KR20220118396A - 입자 측정 장치 - Google Patents
입자 측정 장치 Download PDFInfo
- Publication number
- KR20220118396A KR20220118396A KR1020227008457A KR20227008457A KR20220118396A KR 20220118396 A KR20220118396 A KR 20220118396A KR 1020227008457 A KR1020227008457 A KR 1020227008457A KR 20227008457 A KR20227008457 A KR 20227008457A KR 20220118396 A KR20220118396 A KR 20220118396A
- Authority
- KR
- South Korea
- Prior art keywords
- light
- optical element
- diffractive optical
- particle
- particles
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims description 167
- 230000003287 optical effect Effects 0.000 claims abstract description 88
- 238000001514 detection method Methods 0.000 claims abstract description 80
- 230000033001 locomotion Effects 0.000 claims description 29
- 238000009792 diffusion process Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 18
- 238000004458 analytical method Methods 0.000 claims description 14
- 238000003384 imaging method Methods 0.000 claims description 14
- 238000000149 argon plasma sintering Methods 0.000 claims description 13
- 238000007493 shaping process Methods 0.000 claims description 10
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000005259 measurement Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 239000012530 fluid Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010191 image analysis Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000003921 particle size analysis Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0211—Investigating a scatter or diffraction pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0227—Investigating particle size or size distribution by optical means using imaging; using holography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
- G01N15/1436—Optical arrangements the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4788—Diffraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1029—Particle size
-
- G01N2015/1087—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1493—Particle size
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N2021/0106—General arrangement of respective parts
- G01N2021/0112—Apparatus in one mechanical, optical or electronic block
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
- G01N2021/052—Tubular type; cavity type; multireflective
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N2021/8592—Grain or other flowing solid samples
Landscapes
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
익스팬더가, 광원이 출사한 조사광을 회절 광학 소자의 요구를 충족하는 형상으로 확대하고, 평행광으로 하여 회절 광학 소자에 입사시킨다. 회절 광학 소자가, 입사한 조사광을 그의 초점 위치에 있어서의 단면이 가늘고 긴 직사각형 형상을 이루는 플랫 톱 빔으로 정형한다. 정형된 조사광에 의해 형성되는 검출 영역에 있어서는 빛의 강도 분포를 대략 균일하게 할 수 있다.
Description
본 발명은, 입자 측정 장치에 관한 것이다.
종래, 시료 중에 부유하는 입자의 크기를 구하는 하나의 수법으로서, FPT(flow particle tracking)법이 알려져 있다. FPT법은, 시료에 빛을 조사하여 입자로부터의 산란광을 검출함으로써 입자의 움직임을 추적하고, 확산에 의한 이동량으로부터 기하 치수에 가까운 입자의 크기를 측정하는 수법이고, FPT법을 이용한 측정 장치(이하, 「FPT 장치」라고 칭함)로서, 확산에 의한 입자의 운동을 시료의 흐름에 의한 입자의 수송 운동으로부터 분리하여 입경을 측정하는 것이 알려져 있다(예를 들면, 특허문헌 1을 참조).
전술한 FPT 장치에 있어서는, 입자가 검출 영역을 통과하는 사이에 그의 움직임을 소정 시간 간격으로 촬상하여 각 시점에 있어서의 입자의 위치를 특정하고, 각 시간 내의 이동 거리를 구하여 평균 2승 변위를 산출하고, 이에 기초하여 입경을 측정한다(이하, 이러한 입경을 「확산 계수 상당경(徑)」이라고 칭함). 여기에서, 조사광이 가우시안 빔이면, 검출 영역에 있어서의 입자 통과 방향(매체의 흐름 방향)의 길이가 일정하지 않게 된다. 그 경우에는, 입자가 검출 영역의 어느 위치를 통과하는지에 따라 촬상 가능한 횟수에 차이가 생긴다. 즉, 입자의 통과 위치에 따라서 입경의 측정 정밀도에 편차가 생기고, 결과적으로, FPT 장치의 입경 분해능은 낮아진다. FPT 장치에 있어서는, 입자의 확산 계수 상당경과 산란광 강도를 동시에 특정함으로써 입자의 굴절률을 구할 수 있지만, 확산 계수 상당경과 산란광 강도의 측정값의 편차가 상승(相乘)하여, 굴절률의 정밀도에도 영향을 미친다. 또한, 광 산란식의 입자 측정 장치에 있어서는, 검출된 빛의 강도에 기초하여 입경이 구해지는(이하, 이러한 입경을 「광 산란 상당경」이라고 칭함) 점에서, 조사광의 에너지 밀도가 검출 영역에 있어서 일률적이지 않은 경우에는, 역시 입자 측정 장치의 입경 분해능은 낮아진다.
또한, 가령 검출 영역을 작게 설정하면, 검출 영역에 있어서의 빛 에너지 밀도를 높일 수 있어, 입자의 검출 감도를 향상시키는 것이 가능해진다고 생각된다. 그러나, 이 경우에는 시료의 실효적인 유량이 감소하여, 입자 측정 장치의 성능에도 영향을 미치기 때문에, 검출 영역을 작게 하는 것은 바람직하지 않다.
그래서, 본 발명은, 입경 분해능을 향상시키는 기술의 제공을 과제로 한다.
상기의 과제를 해결하기 위해, 본 발명은 이하의 입자 측정 장치를 채용한다. 또한, 이하의 괄호 중의 문언은 어디까지나 예시이고, 본 발명은 이에 한정되는 것은 아니다.
즉, 본 발명의 입자 측정 장치는, 입자에 조사하는 빛을 그의 초점 위치에 있어서의 단면이 대략 띠 형상의 형상을 이루는 플랫 톱 빔(flat top beam)으로 정형(整形)하는 회절 광학 소자를 구비하고 있다. 보다 구체적으로는, 시료의 유로가 내부에 형성된 플로우 셀과, 조사광을 출사하는 광원과, 빛의 조사에 의해 유로의 소정 구간 내에 형성되는 검출 영역을 통과하는 시료에 포함되는 입자로부터의 산란광을, 소정 구간을 시료의 흐름 방향으로 가상적으로 연장시킨 위치로부터 검출하는 검출 수단과, 산란광에 기초하여 입자의 입경을 해석하는 해석 수단을 추가로 구비하고, 회절 광학 소자는, 조사광을 정형하여 소정 구간을 흐르는 시료에 조사한다.
광선을 플랫 톱으로 정형하는 수법으로서, 실린드리컬 렌즈나 비구면 렌즈 등의 조합이 알려져 있다. 이들 수법은, 광선의 일부분만이 플랫 톱 형상이 되는, 고도의 조정이 필요해지는 등, 실용하려면 과제가 많다. 이에 대하여, 회절 광학 소자는, 고효율로 용이하게 플랫 톱 형상으로 할 수 있는 점에서 우위성이 있다.
상기의 태양의 입자 측정 장치는 회절 광학 소자를 구비하고 있고, 이 입자 측정 장치에 있어서는, 회절 광학 소자에 의해 조사광은 그의 초점 위치에 있어서의 단면이 대략 띠 형상(가늘고 긴 직사각형 형상)의 형상의 플랫 톱 빔으로 정형되고, 초점 심도 방향으로 시트 형상의 조사광이 된다. 그리고, 이와 같이 정형된 조사광이 조사됨으로써 입자의 검출 영역이 형성된다. 따라서, 이 태양에 의하면, 조사광을 시트 형상으로 함으로써, 검출 영역에 있어서의 조사광의 에너지 밀도를 높게 할 수 있어 입자 검출 감도의 향상을 도모할 수 있다. 또한, 광범위하게 부유하는 입자로부터의 산란광을 인식할 수 있어 검출 유량을 늘릴 수 있다. 또한, 플랫 톱 빔을 이용함으로써, 입경 분해능(입경의 해석 정밀도)을 향상시키는 것이 가능해진다.
또한, 상기의 입자 측정 장치에 있어서, 광원이 출사한 조사광을 회절 광학 소자의 요구를 충족하는 지름 및 열림각으로 조정하여 회절 광학 소자에 입사시키는 조정 수단을 추가로 구비하고 있다.
