KR20220131689A - Control method of exhaust gas purification device - Google Patents

Control method of exhaust gas purification device Download PDF

Info

Publication number
KR20220131689A
KR20220131689A KR1020210036666A KR20210036666A KR20220131689A KR 20220131689 A KR20220131689 A KR 20220131689A KR 1020210036666 A KR1020210036666 A KR 1020210036666A KR 20210036666 A KR20210036666 A KR 20210036666A KR 20220131689 A KR20220131689 A KR 20220131689A
Authority
KR
South Korea
Prior art keywords
sdpf
exhaust gas
reducing agent
gas purification
control method
Prior art date
Application number
KR1020210036666A
Other languages
Korean (ko)
Inventor
김정현
김현지
엄용석
김낙근
Original Assignee
한국전력공사
현대머티리얼 주식회사
희성촉매 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사, 현대머티리얼 주식회사, 희성촉매 주식회사 filed Critical 한국전력공사
Priority to KR1020210036666A priority Critical patent/KR20220131689A/en
Publication of KR20220131689A publication Critical patent/KR20220131689A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

The present invention relates to a control method of an exhaust gas purifying apparatus. According to the present invention, a differential pressure and a nitrogen oxide (NO_x) emission concentration at a front end and a rear end of an sDPF measured in an exhaust gas purifier composed of a diesel oxidation catalyst (DOC) and the sDPF are compared with set values to determine whether the sDPF is regenerated. In addition, when it is determined that regeneration of the sDPF is progressing, injection of a reducing agent is stopped and a regeneration reaction for removing PM and an ammonium salt accumulated inside the sDPF is performed. In addition, when the sDPF regeneration is completed, the control method of the exhaust gas purifying apparatus recalculating an injection amount of the reducing agent is performed to secure back pressure stability and NO_x removal efficiency of the exhaust gas purifying apparatus. In addition, operation stability is improved by maintaining a proper reducing agent injection condition. The control method of the exhaust gas purifying apparatus of the present invention comprises: a measurement step; a judgment step; and a regeneration step.

Description

배기가스 정화장치의 제어방법{CONTROL METHOD OF EXHAUST GAS PURIFICATION DEVICE}CONTROL METHOD OF EXHAUST GAS PURIFICATION DEVICE

본 발명은 디젤엔진용 배기가스 정화장치의 배기가스 정화 효율 및 운전 안전성을 향상시키기 위한 배기가스 정화장치의 제어방법에 관한 것이다.The present invention relates to a control method of an exhaust gas purification device for improving the exhaust gas purification efficiency and operation safety of the exhaust gas purification device for a diesel engine.

압축착화 방식의 디젤엔진은 가솔린엔진에 비해 질소산화물(Nitrogen Oxide, NOx), 입자상물질(Particulate Matters, PM) 등 대기오염물질의 배출농도가 높다. 상기 대기오염물질의 배출을 최소화하기 위해, 디젤산화촉매(Diesel Oxidation Catalyst, DOC)와 질소산화물 제거촉매(DeNOx Catalyst), 디젤입자상필터(Diesel Particulate Filter, DPF), 디젤입자상필터(DPF)에 선택적 환원촉매(Selective Catalytic Reduction, SCR)를 코팅하여 질소산화물(NOx)과 입자상물질(PM)을 동시에 제거할 수 있는 촉매필터인 sDPF(SCR coated DPF) 등의 공정이 복합적으로 구성한 배기가스 정화장치가 널리 사용되고 있다.Compression ignition diesel engines have higher emission concentrations of air pollutants such as nitrogen oxides (NOx) and particulate matter (PM) compared to gasoline engines. In order to minimize the emission of air pollutants, diesel oxidation catalyst (Diesel Oxidation Catalyst, DOC), nitrogen oxide removal catalyst (DeNOx Catalyst), diesel particulate filter (Diesel Particulate Filter, DPF), and diesel particulate filter (DPF) are optional The exhaust gas purification system is composed of complex processes such as sDPF (SCR coated DPF), a catalytic filter that can simultaneously remove nitrogen oxides (NOx) and particulate matter (PM) by coating with a reduction catalyst (SCR). It is widely used.

sDPF를 사용한 배기가스 정화장치에서 입자상물질(PM)을 재생하는 방법에는 디젤산화촉매(DOC)를 사용하여 디젤산화촉매(DOC)에서 생성된 이산화질소(NO2)와 입자상물질(PM)의 화학반응을 통해서 입자상물질(PM)을 연속적으로 제거하는 자연재생법 및 버너, 히터, 연료 후분사 등을 활용하여 배기가스 온도를 높여서 입자상물질(PM)을 연소시키는 강제재생법이 있다. 하지만 강제재생법의 경우에는 버너 등의 부대설비가 필요하고, 열원 및 연료를 지속적으로 사용해야 하므로, 설치비와 운영비 등이 높은 단점으로, MW급 이상의 대용량 디젤엔진 배기가스 정화장치에는 적용하기 어렵다.In the method of regenerating particulate matter (PM) in an exhaust gas purification system using sDPF, a chemical reaction of nitrogen dioxide (NO 2 ) and particulate matter (PM) generated from diesel oxidation catalyst (DOC) using diesel oxidation catalyst (DOC) There is a natural regeneration method in which particulate matter (PM) is continuously removed through the evaporator, and a forced regeneration method in which the particulate matter (PM) is burned by increasing the exhaust gas temperature by using a burner, heater, fuel post-injection, etc. However, in the case of the forced regeneration method, additional equipment such as a burner is required, and since a heat source and fuel must be used continuously, installation and operating costs are high, and it is difficult to apply to a large-capacity diesel engine exhaust gas purification system of MW or higher.

따라서 자연재생법을 적용한 디젤산화촉매(DOC)와 sDPF로 구성된 배기가스 정화장치가 가장 간소하고 경제적인 장점이 있다. 디젤산화촉매(DOC)와 sDPF로 구성된 배기가스 정화장치의 sDPF 상에서는 NOx(NO, NO2)와 암모니아(NH3)의 SCR 반응과 이산화질소(NO2)와 입자상물질(PM)과의 자연재생 반응이 동시에 일어나게 된다.Therefore, the exhaust gas purification system composed of Diesel Oxidation Catalyst (DOC) and sDPF to which the natural regeneration method is applied has the most simple and economical advantage. SCR reaction of NOx (NO, NO 2 ) and ammonia (NH 3 ) and natural regeneration reaction between nitrogen dioxide (NO 2 ) and particulate matter (PM) on the sDPF of the exhaust gas purification system composed of a diesel oxidation catalyst (DOC) and sDPF This will happen at the same time.

일반적으로 NH3-SCR 반응은 아래 반응식 1 내지 반응식 3로 나타낼 수 있으며, 반응식 1은 일반적인 표준 SCR 반응이며, 반응식 2는 고속 SCR 반응이고, 반응식 3은 이산화질소(NO2) SCR 반응을 나타낸 것이다.In general, the NH 3 -SCR reaction can be represented by Schemes 1 to 3 below, Scheme 1 is a general standard SCR reaction, Scheme 2 is a fast SCR reaction, and Scheme 3 is a nitrogen dioxide (NO 2 ) SCR reaction.

