KR20220155467A - Composition for shoes midsole and manufacturing method of thermoplastic shoes midsole using the same - Google Patents
Composition for shoes midsole and manufacturing method of thermoplastic shoes midsole using the same Download PDFInfo
- Publication number
- KR20220155467A KR20220155467A KR1020210062027A KR20210062027A KR20220155467A KR 20220155467 A KR20220155467 A KR 20220155467A KR 1020210062027 A KR1020210062027 A KR 1020210062027A KR 20210062027 A KR20210062027 A KR 20210062027A KR 20220155467 A KR20220155467 A KR 20220155467A
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- shoe midsole
- midsole
- composition
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000000203 mixture Substances 0.000 title claims abstract description 22
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 12
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 12
- 239000000454 talc Substances 0.000 claims abstract description 19
- 229910052623 talc Inorganic materials 0.000 claims abstract description 19
- 238000002156 mixing Methods 0.000 claims abstract description 16
- 238000002347 injection Methods 0.000 claims abstract description 14
- 239000007924 injection Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 12
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 10
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 6
- 239000003963 antioxidant agent Substances 0.000 claims description 6
- 239000003094 microcapsule Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 230000003078 antioxidant effect Effects 0.000 claims description 5
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 5
- 239000008116 calcium stearate Substances 0.000 claims description 5
- 235000013539 calcium stearate Nutrition 0.000 claims description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 5
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 5
- 239000012963 UV stabilizer Substances 0.000 claims description 4
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical group CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 claims description 3
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 238000004381 surface treatment Methods 0.000 claims description 3
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 claims description 2
- 238000005187 foaming Methods 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 15
- 238000001816 cooling Methods 0.000 abstract description 13
- 230000000704 physical effect Effects 0.000 abstract description 9
- 238000010097 foam moulding Methods 0.000 abstract description 8
- 239000002667 nucleating agent Substances 0.000 abstract description 4
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 22
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 22
- 229920003048 styrene butadiene rubber Polymers 0.000 description 12
- 239000002174 Styrene-butadiene Substances 0.000 description 11
- 239000005038 ethylene vinyl acetate Substances 0.000 description 10
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 9
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 9
- 238000001746 injection moulding Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/36—Feeding the material to be shaped
- B29C44/38—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
- B29C44/42—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/08—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/32—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
- C08L23/0853—Ethene vinyl acetate copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/02—CO2-releasing, e.g. NaHCO3 and citric acid
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
본 발명은 TPU의 냉각 특성을 개선시켜 사출 발포 성형에 적합하도록 하면서도 우수한 물성과 경량성을 동시에 구현할 수 있도록 하는, 신발 중창용 조성물 및 이를 이용한 열가소성 신발 중창의 제조방법에 관한 것이다.The present invention relates to a composition for a shoe midsole and a method for manufacturing a thermoplastic shoe midsole using the same, which improves the cooling properties of TPU so that it is suitable for injection foam molding and simultaneously realizes excellent physical properties and lightness.
일반적으로 신발 중창(midsole)은 금형 내에서 가교와 발포가 동시에 이루어지는 가압 발포(Expansion type)로 제조되며 관련 연구도 이러한 방식 위주로 진행되고 있다.In general, shoe midsoles are manufactured in an expansion type in which crosslinking and foaming are simultaneously performed in a mold, and related research is also being conducted mainly in this way.
보다 구체적으로 중창은 통상 금형 크기보다 큰 프리폼(prefoam)을 제조하고 이를 리몰딩(remolding)을 통해 성형하여 제조되고 있으며, 통상 컴파운드를 1차 성형하여 프리폼을 제조하고, 이를 신발용 창의 모양으로 재단 및 그리인딩(grinding) 한 후, 이를 최종 중창 형태의 금형 내부에 삽입시켜 적정 온도와 압력을 가하여 성형한다.More specifically, the midsole is usually manufactured by manufacturing a preform larger than the size of the mold and molding it through remolding. Usually, a preform is manufactured by primary molding of a compound and then cut into the shape of a shoe sole. And after grinding, it is molded by inserting it into the mold of the final midsole shape and applying appropriate temperature and pressure.
하지만, 상기와 같은 종래의 기술은 성형 후 수축에 따른 사이즈 안정성이 떨어지고 열에 변형 특성도 높은 문제점이 있어 사출 후 완성품 형태를 가지는 사출 성형에 비해 많은 단점을 가진다.However, the conventional technology as described above has many disadvantages compared to injection molding having a finished product form after injection, since size stability due to shrinkage after molding is low and deformation characteristics are high in heat.
더욱이 일반적인 가압 발포의 경우 금형 내에서 가열 및 가압되어 발포가 진행되고 금형 게이트를 통해 소재가 공급됨에 따라 소재의 흐름성에 따른 많은 제약이 있다.Furthermore, in the case of general pressurized foaming, there are many restrictions according to the flowability of the material as the foaming proceeds by being heated and pressurized in the mold and the material is supplied through the mold gate.