이 태양의 입자 측정 장치에 있어서는, 광원이 출사한 조사광을 조정 수단(빔 익스팬더)이 회절 광학 소자의 요구를 충족하는 형상(지름 및 열림각)이 되도록 조정한다. 따라서, 이 태양에 의하면, 회절 광학 소자에는 최적인 형상으로 조정된 조사광이 입사하기 때문에, 회절 광학 소자에 의한 조사광의 정형을 보다 정밀도 좋게 실현시킬 수 있다.
바람직하게는, 상기의 어느 측정 장치에 있어서, 회절 광학 소자는, 조사광을, 초점 심도 방향에 있어서의 빛 에너지 밀도의 편차가 소정 범위 내인 플랫 톱 빔으로 정형한다.
이 태양의 입자 측정 장치에 의하면, 검출 영역의 어느 지점에 있어서도 광 강도는 대략 균일해지기 때문에, 동일한 입경을 갖는 입자가 검출 영역의 어느 지점을 통과한다고 해도, 그 입자로부터의 산란광을 대략 동일한 강도로 검출할 수 있어, 입경 분해능의 향상에 기여하는 것이 가능해진다.
보다 바람직하게는, 상기의 어느 입자 측정 장치에 있어서, 회절 광학 소자에 의한 조사광의 정형의 과정에서 생긴 고차 회절광을 제거하는 제거 수단을 추가로 구비하고 있다. 또한, 제거 수단은, 간격을 두고 배치된 형상이 상이한 복수의 슬릿에 의해, 회절 광학 소자에 의해 정형된 조사광을 통과시키면서 고차 회절광을 단계적으로 제거한다.
이 태양의 입자 측정 장치에 있어서는, 제거 수단(슬릿판)이 회절 광학 소자에 의한 조사광의 정형의 과정에서 생긴 고차 회절광을 제거하면서 정형된 조사광을 통과시켜 초점으로 향하게 한다. 따라서, 이 태양에 의하면, 측정에 필요한 빛은 확보되는 것에 대하여 측정의 방해가 되는 미광(迷光)은 제거되기 때문에, 노이즈를 저감시킬 수 있다.
더욱 바람직하게는, 상기의 어느 입자 측정 장치에 있어서, 검출 수단은, 입자로부터의 산란광을 소정의 프레임 레이트로 촬상하고, 해석 수단은, 개개의 프레임 화상에 촬상된 산란광에 기초하는 입자의 휘점 위치로부터 흐름 방향에 대하여 수직인 면에 있어서의 입자의 이동량을 산출하고, 이동량에 기초하여 입자의 확산 계수 상당의 입경을 해석한다.
이 태양의 입자 측정 장치에 있어서는, 입자로부터의 산란광이 검출 수단(촬상기)에 의해 촬상되고, 개개의 프레임 화상에 촬상된 산란광에 기초하여, 시료의 흐름 방향(Y 방향)에 대하여 수직인 면(XZ 평면)에 있어서의 입자의 이동량이 산출되고, 산출된 이동량에 기초하여 입자의 입경, 즉 확산 계수 상당경이 해석된다. 즉, 이 태양의 입자 측정 장치는, FPT 장치이다.
이 태양에 의하면, 검출 영역을 형성하는 조사광이 플랫 톱 형상으로 정형되어 있는 점에서 검출 영역의 어느 지점에 있어서도 광 강도는 대략 균일하기 때문에, 입자가 어느 위치를 Y 방향으로 통과한다고 해도, 입자의 움직임을 대략 동일한 프레임수에 걸쳐 촬상하여 일정한 횟수로 추적할 수 있어, 확산 계수 상당경의 입경 분해능을 향상시키는 것이 가능해진다.
혹은, 상기의 어느 입자 측정 장치에 있어서, 검출 수단은, 산란광을 수광하여 강도에 따른 크기의 신호를 출력하고, 해석 수단은, 신호에 기초하여 입자의 광 산란 상당의 입경을 해석한다.
이 태양의 입자 측정 장치에 있어서는, 입자로부터의 산란광이 검출 수단(예를 들면, 수광 소자)에 의해 수광되어 그의 강도에 따른 신호가 출력되고, 신호에 기초하여 입자의 입경, 즉 광 산란 상당경이 해석된다. 즉, 이 태양의 입자 측정 장치는, 광 산란식의 입자 계수기이다.
이 태양에 의하면, 검출 영역을 형성하는 조사광이 플랫 톱 형상으로 정형되어 있는 점에서 검출 영역의 어느 지점에 있어서도 조사광의 강도는 대략 균일하기 때문에, 동일한 입경을 갖는 입자로부터의 산란광의 강도를 입자의 통과 위치에 관계 없이 균일화시킬 수 있어, 광 산란 상당경의 입경 분해능을 향상시키는 것이 가능해진다. 또한, 광 산란 상당경과 확산 계수 상당경으로부터 입자의 굴절률을 산출할 때의 굴절률 분해능을 향상시킬 수 있다.
이상과 같이, 본 발명에 의하면, 입경 분해능을 향상시킬 수 있다.
도 1은 일 실시 형태에 있어서의 입자 측정 장치의 구성을 나타내는 블록도이다.
도 2는 일 실시 형태에 있어서의 검출 유닛의 구성을 간략적으로 나타내는 도면이다.
도 3은 일 실시 형태에 있어서의 조사 광학계의 구성을 간략적으로 나타내는 도면이다.
도 4는 일 실시 형태에 있어서의 슬릿의 형상을 나타내는 도면이다.
도 5는 조사광의 초점 위치에 있어서의 빔 형상 및 그의 강도 분포를 나타내는 도면이다.
도 6은 일 실시 형태에 있어서의 검출 유닛의 구성을 간략적으로 나타내는 수직 단면도(도 2 중의 Ⅵ-Ⅵ 절단선을 따르는 단면도)이다.
도 7은 초점 위치에 있어서의 빔 형상에 의한 작용에 대해서 실시 형태와 비교예를 대비시켜 설명하는 도면이다.
도 8은 플랫 톱으로 정형된 빛의 강도에 관한 시뮬레이션 결과를 나타내는 도면이다.
도 2는 일 실시 형태에 있어서의 검출 유닛의 구성을 간략적으로 나타내는 도면이다.
도 3은 일 실시 형태에 있어서의 조사 광학계의 구성을 간략적으로 나타내는 도면이다.
도 4는 일 실시 형태에 있어서의 슬릿의 형상을 나타내는 도면이다.
도 5는 조사광의 초점 위치에 있어서의 빔 형상 및 그의 강도 분포를 나타내는 도면이다.
도 6은 일 실시 형태에 있어서의 검출 유닛의 구성을 간략적으로 나타내는 수직 단면도(도 2 중의 Ⅵ-Ⅵ 절단선을 따르는 단면도)이다.
도 7은 초점 위치에 있어서의 빔 형상에 의한 작용에 대해서 실시 형태와 비교예를 대비시켜 설명하는 도면이다.
도 8은 플랫 톱으로 정형된 빛의 강도에 관한 시뮬레이션 결과를 나타내는 도면이다.
(발명을 실시하기 위한 형태)
이하, 본 발명의 실시 형태에 대해서, 도면을 참조하면서 설명한다. 또한, 이하의 실시 형태는 바람직한 예시이고, 본 발명은 이 예시에 한정되는 것은 아니다.
〔입자 측정 장치의 구성〕
도 1은, 일 실시 형태에 있어서의 입자 측정 장치(1)의 구성을 나타내는 블록도이다. 여기에서는 일 예로서, 입자 측정 장치(1)가 FPT 장치인 경우의 구성을 설명한다.
도 1에 나타나는 바와 같이, 입자 측정 장치(1)는, 크게 보면 검출 유닛(2) 및 제어 연산 유닛(3)으로 이루어진다. 이 중, 검출 유닛(2)은, 시료 유체에 빛을 조사하여, 시료 유체 중을 부유하는 입자와 조사광의 상호 작용에 의해 생기는 산란광을 검출한다. 또한, 제어 연산 유닛(3)은, 검출 유닛(2)을 구성하는 각 기기의 제어 및, 검출 유닛(2)에 의해 검출된 산란광에 기초하여 개개의 입자의 이동량을 특정하여 입경을 해석한다.