[반응식 1][Scheme 1]

4NO + 4NH3 + O2 → 4N2 + 6H2O4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O

[반응식 2][Scheme 2]

NO + NO2 + 2NH3 → 2N2 + 3H2ONO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O

반응식 3은 NO2 SCR 반응이다.Scheme 3 is a NO 2 SCR reaction.

[반응식 3][Scheme 3]

2NO2 + 4NH3 + O2 → 3N2 + 6H2O2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O

입자상물질(PM) 재생반응은 하기 반응식 4 및 반응식 5와 같이 입자상물질(PM)의 주성분인 탄소(C)를 이산화질소(NO2)와 반응시켜, 이산화탄소(CO2) 또는 일산화탄소(CO)를 생성하는 입자상물질(PM)의 산화가 일어난다.The particulate matter (PM) regeneration reaction reacts carbon (C), which is the main component of particulate matter (PM), with nitrogen dioxide (NO 2 ) as shown in Schemes 4 and 5 below to generate carbon dioxide (CO 2 ) or carbon monoxide (CO) Oxidation of particulate matter (PM) occurs.

[반응식 4][Scheme 4]

C+NO2 → CO + NOC+NO 2 → CO + NO

[반응식 5][Scheme 5]

C + 2NO2 → CO2 + 2NOC + 2NO 2 → CO 2 + 2NO

상기 sDPF 상에서는 이산화질소(NO2)가 SCR 반응과 자연재생 반응에 경쟁적으로 사용되기 때문에 DPF 상에서 입자상물질(PM) 자연재생에 사용되는 것보다 높은 이산화질소(NO2)량을 필요하며, 적정량의 환원제 분사가 중요하다.In the sDPF phase, since nitrogen dioxide (NO 2 ) is competitively used for the SCR reaction and the natural regeneration reaction, a higher nitrogen dioxide (NO 2 ) amount than that used for the natural regeneration of particulate matter (PM) on the DPF is required, and an appropriate amount of reducing agent is injected is important

디젤산화촉매(DOC)와 sDPF로 구성된 배기가스 정화장치에서 환원제로 과량의 암모니아(NH3) 주입 및 외부 인자에 의한 엔진배출조건 변동 등으로 sDPF의 입자상물질(PM) 자연재생 성능이 감소하면 sDPF 내부에 입자상물질(PM), 과량의 암모니아(NH3)로 인한 암모늄염(Ammonium nitrate, Ammonium sulfate 등) 등이 축적되어 배기가스 정화장치의 배압이 높아지며, 상기 입자상물질의 축적은 SCR 촉매의 반응을 저해하여, 질소산화물(NOx) 제거효율 저하가 동시에 일어날 수 있다.When the natural regeneration performance of particulate matter (PM) of sDPF decreases due to excessive ammonia (NH 3 ) injection as a reducing agent in the exhaust gas purification system composed of diesel oxidation catalyst (DOC) and sDPF and changes in engine exhaust conditions due to external factors, sDPF Particulate matter (PM) and ammonium salts (Ammonium nitrate, Ammonium sulfate, etc.) caused by excess ammonia (NH 3 ) accumulate inside, thereby increasing the back pressure of the exhaust gas purification device, and the accumulation of the particulate matter inhibits the reaction of the SCR catalyst. As a result, a reduction in nitrogen oxide (NOx) removal efficiency may occur at the same time.

따라서 자연재생 방법을 적용한 디젤산화촉매(DOC)와 sDPF로 구성된 배기가스 정화장치 성능 및 운전 안정성 확보를 위해서는 sDPF 내부에 축적된 입자상물질(PM), 암모늄염 등의 비활성화 인자를 제거하고, 유입되는 환원제 양을 최적 제어할 수 있는 제어 방안의 적용이 필수적이다.Therefore, in order to secure the performance and operation stability of the exhaust gas purification system composed of Diesel Oxidation Catalyst (DOC) and sDPF to which the natural regeneration method is applied, inactivating factors such as particulate matter (PM) and ammonium salt accumulated in the sDPF are removed, and the introduced reducing agent It is essential to apply a control method that can optimally control the amount.

한국등록특허 제10-0959318호Korean Patent No. 10-0959318

상기와 같은 점을 감안한 본 발명은 디젤산화촉매(DOC)와 sDPF로 구성된 디젤엔진용 배기가스 정화장치에서 sDPF의 차압, NOx 배출농도, sDPF의 배압감소속도 및 sDPF 후단에서 측정된 NO2 농도증가속도를 측정한 값을 미리 설정된 값과 비교하여 sDPF 내부에 축적된 입자상물질(PM) 및 암모늄염을 제거하는 재생반응을 수행하고, 환원제 주입을 재조정하는 제어방법을 수행하여 배기가스 정화장치의 배압안정성과 NOx 제거효율을 확보하고, 적정 환원제 주입조건을 유지함으로써 운전 안정성이 향상되도록 하는 배기가스 정화장치의 제어방법을 제공하는 것을 목적으로 한다.The present invention in consideration of the above points is the differential pressure of the sDPF, the NOx emission concentration, the back pressure reduction rate of the sDPF, and the increase in the NO 2 concentration measured at the rear end of the sDPF in an exhaust gas purification device for a diesel engine composed of a diesel oxidation catalyst (DOC) and sDPF. By comparing the measured speed with a preset value, a regeneration reaction to remove particulate matter (PM) and ammonium salt accumulated inside the sDPF is performed, and a control method to readjust the injection of reducing agent is performed to stabilize the back pressure of the exhaust gas purification device An object of the present invention is to provide a control method for an exhaust gas purification system that improves operation stability by securing and NOx removal efficiency and maintaining an appropriate reducing agent injection condition.

상기와 같은 목적을 달성하기 위해 본 발명의 배기가스 정화장치의 제어방법은 (a) 디젤엔진용 배기가스 정화장치에서 sDPF의 차압 및 상기 sDPF의 후단에 질소산화물 농도를 측정하는 단계, (b) 상기 (a) 단계에서 측정된 상기 sDPF의 차압 및 상기 질소산화물 농도 설정 값과 비교하여 sDPF 재생 진행 여부를 판단하는 단계, (c) 상기 (b) sDPF 단계에서 sDPF 재생 진행하는 것으로 판단된 경우에는 환원제 분사를 중단하여 상기 sDPF를 재생하는 단계, (d) sDPF의 배압 하한 값을 계산하는 단계, (e) 상기 sDPF의 배압 하한 값과 상기 (c) 단계 이후에 재측정된 sDPF의 차압을 비교하여 환원제 재주입 여부를 판단하는 단계, (f) 상기 (e) 단계에서 환원제 재주입하는 것으로 판단된 경우에는 sDPF의 후단에 질소산화물 농도 측정하여 환원제 분사량을 재산정하는 단계, 및 (g) 상기 (f) 단계에서 재산정된 환원제 분사량으로 환원제를 분사하는 단계를 포함할 수 있다.In order to achieve the above object, the control method of the exhaust gas purification device of the present invention comprises the steps of (a) measuring the differential pressure of the sDPF and the nitrogen oxide concentration at the rear end of the sDPF in the exhaust gas purification device for a diesel engine, (b) Comparing the differential pressure of the sDPF measured in step (a) and the nitrogen oxide concentration set value to determine whether to proceed with sDPF regeneration, (c) (b) if it is determined that sDPF regeneration proceeds in step (b) sDPF The step of regenerating the sDPF by stopping the reducing agent injection, (d) calculating the lower back pressure value of sDPF, (e) comparing the lower back pressure lower limit value of the sDPF with the differential pressure of the sDPF re-measured after step (c) to determine whether to re-inject the reducing agent, (f) if it is determined that the reducing agent is re-injected in step (e), measuring the nitrogen oxide concentration at the rear end of the sDPF to re-calculate the reducing agent injection amount, and (g) the ( It may include the step of injecting a reducing agent to the injection amount of the reducing agent recalculated in step f).