따라서 특허문헌 1 및 2 등에서와 같이 금형 내 발포(1:1 발포) 등을 통한 중창 개발 연구를 일부 진행하고 있지만 가교와 발포가 함께 진행되어야 하는 가압 발포 방식으로 연구가 진행되어 소재 개발 및 제품화에 어려움이 있다.Therefore, as in Patent Documents 1 and 2, some research on midsole development through foaming in a mold (1: 1 foaming) is being conducted, but research is being conducted in a pressurized foaming method in which crosslinking and foaming must proceed together, leading to material development and commercialization. There are difficulties.
한편, 중창의 소재와 관련하여 일반적으로 경량성 확보를 위해 EVA 소재가 주로 사용되고 있으나, 최근 우수한 물성을 가지는 TPU(thermoplastic polyurethane)를 소재로 한 중창의 개발이 활발히 이루어지고 있다. 하지만, 상기와 같이 TPU를 기반으로 한 소재는 열에 대한 변화(내열성이 약함)가 커서 흐름성이 일정하지 않고 냉각이 느린 특성 문제로 사출 발포시 불량이 발생되는 문제가 있었다.On the other hand, in relation to the material of the midsole, EVA material is generally used to secure light weight, but recently, development of a midsole made of TPU (thermoplastic polyurethane) having excellent physical properties has been actively carried out. However, as described above, the TPU-based material has a large change in heat (weak heat resistance), so there is a problem in that the flowability is not constant and the cooling is slow, resulting in defects during injection and foaming.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, TPU의 냉각 특성을 개선시켜 사출 발포 성형에 적합하도록 하면서도 우수한 물성과 경량성을 동시에 구현할 수 있도록 하는, 신발 중창용 조성물 및 이를 이용한 열가소성 신발 중창의 제조방법을 제공함을 과제로 한다.The present invention is to solve the above problems, a composition for a shoe midsole and a thermoplastic shoe midsole using the same, which can simultaneously realize excellent physical properties and light weight while improving the cooling properties of TPU so that it is suitable for injection foam molding It is an object of the present invention to provide a manufacturing method.
본 발명은 TPU의 냉각 특성을 개선시키기 위해 스타이렌 함량이 68% 이상인 SBR을 혼합하여 사출 소재의 냉각특성 개선시키되, VA 함량이 28% 이상이고 MI(melt index)가 25g/10min. ~ 60g/10min.인 EVA를 혼용하여 TPU와 SBR의 상용성 개선시킬 뿐만 아니라 흐름성을 높이고 또한 발포 기핵제로 입자크기가 4㎛ 이하인 활석을 혼합하여 발포 특성을 개선함으로써, TPU의 냉각 특성을 효율적으로 개선시켜 사출 발포 성형에 적합하도록 하면서도 우수한 물성과 경량성을 동시에 구현할 수 있도록 하는, 신발 중창용 조성물 및 이를 이용한 열가소성 신발 중창의 제조방법을 과제의 해결 수단으로 한다.In the present invention, in order to improve the cooling properties of TPU, the cooling properties of the injected material are improved by mixing SBR having a styrene content of 68% or more, but the VA content is 28% or more and the MI (melt index) is 25g/10min. EVA of ~ 60g/10min. is used to improve the compatibility of TPU and SBR, as well as to improve flowability, and by mixing talc with a particle size of 4㎛ or less as a foaming nucleating agent to improve foaming properties, the cooling properties of TPU are effectively improved. A composition for a shoe midsole and a method for manufacturing a thermoplastic shoe midsole using the same, which can be improved to be suitable for injection foam molding and simultaneously realize excellent physical properties and light weight, are a means of solving the problem.
본 발명은 TPU와 SBR을 혼용하여 사출 소재의 냉각특성 개선시키되, EVA를 혼용하여 TPU와 SBR의 상용성 개선시킬 뿐만 아니라 흐름성을 높이고 또한 발포 기핵제로 활석을 혼합하여 발포 특성을 개선함으로써, TPU의 냉각 특성을 효율적으로 개선시켜 사출 발포 성형에 적합하도록 하면서도 우수한 물성과 경량성을 동시에 구현하는 효과가 있다.In the present invention, TPU and SBR are mixed to improve the cooling properties of the injected material, and EVA is mixed to improve the compatibility of TPU and SBR, as well as to increase flowability and to improve foaming properties by mixing talc as a foaming nucleating agent, TPU It has the effect of realizing excellent physical properties and lightness at the same time while efficiently improving the cooling characteristics of the product to make it suitable for injection foam molding.
상기의 효과를 달성하기 위한 본 발명은 신발 중창용 조성물 및 이를 이용한 열가소성 신발 중창의 제조방법에 관한 것으로서, 본 발명의 기술적 구성을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.The present invention for achieving the above effects relates to a composition for a shoe midsole and a method for manufacturing a thermoplastic shoe midsole using the same. It should be noted that it will be omitted so as not to obscure the gist.