〔검출 유닛의 구성〕
먼저, 검출 유닛(2)의 구성에 대해서 설명한다.
검출 유닛(2)은, 예를 들면, 광원(10), 조사 광학계(20), 플로우 셀(30), 집광 광학계(40), 촬상기(50) 등으로 구성되어 있다. 광원(10)은, 예를 들면 반도체 레이저 다이오드이고, 싱글 모드(TEM00 모드)의 원형 형상의 레이저를 조사광으로서 출사한다. 조사 광학계(20)는, 광원(10)이 출사한 조사광을 소정의 형상으로 정형하여 플로우 셀(30)의 내부에 집광한다. 또한, 조사 광학계(20)의 구체적인 구성에 대해서는, 다른 도면을 참조하면서 자세하게 후술한다.
플로우 셀(30)은, 석영이나 사파이어 등의 투명한 재료로 이루어지고, 그의 내부에 시료 유체가 유입되는 유로가 형성되어 있다. 플로우 셀(30)에 조사광이 입사하면, 유로 내에 검출 영역이 형성된다. 집광 광학계(40)는, 예를 들면 광학 렌즈이고, 검출 영역을 통과하는 입자로부터의 산란광을 촬상기(50)에 집광한다. 촬상기(50)는, 예를 들면 CCD(charge-coupled device)나 CMOS(complementary metal-oxide semiconductor) 등의 이미지 센서를 구비한 카메라이고, 집광 광학계(40)에 의해 이미지 센서의 수광면에 집광된 산란광을 촬상한다.
도 2(A), (B)는, 일 실시 형태에 있어서의 검출 유닛(2)의 구성을 간략적으로 나타내는 도면이다.
도 2(A): 플로우 셀(30)의 사시도이다. 플로우 셀(30)은 L자 형상의 형상을 이루고 있고, 그의 내부에는, 제1 개구(31)로부터 Y 방향으로 연장되는 제1 구간(32)과, 제2 개구(33)로부터 Z 방향으로 연장되는 제2 구간(34)이 각 단부에 있어서 연통한 L자형의 유로가 형성되어 있다. 시료 유체는, 제1 개구(31)로부터 제1 구간(32)에 유입되고, 제2 구간(34)을 거쳐 제2 개구(33)로부터 외부로 배출된다. 또한, 플로우 셀(30)의 형상은, L자 형상으로 굴곡된 부위를 갖는 형상이면 좋고, L자형을 대신하여, 예를 들면 ㄷ자형이나 크랭크형을 채용해도 좋다.
도 2(B): 검출 유닛(2)의 구성, 특히 각 구성 간의 위치 관계를 간략적으로 나타내는 평면도이다. 조사 광학계(20)는, 제1 구간(32)에 있어서의 시료 유체의 흐름 방향(Y 방향)에 대하여 수직인 방향(X 방향)으로부터, 정형된 조사광(LI)을 플로우 셀(30)에 입사시킨다. 또한, 집광 광학계(40) 및 촬상기(50)는, 제1 구간(32)에 있어서의 시료 유체의 흐름에 대향하는 위치, 즉 제1 구간(32)을 시료 유체의 흐름 방향으로 가상적으로 연장시킨 위치에 배치되고, 검출 영역(M)을 통과한 입자로부터의 산란광(LS)을 집광하여 촬상한다. 이들 구성에 의해, 개개의 입자의 XZ 평면에 있어서의 움직임(확산 운동)이 관측된다. 또한, 산란광(LS)의 촬상에 대해서는, 다른 도면을 이용하여 추가로 후술한다.
도 3은, 일 실시 형태에 있어서의 조사 광학계(20)의 구성을 간략적으로 나타내는 도면이다. 도 3에 있어서는, 발명의 이해를 용이하게 하기 위해, 각 구성 간의 거리나 조사광(LI)의 빔 지름의 변화, 초점의 크기 등을 과장하여 나타내고 있고, 이들은 실제의 스케일비와는 일치하지 않는다.
조사 광학계(20)는, 예를 들면, 빔 익스팬더(21), 회절 광학 소자(22), 제1 슬릿판(23), 제2 슬릿판(24), 제3 슬릿판(25) 등으로 구성되어 있다. 빔 익스팬더(21)는, 복수매의 광학 렌즈로 이루어지고, 광원(10)이 출사한 싱글 모드의 조사광(LI)을, 그의 열림각을 빔 익스팬더(21)로 조정하면서 회절 광학 소자(22)의 요구를 충족하는 형상(크기)으로 한다. 예를 들면, 본 실시 형태의 회절 광학 소자(22)에 대해서는, 빔 익스팬더(21)는, 확대하여 지름을 맞추고, 평행광으로 하여 회절 광학 소자(22)의 적절한 위치에 입사시킨다. 즉, 빔 익스팬더(21)는, 조사광(LI)을 회절 광학 소자(22)에 최적인 형상으로 조정한다. 또한, 도 3에 있어서는, 일 예로서 2매의 광학 렌즈로 이루어지는 갈릴레오식의 빔 익스팬더를 도시하고 있지만, 갈릴레오식을 대신하여 케플러식의 빔 익스팬더를 채용해도 좋고, 또한, 광학 렌즈의 매수는 2매에 한정되지 않는다.
회절 광학 소자(22)는, 입사한 조사광(LI)의 빔 형상을 정형한다. 구체적으로는, 회절 광학 소자(22)는, 싱글 모드의 가우스 분포에 근사한 강도 분포를 갖는 조사광(LI)(가우시안 빔)을 균일한 강도 분포를 갖는 플랫 톱(톱 해트) 빔으로 정형하면서, 초점 부근에 있어서의 빔의 형상이 초점 심도 방향으로 시트 형상이 되도록 정형한다. 여기에서, 「시트 형상」이란, 평면과 다소의 두께를 갖는 입체 형상으로서, 그의 두께 방향으로 절단한 단면 형상이 가늘고 긴 직사각형 형상(라인 형상, 대략 띠 형상)을 이루는 형상이다.
본 실시 형태에 있어서의 회절 광학 소자(22)는, 예를 들면, 초점 위치에 있어서의 단면의 장변(Z 방향의 길이)을 2㎜로 하고, 단변(Y 방향의 길이)을 20㎛로 한, 장변이 단변의 100배의 길이를 갖는 가늘고 긴 직사각형 형상의 플랫 톱 빔으로 조사광(LI)을 정형한다. 또한, 조사광(LI)의 초점 위치로부터의 초점 심도 방향의 거리±1㎜(X 방향의 길이 2㎜)를 검출 영역으로 하는 경우에는, 그의 범위에서의 디포커스에 의한 빛 에너지 밀도의 편차를 소정 범위, 예를 들면 ±20% 이내로 제어하는 회절 광학 소자의 설계가 필요해진다. 본 실시 형태의 회절 광학 소자(22)는, 상기의 조건을 충족하는 설계를 하고 있기 때문에, 빛 에너지 밀도의 편차가 허용 범위 내인 시트 형상의 검출 영역을 형성할 수 있다. 또한, 본 실시 형태에 있어서는, 회절 광학 소자(22)로서 스미토모덴키코교사 제조의 DOE 빔 쉐이퍼(Diffractive Optical Elements)를 이용했다. 또한, 초점 위치에 있어서의 빔의 단면 형상(이하, 「빔 형상」이라고 약칭함) 및 그의 강도 프로파일에 대해서는, 다른 도면을 이용하여 추가로 후술한다.
그런데, 가우시안 빔을 플랫 톱으로 정형하려면, 복수의 렌즈를 이용하여 실현하는 것도 가능하다. 그러나, 구면 렌즈(fθ 렌즈나 실린드리컬 렌즈 등도 포함함)를 이용하는 경우에는, 복수매의 렌즈를 복잡하게 조합하여 구성할 필요가 있는 데다가, 충분한 플랫 톱을 얻는 것이 곤란하다. 또한, 비구면 렌즈를 이용하는 경우에는, 렌즈에 입사하는 광선의 각도나 빔 형상이 플랫 톱 형상에 크게 영향을 미치는 점에서, 고도의 조정 및 구조의 안정성이 요구된다. 이에 대하여, 본 실시 형태에 있어서는 회절 광학 소자(22)를 이용하기 때문에, 간이한 구성으로 플랫 톱으로의 정형을 행할 수 있다.
