusion protein and vaccine composition thereof
CA2974041C (en) Cytomegalovirus antigens and uses thereof
CN113321739B (en) COVID-19 subunit vaccine and preparation method and application thereof
Guo et al. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle
Li et al. Hantavirus-like particles generated in CHO cells induce specific immune responses in C57BL/6 mice
WO2021076010A1 (en) Pharmaceutical agent for inducing specific immunity against sars-cov-2
CN112876570A (en) African swine fever virus vaccine and preparation method thereof
CN112575008A (en) Nucleic acid molecules encoding structural proteins of novel coronaviruses and novel coronavirus vaccines
CN112142829B (en) Varicella-zoster virus gE protein mutant and expression method thereof
US20240002451A1 (en) Broad-spectrum peptide antigen of the novel coronavirus sars-cov-2, specific neutralizing antibody and use thereof
KR20120059570A (en) Recombinant avian paramyxovirus vaccine and method for making and using thereof
CN113666990A (en) T cell vaccine immunogen for inducing broad-spectrum anti-coronavirus and application thereof
KR101986071B1 (en) Influenza h5 vaccines
US20150344529A1 (en) Vaccine for hpv infection and/or hepatitis b comprising hpv/hbs chimeric protein as active ingredient
CN112142828B (en) gE gene and vector for expressing the gene
CN113862284B (en) Gene, virus-like particle, vaccine and preparation and application for encoding recombinant avian influenza virus HA protein
TW202206598A (en) A vaccine against sars-cov-2 and preparation thereof
CN117551677A (en) Monkey poxvirus specific fusion protein vaccine using adenovirus type 5 as vector
KR102154794B1 (en) New castle virus expression system for expressing the H5N6 surface antigen of avian influenza virus subtype H9N2 and avian vaccine using the same
KR102154796B1 (en) Mutant New castle disease virus and avian vaccine including the same
KR20220155898A (en) Virus-like particle against SARS-CoV-2 and influenza H1N1 virus and use thereof
CN114891830B (en) Recombinant expression vector based on varicella-zoster virus, recombinant virus and application thereof
US11896658B2 (en) RSV vaccines and methods of production and use thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)