이하, 본 발명에 따른 신발 중창용 조성물 및 이를 이용한 열가소성 신발 중창의 제조방법을 상세히 설명하면 다음과 같다.Hereinafter, the composition for a shoe midsole according to the present invention and the manufacturing method of a thermoplastic shoe midsole using the same will be described in detail.
본 발명에 따른 신발 중창용 조성물은, TPU(thermoplastic polyurethane) 65 ~ 80 중량%, SBR(styrene butadiene rubber) 5 ~ 15 중량% 및 EVA(ethylene vinyl acetate) 15 ~ 20 중량%로 이루어진 기재 100 중량부에 대하여, 활석(talc) 2 ~ 5 중량부, 칼슘스테아레이트(calcium stearate) 0.3 ~ 4 중량부, 산화방지제 0.2 ~ 1.5 중량부 및 UV(ultraviole) 안정제 0.2 ~ 1.5 중량부로 이루어지는 것을 특징으로 한다.The composition for a shoe midsole according to the present invention includes 100 parts by weight of a base material composed of 65 to 80% by weight of thermoplastic polyurethane (TPU), 5 to 15% by weight of styrene butadiene rubber (SBR), and 15 to 20% by weight of ethylene vinyl acetate (EVA). 2 to 5 parts by weight of talc, 0.3 to 4 parts by weight of calcium stearate, 0.2 to 1.5 parts by weight of an antioxidant, and 0.2 to 1.5 parts by weight of a UV (ultraviole) stabilizer.
여기서, 상기 TPU는 경도가 75 ~ 85A(asker A type)인 것을 사용하고, 상기 SBR은 스타이렌(styrene) 함량이 68 ~ 90 중량%인 것을 사용하며, 상기 EVA는 VA(vinyl acetate) 함량이 28 ~ 80 중량%이고 MI(melt index)가 25g/10min. ~ 60g/10min.인 것을 사용하고, 상기 활석은 입자크기가 0.1 ~ 4㎛인 것을 사용한다.Here, the TPU uses a hardness of 75 to 85A (asker A type), the SBR uses a styrene content of 68 to 90% by weight, and the EVA has a VA (vinyl acetate) content. 28 to 80% by weight and an MI (melt index) of 25g/10min. ~ 60g/10min., and the talc has a particle size of 0.1 ~ 4㎛.
즉, TPU와 SBR을 혼용하여 사출 소재의 냉각특성 개선시키되, EVA를 혼용하여 TPU와 SBR의 상용성 개선시킬 뿐만 아니라 흐름성을 높이고 또한 발포 기핵제로 활석을 혼합하여 발포 특성을 개선함으로써, TPU의 냉각 특성을 효율적으로 개선시켜 사출 발포 성형에 적합하도록 한다.That is, the cooling properties of the injected material are improved by mixing TPU and SBR, and the compatibility of TPU and SBR is improved by mixing EVA, the flowability is increased, and the foaming properties are improved by mixing talc as a foaming nucleating agent. Cooling characteristics are efficiently improved to make it suitable for injection foam molding.
이때, 상기 TPU, SBR, EVA 및 활석의 함량이 상기 범위를 벗어날 경우 중창의 물성저하가 우려되며, 또한, 상기 TPU의 경도, SBR의 스타이렌 함량, EVA의 VA함량 및 MI 범위, 그리고 활석의 입자크기가 상기 범위를 벗어날 경우 중창의 물성이 저하되거나 냉각특성이 미비해질 우려가 있다.At this time, if the contents of the TPU, SBR, EVA and talc are out of the above range, there is a concern about the degradation of the physical properties of the midsole, and also, the hardness of the TPU, the styrene content of SBR, the VA content and MI range of EVA, and the talc If the particle size is out of the above range, there is a concern that the physical properties of the midsole may deteriorate or the cooling characteristics may be insufficient.
한편, 상기 활석은 분산성 및 균일한 발포 셀 등을 고려하여 실란커플링제로 표면처리하여 사용하며, 보다 구체적으로는 활석 100 중량부에 대하여 실란 커플링제 1 ~ 2 중량부를 혼합하여 표면처리하며, 상기 실란 커플링제는 비닐트리에톡시실란(Vinyltriethoxysilane), 비닐트리메톡시실란(Vinyltrimethoxysilane) 또는 비닐트리(2-메톡시에톡시)실란(Vinyltri(2-methoxyethoxy)silane) 중에서 단독 또는 병용하여 사용한다. 여기서 상기 실란커플링제의 함량이 상기 범위를 벗어날 경우 활석의 분산성이 저하될 우려가 있다.On the other hand, the talc is used after surface treatment with a silane coupling agent in consideration of dispersibility and uniform foamed cells. The silane coupling agent is used alone or in combination with vinyltriethoxysilane, vinyltrimethoxysilane or vinyltri(2-methoxyethoxy)silane. . Here, when the content of the silane coupling agent is out of the above range, there is a concern that the dispersibility of talc is lowered.