회절 광학 소자(22)와 초점과의 사이에는, 예를 들면 3매의 각 슬릿판(23, 24, 25)이 배치되어 있다. 이들 슬릿판은, 조사광(LI)이 회절 광학 소자(22)를 통과함으로써 생기는 고차 회절광을 제거하기 위한 것이다. 고차 회절광은 미광이 되어, 측정에 있어서의 노이즈가 되기 때문에, 제거할 필요가 있다. 주광선과 고차 회절광의 분리 상태에 따라서, 복수의 슬릿판을 적절한 위치에 배치한다. 예를 들면, 열림각이 큰 고차 회절광을 제거하려면, 회절 광학 소자(22)의 근방에 슬릿판을 배치하면 작은 슬릿으로 충분하지만, 회절 광학 소자(22)로부터 떨어짐에 따라 큰 슬릿이 필요해진다. 또한, 열림각이 작은 고차 회절광을 제거하려면, 회절 광학 소자(22)의 근방에 슬릿판을 배치한다면 주광선과의 분리가 충분하지 않기 때문에 제거가 곤란하지만, 회절 광학 소자(22)로부터 떨어짐에 따라 충분히 분리하기 때문에 제거가 용이해진다. 회절 광학 소자(22)로부터 초점으로 향하는 조사광(LI)의 빔 형상은 위치에 따라 상이하지만, 각 위치에 있어서의 빔 형상은 시뮬레이션에 의해 미리 산출되어 있고, 각 슬릿판의 중앙부에는, 각각이 배치되는 위치에 있어서의 조사광(LI)의 빔 형상보다도 약간 큰 형상의 슬릿이 형성되어 있다.
도 4(A), (B), (C)는, 일 실시 형태에 있어서의 슬릿의 형상을 나타내는 도면이다. 이 중, (A)는 제1 슬릿판(23)에 형성된 제1 슬릿(23a)의 형상, (B)는 제2 슬릿판(24)에 형성된 제2 슬릿(24a)의 형상, (C)는 제3 슬릿판(25)에 형성된 제3 슬릿(25a)의 형상을 나타내고 있다.
예를 들면, 각 슬릿판에는, 빔 형상보다도 약간 크게 동심의 직사각형 형상의 슬릿이 형성된다. 또한, 3매의 슬릿판을 비교하면, 가장 상류측에 배치되는 제1 슬릿판(23)에는, 가장 큰 슬릿(23a)이 형성되어 있고, 가장 하류측에 배치되는 제3 슬릿판(25)에는, 가장 작은 슬릿(25a)이 형성되어 있고, 중간부에 배치되는 제2 슬릿판(24)에는, 슬릿(23a)보다 작고 슬릿(25a)보다 큰 슬릿(24a)이 형성되어 있다.
회절 광학 소자(22)에 있어서 조사광(LI)의 빔 형상이 정형되는 과정에서는, 회절 격자의 구조에 의해 고차 회절광이 생긴다. 그 때문에, 회절 광학 소자(22)로부터는, 정형된 조사광(LI)이 초점을 향하여 출사하는 것에 더하여, 고차 회절광이 방사 형상으로 발산해 나가 점 형상의 빛이 되어 나타난다.
회절 광학 소자(22)를 통과한 빛이 제1 슬릿판(23)에 도달하면, 회절 광학 소자(22)로부터 큰 각도로 발산한 고차 회절광이 제1 차폐면(23b)에 의해 차폐되는 한편, 나머지의 빛, 즉 정형 후의 조사광(LI) 및 차폐되지 않았던 고차 회절광은 제1 슬릿(23a)을 통과한다. 또한, 제1 슬릿(23a)을 통과한 빛이 제2 슬릿판(24)에 도달하면, 회절 광학 소자(22)로부터 중간 정도의 각도로 발산한 고차 회절광이 제2 차폐면(24b)에 의해 차폐되는 한편, 나머지의 빛은 제2 슬릿(24a)을 통과한다. 또한, 제2 슬릿(24a)을 통과한 빛이 제3 슬릿판(25)에 도달하면, 회절 광학 소자(22)로부터 작은 각도로 발산한 고차 회절광이 제3 차폐면(25b)에 의해 차폐되는 한편, 나머지의 빛은 제3 슬릿(25a)을 통과한다.
이와 같이 복수의 슬릿판을 배치함으로써, 회절 광학 소자(22)로부터 발산한 고차 회절광을 복수의 차폐면에 의해 단계적으로 차폐하면서도, 정형된 조사광(LI)은 복수의 슬릿을 확실히 통과시켜 초점에 도달시켜, 소망하는 검출 영역을 형성할 수 있다. 따라서, 측정에 필요한 빛은 확실히 확보하면서, 측정의 방해가 되는 미광을 효과적으로 제거하여(저감시켜) 노이즈를 저감시킬 수 있고, 측정에 있어서의 노이즈의 영향을 최소한으로 억제하여, 입경의 검출 감도를 향상시키는 것이 가능해진다.
또한, 도 3에 나타낸 각 슬릿판의 상대 위치나 도 4에 나타낸 각 슬릿의 형상은, 일 예로서 든 것이고, 상기의 예에 한정되지 않는다. 또한, 배치하는 슬릿판의 매수에 대해서도, 상황에 따라서 적절 변경이 가능하다.
도 5(A), (B), (C)는, 회절 광학 소자(22)에 의해 정형된 조사광(LI)의 초점 위치에 있어서의 빔 형상 및 그의 강도 분포를 나타내는 도면이다.
도 5(A): 초점 위치에 있어서의 조사광(LI)의 빔 형상을 인식한 사진을, 빔 형상의 중심을 원점으로 하여 Y축 및 Z축상에 겹쳐 나타내고 있다. 이 도면에 나타나는 바와 같이, 조사광(LI)은, 초점 위치에 있어서 Z 방향으로 가늘고 긴 직사각형 형상(라인 형상, 대략 띠 형상)의 빔 형상을 이루고 있다.
도 5(B): 도 5(A)에 나타난 빔의 Y축에 겹치는 위치에 있어서의 강도 분포를 나타내는 그래프이다. 이 그래프로부터, Y 방향에 있어서는, 원점을 중심으로 한 ±10㎛의 범위(중심부의 20㎛)에서는 빛의 강도가 대체로 1.0으로 균일하고, -30∼-10㎛ 및 +10∼30㎛의 범위(중심부의 외측의 약 20㎛)에서 빛의 강도가 대체로 1.0에서 0.0까지 급강하하고 있는 것을 알 수 있다.
도 5(C): 도 5(A)에 나타난 빔의 Z축에 겹치는 위치에 있어서의 강도 분포를 나타내는 그래프이다. 이 그래프로부터, Z 방향에 있어서는, 원점을 중심으로 한 ±1000㎛의 범위(중심부의 2㎜)에서는 빛의 강도가 대체로 1.0으로 균일하고, -1200∼-1000㎛ 및 +1000∼1200㎛의 범위(중심부의 외측의 약 0.2㎜)에서 빛의 강도가 대체로 1.0에서 0.0까지 급강하하고 있는 것을 알 수 있다.
이들 그래프로부터, 정형된 조사광(LI)의 초점 위치에 있어서의 강도는, Y 방향의 길이 20㎛×Z 방향의 길이 2㎜의 범위 내에서 대체로 균일한 것을 알 수 있다.
조사광(LI)의 초점 위치는, 플로우 셀(30)의 유로 내(보다 구체적으로는, 제1 구간(32) 내)에 설정되어 있고, 조사광(LI)이 플로우 셀(30)에 입사하면, 초점 위치에 검출 영역이 형성된다. 회절 광학 소자(22)에 의해 조사광(LI)을 시트 형상의 플랫 톱 빔으로 정형함으로써, 검출 영역에 있어서의 빛 에너지 밀도를 높게 할 수 있다. 이에 따라, 광범위하게 부유하는 서브 미크론 오더의 입자로부터의 산란광을 관측하는 것이 가능해진다.