상기 (b) 단계에서 상기 질소산화물 농도가 설정 농도 이상이고 상기 sDPF의 차압이 설정 차압 이상일 경우에는 sDPF 재생 진행으로 판단한다.In step (b), when the nitrogen oxide concentration is equal to or greater than the set concentration and the differential pressure of the sDPF is equal to or greater than the set differential pressure, it is determined that sDPF regeneration is in progress.

상기 (b) 단계에서 상기 질소산화물 농도가 설정 농도 이상이나 상기 sDPF의 차압이 설정 차압 미만일 경우에는 상기 디젤엔진용 배기가스 정화장치 내에 환원제을 분사하도록 환원제 분사량을 제어할 수 있다.In the step (b), when the nitrogen oxide concentration is higher than or equal to the set concentration or the differential pressure of the sDPF is less than the set differential pressure, the reducing agent injection amount can be controlled to inject the reducing agent into the exhaust gas purification device for the diesel engine.

상기 (c) 단계는 상기 sDPF의 배압감소속도가 설정 값 이하가 될 때까지 sDPF 재생 진행을 수행하는 것이 바람직하다.In step (c), it is preferable to perform sDPF regeneration until the back pressure reduction rate of the sDPF becomes less than or equal to a set value.

상기 (d) 단계는 sDPF 내에서 애쉬(Ash) 축적량을 통해 sDPF의 배압 하한 값을 계산한다.In step (d), the lower limit of the back pressure of the sDPF is calculated through the amount of ash accumulated in the sDPF.

상기 (e) 단계는 sDPF의 배압감소속도 또는 이산화질소(NO2) 농도 증가속도로 환원제 재주입 여부를 판단하는 제1 판단 단계, 및 상기 재측정된 sDPF의 차압과 상기 sDPF의 배압 하한 값을 비교하여 환원제 재주입 여부를 판단하는 제2 판단 단계를 포함하여 환원제 재주입 진행으로 판단할 수 있다.The step (e) is a first determination step of determining whether the reducing agent is re-injected at the rate of increasing the back pressure decrease rate or the nitrogen dioxide (NO 2 ) concentration of the sDPF, and the re-measured differential pressure of the sDPF and the lower limit value of the back pressure of the sDPF are compared Including a second determination step of determining whether or not to re-inject the reducing agent can be determined to proceed with the re-injection of the reducing agent.

상기 (e) 단계의 상기 제1 판단 단계에서 상기 sDPF의 배압감소속도 또는 sDPF 후단에서 측정된 이산화질소(NO2) 농도가 기 설정 값보다 이하이고, 상기 제2 판단 단계에서 상기 재측정된 sDPF의 차압이 상기 sDPF의 배압 하한 값 이하일 경우에는 환원제 재주입 진행으로 판단할 수 있다.In the first determination step of the step (e), the back pressure reduction rate of the sDPF or the nitrogen dioxide (NO 2 ) concentration measured at the rear end of the sDPF is less than the preset value, and the re-measured value of the sDPF in the second determination step When the differential pressure is less than or equal to the lower limit of the back pressure of the sDPF, it may be determined that the re-injection of the reducing agent proceeds.

이와 달리 상기 (e) 단계에서 상기 재측정된 sDPF의 차압이 상기 sDPF의 배압 하한 값 미만일 경우에는 배기가스 정화장치의 점검으로 판단한다.On the other hand, when the re-measured differential pressure of the sDPF in step (e) is less than the lower limit of the back pressure of the sDPF, it is determined that the exhaust gas purification device is checked.

본 발명의 배기가스 정화장치의 제어방법은 디젤산화촉매(DOC)와 sDPF로 구성된 배기가스 정화장치에서 질소산화물(NOx) 제거 효율이 저하되고, sDPF의 차압이 상승이 발생하면 배기가스 정화장치에서 환원제의 주입을 중단하고 sDPF의 자연재생법을 수행한 다음, 환원제 주입조건을 재산정하는 제어방법을 통해 주기적인 PM재생 및 환원제 주입조건 재산정하여 환원제를 재주입함으로써 배기가스 정화를 다시 복귀하는 제어방법을 통하여 배기가스 정화장치의 NOx 제거효율을 높이고 배압 안정성을 확보하여, 장기적인 배기가스 정화장치의 운전안정성을 확보할 수 있는 효과가 있다.In the control method of the exhaust gas purification device of the present invention, the nitrogen oxide (NOx) removal efficiency is reduced in the exhaust gas purification device composed of a diesel oxidation catalyst (DOC) and sDPF, and when the differential pressure of sDPF occurs, the exhaust gas purification device After stopping the injection of the reducing agent, performing the natural regeneration method of sDPF, and then periodically re-evaluating the reducing agent injection conditions through the control method to re-evaluate the reducing agent injection conditions, the control method to restore exhaust gas purification by re-injecting the reducing agent again This has the effect of increasing the NOx removal efficiency of the exhaust gas purification device and securing the back pressure stability, thereby securing the long-term operation stability of the exhaust gas purification device.

도 1은 본 발명의 디젤엔진용 배기가스 정화장치의 구성을 나타낸 것이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 배기가스 정화장치의 제어방법의 순서도이다.
도 4는 배기가스 정화장치의 운전시간에 따른 sDPF의 차압 및 후단에서 측정되는 NOx 및 NO2 농도를 나타낸 그래프이다.
1 shows the configuration of an exhaust gas purification device for a diesel engine of the present invention.
2 and 3 are flowcharts of a control method of an exhaust gas purification apparatus according to an embodiment of the present invention.
4 is a graph showing the differential pressure of the sDPF according to the operating time of the exhaust gas purification device and NOx and NO 2 concentrations measured at the rear end.

본 발명은 디젤산화촉매(DOC)와 sDPF로 구성된 디젤엔진용 배기가스 정화장치에서 sDPF의 전단과 후단의 차압, 질소산화물의 배출 농도가 기 설정된 조건에 도달하였을 때 환원제의 주입을 중단하여 sDPF 내부에 축적된 입자상물질(PM) 및 암모늄염을 제거하고 환원제 주입을 재조정하는 제어방법을 적용함으로써 배기가스 정화장치의 효율 및 배기가스 정화장치의 운전 안정성을 확보를 위한 배기가스 정화장치의 제어방법에 관한 것이다.The present invention stops the injection of the reducing agent when the differential pressure between the front and rear ends of the sDPF and the emission concentration of nitrogen oxides reaches a preset condition in an exhaust gas purification device for a diesel engine composed of a diesel oxidation catalyst (DOC) and sDPF. It relates to a control method of an exhaust gas purification device to secure the efficiency of the exhaust gas purification device and the operation stability of the exhaust gas purification device by removing the particulate matter (PM) and ammonium salt accumulated in the will be.