그리고, 상기 칼슘스테아레이트(calcium stearate), 산화방지제 및 UV(ultraviole) 안정제는 성형 용이성, 산화방지 및 UV에 의한 변질 방지 등을 위해 첨가되는 공지된 첨가제로써, 산화방지제의 경우 아릴아민(arylamine), 포스파이트(phosphite), 티오에스터(thioester), UV 안정제의 경우 벤조트리아졸(Benzotriazole), 벤조페논(benzophenone), 트리아진(triazine) 등을 사용할 수 있지만, 여기에 한정되는 것은 아니고 이미 공지된 다양한 종류의 첨가제 사용이 가능하다. 아울러 그 함량 역시 상기 범위에 한정되는 것은 아니며, 신발의 종류나 사용환경 등에 따라 가변적으로 적용할 수 있다.In addition, the calcium stearate, antioxidant, and UV (ultraviole) stabilizer are known additives added for ease of molding, prevention of oxidation, and prevention of deterioration by UV. In the case of antioxidants, arylamine , Phosphite, thioester, and benzotriazole, benzophenone, triazine, etc. may be used as UV stabilizers, but are not limited thereto and are known in the art. Various types of additives can be used. In addition, the content is also not limited to the above range, and can be applied variably depending on the type of shoe or use environment.
본 발명에 따른 신발 중창용 조성물을 이용한 열가소성 신발 중창의 제조방법은 상기와 같은 신발 중창용 조성물 100 중량부에 대하여, 발포제로써 탄산수소나트륨 2 ~ 10 중량부 및 열팽창성 마이크로캡슐 1 ~ 3 중량부를 혼합한 후, 사출성형하여 제조하며, 보다 구체적으로는 상기와 같은 조성물을 투입 후 사출 성형기의 인젝터(injecter)온도는 다이(die) 기준 150 ~ 180℃로 설정 후 사출하며, 금형은 30℃이하로 유지한다. 여기서 상기 금형은 코어백(core-back)이 가능한 금형에서 사출하여 금형내 소재 주입 후 금형 두께의 2배 이상을 코어백(예를 들면, 5mm -> 10mm이상)시켜 비중 0.3 이하의 중창을 제조할 수 있다.In the method for manufacturing a thermoplastic shoe midsole using the composition for shoe midsole according to the present invention, 2 to 10 parts by weight of sodium bicarbonate and 1 to 3 parts by weight of thermally expandable microcapsules as a foaming agent are added to 100 parts by weight of the composition for shoe midsole as described above. After mixing, it is manufactured by injection molding. More specifically, after injecting the composition as described above, the temperature of the injector of the injection molding machine is set to 150 ~ 180 ℃ based on the die, and then injected, and the mold is 30 ℃ or less keep as Here, the mold is injected from a mold capable of core-back, injects the material into the mold, and then core-backs more than twice the thickness of the mold (eg, 5 mm -> 10 mm or more) to manufacture a midsole with a specific gravity of 0.3 or less. can do.
여기서 상기 열팽창성 마이크로캡슐은 열에 의해 팽창하는 캡슐 발포제로써 이미 공지된 물질이며, 마이크로스피어(Microsphere, 마쓰모토 유시 세이야꾸사 제조), 셀파우더(CELLPOWDER; 에이와 가세이사 제조), 익스판셀(EXPANCEL, 악조 노벨사 제조), 마이크로스피어(Microsphere, 쿠레하사 제조) 등을 사용할 수 있으며, 이중에서도 발포 효율을 고려하여 발포 시작온도가 145℃ 이상이고, 발포 최대온도가 190℃ 이상인 것을 사용하는 것이 바람직하다.Here, the thermally expandable microcapsule is a material already known as a capsule foaming agent that expands by heat, and includes microspheres (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.), cell powder (CELLPOWDER; manufactured by Eiwa Kasei Co.), and EXPANCEL (Akzo Co., Ltd.). Nobel Corporation), Microsphere (manufactured by Kureha), etc. may be used, and among them, it is preferable to use those having a foaming start temperature of 145 ° C. or higher and a foaming maximum temperature of 190 ° C. or higher in consideration of foaming efficiency.
한편, 상기 발포제로써 사용되는 탄산수소나트륨과 열팽창성 마이크로캡슐의 함량 및 사출 조건이 상기 범위를 벗어날 경우 발포가 제대로 이루어지 않는 등 성형성이 저하될 우려가 있다.On the other hand, if the content and injection conditions of sodium bicarbonate and thermally expandable microcapsules used as the foaming agent are out of the above ranges, there is a concern that moldability may be deteriorated, such as insufficient foaming.