도 6은, 일 실시 형태에 있어서의 검출 유닛(2)의 구성을 간략적으로 나타내는 수직 단면도(도 2 중의 Ⅵ-Ⅵ 절단선을 따르는 단면도)이다. 또한, 집광 광학계(40) 및 촬상기(50)에 대해서는, 단면의 도시를 생략하고 있다.
전술한 바와 같이, 정형된 조사광(LI)은, X 방향으로부터 플로우 셀(30)에 입사하여 제1 구간(32)에 검출 영역(M)을 형성한다. 검출 영역(M)의 형상은, 장변을 Z 방향으로 하고, 단변을 Y 방향으로 하여, 장변과 대략 동등한 안 길이(奧行)(디포커스 범위)를 X 방향에 가진 시트 형상의 것이 된다.
검출 영역(M)과 집광 광학계(40)와의 사이에 위치하는 플로우 셀(30)의 내벽에는, 오목 형상의 형상을 이루어 검출 영역(M)의 중심으로부터의 거리가 대체로 그의 곡률 반경이 되는 요면부(35)가 형성되어 있다. 검출 영역(M)을 통과한 입자(P)로부터 생긴 산란광(LS)이 플로우 셀(30)의 내벽에 입사할 때에는, 시료 유체의 굴절률과 플로우 셀(30)의 굴절률의 차이로부터 빛의 굴절이 생길 수 있지만, 요면부(35)에 의해, 플로우 셀(30)의 내벽에 입사하는 산란광(LS)의 굴절을 억제할 수 있다.
플로우 셀(30)에 대한 집광 광학계(40) 및 촬상기(50)의 위치는, 집광 광학계(40)의 광축을 기준으로 결정되어 있고, 각 구성은, 집광 광학계(40)의 광축이 검출 영역(M)의 중심, 요면부(35)의 중심, 촬상기(50)가 구비하는 이미지 센서의 수광면의 중심을 통과하는 위치에 각각 배치되어 있다. 촬상기(50)는, XZ 평면에 대향하고 있고, 검출 영역(M)에서 생긴 산란광의 움직임, 즉 검출 영역(M)을 통과하는 개개의 입자(P)의 확산 운동을 관측하여, 소정의 프레임 레이트로 동화(動畵)로서 촬상한다.
이와 같이, 시료의 흐름에 대향하는 위치에 산란광의 검출계(집광 광학계(40) 및 촬상기(50))를 배치함으로써, 시료의 실효 유량을 줄이는 일 없이 산란광의 움직임(입자(P)의 확산 운동)을 관측하는 것이 가능해진다.
〔제어 연산 유닛의 구성: 도 1 참조〕
계속해서, 제어 연산 유닛(3)의 구성에 대해서 설명한다.
제어 연산 유닛(3)은, 예를 들면, 제어부(60), 화상 취득부(70), 화상 해석부(80), 입경 해석부(90), 출력부(100) 등으로 구성되어 있다. 제어부(60)는, 검출 유닛(2)에 있어서의 각 기기의 동작이나, 제어 연산 유닛(3)에 있어서 실행되는 일련의 처리를 제어한다. 제어부(60)는, 예를 들면, 광원(10)에 의한 조사광의 출사, 플로우 셀(30)에 유입하는 시료의 유속(단위 시간당의 유량), 촬상기(50)에 의한 동화의 촬상을 제어한다. 또한, 시료의 유속에 대해서는, 매스 플로우 컨트롤러 등의 유량 제어 기기를 형성하고, 이를 이용하여 제어해도 좋다.
화상 취득부(70)는, 촬상기(50)에 의해 소정의 프레임 레이트로 촬상된 동화로부터 프레임마다의 정지화(프레임 화상)를 취득한다. 화상 해석부(80)는, 연속하는 프레임의 프레임 화상에 인식된 개개의 입자를 관련지은 후에 그의 궤적을 특정하고, 프레임 화상마다 브라운 운동에 의한 2차원 방향(X 방향 및 Z 방향)의 이동량을 특정한다.
입경 해석부(90)는, 화상 해석부(80)에 의해 해석된 개개의 입자의 이동량에 기초하여, 개개의 입자의 입경(확산 계수 상당경)을 해석하여, 입경마다의 개수 농도를 산출한다. 또한, 입경의 구체적인 해석 방법은, 평균 2승 변위와 시료의 점도, 온도로부터 확산 계수를 구하고, 스토크스·아인슈타인의 식에 따라 입경을 산출하는, 예를 들면 일본특허 6549747호 공보에 기재되어 있는 것과 마찬가지이기 때문에, 여기에서는 설명을 생략한다.
출력부(100)는, 입경 해석부(90)에 의한 해석의 결과를 출력한다. 출력부(100)는, 화면으로의 표시, 프린터로의 출력, 혹은 네트워크를 통한 다른 디바이스로의 송신 등, 여러 가지 태양에 의해 해석 결과를 출력하는 것이 가능하다.
또한, 도 1에 도시한 제어 연산 유닛(3)의 구성은, 어디까지나 주요한 것이고, 구성은 이들에 한정되지 않는다. 예를 들면, 화상 해석부(80)에 의해 특정된 입자의 궤적의 각 측정점의 평균 휘도값이나 최대 휘도값 등으로부터 입자의 산란광 강도 상당값을 특정하는 산란광 강도 특정부를 형성하고, 또한, 입경 해석부(90)에 의해 해석된 확산 계수 상당경 및 산란광 강도 특정부에 의해 특정된 산란광 강도 상당값에 기초하여, 입자마다 그의 특성을 해석하는 특성 해석부를 형성해도 좋다. 특성 해석부는, 예를 들면, 입경이 기지이고 대체로 단일의 입경이라고 간주할 수 있는 시료 입자, 예를 들면 폴리스티렌라텍스 입자 등을 이용하여 미리 구해진 기지의 입경 및 기지의 굴절률에 대한 상대적인 산란광 강도의 관계에 기초하여, 입자의 굴절률을 특정하거나, 입자와 기포의 구별을 행하거나 한다. 그 외, 기억부를 형성하여 해석 결과 등을 기억시켜도 좋다.
또한, 동화의 프레임 레이트 및 시료의 유속은, 촬상된 동화로부터 개개의 입자에 대해서 소정 매수의 프레임 화상을 취득할 수 있도록 제어된다. 예를 들면, 검출 영역(M)의 Y 방향의 길이가 20㎛이고, 30fps로(즉 1초간에 30회) 촬상되는 동화로부터 10매의 프레임 화상을 취득하기 위해서는, 시료의 유속은 60㎛/초로 설정되게 된다.
〔빔 형상의 비교〕
도 7(A), (B)는, 초점 위치에 있어서의 조사광의 빔 형상의 차이에 의한 작용에 대해서 실시 형태와 비교예를 대비시켜 설명하는 도면이다. 도 7(A), (B)에 있어서는, 빛의 강도 분포가 염색의 농담으로 나타나 있고, 강도가 보다 높은 영역은 보다 진하게, 강도가 보다 낮은 영역은 보다 연하게, 나타나 있다.
또한, 발명의 이해를 촉진하기 위해, 빔의 형상(장변과 단변의 비율 등)이나 농담의 정도는 과장하여 표현되어 있고, 실제의 것과는 일치하지 않는다. 또한, 비교를 위해, 실시 형태 및 비교예의 어느 것에 있어서도, 동화의 프레임 레이트, 시료의 유속은 동일하다고 가정하고, 시료 유체의 흐름에 운반되어 Y 방향으로 진행하는 개개의 입자(P)의 XZ 평면에 있어서의 움직임이 소정의 프레임 레이트로 촬상되는 것으로 한다.
도 7(A): 실시 형태에 있어서의 빔 형상 및 그의 강도 분포를 나타내고 있다. 전술한 바와 같이, 실시 형태에 있어서는, 검출 영역(M)은, 장변을 Z 방향으로 하고 단변을 Y 방향으로 하여, 장변과 대략 동등한 길이의 디포커스 범위가 X 방향에 확보된 시트 형상의 플랫 톱 빔에 의해 형성된다.