이하 본 발명의 배기가스 정화장치의 제어방법에 대해 첨부된 예시 도면을 참조로 상세히 설명한다. 이는 일예로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현할 수 있으므로, 여기에서 설명하는 것에 반드시 한정되지는 않는다.Hereinafter, the control method of the exhaust gas purification apparatus of the present invention will be described in detail with reference to the accompanying exemplary drawings. This is not necessarily limited to what is described herein, since it may be implemented in various different forms by those of ordinary skill in the art to which the present invention pertains as an example.

도 1은 디젤엔진용 배기가스 정화장치의 구성을 나타낸 것이다.1 shows the configuration of an exhaust gas purification device for a diesel engine.

도 1에 도시된 바와 같이 디젤엔진용 배기가스 정화장치(100)는 디젤엔진(10) 후단에 디젤산화촉매(DOC)(20), sDPF(30) 순서로 구성된다.As shown in FIG. 1 , the exhaust gas purification device 100 for a diesel engine is configured in the order of a diesel oxidation catalyst (DOC) 20 and sDPF 30 at the rear end of the diesel engine 10 .

상기 디젤산화촉매(20)는 디젤엔진에서 배출되는 미연소 탄화수소는 제거하고, 일산화질소(NO)는 산화시켜 sDPF 자연재생에 필요한 이산화질소(NO2)를 생성한다. The diesel oxidation catalyst 20 removes unburned hydrocarbons discharged from the diesel engine, and oxidizes nitrogen monoxide (NO) to generate nitrogen dioxide (NO 2 ) necessary for natural regeneration of sDPF.

상기 sDPF(30)는 상기 디젤산화촉매(20) 후단에 설치되어 배기가스에 포함된 입자상물질(PM)을 포집하는 선택적 환원촉매가 코팅된 디젤입자상 필터이며, sDPF(30) 상에서는 전단에서 주입된 환원제와 질소산화물(NOx)의 SCR 반응과 NO2와 PM의 자연재생 반응이 경쟁적으로 일어난다.The sDPF (30) is a diesel particulate filter installed at the rear end of the diesel oxidation catalyst (20) and coated with a selective reduction catalyst for collecting particulate matter (PM) contained in exhaust gas, and on the sDPF (30), injected from the front end SCR reaction of reducing agent and nitrogen oxide (NOx) and natural regeneration reaction of NO 2 and PM occur competitively.

상기 sDPF(30)에는 촉매로 오산화바나듐(V2O5)계 촉매 및 제올라이트(Zeolite)계 촉매를 사용할 수 있으며, 상기 오산화바나듐(V2O5)계 촉매는 오산화바나듐(V2O5)을 활성물질로 삼산화텅스텐(WO3)과 이산화 타이타늄(TiO2)을 포함하는 조성으로 구성될 수 있으며, 조촉매로 이산화세륨(CeO2) 등의 전이 금속을 사용할 수 있으며, 또한 상기 제올라이트(Zeolite)계 촉매는 바람직하게 구리(Cu), 철(Fe) 등과 같은 원소로 치환된 제올라이트 계열 세라믹 촉매를 사용할 수 있다.The sDPF 30 may use a vanadium pentoxide (V 2 O 5 )-based catalyst and a zeolite-based catalyst as a catalyst, and the vanadium pentoxide (V 2 O 5 )-based catalyst is vanadium pentoxide (V 2 O 5 ) may be composed of a composition containing tungsten trioxide (WO 3 ) and titanium dioxide (TiO 2 ) as an active material, and a transition metal such as cerium dioxide (CeO 2 ) may be used as a co-catalyst, and also the zeolite (Zeolite) )-based catalyst may preferably be a zeolite-based ceramic catalyst substituted with an element such as copper (Cu) or iron (Fe).

디젤엔진용 배기가스 정화장치에서 상기 디젤산화촉매(20) 후단 및 sDPF(30) 전단 사이에는 환원제를 분사하는 환원제 분사구(41)가 형성될 수 있다.In the exhaust gas purification apparatus for a diesel engine, a reducing agent injection port 41 for injecting a reducing agent may be formed between the rear end of the diesel oxidation catalyst 20 and the front end of the sDPF 30 .

상기 환원제 분사구(41)를 통해 배기가스 정화장치 내로 분사되는 환원제는 NH3(g), NH3(aq), urea(aq), urea(s) 등 암모니아(NH3)계 전구물질이 사용될 수 있다.The reducing agent injected into the exhaust gas purification device through the reducing agent injection port 41 is ammonia (NH 3 )-based precursors such as NH 3 (g), NH 3 (aq), urea(aq), urea(s). Can be used. have.

sDPF 전단과 후단의 압력을 측정하는 압력센서(51, 52)에서 sDPF 압력을 측정하여 차압을 계산하고, sDPF 후단에 설치된 질소산화물 센서(60)는 sDPF 거쳐 배출되는 배기가스 내에 질소산화물(NOx) 농도를 측정함으로써 배기가스 정화장치의 적정 운전 여부를 지속적으로 감사한다.The sDPF pressure is measured by the pressure sensors 51 and 52 that measure the pressure at the front and rear end of the sDPF to calculate the differential pressure, and the nitrogen oxide sensor 60 installed at the rear end of the sDPF is nitrogen oxide (NOx) in the exhaust gas discharged through the sDPF. By measuring the concentration, it continuously audits whether the exhaust gas purification system is operating properly.

도 2 및 도 3은 본 발명의 일 실시예에 따른 배기가스 정화장치의 제어방법의 순서도로, 상기 도 1과 같은 디젤엔진용 배기가스 정화장치에서 질소산화물(NOx)의 정화 효율이 저하되고 sDPF의 차압이 상승이 발생하면, 환원제 주입을 중단하여 sDPF를 재생하고, 환원제 주입조건을 재산정하는 제어방법을 나타낸 것이다.2 and 3 are flowcharts of a control method of an exhaust gas purification apparatus according to an embodiment of the present invention. In the exhaust gas purification apparatus for a diesel engine as shown in FIG. 1, the purification efficiency of nitrogen oxide (NOx) is reduced and sDPF When the differential pressure of the sDPF is regenerated by stopping the reducing agent injection, the control method for re-assessing the reducing agent injection conditions is shown.

도 2에 도시된 바와 같이 (a) 디젤엔진용 배기가스 정화장치에서 sDPF의 차압 및 sDPF의 후단에 질소산화물 농도를 측정하는 단계(S110), (b) 측정된 sDPF의 차압 및 상기 질소산화물 농도 설정 값과 비교하여 sDPF의 재생반응 진행 여부를 판단하는 단계(S120), (c) sDPF 재생반응 진행하는 것으로 판단된 경우에는 환원제 분사를 중단하여 상기 sDPF를 재생하는 단계(S130), (d) sDPF의 배압 하한 값을 계산하는 단계(S140), (e) sDPF의 배압 하한 값과 재측정된 sDPF의 차압을 비교하여 환원제 재주입 여부를 판단하는 단계(S150), (f) 환원제 재주입하는 것으로 판단된 경우에는 환원제 분사량을 재산정하는 단계(S160), 및 (g) 재산정된 환원제 분사량으로 환원제를 분사하는 단계(S170)의 순서로 배기가스 정화장치의 운전이 제어될 수 있다.2, (a) measuring the differential pressure of sDPF and the nitrogen oxide concentration at the rear end of the sDPF in the exhaust gas purification device for a diesel engine (S110), (b) the measured differential pressure of the sDPF and the nitrogen oxide concentration Comparing with the set value, determining whether the regeneration reaction of the sDPF is progressing (S120), (c) If it is determined that the sDPF regeneration reaction is proceeding, stopping the reducing agent injection to regenerate the sDPF (S130), (d) Calculating the lower back pressure limit of the sDPF (S140), (e) comparing the lower back pressure of the sDPF with the re-measured differential pressure of the sDPF to determine whether to re-inject the reducing agent (S150), (f) re-injecting the reducing agent When it is determined that the reduction agent injection amount is recalculated (S160), and (g) the operation of the exhaust gas purification apparatus can be controlled in the order of the step (S170) of injecting the reducing agent with the recalculated reducing agent injection amount.

상기 (a) 단계(S110)는 디젤엔진용 배기가스 정화장치의 재생반응 수행 여부 판단하기 위한 디젤엔진용 배기가스 정화장치에서 sDPF의 차압과 질소산화물 농도 정보를 획득하는 단계이다. sDPF(30)의 전단과 후단에 위치하는 압력 센서(51, 52)로 상기 sDPF(30)의 전단 및 후단에 압력차인 차압을 측정하고, 이와 함께 sDPF(30)의 후단에 설치된 질소산화물 센서(60)를 통해 sDPF(30)을 통해 나온 배기가스의 질소산화물(NOx) 농도 값을 측정한다.The step (a) (S110) is a step of acquiring information on the differential pressure of sDPF and nitrogen oxide concentration in the exhaust gas purification device for a diesel engine for determining whether the regeneration reaction of the exhaust gas purification device for a diesel engine is performed. The differential pressure, which is a pressure difference, is measured at the front and rear ends of the sDPF 30 with the pressure sensors 51 and 52 located at the front and rear ends of the sDPF 30, and a nitrogen oxide sensor installed at the rear end of the sDPF 30 ( 60), the nitrogen oxide (NOx) concentration value of the exhaust gas emitted through the sDPF 30 is measured.

상기 (b) 단계(S120)는 상기 (a) 단계(S110)에서 측정된 sDPF의 차압 및 상기 질소산화물 농도를 기 설정된 sDPF의 차압과 질소산화물 농도와 비교하여 sDPF의 차압 및 상기 질소산화물 농도가 기 설정한 값 이상으로 도달하면 환원제 주입을 중단하고 sDPF의 재생반응을 진행을 시작할지 여부를 판단한다. 여기서 상기 재생반응은 이산화질소(NO2)와 탄소(C)가 주성분으로 이루어진 입자상물질(PM)의 화학반응을 이용한 자연재생 방법이다.The (b) step (S120) is performed by comparing the differential pressure of the sDPF and the nitrogen oxide concentration measured in the (a) step (S110) with the preset differential pressure and the nitrogen oxide concentration of the sDPF, the differential pressure of the sDPF and the nitrogen oxide concentration When it reaches more than a preset value, it is determined whether or not to stop injecting the reducing agent and start the regeneration reaction of sDPF. Here, the regeneration reaction is a natural regeneration method using a chemical reaction of particulate matter (PM) composed mainly of nitrogen dioxide (NO 2 ) and carbon (C).

도 3에서 나타낸 것처럼 (b) 단계(S120)는 상기 (a) 단계(S110)에서 측정된 상기 질소산화물 농도가 설정 농도(k1) 이상이고 상기 sDPF의 차압이 설정 차압(k2) 이상일 경우에는 sDPF 내에 입자상물질(PM)의 축적으로 인한 성능 저하로 판단하여 sDPF 재생반응을 진행으로 판단한다.As shown in FIG. 3 , (b) step (S120) is performed when the nitrogen oxide concentration measured in step (a) (S110) is greater than or equal to the set concentration (k1) and the differential pressure of the sDPF is greater than or equal to the set differential pressure (k2), sDPF The sDPF regeneration reaction is judged to be in progress by judging the performance degradation due to the accumulation of particulate matter (PM) inside.

그러나 상기 질소산화물 농도가 설정 농도(k1) 이상이나 상기 sDPF의 차압이 설정 차압(k2) 미만일 경우에는 배기가스 정화장치 내에서 환원제의 주입량이 부족한 것으로 판단하고 환원제 분사구(41)에서 환원제가 더 주입되도록 환원제 분사량 조절한다(S121).However, when the nitrogen oxide concentration is higher than the set concentration (k1) or the differential pressure of the sDPF is less than the set differential pressure (k2), it is determined that the injection amount of the reducing agent is insufficient in the exhaust gas purification device, and the reducing agent is injected more at the reducing agent injection port 41 The reducing agent injection amount is adjusted as much as possible (S121).

상기 (c) 단계(S130)는 상기 (b) 단계(S120)에서 sDPF 재생반응 진행하는 것으로 판단된 경우에는 환원제 분사를 중단하고 상기 sDPF를 재생반응을 수행하며, 상기 (c) 단계(S130)는 상기 sDPF의 차압이 감소하는 속도로 sDPF의 배압감소속도가 설정 압력(k3) 이하에 도달할 때까지 sDPF 재생반응 진행을 수행한다.In the (c) step (S130), when it is determined that the sDPF regeneration reaction proceeds in the (b) step (S120), the reducing agent injection is stopped and the sDPF regeneration reaction is performed, and the (c) step (S130) performs the sDPF regeneration reaction at a rate at which the differential pressure of the sDPF decreases until the rate of decrease of the back pressure of the sDPF reaches the set pressure (k3) or less.

상기 (d) 단계(S140)는 환원제 재주입 여부를 판단하기 위한 계산 값으로 sDPF 내의 애쉬(Ash) 축적량을 통해 sDPF의 배압 하한 값(k4)을 계산하는 단계이다. 여기서 상기 sDPF 내의 애쉬(Ash) 축적량은 디젤엔진의 누적 운전시간 및 엔진오일 사용량 등과 같은 애쉬(Ash) 발생 조건 등을 이용하여 애쉬(Ash) 축적량을 계산하여 sDPF의 배압 하한 값(k4)을 산정한다.The step (d) (S140) is a step of calculating the lower limit value of the back pressure (k4) of the sDPF through the amount of ash accumulated in the sDPF as a calculated value for determining whether or not to re-inject the reducing agent. Here, the ash accumulation in the sDPF is calculated by calculating the ash accumulation using the ash generation conditions such as the accumulated operating time of the diesel engine and the amount of engine oil used to calculate the lower back pressure lower limit value (k4) of the sDPF. do.