이하, 본 발명을 아래 실시예에 의거하여 더욱 상세히 설명하겠는바 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited by the examples.
1. 신발 중창 조성물의 제조1. Manufacture of shoe midsole composition
(제조예 1)(Production Example 1)
TPU(경도 75A) 80 중량%, SBR(스타이렌 함량 68%) 5 중량% 및 EVA(VA 함량 28%, MI 25g/10min.) 15 중량%로 이루어진 기재 100 중량부에 대하여, 활석(입자크기 4㎛) 2 중량부, 칼슘스테아레이트 0.3 중량부, 산화방지제(Songnox-1076, 송원화학) 0.2 중량부 및 UV 안정제(Zikozor, 지코사) 0.2 중량부를 밀폐형 혼련기인 니더(kneader)에서 180℃까지 혼합한 후 압출기에서 압출하여 펠렛형태로 제조하였다. 여기서 활석은 활석 100 중량부에 대하여, 비닐트리에톡시실란 1 중량부를 혼합하여 표면처리한 것을 사용하였다.Based on 100 parts by weight of a substrate composed of 80% by weight of TPU (hardness: 75A), 5% by weight of SBR (styrene content: 68%), and 15% by weight of EVA (VA content: 28%, MI: 25g/10min.), talc (particle size) 4㎛) 2 parts by weight, calcium stearate 0.3 parts by weight, antioxidant (Songnox-1076, Songwon Chemical) 0.2 parts by weight and UV stabilizer (Zikozor, Zico) 0.2 parts by weight in a closed kneader kneader to 180 ° C. After mixing, it was extruded in an extruder to produce pellets. Here, the talc was surface-treated by mixing 1 part by weight of vinyltriethoxysilane with respect to 100 parts by weight of talc.
(제조예 2)(Production Example 2)
TPU(경도 85A) 65 중량%, SBR(스타이렌 함량 90%) 15 중량% 및 EVA(VA 함량 80%, MI 60g/10min.) 20 중량%로 이루어진 기재 100 중량부에 대하여, 활석(입자크기 0.1㎛) 5 중량부, 칼슘스테아레이트 4 중량부, 산화방지제(Songnox-1076, 송원화학) 1.5 중량부 및 UV 안정제(Zikozor, 지코사) 1.5 중량부를 밀폐형 혼련기인 니더(kneader)에서 180℃까지 혼합한 후 압출기에서 압출하여 펠렛형태로 제조하였다. 여기서 활석은 활석 100 중량부에 대하여, 비닐트리메톡시실란 2 중량부를 혼합하여 표면처리한 것을 사용하였다.Based on 100 parts by weight of a substrate composed of 65% by weight of TPU (hardness: 85A), 15% by weight of SBR (styrene content: 90%), and 20% by weight of EVA (VA content: 80%, MI: 60g/10min.), talc (particle size) 0.1 μm) 5 parts by weight, calcium stearate 4 parts by weight, antioxidant (Songnox-1076, Songwon Chemical) 1.5 parts by weight and UV stabilizer (Zikozor, Zico) 1.5 parts by weight in a closed kneader kneader to 180 ° C. After mixing, it was extruded in an extruder to produce pellets. Here, the talc was surface-treated by mixing 2 parts by weight of vinyltrimethoxysilane with respect to 100 parts by weight of talc.
2. 신발 중창의 제조2. Manufacture of shoe midsoles
(실시예 1)(Example 1)
상기 제조예 1에 따른 신발 중창용 조성물 100 중량부에 대하여, 탄산수소나트륨 2 중량부 및 열팽창성 마이크로캡슐(마이크로스피어) 1 중량부를 혼합한 후, 사출성형하되, 인젝터 온도 150℃(다이 기준)로 설정 후 사출하며, 금형은 30℃이하로 유지시켰다. 이때, 금형은 코어백 금형으로써 사출하여 금형 내 소재 주입 후 금형을 코어백(예를 들면, 5mm -> 10mm이상)시켜 비중 0.3이하의 중창을 제조하였다.With respect to 100 parts by weight of the shoe midsole composition according to Preparation Example 1, 2 parts by weight of sodium bicarbonate and 1 part by weight of thermally expandable microcapsules (microspheres) were mixed, followed by injection molding, but at an injector temperature of 150 ° C. (based on die) After setting to , injection was performed, and the mold was maintained at 30 ° C or less. At this time, the mold was injected as a core-back mold, and after injecting the material into the mold, the mold was core-backed (eg, 5 mm -> 10 mm or more) to manufacture a midsole with a specific gravity of 0.3 or less.