즉, 실시 형태에 있어서는, 초점 위치에 있어서의 검출 영역(M)의 어느 지점에 있어서도 광 강도는 대략 균일하기 때문에, 입자(P)가 검출 영역(M)에 있어서의 Z 방향의 대략 중심의 위치(z1)를 Y 방향으로 진행하는 경우에서도, 검출 영역(M)에 있어서의 Z 방향의 단부 부근의 위치(z2)를 Y 방향으로 진행하는 경우에서도, 소정의 시간(소정의 프레임수)에 걸쳐 입자(P)의 움직임을 촬상할 수 있다. 따라서, 실시 형태에 의하면, 입자(P)의 XZ 평면에 있어서의 확산 운동의 추적 횟수(취득되는 프레임 화상의 매수)를, 입자(P)의 통과 위치에 관계 없이 일정하게 할 수 있고, 이에 따라 확산 계수 상당경의 입경 분해능을 향상시킬 수 있다. 또한, 입자가 통과하는 위치에 의한 굴절률의 측정 오차를 저감시킬 수 있다.
도 7(B): 비교예에 있어서의 빔 형상 및 그의 강도 분포를 나타내고 있다. 비교예에 있어서는, 단면이 타원 형상인 가우시안 빔에 의해 검출 영역(M′)이 형성되는 것으로 한다. 또한, 여기에서는 비교를 위해, 검출 영역(M′)의 형상은 실시 형태에 있어서의 검출 영역(M)의 형상과 동일하다고 가정하고, 도 7 중 (A)에 있어서의 검출 영역(M)과 동일한 크기의 직사각형을 가우시안 빔에 중심을 맞추어 겹친 영역을 검출 영역(M′)으로서 나타내고 있다. 주지와 같이, 가우시안 빔에 있어서의 강도 분포는 가우스 분포에 근사하고 있고, 광 강도는 중심부에서 높고 주변부에서 낮아진다.
즉, 비교예에 있어서는, 검출 영역(M′) 내의 광 강도는 균일하지 않기 때문에, 입자(P)의 XZ 평면에 있어서의 확산 운동의 추적 횟수(취득되는 프레임 화상의 매수)는, 필연적으로 입자(P)의 통과 위치에 따라서 상위하게 된다. 예를 들면, 검출 영역(M′)에 있어서의 Z 방향의 대략 중심의 위치(z1′)와 Z 방향의 단부 부근의 위치(z2′)를 비교하면, 전체적으로 위치(z1′)의 쪽이 위치(z2′)보다도 광 강도가 높다. 따라서, 입자(P)가 위치(z1′)를 Y 방향으로 진행하는 경우에는, 소정의 시간(소정의 프레임수)에 걸쳐 입자(P)의 움직임을 촬상할 수 있어도, 입자(P)가 위치(z2′)를 Y 방향으로 진행하는 경우에는, 위치(z1′)를 Y 방향으로 진행하는 경우보다도 촬상할 수 있는 시간이 짧아(프레임수가 적어)진다. 이와 같이, 비교예에 있어서는, 입자(P)의 통과 위치에 따라 입자(P)의 XZ 평면에 있어서의 확산 운동의 추적 횟수(취득되는 프레임 화상의 매수)에 편차가 생기는 점에서, 확산 계수 상당경의 입경 분해능은, 스스로 낮아진다.
이와 같이, 전술한 실시 형태에 의하면, 비교예에 의한 경우와 비교하여, 확산 계수 상당경의 입경 분해능(입경의 측정 정밀도)을 향상시킬 수 있다.
〔플랫 톱 빔의 강도 분포〕
도 8은, 플랫 톱 빔으로 정형된 빛의 강도에 관한 시뮬레이션 결과를 나타내는 도면이다. 도 8의 그래프에 있어서, 선(G)은, 가우시안 빔의 강도 분포(가우스 분포)를 나타내고 있다. 또한, 선(F1) 및 선(F2)은, 모두 선(G)에 나타나는 가우시안 빔을 소정의 빔폭을 갖는 플랫 톱 빔으로 정형한 경우의 시뮬레이션상의 강도 분포를 나타내고 있다.
선(F1): 가우시안 빔을 그의 중심 강도의 1/e2(=0.135)이 되는 지름의 빔폭을 갖는 플랫 톱 빔으로 정형한 경우의 강도 분포를 나타내고 있다. 이 플랫 톱 빔에 있어서는, 빛의 강도가 가우스 분포의 피크의 약 63%의 크기로 균일해진다. 가우시안 빔을 이용하여 측정하는 경우에는, 빔의 중심과 외주 부근에서 동경(同徑)의 입자로부터의 산란광에 대한 검출 신호의 크기에 약 7.4배(=1/0.135)의 편차가 발생하게 된다. 이에 대하여, 선(F1)의 강도 분포를 갖는 플랫 톱 빔을 이용하여 동경의 입자를 측정하는 경우에는, 빛의 강도가 가우스 분포의 피크의 약 63%가 되기는 하지만, 이 점만 허용하면, 어느 위치에 있어서도 동경의 입자로부터의 산란광에 대한 검출 신호의 크기를 동등하게 할 수 있다.
또한, 입자가 검출 영역을 통과하는 시간, 즉 입자를 소정의 광 산란 강도로 관측 가능한 시간을, 입자의 통과 위치에 관계 없이 동등하게 할 수 있다. 또한, XZ 평면에 있어서의 입자의 확산 운동을 관측하는 데에 있어서, 가우스 분포의 중심 강도의 1/e2의 영역의 약 2배의 영역에 있어서(상대 강도 약 0.63에 있어서, 선(F1)에 나타나는 플랫 톱 빔의 상대경(徑) 2(-1∼1)에 대하여, 선(G)에 나타나는 가우시안 빔의 상대경 1(-0.5∼0.5)), 추적 횟수의 편차를 억제할 수 있다.
선(F2): 가우시안 빔을 그의 중심 강도의 0.5가 되는 지름의 빔폭을 갖는 플랫 톱 빔으로 정형한 경우의 강도 분포를 나타내고 있다. 이 플랫 톱 빔에 있어서는, 빛의 강도가 가우스 분포의 피크의 약 105%(약 1.05배)의 크기로 균일해진다. 즉, 이 플랫 톱 빔을 이용하여 측정하는 경우에는, 가우시안 빔을 이용하여 측정하는 경우보다도 높은 광 산란 강도를 얻을 수 있다.
또한, 상기의 각 시뮬레이션값은, 가우시안 빔의 성분이 로스 없이 모두 플랫 톱으로 정형된다고 가정한 경우에 있어서의 것이다. 실제로는, 가우시안 빔의 다소의 성분이 고차 회절광이 되어 제거되기 때문에, 그의 차분만큼 수치는 낮아진다고 생각할 수 있다. 어쨌든, 상기의 시뮬레이션 결과에 영향을 미치는 것은 아니다.
〔본 발명의 우위성〕
이상과 같이, 전술한 실시 형태에 의하면, 이하와 같은 효과가 얻어진다.
(1) 회절 광학 소자(22)에 의해 조사광이 검출 영역에 있어서 시트 형상을 이루는 플랫 톱 빔으로 정형되기 때문에, 광범위하게 부유하는 서브 미크론 오더의 입자로부터의 산란광을 관측 가능하게 하는 빛 에너지 밀도와 실효 유량을 확보할 수 있다.
(2) 장변을 Z 방향, 단변을 Y 방향으로 하고, 장변과 대략 동등한 길이의 디포커스 범위가 X 방향에 확보된 시트 형상의 플랫 톱 빔에 의해 검출 영역을 형성함으로써, 검출 영역의 어느 지점에 있어서도 광 강도는 대략 균일해지기 때문에, 입자가 Z 방향에 있어서의 어느 위치를 Y 방향으로 통과하는지에 관계 없이, 입자의 XZ 평면에 있어서의 움직임을 대략 동일한 시간(대략 동일한 프레임수)에 걸쳐 촬상하고, 일정한 횟수(취득되는 프레임 화상의 매수)로 추적할 수 있고, 이에 따라 확산 계수 상당경의 입경 분해능을 향상시킬 수 있다.