(e) 단계(S150)는 상기 (d) 단계(S140)에서 sDPF의 배압 하한 값(k4)과 압력 센서(51, 52)를 통해 재측정된 sDPF의 차압을 비교하여 환원제 재주입 여부를 판단한다.(e) step (S150) compares the lower limit value (k4) of the back pressure of the sDPF in step (S140) and the differential pressure of the sDPF re-measured through the pressure sensors 51 and 52 to determine whether or not to re-inject the reducing agent do.

구체적으로, 상기 (e) 단계(S150)에서 환원제 재주입 여부를 판단은, sDPF의 배압감소속도 또는 이산화질소(NO2) 농도 증가속도로 제1 판단하고, 상기 (d) 단계(S140)에서 계산된 sDPF의 배압 하한 값(k4)을 이용하여 환원제 재주입 여부를 제2 판단한다.Specifically, the determination of whether to re-inject the reducing agent in (e) step (S150) is a first determination of the rate of increase in back pressure or nitrogen dioxide (NO 2 ) concentration of sDPF, and the (d) calculation in step (S140). A second determination is made as to whether or not to re-inject the reducing agent using the lower limit value (k4) of the back pressure of the sDPF.

도 3에 나타낸 것처럼, 상기 sDPF의 차압이 감소하는 속도로 sDPF의 배압감소속도가 설정 압력 값(k3)과 비교하여, sDPF의 배압감소속도를 설정 압력 값(k3)보다 이하일 경우 sDPF 재생반응을 완료하여 환원제 재주입의 제1 판단을 수행한다(S151).As shown in FIG. 3 , as the rate at which the differential pressure of the sDPF decreases, the rate of decrease of the back pressure of the sDPF is compared with the set pressure value (k3). To complete the first determination of re-injection of the reducing agent (S151).

그 다음 압력 센서(51, 52)를 통해 재측정된 sDPF의 차압이 상기 (d) 단계(S140)에서 sDPF의 배압 하한 값(k4) 이하일 경우 환원제 분사를 재개하는 환원제 재주입의 제2 판단을 수행한다(S152).Then, when the differential pressure of the sDPF re-measured through the pressure sensors 51 and 52 is below the lower back pressure lower limit value (k4) of the sDPF in step (d) (S140), the second determination of re-injection of the reducing agent to restart the reducing agent injection is performed (S152).

또 다른 환원제 재주입 판단으로 상기 sDPF의 후단에서 측정되는 배기가스의 이산화질소(NO2) 농도를 기반으로 이산화질소(NO2) 농도증가속도가 설정값 이하에서 sDPF의 차압이 sDPF의 배압 하한 값 이하일 때로 대체하여 환원제 분사량을 재산정하여 배기가스 정화장치의 제어방법에 사용될 수 있다.As another reducing agent re-injection judgment, based on the nitrogen dioxide (NO 2 ) concentration of the exhaust gas measured at the rear end of the sDPF, when the nitrogen dioxide (NO 2 ) concentration increase rate is less than the set value, when the differential pressure of the sDPF is less than the lower limit of the back pressure of the sDPF Alternatively, it can be used in the control method of the exhaust gas purification device by recalculating the injection amount of the reducing agent.

만일 상기 (e) 단계(S150)에서 상기 재측정된 sDPF의 차압이 상기 sDPF의 배압 하한 값 미만일 경우로 sDPF 차압이 상기 sDPF의 배압 하한 값(k4)에 도달하지 못하면, 배기가스 정화장치의 점검으로 판단한다(S153).If the re-measured differential pressure of the sDPF in step (S150) is less than the lower back pressure lower limit of the sDPF, and the sDPF differential pressure does not reach the lower back pressure lower limit value (k4) of the sDPF, check the exhaust gas purification device It is determined as (S153).

상기 배기가스 정화정치의 점검(S153)은 사용자에게 점검필요 신호를 보내어 sDPF 내에서 애쉬(Ash) 제거, 배압계 정상작동 점검, 촉매 비활성화 점검 등과 같은 별도의 배기가스 정화장치의 점검을 수행한다.In the inspection (S153) of the exhaust gas purification value, a separate inspection of the exhaust gas purification device is performed, such as removing ash in the sDPF, checking the normal operation of the back pressure gauge, and checking the catalyst deactivation by sending a check necessary signal to the user.

상기 (f) 단계(S160)는 상기 (e) 단계(S150)에서 환원제 재분사하는 것으로 판단된 경우에는 sDPF 차압이 sDPF의 배압 하한 값(k4) 이하인 재생완료 시점에서 측정된 sDPF 후단의 질소산화물(NOx) 농도 값을 감지하여 질소산화물의 배출허용 기준을 만족하기 위한 환원제 주입량을 재산정하는 단계이다.In the (f) step (S160), when it is determined that the reducing agent is re-injected in the (e) step (S150), the nitrogen oxide at the rear end of the sDPF measured at the regeneration completion point when the sDPF differential pressure is equal to or less than the lower back pressure lower limit value (k4) of the sDPF. This is the step of re-calculating the amount of reducing agent injected to satisfy the emission limit of nitrogen oxides by sensing the (NOx) concentration value.

(g) 단계(S170)는 상기 (f) 단계(S160)에서 재산정된 환원제 분사량으로 환원제 분사구에서 분사되는 환원제의 분사를 제어한다.(g) step (S170) controls the injection of the reducing agent injected from the reducing agent injection port with the reducing agent injection amount recalculated in the (f) step (S160).

상기와 같은 (a) 단계 내지 (g) 단계의 배기가스 정화장치 제어방법을 반복 수행하여 지속 운전할 수 있다.It is possible to continuously operate by repeatedly performing the exhaust gas purification device control method of steps (a) to (g) as described above.

도 4는 배기가스 정화장치의 운전시간에 따른 sDPF의 차압 및 후단에서 측정되는 질소산화물(NOx) 및 이산화질소(NO2) 농도를 나타낸 그래프이다.Figure 4 is a graph showing the nitrogen oxide (NOx) and nitrogen dioxide (NO 2 ) concentrations measured at the differential pressure and the rear end of the sDPF according to the operating time of the exhaust gas purification device.

도 4에 나타낸 것과 같이 배기가스 정화장치의 가동 후 질소산화물(NOx)의 배출농도는 90 내지 100 ppm 정도이며, sDPF의 차압은 15 mbar에서 25 mbar로 빠르게 상승한다.As shown in FIG. 4 , the emission concentration of nitrogen oxide (NOx) is about 90 to 100 ppm after the operation of the exhaust gas purification device, and the differential pressure of the sDPF rises rapidly from 15 mbar to 25 mbar.

배기가스 정화장치의 가동 운전 8시간 후에는 환원제의 주입이 중단되었을 때, 환원제의 주입중단에 따라서 sDPF 후단에서 측정된 이산화질소(NO2) 농도는 약 20 ppm에서 130 ppm으로 급격하게 상승한다. 이후, sDPF 내부에 축적된 입자상물질(PM)이 이산화질소(NO2)에 의해서 산화되는 재생반응으로 자연재생이 진행됨에 따라서 이산화질소(NO2)의 소모량이 감소하여 sDPF 후단에서 측정되는 이산화질소(NO2) 농도는 서서히 증가한다. 그러나 이산화질소(NO2) 농도가 증가하고 배기가스의 열원으로 sDPF 내부에 축적된 입자상물질이 제거되면서 sDPF 재생반응 완료 sDPF 후단에서 측정되는 이산화질소(NO2) 값이 변화하지 않고 일정하게 유지된다.When the injection of the reducing agent is stopped after 8 hours of operation of the exhaust gas purification device, the nitrogen dioxide (NO 2 ) concentration measured at the rear end of the sDPF according to the stop of the injection of the reducing agent rapidly rises from about 20 ppm to 130 ppm. Thereafter, as the natural regeneration proceeds as a regeneration reaction in which the particulate matter (PM) accumulated inside the sDPF is oxidized by nitrogen dioxide (NO 2 ), the consumption of nitrogen dioxide (NO 2 ) decreases and nitrogen dioxide (NO 2 ) measured at the rear end of the sDPF ) concentration increases gradually. However, as the nitrogen dioxide (NO 2 ) concentration increases and particulate matter accumulated inside the sDPF is removed as a heat source of the exhaust gas, the nitrogen dioxide (NO 2 ) value measured at the rear end of the sDPF after the sDPF regeneration reaction is completed does not change and remains constant.

그리고 환원제 유입 중단 시간인 sDPF 재생반응 진행 동안 sDPF의 차압은 지속적으로 감소한다. 도 4에 도시된 바와 같이 환원제 주입 중단 8시간 후에는 sDPF의 배압감소속도가 0.3 mbar/h에 도달하게 되면, 이때의 sDPF의 배압 하한 값은 16 mbar 이하로 환원제 주입이 재개된다. 여기서 상기 sDPF의 배압감소속도는 단위 시간 당 감소되는 sDPF의 차압으로 환원제 유입 중단 시간 동안 감소되는 sDPF의 차압 속도를 의미한다. And the differential pressure of sDPF continuously decreases during the sDPF regeneration reaction, which is the time to stop the inflow of reducing agent. As shown in FIG. 4, when the back pressure reduction rate of sDPF reaches 0.3 mbar/h after 8 hours of stopping the injection of the reducing agent, the lower limit of the back pressure of the sDPF at this time is 16 mbar or less, and the injection of the reducing agent is restarted. Here, the back pressure reduction rate of the sDPF is the differential pressure of the sDPF that is decreased per unit time, and it means the differential pressure rate of the sDPF that is decreased during the reducing agent inflow stop time.

재생반응이 완료되고 환원제 주입 전 sDPF 후단에서 측정되는 질소산화물(NOx) 농도 및 엔진의 운전조건 등을 바탕으로 환원제 주입조건을 재산정하여 환원제를 다시 유입하고 배기가스 정화장치의 정화과정을 다시 복귀한다.After the regeneration reaction is completed, the reducing agent injection conditions are recalculated based on the nitrogen oxide (NOx) concentration measured at the rear end of the sDPF before the reducing agent injection and the engine operating conditions, etc. .

여기서 환원제의 재주입은 sDPF의 배압감소속도 또는 sDPF 후단에서 측정된 NO2 농도증가속도가 설정값 이하일 때, sDPF 배압 하한값에 도달하였는지 확인하여 진행한다.Here, the re-injection of the reducing agent is performed by checking whether the sDPF back pressure lower limit is reached when the back pressure decrease rate of the sDPF or the NO 2 concentration increase rate measured at the rear end of the sDPF is less than the set value.

상기 과정을 통해서 NOx 배출농도는 20 ppm 및 배압은 17 내지 20 mbar 범위에서 급격한 상승 없이 안정적으로 운전되는 것을 확인할 수 있다. Through the above process, it can be confirmed that the NOx emission concentration is 20 ppm and the back pressure is stably operated without a sharp increase in the range of 17 to 20 mbar.

앞서 살펴본 바와 같이 본 발명의 배기가스 정화장치의 제어방법을 통해서 배기가스 정화장치의 배압 안정성과 질소산화물(NOx) 제거효율을 확보하고, 배기가스 정화장치 내로 적정 환원제 주입조건을 유지함으로써 운전 안정성을 높인다.As described above, through the control method of the exhaust gas purification device of the present invention, the back pressure stability and nitrogen oxide (NOx) removal efficiency of the exhaust gas purification device are secured, and operation stability is improved by maintaining an appropriate reducing agent injection condition into the exhaust gas purification device. elevate

10 : 디젤엔진
20 : DOC
30 : sDPF
41 : 환원제 분사구
51, 52 : 압력 센서
60 : 질소산화물 센서
100 : 배기가스 정화장치
10: diesel engine
20: DOC
30: sDPF
41: reducing agent nozzle
51, 52: pressure sensor
60: nitrogen oxide sensor
100: exhaust gas purification device

Claims (11)

(a) 디젤엔진용 배기가스 정화장치에서 sDPF의 차압 및 상기 sDPF의 후단에 질소산화물 농도를 측정하는 단계;
(b) 상기 (a) 단계에서 측정된 상기 sDPF의 차압 및 상기 질소산화물 농도 설정 값과 비교하여 sDPF 재생 진행 여부를 판단하는 단계; 및
(c) 상기 (b) sDPF 단계에서 sDPF 재생 진행하는 것으로 판단된 경우에는 환원제 분사를 중단하고, sDPF의 배압감소속도가 설정 값 이하가 될 때까지 sDPF를 재생하는 단계; 를 포함하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
(a) measuring the differential pressure of the sDPF and the nitrogen oxide concentration at the rear end of the sDPF in an exhaust gas purification device for a diesel engine;
(b) determining whether sDPF regeneration proceeds by comparing the differential pressure of the sDPF measured in step (a) and the nitrogen oxide concentration set value; and
(c) stopping the reducing agent injection when it is determined that sDPF regeneration proceeds in step (b) sDPF, and regenerating the sDPF until the back pressure reduction rate of the sDPF becomes less than or equal to a set value; Control method of an exhaust gas purification device comprising a.
제1항에 있어서,
상기 (b) 단계에서 상기 질소산화물 농도가 설정 농도 이상이고 상기 sDPF의 차압이 설정 차압 이상일 경우에는 sDPF 재생 진행으로 판단하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
According to claim 1,
In the step (b), when the nitrogen oxide concentration is greater than or equal to a preset concentration and the differential pressure of the sDPF is greater than or equal to a preset differential pressure, it is determined that sDPF regeneration proceeds.
제1항에 있어서,
상기 (b) 단계에서 상기 질소산화물 농도가 설정 농도 이상이나 상기 sDPF의 차압이 설정 차압 미만일 경우에는 상기 디젤엔진용 배기가스 정화장치 내에 환원제을 분사하도록 환원제 분사량을 제어하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
According to claim 1,
In the step (b), when the nitrogen oxide concentration is higher than or equal to a preset concentration or the differential pressure of the sDPF is less than a preset differential pressure, the exhaust gas purification device, characterized in that the reducing agent injection amount is controlled to inject the reducing agent into the exhaust gas purification device for the diesel engine control method.
제1항에 있어서,
상기 (c) 단계 이후에, (d) sDPF의 배압 하한 값을 계산하는 단계;를 포함하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
According to claim 1,
After the step (c), (d) calculating a lower limit value of the back pressure of the sDPF; the control method of the exhaust gas purification apparatus comprising the.
제4항에 있어서,
상기 (d) 단계는 sDPF 내에서 애쉬(Ash) 축적량을 통해 sDPF의 배압 하한 값을 계산하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
5. The method of claim 4,
The step (d) is a control method of an exhaust gas purification apparatus, characterized in that calculating the lower limit value of the back pressure of the sDPF through the amount of ash (Ash) accumulated in the sDPF.
제4항에 있어서,
상기 (d) 단계 이후에, (e) 상기 sDPF의 배압 하한 값과 재측정된 sDPF의 차압을 비교하여 환원제 재주입 여부를 판단하는 단계;를 포함하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
5. The method of claim 4,
After step (d), (e) determining whether to re-inject the reducing agent by comparing the lower limit value of the back pressure of the sDPF and the re-measured differential pressure of the sDPF; Control method of an exhaust gas purification apparatus comprising: .
제6항에 있어서,
상기 (e) 단계는,
sDPF의 배압감소속도 또는 이산화질소(NO2) 농도 증가속도로 환원제 재주입 여부를 판단하는 제1 판단 단계; 및
상기 재측정된 sDPF의 차압과 상기 sDPF의 배압 하한 값을 비교하여 환원제 재주입 여부를 판단하는 제2 판단 단계;를 포함하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
7. The method of claim 6,
Step (e) is,
A first determination step of determining whether to re-inject the reducing agent at the rate of decreasing back pressure or nitrogen dioxide (NO 2 ) concentration of sDPF; and
and a second determination step of determining whether to re-inject the reducing agent by comparing the re-measured differential pressure of the sDPF with the lower limit of the back pressure of the sDPF.
제7항에 있어서,
상기 제1 판단 단계에서 상기 sDPF의 배압감소속도 또는 sDPF 후단에서 측정된 이산화질소(NO2) 농도가 기 설정 값보다 이하이고, 상기 제2 판단 단계에서 상기 재측정된 sDPF의 차압이 상기 sDPF의 배압 하한 값 이하일 경우에는 환원제 재주입하는 것으로 판단하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
8. The method of claim 7,
In the first determination step, the back pressure decrease rate of the sDPF or the nitrogen dioxide (NO 2 ) concentration measured at the rear end of the sDPF is less than the preset value, and the differential pressure of the re-measured sDPF in the second determination step is the back pressure of the sDPF If the lower limit value or less, the control method of the exhaust gas purification device, characterized in that it is determined that the re-injection of the reducing agent.
제6항에 있어서,
상기 (e) 단계에서 상기 재측정된 sDPF의 차압이 상기 sDPF의 배압 하한 값 미만일 경우에는 배기가스 정화장치의 점검으로 판단하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
7. The method of claim 6,
When the differential pressure of the sDPF re-measured in the step (e) is less than the lower limit of the back pressure of the sDPF, the control method of the exhaust gas purification device, characterized in that it is determined as an inspection of the exhaust gas purification device.
제6항에 있어서,
상기 (e) 단계 이후에, (f) 상기 (e) 단계에서 환원제 재주입하는 것으로 판단된 경우에는 sDPF의 후단에 질소산화물 농도 측정하여 환원제 분사량을 재산정하는 단계;를 포함하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
7. The method of claim 6,
After the step (e), (f) when it is determined that the reducing agent is re-injected in the step (e), measuring the nitrogen oxide concentration at the rear end of the sDPF to re-calculate the reducing agent injection amount; Exhaust comprising a; Control method of gas purifier.
제10항에 있어서,
상기 (f) 단계 이후에, (g) 상기 (f) 단계에서 재산정된 환원제 분사량으로 환원제를 분사하는 단계;를 포함하는 것을 특징으로 하는 배기가스 정화장치의 제어방법.
11. The method of claim 10,
After step (f), (g) injecting a reducing agent at the injection amount of the reducing agent recalculated in step (f); Control method of an exhaust gas purification apparatus comprising the.
KR1020210036666A 2021-03-22 2021-03-22 Control method of exhaust gas purification device KR20220131689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210036666A KR20220131689A (en) 2021-03-22 2021-03-22 Control method of exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210036666A KR20220131689A (en) 2021-03-22 2021-03-22 Control method of exhaust gas purification device

Publications (1)

Publication Number Publication Date
KR20220131689A true KR20220131689A (en) 2022-09-29

Family

ID=83461950

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210036666A KR20220131689A (en) 2021-03-22 2021-03-22 Control method of exhaust gas purification device

Country Status (1)

Country Link
KR (1) KR20220131689A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959318B1 (en) 2006-09-20 2010-05-26 지엠 글로벌 테크놀러지 오퍼레이션스, 인코포레이티드 METHOD AND APPARATUS TO SELEXTIVELY REDUCE NOx IN AN EXHAUST GAS FEEDSTREAM

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959318B1 (en) 2006-09-20 2010-05-26 지엠 글로벌 테크놀러지 오퍼레이션스, 인코포레이티드 METHOD AND APPARATUS TO SELEXTIVELY REDUCE NOx IN AN EXHAUST GAS FEEDSTREAM

Similar Documents

Publication Publication Date Title
JP5296291B2 (en) Exhaust gas purification system
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP6135198B2 (en) Control method of exhaust gas aftertreatment device
US8778053B2 (en) Method of removing ash from particulate filter
WO2014162813A1 (en) METHOD FOR DETERMINING DEGRADATION OF NOx STORAGE REDUCTION CATALYST IN EXHAUST GAS AFTERTREATMENT DEVICE
JP5035263B2 (en) Exhaust gas purification device for internal combustion engine
JP4686547B2 (en) Engine-driven vehicle with exhaust gas purification
US9149801B2 (en) Method and system for adapting a clean filter correction map for a selective catalyst reduction filter
CN109751105B (en) Down-flow selective catalytic reduction steady state ammonia slip detection with positive perturbations
US9562452B2 (en) System and method for controlling regeneration within an after-treatment component of a compression-ignition engine
CN112682144B (en) Method and device for determining carbon loading of DPF
CN109469540B (en) Selective catalytic reduction steady state ammonia slip detection under positive disturbance
KR101316856B1 (en) System for control urea injection quantity of vehicle and method thereof
JP6175292B2 (en) NOx sensor failure determination device and failure determination method
US10309278B2 (en) Method for desulfurization of selective catalytic reduction devices
JP6344259B2 (en) Urea addition control device, learning device
KR20220131689A (en) Control method of exhaust gas purification device
CN105518262B (en) For removing the exhaust gas post-treatment device and method of oxysulfide
KR102364271B1 (en) Exhaust gas purification device including combined catalyst filter and a control method of the same
US10323559B1 (en) Methods for controlling selective catalytic reduction systems
JP6308548B2 (en) Exhaust gas purification device for internal combustion engine
JP7140046B2 (en) Exhaust gas purification device
KR101461869B1 (en) Method for preventing absorption of hydrocarbon in selective catalytic reduction catalyst and system thereof
JP6759687B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
CN114458429A (en) Calibration method for enhancing passive regeneration of particle catcher, calibration module and readable storage medium