(실시예 2)(Example 2)
상기 제조예 2에 따른 신발 중창용 조성물 100 중량부에 대하여, 탄산수소나트륨 10 중량부 및 열팽창성 마이크로캡슐(마이크로스피어) 3 중량부를 혼합한 후, 사출성형하되, 인젝터 온도 180℃(다이 기준)로 설정 후 사출하며, 금형은 30℃이하로 유지시켰다. 이때, 금형은 코어백 금형으로써 사출하여 금형 내 소재 주입 후 금형을 코어백(예를 들면, 5mm -> 10mm이상)시켜 비중 0.3이하의 중창을 제조하였다.After mixing 10 parts by weight of sodium bicarbonate and 3 parts by weight of thermally expandable microcapsules (microspheres) with respect to 100 parts by weight of the shoe midsole composition according to Preparation Example 2, injection molding was performed, but the injector temperature was 180° C. (based on the die). After setting to , injection was performed, and the mold was maintained at 30 ° C or less. At this time, the mold was injected as a core-back mold, and after injecting the material into the mold, the mold was core-backed (eg, 5 mm -> 10 mm or more) to manufacture a midsole with a specific gravity of 0.3 or less.
(비교예 1)(Comparative Example 1)
실시예 1과 동일하게 제조하되, TPU를 단독으로 사용하였고, 프레스 성형하여 제조하였다.It was prepared in the same way as in Example 1, but TPU was used alone, and it was prepared by press molding.
(비교예 2)(Comparative Example 2)
실시예 2와 동일하게 제조하되, TPU를 단독으로 사용하였고, 사출 성형하여 제조하였다.It was prepared in the same manner as in Example 2, but TPU was used alone, and it was prepared by injection molding.
3. 신발 중창의 평가3. Evaluation of shoe midsoles
상기 실시예 및 비교예에 따른 중창에 대해 아래와 같은 시험항목 및 방법으로 시험하였으며, 그 결과는 아래 [표 1]에 나타내었다.The midsoles according to the above examples and comparative examples were tested with the following test items and methods, and the results are shown in [Table 1] below.
(1) 경도(1) hardness
KS M6518에 준하여 쇼아(Shore) C형 경도계를 사용하여 측정하였다.According to KS M6518, it was measured using a Shore C-type hardness tester.
(2) 비중(2) specific gravity
KS M6519에 준하여 우에시마(Ueshima)사의 자동비중 측정 장치인 모델DMA-3을 이용하여 측정하였다.In accordance with KS M6519, it was measured using Model DMA-3, an automatic specific gravity measuring device manufactured by Ueshima.
(3) 영구압축줄음율(3) Permanent compression set
중창시편을 두께가 10mm가 되도록 절단한 후, 지름이 30±0.05mm인 원기둥 형태로 제조한 시험편을 KS M6660에 준하여 측정하였다. 2장의 평행금속판 사이에 시험편을 넣고, 시험편 두께의 50%에 해당하는 스페이서를 끼운 후 압축시켜 50±0.1℃로 유지되는 오픈에서 6시간 열처리한 후 압축상태를 해제하고 실온에서 30분간 방치한 후 시험편의 두께를 측정하였으며, 영구압축줄음율은 다음 수학식 1에 의하여 계산하였다.After cutting the midsole specimen to a thickness of 10 mm, a test specimen manufactured in the form of a cylinder having a diameter of 30 ± 0.05 mm was measured according to KS M6660. After inserting the test piece between two parallel metal plates, inserting a spacer corresponding to 50% of the thickness of the test piece, compressing it, and heat-treating it in an open state maintained at 50 ± 0.1 ° C for 6 hours, releasing the compression state, and leaving it at room temperature for 30 minutes. The thickness of the test piece was measured, and the permanent compression set was calculated by Equation 1 below.
(수학식 1)(Equation 1)
t0 : 시험편의 초기 두께t 0 : initial thickness of the test piece
tf : 열처리 후 냉각되었을 때 시험편의 두께t f : thickness of the test piece when cooled after heat treatment
tx : 스페이서의 두께t x : thickness of spacer
(4) 인장강도 및 신장율(4) Tensile strength and elongation
시편을 약 3mm 두께로 만든 후 KS M6518에 따른 2호형을 커터(cutter)로 시험편을 제작하여 KS M6518에 준하여 인장강도를 측정하였다.After making the specimen to a thickness of about 3 mm, a No. 2 type according to KS M6518 was prepared using a cutter, and the tensile strength was measured according to KS M6518.
(5) 인열강도 및 스플릿(split) 인열강도(5) Tear strength and split tear strength
KS M6518에 따라 측정을 하였다.Measurements were made according to KS M6518.
(6) 반발탄성(6) Resilience
ASTM D2632에 준하여 측정하였다.Measured according to ASTM D2632.
(Asker C)Hardness
(Asker C)
되지 않음injection molding
not become
(Sp.Gr.)importance
(Sp. Gr.)