(3) 회절 광학 소자(22)를 이용하여 조사광이 플랫 톱으로 정형되기 때문에, 다른 광학계(예를 들면, 광학 렌즈)를 이용하는 경우와 비교하여, 조사 광학계(20)를 간단하고 쉬운 구성으로 할 수 있다.
(4) 광원(10)과 회절 광학 소자(22)와의 사이에 빔 익스팬더(21)가 형성되어 있기 때문에, 광원(10)이 출사한 조사광의 열림각을 조정하면서 회절 광학 소자(22)의 요구를 충족하는 형상으로 조정할 수 있어, 조사광을 회절 광학 소자(22)에 대하여 최적인 형상으로 입사시킬 수 있다.
(5) 회절 광학 소자(22)와 조사광의 초점과의 사이에 상이한 복수의 슬릿판(23∼25)이 배치되어 있기 때문에, 회절 광학 소자(22)로부터 발산한 고차 회절광을 복수의 차폐면(23b∼25b)에 의해 단계적으로 차폐하면서, 회절 광학 소자(22)에 의해 정형된 조사광은 복수의 슬릿(23a∼25a)을 확실히 통과시켜 초점에 도달시킴으로써, 측정에 필요한 빛은 확보하면서, 측정의 방해가 되는 미광을 효과적으로 제거하여 노이즈를 저감시킬 수 있다.
본 발명은, 전술한 실시 형태에 제약되는 일 없이, 여러 가지로 변형하여 실시하는 것이 가능하다.
전술한 실시 형태에 있어서는, 조사광의 초점 위치에 있어서의 빔 형상을, Y 방향의 길이를 20㎛로 하고, Z 방향의 길이를 2㎜로 하고 있지만, 어디까지나 일 예로서 든 것이고, 이 길이에 한정되지 않는다. 촬상기(50)의 성능에 따라서, 적절히 설정하면 좋다.
전술한 실시 형태에 있어서는, 정형된 조사광(LI)을 X 방향으로부터 제1 구간(32)에 입사시키고 있지만, 이를 대신하여, Z 방향으로부터 제1 구간(32)에 입사시켜도 좋다. 그 경우에는, 장변을 X 방향으로 하고 단변을 Y 방향으로 하여 디포커스 범위가 Z 방향에 확보된 시트 형상의 플랫 톱 빔에 의해 검출 영역이 형성되게 된다.
전술한 실시 형태에 있어서는, 입자 측정 장치(1)가 FPT 장치인 경우의 구성예를 설명하고 있지만, 입자 측정 장치(1)는 FPT 장치에 한정되지 않고, 유체에 포함되는 입자로부터 방출되는 산란광의 강도에 기초하여 입자수의 계(計)수나 입경의 특정을 행하는 광 산란식의 입자 계수기라도 좋다. 그 경우에는, 촬상기(50)를 대신하여 수광 소자 등으로 이루어지는 수광기를 형성하고, 추가로 화상 해석부(80)를 대신하여 수광기로부터 출력된 수광 신호를 해석하는 신호 해석부를 형성하면 좋다. 이러한 구성에 의해, 조사광의 강도가 균일한 시트 형상의 검출 영역이 형성되기 때문에, 동일한 입경을 갖는 입자로부터의 산란광의 강도를 입자의 통과 위치에 관계 없이 균일화시킬 수 있어, 광 산란 상당경의 입경 분해능을 향상시키는 것이 가능해진다.
그 외, 입자 측정 장치(1)의 각 구성 부품의 예로서 든 재료나 수치 등은 어디까지나 예시이고, 본 발명의 실시 시에 있어서 적절히 변형이 가능한 것은 말할 필요도 없다.
본 출원은, 2019년 12월 27일 출원의 일본특허출원 2019-237757호에 기초하는 것이고, 그의 내용은 여기에 참조로서 취입된다.
1 : 입자 측정 장치
2 : 검출 유닛
3 : 제어 연산 유닛
10 : 광원
20 : 조사 광학계
21 : 빔 익스팬더(조정 수단)
22 : 회절 광학 소자
23 : 제1 슬릿판(제거 수단)
24 : 제2 슬릿판(제거 수단)
25 : 제3 슬릿판(제거 수단)
30 : 플로우 셀
40 : 집광 광학계
50 : 촬상기(검출 수단)
60 : 제어부
70 : 화상 취득부
80 : 화상 해석부(해석 수단)
90 : 입경 해석부(해석 수단)
2 : 검출 유닛
3 : 제어 연산 유닛
10 : 광원
20 : 조사 광학계
21 : 빔 익스팬더(조정 수단)
22 : 회절 광학 소자
23 : 제1 슬릿판(제거 수단)
24 : 제2 슬릿판(제거 수단)
25 : 제3 슬릿판(제거 수단)
30 : 플로우 셀
40 : 집광 광학계
50 : 촬상기(검출 수단)
60 : 제어부
70 : 화상 취득부
80 : 화상 해석부(해석 수단)
90 : 입경 해석부(해석 수단)
Claims (8)
- 입자에 조사하는 빛을 그의 초점 위치에 있어서의 단면이 대략 띠 형상의 형상을 이루는 플랫 톱 빔(flat top beam)으로 정형(整形)하는 회절 광학 소자를 구비한 입자 측정 장치.
- 제1항에 있어서,
시료의 유로가 내부에 형성된 플로우 셀과,
조사광을 출사하는 광원과,
빛의 조사에 의해 상기 유로의 소정 구간 내에 형성되는 검출 영역을 통과하는 상기 시료에 포함되는 입자로부터의 산란광을, 상기 소정 구간을 상기 시료의 흐름 방향으로 가상적으로 연장시킨 위치로부터 검출하는 검출 수단과,
상기 산란광에 기초하여 상기 입자의 입경을 해석하는 해석 수단을 추가로 구비하고,
상기 회절 광학 소자는,
상기 조사광을 정형하여 상기 소정 구간을 흐르는 상기 시료에 조사하는 것을 특징으로 하는 입자 측정 장치. - 제2항에 있어서,
상기 광원이 출사한 조사광을 상기 회절 광학 소자의 요구를 충족하는 지름 및 열림각으로 조정하여 상기 회절 광학 소자에 입사시키는 조정 수단을 추가로 구비한 입자 측정 장치. - 제2항 또는 제3항에 있어서,
상기 회절 광학 소자는,
상기 조사광의 초점 심도 방향에 있어서의 빛 에너지 밀도의 편차가 소정 범위 내인 플랫 톱 빔으로 정형하는 것을 특징으로 하는 입자 측정 장치. - 제2항 내지 제4항 중 어느 한 항에 있어서,
상기 회절 광학 소자에 의한 상기 조사광의 정형의 과정에서 생긴 고차 회절광을 제거하는 제거 수단을 추가로 구비한 입자 측정 장치. - 제5항에 있어서,
상기 제거 수단은,
간격을 두고 배치된 형상이 상이한 복수의 슬릿에 의해, 상기 회절 광학 소자에 의해 정형된 상기 조사광을 통과시키면서 상기 고차 회절광을 단계적으로 제거하는 것을 특징으로 하는 입자 측정 장치. - 제2항 내지 제6항 중 어느 한 항에 있어서,
상기 검출 수단은,
상기 산란광을 소정의 프레임 레이트로 촬상하고,
상기 해석 수단은,
개개의 프레임 화상에 촬상된 상기 산란광에 기초하는 상기 입자의 휘점 위치로부터 상기 흐름 방향에 대하여 수직인 면에 있어서의 상기 입자의 이동량을 산출하고, 상기 이동량에 기초하여 상기 입자의 확산 계수 상당의 입경을 해석하는 것을 특징으로 하는 입자 측정 장치. - 제2항 내지 제6항 중 어느 한 항에 있어서,
상기 검출 수단은,
상기 산란광을 수광하여 강도에 따른 크기의 신호를 출력하고,
상기 해석 수단은,
상기 신호에 기초하여 상기 입자의 광 산란 상당의 입경을 해석하는 것을 특징으로 하는 입자 측정 장치.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2019-237757 | 2019-12-27 | ||
JP2019237757A JP7420551B2 (ja) | 2019-12-27 | 2019-12-27 | 粒子測定装置 |
PCT/JP2020/047150 WO2021132017A1 (ja) | 2019-12-27 | 2020-12-17 | 粒子測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220118396A true KR20220118396A (ko) | 2022-08-25 |
Family
ID=76576098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227008457A KR20220118396A (ko) | 2019-12-27 | 2020-12-17 | 입자 측정 장치 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220364971A1 (ko) |
EP (1) | EP4083604A4 (ko) |
JP (1) | JP7420551B2 (ko) |
KR (1) | KR20220118396A (ko) |
CN (1) | CN114402188A (ko) |
TW (1) | TW202124937A (ko) |
WO (1) | WO2021132017A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9857283B1 (en) * | 2016-07-01 | 2018-01-02 | MANTA Instruments, Inc. | Method for calibrating investigated volume for light sheet based nanoparticle tracking and counting apparatus |
JP7326256B2 (ja) | 2017-10-26 | 2023-08-15 | パーティクル・メージャーリング・システムズ・インコーポレーテッド | 粒子計測システム及び方法 |
US11237095B2 (en) | 2019-04-25 | 2022-02-01 | Particle Measuring Systems, Inc. | Particle detection systems and methods for on-axis particle detection and/or differential detection |
CA3236360A1 (en) * | 2021-12-30 | 2023-07-06 | Steven Boege | Imaging systems and related methods |
CN114441269B (zh) * | 2022-02-14 | 2023-08-08 | 华北电力大学(保定) | 一种大气气溶胶的成分与数量检测装置 |
CN115407518B (zh) * | 2022-10-31 | 2023-04-25 | 成都莱普科技股份有限公司 | 矩形平顶光斑的发生系统、方法及设备 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016159131A1 (ja) | 2015-03-30 | 2016-10-06 | 国立研究開発法人産業技術総合研究所 | 粒子径計測方法及びその装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4920275A (en) * | 1988-12-30 | 1990-04-24 | Canon Kabushiki Kaisha | Particle measuring device with elliptically-shaped scanning beam |
US6465802B1 (en) * | 1999-03-18 | 2002-10-15 | Rion Co., Ltd. | Particle measurement apparatus flow cell useful for sample fluids having different refractive indexes |
JP2008089540A (ja) * | 2006-10-05 | 2008-04-17 | Furukawa Electric Co Ltd:The | 光計測方法および光計測装置 |
CN101236150B (zh) * | 2007-02-02 | 2012-09-05 | 深圳迈瑞生物医疗电子股份有限公司 | 用于基于流式细胞术的仪器的光电传感器及其照射单元 |
US20100220315A1 (en) * | 2009-02-27 | 2010-09-02 | Beckman Coulter, Inc. | Stabilized Optical System for Flow Cytometry |
US8639012B2 (en) * | 2009-03-20 | 2014-01-28 | Bio-Rad Laboratories, Inc. | Serial-line-scan-encoded multi-color fluorescence microscopy and imaging flow cytometry |
US8761486B2 (en) * | 2011-02-22 | 2014-06-24 | Bio-Rad Laboratories, Inc. | Line scan cytometry systems and methods |
US8605283B2 (en) * | 2011-05-05 | 2013-12-10 | Emd Millipore Corporation | Apparatus and method for increasing collection efficiency in capillary based flowcytometry |
WO2014152867A1 (en) * | 2013-03-14 | 2014-09-25 | Abbott Laboratories | Beam shaping optics of flow cytometer systems and methods related thereto |
US10036698B2 (en) * | 2015-06-19 | 2018-07-31 | Captl Llc | Time-sequential cytometry |
JP6796917B2 (ja) * | 2015-09-18 | 2020-12-09 | シスメックス株式会社 | 粒子撮像装置および粒子撮像方法 |
EP3455608A1 (en) * | 2016-05-12 | 2019-03-20 | BD Biosciences | Fluorescence imaging flow cytometry with enhanced image resolution |
US9857283B1 (en) * | 2016-07-01 | 2018-01-02 | MANTA Instruments, Inc. | Method for calibrating investigated volume for light sheet based nanoparticle tracking and counting apparatus |
JP6549747B2 (ja) * | 2017-04-14 | 2019-07-24 | リオン株式会社 | 粒子測定装置および粒子測定方法 |
JP7326256B2 (ja) * | 2017-10-26 | 2023-08-15 | パーティクル・メージャーリング・システムズ・インコーポレーテッド | 粒子計測システム及び方法 |
JP7071849B2 (ja) * | 2018-03-09 | 2022-05-19 | リオン株式会社 | パーティクルカウンタ |
US11237095B2 (en) * | 2019-04-25 | 2022-02-01 | Particle Measuring Systems, Inc. | Particle detection systems and methods for on-axis particle detection and/or differential detection |
-
2019
- 2019-12-27 JP JP2019237757A patent/JP7420551B2/ja active Active
-
2020
- 2020-12-17 EP EP20906454.2A patent/EP4083604A4/en active Pending
- 2020-12-17 KR KR1020227008457A patent/KR20220118396A/ko unknown
- 2020-12-17 US US17/642,940 patent/US20220364971A1/en active Pending
- 2020-12-17 CN CN202080064718.0A patent/CN114402188A/zh active Pending
- 2020-12-17 WO PCT/JP2020/047150 patent/WO2021132017A1/ja unknown
- 2020-12-24 TW TW109145938A patent/TW202124937A/zh unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016159131A1 (ja) | 2015-03-30 | 2016-10-06 | 国立研究開発法人産業技術総合研究所 | 粒子径計測方法及びその装置 |
Also Published As
Publication number | Publication date |
---|---|
US20220364971A1 (en) | 2022-11-17 |
EP4083604A4 (en) | 2024-02-28 |
JP7420551B2 (ja) | 2024-01-23 |
WO2021132017A1 (ja) | 2021-07-01 |
JP2021105581A (ja) | 2021-07-26 |
CN114402188A (zh) | 2022-04-26 |
TW202124937A (zh) | 2021-07-01 |
EP4083604A1 (en) | 2022-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20220118396A (ko) | 입자 측정 장치 | |
US8928881B2 (en) | Cytometer with automatic continuous alignment correction | |
EP3611492B1 (en) | Particle measuring device and particle measuring method | |
US7012689B2 (en) | Flow cytometer with active automated optical alignment system | |
US8681335B2 (en) | Fluid stream imaging apparatus | |
US10302545B2 (en) | Automated drop delay calculation | |
JP5381741B2 (ja) | 光学的測定装置及び光学的測定方法 | |
JP6971259B2 (ja) | 流体中の個々の流動粒子の検出および/または構造的解析の方法および装置 | |
JP7421968B2 (ja) | 粒子測定装置及び粒子測定方法 | |
CN109477783B (zh) | 用于借助于动态光散射确定悬浮在液体和流动介质中的颗粒的平均颗粒大小的方法及其设备 | |
CN106233125B (zh) | 共聚焦线检验光学系统 | |
EP3147647A1 (en) | Detecting device, detecting module and detecting method for detecting particles in a fluid | |
US20070047836A1 (en) | Analysis of signal oscillation patterns | |
US11874224B2 (en) | Sample observation device and sample observation method | |
WO2020054466A1 (ja) | 微粒子観察装置及び微粒子観察方法 | |
JP2017513012A (ja) | 粒子混合物の粒子サイズおよび/または粒子形状を決定するための装置 | |
KR101897232B1 (ko) | 용액내 미립자 검출용 화상검출장치 | |
KR101826226B1 (ko) | 자동 보정 집광렌즈를 이용한 자동으로 초점을 조절하는 방법 및 장치 | |
KR100193276B1 (ko) | 영상광학계의 색수차와 공간여과 측정방법을 이용한 광원의 감시방법 및 장치 | |
EP2884325A1 (en) | Optical device for placement in the optical train of a microscope and method of manufacturing such a device |