(C/set, %)permanent compression set
(C/set, %)
(kg/cm2)The tensile strength
(kg/cm 2 )
(kg/cm)tear strength
(kg/cm)
(kg/cm)split tear strength
(kg/cm)
(%, 22℃)resilience
(%, 22℃)
상기 [표 1]에서와 같이, 본 발명의 실시예에 따른 신발 중창은 사출 성형을 하면서도 우수한 물성과 경량성을 나타내는 등 사출 발포 성형에 적합함을 알 수 있다.As shown in [Table 1], it can be seen that the shoe midsole according to the embodiment of the present invention is suitable for injection foam molding, such as exhibiting excellent physical properties and light weight even during injection molding.
상술한 바와 같이, 본 발명에 따른 신발 중창용 조성물 및 이를 이용한 열가소성 신발 중창의 제조방법은 상기의 바람직한 실시 예를 통해 설명하고, 그 우수성을 확인하였지만 해당 기술 분야의 당업자라면 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, the composition for a shoe midsole according to the present invention and the manufacturing method of a thermoplastic shoe midsole using the same have been described through the above preferred examples and their superiority confirmed, but those skilled in the art It will be understood that various modifications and changes may be made to the present invention without departing from the spirit and scope of the described invention.
Claims (3)
TPU 65 ~ 80 중량%, SBR 5 ~ 15 중량% 및 EVA 15 ~ 20 중량%로 이루어진 기재 100 중량부에 대하여, 활석 2 ~ 5 중량부, 칼슘스테아레이트 0.3 ~ 4 중량부, 산화방지제 0.2 ~ 1.5 중량부 및 UV 안정제 0.2 ~ 1.5 중량부로 이루어지는 것을 특징으로 하는, 신발 중창용 조성물.
In the composition for a shoe midsole,
2 to 5 parts by weight of talc, 0.3 to 4 parts by weight of calcium stearate, 0.2 to 1.5 parts by weight of an antioxidant, based on 100 parts by weight of a substrate composed of 65 to 80% by weight of TPU, 5 to 15% by weight of SBR, and 15 to 20% by weight of EVA A composition for a shoe midsole, characterized in that it consists of 0.2 to 1.5 parts by weight and a UV stabilizer.
상기 TPU는 경도가 75 ~ 85A인 것을 사용하고,
상기 SBR은 스타이렌 함량이 68 ~ 90 중량%인 것을 사용하며,
상기 EVA는 VA 함량이 28 ~ 80 중량%이고, MI가 25g/10min. ~ 60g/10min.인 것을 사용하고,
상기 활석은 입자크기가 0.1 ~ 4㎛인 것을 사용하고, 실란커플링제로 표면처리하여 사용하되, 활석 100 중량부에 대하여 실란 커플링제 1 ~ 2 중량부를 혼합하여 표면처리하며,
상기 실란 커플링제는 비닐트리에톡시실란, 비닐트리메톡시실란 또는 비닐트리(2-메톡시에톡시)실란 중에서 단독 또는 병용하여 사용하는 것을 특징으로 하는, 신발 중창용 조성물.
According to claim 1,
The TPU uses a hardness of 75 ~ 85A,
The SBR uses a styrene content of 68 to 90% by weight,
The EVA has a VA content of 28 to 80% by weight, and an MI of 25 g/10 min. ~ 60g/10min.,
The talc has a particle size of 0.1 to 4 μm, and is used after surface treatment with a silane coupling agent. Surface treatment is performed by mixing 1 to 2 parts by weight of a silane coupling agent with respect to 100 parts by weight of talc.
The silane coupling agent is vinyltriethoxysilane, vinyltrimethoxysilane or vinyltri(2-methoxyethoxy)silane, characterized in that used alone or in combination, the composition for midsole shoes.
제 1항에 따른 신발 중창용 조성물 100 중량부에 대하여, 탄산수소나트륨 2 ~ 10 중량부 및 열팽창성 마이크로캡슐 1 ~ 3 중량부를 혼합한 후, 사출성형하여 제조되는 것을 특징으로 하는, 열가소성 신발 중창의 제조방법.In the method for manufacturing a thermoplastic shoe midsole using the shoe midsole composition according to claim 1,
2 to 10 parts by weight of sodium bicarbonate and 1 to 3 parts by weight of thermally expandable microcapsules are mixed with 100 parts by weight of the shoe midsole composition according to claim 1, and then injection molded to produce a thermoplastic shoe midsole. Manufacturing method of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210062027A KR102493711B1 (en) | 2021-05-13 | 2021-05-13 | Composition for shoes midsole and manufacturing method of thermoplastic shoes midsole using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210062027A KR102493711B1 (en) | 2021-05-13 | 2021-05-13 | Composition for shoes midsole and manufacturing method of thermoplastic shoes midsole using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220155467A true KR20220155467A (en) | 2022-11-23 |
KR102493711B1 KR102493711B1 (en) | 2023-02-01 |
Family
ID=84236873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210062027A KR102493711B1 (en) | 2021-05-13 | 2021-05-13 | Composition for shoes midsole and manufacturing method of thermoplastic shoes midsole using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102493711B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101622710B1 (en) | 2014-12-02 | 2016-05-19 | 한국신발피혁연구원 | Foaming mold structure and manufacturing method of foam using the same |
KR20180034074A (en) | 2016-09-27 | 2018-04-04 | 한국신발피혁연구원 | Low density foam composition suitable for in―mold foam molding and manufacturing method of foam using the same |
KR102151409B1 (en) * | 2018-04-20 | 2020-09-03 | 주식회사 나노텍세라믹스(Nanotech Ceramics Co., Ltd.) | Composition for manufacturing lightweight footwear having improved heat-resistance and lightweight footwear manufactured using the same |
KR102159081B1 (en) * | 2018-11-09 | 2020-09-23 | 한국신발피혁연구원 | A method for manufacturing an article using an additive manufacturing |
KR102246160B1 (en) * | 2020-05-19 | 2021-04-30 | (주)삼양알앤피 | Composition for outsole of lightweight shoes and manufacturing method of outsole of lightweight shoes using the same |
-
2021
- 2021-05-13 KR KR1020210062027A patent/KR102493711B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101622710B1 (en) | 2014-12-02 | 2016-05-19 | 한국신발피혁연구원 | Foaming mold structure and manufacturing method of foam using the same |
KR20180034074A (en) | 2016-09-27 | 2018-04-04 | 한국신발피혁연구원 | Low density foam composition suitable for in―mold foam molding and manufacturing method of foam using the same |
KR102151409B1 (en) * | 2018-04-20 | 2020-09-03 | 주식회사 나노텍세라믹스(Nanotech Ceramics Co., Ltd.) | Composition for manufacturing lightweight footwear having improved heat-resistance and lightweight footwear manufactured using the same |
KR102159081B1 (en) * | 2018-11-09 | 2020-09-23 | 한국신발피혁연구원 | A method for manufacturing an article using an additive manufacturing |
KR102246160B1 (en) * | 2020-05-19 | 2021-04-30 | (주)삼양알앤피 | Composition for outsole of lightweight shoes and manufacturing method of outsole of lightweight shoes using the same |
Also Published As
Publication number | Publication date |
---|---|
KR102493711B1 (en) | 2023-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10266689B2 (en) | Composition and process of manufacture for a shoe sole component for footwear | |
US6391233B1 (en) | Method of producing a porous product | |
KR101075070B1 (en) | Method preparing of the foam using composition using foam composition contain ethylene vinyl acetate resin and sillicone rubber | |
KR101858185B1 (en) | Foam composition for sponge with improved thermal shrinkage and abrasion resistance | |
KR20140016548A (en) | Resin composition for foaming comprising biodegradable rresin and foamed article made thereof | |
US11396591B2 (en) | Composition for manufacturing lightweight footwear having improved heat-resistance and lightweight footwear manufactured using the same | |
KR100980028B1 (en) | Foam composition having shock absorption at a variety of temperature range | |
KR102493711B1 (en) | Composition for shoes midsole and manufacturing method of thermoplastic shoes midsole using the same | |
KR20180046722A (en) | Foam composition of low density resins | |
CN111961247B (en) | Insole of sports shoe and preparation method thereof | |
KR102246160B1 (en) | Composition for outsole of lightweight shoes and manufacturing method of outsole of lightweight shoes using the same | |
KR100575604B1 (en) | Bio-degradable mid-sole compounds and therefor | |
KR101157112B1 (en) | Soft foam composition and manufacturing method thereof | |
KR101603292B1 (en) | Low specific gravity dynamic cross-linking thermoplastic elastomer for supercritical injection foaming moldingmethod producing thereof and shoe outsole using thesame | |
KR102013905B1 (en) | Manufacturing method of foam using the improved cmp process | |
KR100354425B1 (en) | Method for shock absorptive foaming for footwear | |
EP3546506B1 (en) | Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article | |
KR102300608B1 (en) | Silane crosslinkable composition of crosslinking agent masterbatch | |
KR100695401B1 (en) | Ethylene vinyl Acetate CopolymerEVA compounds for a footwear sole, Method for producing a sponge by using thereof and a sponge | |
KR101462038B1 (en) | Fast foaming agent composition, manufacturing method thereof and foam using thesame | |
KR102631510B1 (en) | Foam composition for shoes midsole having excellent durability | |
TWI858840B (en) | Method for making a foamed shoe body by using a foamed mixture mixed with phase change material | |
KR102731457B1 (en) | High-functional foaming resin composition and manufacturing method thereof | |
KR102730902B1 (en) | Foam composition for light weight shoes midsole having high durability | |
KR102291605B1 (en) | Manufacturing method of high resilience shoes foam sole for injection moulding type using the rubber blends having excellent resilience and thermal shrinkage property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |