KR20220117848A - Novel compound and organic light emitting device comprising the same - Google Patents

Novel compound and organic light emitting device comprising the same Download PDF

Info

Publication number
KR20220117848A
KR20220117848A KR1020220020090A KR20220020090A KR20220117848A KR 20220117848 A KR20220117848 A KR 20220117848A KR 1020220020090 A KR1020220020090 A KR 1020220020090A KR 20220020090 A KR20220020090 A KR 20220020090A KR 20220117848 A KR20220117848 A KR 20220117848A
Authority
KR
South Korea
Prior art keywords
compound
mmol
layer
group
added
Prior art date
Application number
KR1020220020090A
Other languages
Korean (ko)
Inventor
김민준
이동훈
서상덕
정민우
박슬찬
황성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PCT/KR2022/002287 priority Critical patent/WO2022177288A1/en
Priority to US18/035,106 priority patent/US20240025840A1/en
Publication of KR20220117848A publication Critical patent/KR20220117848A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • H01L51/0059
    • H01L51/006
    • H01L51/0073
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a novel compound and an organic light emitting device containing the same, wherein the provided compound is represented by a chemical formula 1 below.

Description

신규한 화합물 및 이를 포함하는 유기발광 소자{Novel compound and organic light emitting device comprising the same}Novel compound and organic light emitting device comprising the same

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel compound and an organic light emitting device comprising the same.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.

유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode. The organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. When a voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons It lights up when it falls back to the ground state.

상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light emitting devices as described above is continuously required.

한국특허 공개번호 제10-2000-0051826호Korean Patent Publication No. 10-2000-0051826

본 발명은 신규한 유기발광 재료 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel organic light emitting material and an organic light emitting device comprising the same.

본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by the following formula (1):

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서,In Formula 1,

R1 내지 R12 중 어느 하나는 하기 화학식 2로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소 또는 중수소이고,Any one of R 1 to R 12 is a substituent represented by the following formula (2), the rest are each independently hydrogen or deuterium;

[화학식 2] [Formula 2]

Figure pat00002
Figure pat00002

상기 화학식 2에서,In Formula 2,

L1은 치환 또는 비치환된 페닐렌, 치환 또는 비치환된 비페닐디일, 치환 또는 비치환된 나프탈렌디일, 또는

Figure pat00003
이고,L 1 is substituted or unsubstituted phenylene, substituted or unsubstituted biphenyldiyl, substituted or unsubstituted naphthalenediyl, or
Figure pat00003
ego,

L2 및 L3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,L 2 and L 3 are each independently, a single bond; substituted or unsubstituted C 6-60 arylene; Or substituted or unsubstituted C 2-60 heteroarylene comprising any one or more selected from the group consisting of N, O and S,

Ar1은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,Ar 1 is substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,

Ar2는 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 페닐 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 페닐 카바졸, 디메틸 플루오레닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐이다.Ar 2 is biphenylyl, terphenylyl, naphthyl, phenanthrenyl, phenyl naphthyl, dibenzofuranyl, dibenzothiophenyl, phenyl carbazole, dimethyl fluorenyl, benzonaphthofuranyl, or benzonaphtho thiophenyl.

또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Formula 1 above. .

상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 발광 재료로 사용될 수 있다.The compound represented by Chemical Formula 1 described above may be used as a material for the organic material layer of the organic light emitting device, and may improve efficiency, low driving voltage and/or lifespan characteristics in the organic light emitting device. In particular, the compound represented by Formula 1 described above may be used as a light emitting material.

도 1은 기판(1), 양극(2), 전자억제층(3), 발광층(4) 및 음극(5)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(6), 정공수송층(7), 전자억제층(3), 발광층(4), 정공저지층(8), 전자 수송 및 주입층(9) 및 음극(5)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an electron suppression layer 3 , a light emitting layer 4 , and a cathode 5 .
2 shows a substrate 1, an anode 2, a hole injection layer 6, a hole transport layer 7, an electron blocking layer 3, a light emitting layer 4, a hole blocking layer 8, an electron transport and injection layer An example of an organic light emitting device composed of (9) and a cathode (5) is shown.

이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to help the understanding of the present invention.

본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. The present invention provides a compound represented by the above formula (1).

본 명세서에서,

Figure pat00004
또는
Figure pat00005
는 다른 치환기에 연결되는 결합을 의미한다. In this specification,
Figure pat00004
or
Figure pat00005
means a bond connected to another substituent.

본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.As used herein, the term "substituted or unsubstituted" refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an aryl phosphine group; or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heteroaryl group containing one or more of the atoms, or substituted or unsubstituted with two or more substituents of the above-exemplified substituents connected . For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.

본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably from 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.

Figure pat00006
Figure pat00006

본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, in the ester group, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.

Figure pat00007
Figure pat00007

본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.

Figure pat00008
Figure pat00008

본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. However, the present invention is not limited thereto.

본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like, but is not limited thereto.

본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.

본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl and the like, but are not limited thereto.

본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.

본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.

본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20. The aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.

본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,

Figure pat00009
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure pat00009
etc. can be However, the present invention is not limited thereto.

본 명세서에 있어서, 헤테로아릴기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 6 내지 20이다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heteroaryl group is a heteroaryl group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms. According to an exemplary embodiment, the heteroaryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the heteroaryl group has 6 to 20 carbon atoms. Examples of the heteroaryl group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia and a jolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but is not limited thereto.

본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴은 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다.In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group. In the present specification, the description of the heteroaryl group described above for heteroaryl among heteroarylamines may be applied. In the present specification, the alkenyl group among the aralkenyl groups is the same as the examples of the above-described alkenyl groups. In the present specification, the description of the above-described aryl group may be applied except that arylene is a divalent group. In the present specification, the description of the above-described heteroaryl group may be applied, except that heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents. In the present specification, heteroaryl is not a monovalent group, and the description of the above-described heteroaryl group may be applied, except that it is formed by combining two substituents.

바람직하게는, R1 내지 R3, R5 내지 R9, R11 및 R12 중 어느 하나는 하기 화학식 2로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소 또는 중수소이고, R4 및 R10은 각각 독립적으로, 수소 또는 중수소일 수 있다. 보다 바람직하게는, R1 내지 R3, R5 내지 R9, R11 및 R12 중 어느 하나는 하기 화학식 2로 표시되는 치환기이고, 나머지는 각각 수소이고, R4 및 R10은 각각 수소일 수 있다.Preferably, any one of R 1 to R 3 , R 5 to R 9 , R 11 and R 12 is a substituent represented by the following Chemical Formula 2, the rest are each independently hydrogen or deuterium, R 4 and R 10 are Each independently may be hydrogen or deuterium. More preferably, any one of R 1 to R 3 , R 5 to R 9 , R 11 and R 12 is a substituent represented by the following formula (2), the rest are each hydrogen, and R 4 and R 10 are each hydrogen. can

바람직하게는, L1은 비치환되거나 1개의 페닐로 치환된 페닐렌, 비치환되거나 1개의 페닐로 치환된 비페닐디일, 비치환되거나 1개의 페닐로 치환된 나프탈렌디일, 또는

Figure pat00010
일 수 있다.Preferably, L 1 is phenylene unsubstituted or substituted with 1 phenyl, biphenyldiyl unsubstituted or substituted with 1 phenyl, naphthalenediyl unsubstituted or substituted with 1 phenyl, or
Figure pat00010
can be

보다 바람직하게는, L1은 하기로 구성된 군으로부터 선택되는 어느 하나일 수 있다:More preferably, L 1 may be any one selected from the group consisting of:

Figure pat00011
.
Figure pat00011
.

보다 바람직하게는, L1은 비치환되거나 1개의 페닐로 치환된 페닐렌, 비치환되거나 1개의 페닐로 치환된 비페닐디일, 또는 나프탈렌디일일 수 있다.More preferably, L 1 may be phenylene unsubstituted or substituted with one phenyl, biphenyldiyl unsubstituted or substituted with one phenyl, or naphthalenediyl.

보다 바람직하게는, L1은 하기로 구성된 군으로부터 선택되는 어느 하나일 수 있다:More preferably, L 1 may be any one selected from the group consisting of:

Figure pat00012
.
Figure pat00012
.

보다 바람직하게는, R5 또는 R11이 화학식 2로 표시되는 치환기이면, L1은 하기로 구성된 군으로부터 선택되는 어느 하나일 수 있다:More preferably, when R 5 or R 11 is a substituent represented by Formula 2, L 1 may be any one selected from the group consisting of:

Figure pat00013
.
Figure pat00013
.

바람직하게는, L2 및 L3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C6-20 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴렌일 수 있다.Preferably, L 2 and L 3 are each independently a single bond; substituted or unsubstituted C 6-20 arylene; Or it may be C 2-20 heteroarylene including any one or more selected from the group consisting of substituted or unsubstituted N, O and S.

보다 바람직하게는, L2 및 L3는 각각 독립적으로, 단일결합, 페닐렌, 1개의 페닐로 치환된 페닐렌, 비페닐디일, 1개의 페닐로 치환된 비페닐디일, 또는 나프탈렌디일일 수 있다.More preferably, L 2 and L 3 may each independently represent a single bond, phenylene, phenylene substituted with one phenyl, biphenyldiyl, biphenyldiyl substituted with one phenyl, or naphthalenediyl .

가장 바람직하게는, L2 및 L3는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Most preferably, L 2 and L 3 may each independently be a single bond or any one selected from the group consisting of:

Figure pat00014
Figure pat00014

..

바람직하게는, Ar1은 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있다.Preferably, Ar 1 is substituted or unsubstituted C 6-20 aryl; Or it may be C 2-20 heteroaryl including any one or more selected from the group consisting of substituted or unsubstituted N, O and S.

보다 바람직하게는, Ar1은 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 페닐 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 페닐 카바졸, 디메틸 플루오레닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐일 수 있다.More preferably, Ar 1 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, phenyl naphthyl, dibenzofuranyl, dibenzothiophenyl, phenyl carbazole, dimethyl fluorenyl, benzonaph tofuranyl, or benzonaphthothiophenyl.

보다 바람직하게는, Ar1은 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:More preferably, Ar 1 may be any one selected from the group consisting of:

Figure pat00015
Figure pat00015

..

보다 바람직하게는, Ar1은 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:More preferably, Ar 1 may be any one selected from the group consisting of:

Figure pat00016
Figure pat00016

..

바람직하게는, Ar2는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:Preferably, Ar 2 may be any one selected from the group consisting of:

Figure pat00017
Figure pat00017

..

상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다: Representative examples of the compound represented by Formula 1 are as follows:

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

Figure pat00020
Figure pat00020

Figure pat00021
Figure pat00021

Figure pat00022
Figure pat00022

Figure pat00023
Figure pat00023

Figure pat00024
Figure pat00024

Figure pat00025
Figure pat00025

Figure pat00026
Figure pat00026

Figure pat00027
Figure pat00027

Figure pat00028
Figure pat00028

Figure pat00029
Figure pat00029

Figure pat00030
Figure pat00030

Figure pat00031
Figure pat00031

Figure pat00032
Figure pat00032

Figure pat00033
Figure pat00033

Figure pat00034
Figure pat00034

Figure pat00035
Figure pat00035

Figure pat00036
Figure pat00036

Figure pat00037
Figure pat00037

Figure pat00038
Figure pat00038

Figure pat00039
Figure pat00039

Figure pat00040
Figure pat00040

Figure pat00041
Figure pat00041

Figure pat00042
Figure pat00042

Figure pat00043
Figure pat00043

Figure pat00044
Figure pat00044

Figure pat00045
Figure pat00045

Figure pat00046
Figure pat00046

Figure pat00047
Figure pat00047

Figure pat00048
Figure pat00048

Figure pat00049
Figure pat00049

Figure pat00050
Figure pat00050

Figure pat00051
Figure pat00051

Figure pat00052
Figure pat00052

Figure pat00053
Figure pat00053

Figure pat00054
Figure pat00054

Figure pat00055
Figure pat00055

Figure pat00056
Figure pat00056

Figure pat00057
Figure pat00057

Figure pat00058
Figure pat00058

Figure pat00059
Figure pat00059

Figure pat00060
Figure pat00060

Figure pat00061
Figure pat00061

Figure pat00062
Figure pat00062

Figure pat00063
Figure pat00063

Figure pat00064
Figure pat00064

Figure pat00065
Figure pat00065

Figure pat00066
Figure pat00066

Figure pat00067
Figure pat00067

Figure pat00068
Figure pat00068

Figure pat00069
Figure pat00069

Figure pat00070
Figure pat00070

Figure pat00071
Figure pat00071

Figure pat00072
Figure pat00072

Figure pat00073
Figure pat00073

Figure pat00074
Figure pat00074

Figure pat00075
Figure pat00075

Figure pat00076
Figure pat00076

Figure pat00077
Figure pat00077

Figure pat00078
Figure pat00078

Figure pat00079
Figure pat00079

Figure pat00080
Figure pat00080

Figure pat00081
Figure pat00081

Figure pat00082
Figure pat00082

Figure pat00083
Figure pat00083

Figure pat00084
Figure pat00084

Figure pat00085
Figure pat00085

Figure pat00086
Figure pat00086

Figure pat00087
Figure pat00087

Figure pat00088
Figure pat00088

Figure pat00089
Figure pat00089

Figure pat00090
Figure pat00090

Figure pat00091
Figure pat00091

Figure pat00092
Figure pat00092

Figure pat00093
Figure pat00093

Figure pat00094
Figure pat00094

Figure pat00095
Figure pat00095

Figure pat00096
Figure pat00096

Figure pat00097
Figure pat00097

Figure pat00098
Figure pat00098

Figure pat00099
Figure pat00099

Figure pat00100
Figure pat00100

Figure pat00101
Figure pat00101

Figure pat00102
Figure pat00102

Figure pat00103
Figure pat00103

Figure pat00104
Figure pat00104

Figure pat00105
Figure pat00105

Figure pat00106
Figure pat00106

Figure pat00107
Figure pat00107

Figure pat00108
Figure pat00108

Figure pat00109
Figure pat00109

Figure pat00110
Figure pat00110

Figure pat00111
Figure pat00111

Figure pat00112
Figure pat00112

Figure pat00113
Figure pat00113

Figure pat00114
Figure pat00114

Figure pat00115
Figure pat00115

Figure pat00116
Figure pat00116

..

상기 화학식 1로 표시되는 화합물 중 R1 내지 R12 중 어느 하나는 하기 화학식 2로 표시되는 치환기이고, 나머지는 수소인 경우, 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.Among the compounds represented by Formula 1, any one of R 1 to R 12 is a substituent represented by Formula 2 below, and the remainder is hydrogen, for example, it may be prepared by a manufacturing method as shown in Scheme 1 below, and the rest The compounds can be prepared analogously.

[반응식 1][Scheme 1]

Figure pat00117
Figure pat00117

상기 반응식 1에서, L1 내지 L3, Ar1 및 Ar2는 상기 화학식 1에서 정의한 바와 같으며, X는 할로겐이고, 바람직하게는 X는 클로로 또는 브로모이다.In Scheme 1, L 1 to L 3 , Ar 1 and Ar 2 are as defined in Formula 1 above, and X is halogen, preferably X is chloro or bromo.

상기 반응식 1은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.Reaction Scheme 1 is a Suzuki coupling reaction, which is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art. The manufacturing method may be more specific in Preparation Examples to be described later.

또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. In addition, the present invention provides an organic light emitting device including the compound represented by the formula (1). In one example, the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Formula 1 above. do.

본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.

또한, 상기 유기물 층은 또는 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.Also, the organic layer may include a light emitting layer, and the light emitting layer may include a compound represented by Formula 1 above.

또한, 상기 유기물 층은 정공수송층, 정공주입층, 또는 정공수송 및 정공주입을 동시에 하는 층을 포함할 수 있고, 상기 정공수송층, 정공주입층, 또는 정공수송 및 정공주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. In addition, the organic layer may include a hole transport layer, a hole injection layer, or a layer that transports and injects holes at the same time. It may include a compound represented by 1.

또한, 상기 유기물 층은 전자수송층, 전자주입층, 또는 전자 주입 및 수송층을 포함할 수 있고, 상기 전자수송층, 전자주입층, 또는 전자 주입 및 수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. In addition, the organic layer may include an electron transport layer, an electron injection layer, or an electron injection and transport layer, and the electron transport layer, the electron injection layer, or the electron injection and transport layer may include a compound represented by Formula 1 .

또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 도 2에 예시되어 있다.In addition, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Also, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .

도 1은 기판(1), 양극(2), 전자억제층(3), 발광층(4) 및 음극(5)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는 기판(1), 양극(2), 정공주입층(6), 정공수송층(7), 전자억제층(3), 발광층(4), 정공저지층(8), 전자 수송 및 주입층(9) 및 음극(5)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공수송층, 전자억제층, 또는 발광층에 포함될 수 있다. FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an electron suppression layer 3 , a light emitting layer 4 , and a cathode 5 . 2 shows a substrate 1, an anode 2, a hole injection layer 6, a hole transport layer 7, an electron blocking layer 3, a light emitting layer 4, a hole blocking layer 8, an electron transport and injection layer An example of an organic light emitting device composed of (9) and a cathode (5) is shown. In such a structure, the compound represented by Formula 1 may be included in the hole transport layer, the electron suppression layer, or the light emitting layer.

본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.

예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode. And, after forming an organic layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.

이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.

일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.

상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.

상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.

상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer A compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.

상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 바람직하게는 상기 화학식 1로 표시되는 화합물이 정공수송층 재료로 사용될 수 있다.The hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer. A material capable of transporting holes from the anode or hole injection layer to the light emitting layer as a hole transport material. This is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together. Preferably, the compound represented by Formula 1 may be used as the hole transport layer material.

상기 전자억제층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로, 전자저지층으로 불리기도 한다. 전자억제층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다. 바람직하게는, 상기 화학식 1로 표시되는 화합물이 전자억제층 재료로 사용될 수 있다.The electron blocking layer is a layer placed between the hole transport layer and the emission layer in order to prevent electrons injected from the cathode from passing to the hole transport layer without recombination in the emission layer, and is also called an electron blocking layer. A material having a lower electron affinity than the electron transport layer is preferable for the electron suppressing layer. Preferably, the compound represented by Formula 1 may be used as the electron blocking layer material.

상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. The light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.

상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 바람직하게는, 상기 화학식 1로 표시되는 화합물이 호스트 재료로 사용될 수 있다.The emission layer may include a host material and a dopant material. The host material includes a condensed aromatic ring derivative or a heterocyclic compound containing compound. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc., and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. Preferably, the compound represented by Formula 1 may be used as the host material.

도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Examples of the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group. As the styrylamine compound, a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but is not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.

바람직하게는 도펀트 재료는 하기로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있다:Preferably, the dopant material may be at least one selected from the group consisting of:

Figure pat00118
Figure pat00118

Figure pat00119
Figure pat00119

Figure pat00120
Figure pat00120

Figure pat00121
.
Figure pat00121
.

상기 정공저지층은 양극에서 주입된 정공이 발광층에서 재결합되지 않고 전자수송층으로 넘어가는 것을 방지하기 위해 전자수송층과 발광층의 사이에 두는 층으로, 정공억제층으로 불리기도 한다. 정공저지층에는 이온화에너지가 큰 물질이 바람직하다.The hole blocking layer is a layer interposed between the electron transport layer and the emission layer to prevent the holes injected from the anode from passing to the electron transport layer without recombination in the emission layer, and is also called a hole blocking layer. A material having high ionization energy is preferable for the hole blocking layer.

상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. do. Specific examples include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto. The electron transport layer may be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.

상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer. A compound which prevents movement to a layer and is excellent in the ability to form a thin film is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.

상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. However, the present invention is not limited thereto.

한편, 본 발명에 있어서 "전자 주입 및 수송층"은 상기 전자주입층과 상기 전자수송층의 역할을 모두 수행하는 층으로 상기 각 층의 역할을 하는 물질을 단독으로, 혹은 혼합하여 사용할 수 있으나, 이에 한정되지 않는다.On the other hand, in the present invention, the "electron injection and transport layer" is a layer that performs both the role of the electron injection layer and the electron transport layer, and the materials serving the respective layers may be used alone or in combination, but limited thereto. doesn't happen

본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.The organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom emission device requiring relatively high luminous efficiency.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.

상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.The compound represented by Formula 1 and the preparation of an organic light emitting device including the same will be described in detail in Examples below. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

[제조예][Production Example]

제조예 1Preparation Example 1

Figure pat00122
Figure pat00122

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine1(34 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1을 29.1 g 제조하였다.(수율 68 %, MS: [M+H]+= 750)In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine1 (34 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.1 g of Compound 1. (Yield 68%, MS: [M+H] + = 750)

제조예 2Preparation 2

Figure pat00123
Figure pat00123

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine2(32.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2를 31 g 제조하였다.(수율 75 %, MS: [M+H]+= 724)In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine2 (32.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 31 g of compound 2. (yield 75%, MS: [M+H] + = 724)

제조예 3Preparation 3

Figure pat00124
Figure pat00124

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine3(24.9 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 3을 25.2 g 제조하였다.(수율 74 %, MS: [M+H]+= 598)Compound A (15 g, 57.1 mmol) and compound amine3 (24.9 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.2 g of compound 3. (yield 74%, MS: [M+H] + = 598)

제조예 4Preparation 4

Figure pat00125
Figure pat00125

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine4(32.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 4를 26.8 g 제조하였다.(수율 65 %, MS: [M+H]+= 724)In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine4 (32.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.8 g of compound 4. (Yield 65%, MS: [M+H] + = 724)

제조예 5Preparation 5

Figure pat00126
Figure pat00126

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine5(31.9 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 5를 26.5 g 제조하였다.(수율 65 %, MS: [M+H]+= 714)Compound A (15 g, 57.1 mmol) and compound amine5 (31.9 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.5 g of compound 5. (Yield 65%, MS: [M+H] + = 714)

제조예 6Preparation 6

Figure pat00127
Figure pat00127

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine6(28.3 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 6을 27.2 g 제조하였다.(수율 73 %, MS: [M+H]+= 654)In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine6 (28.3 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.2 g of compound 6. (Yield 73%, MS: [M+H] + = 654)

제조예 7Preparation 7

Figure pat00128
Figure pat00128

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine7(27.2 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 7을 28.3 g 제조하였다.(수율 78 %, MS: [M+H]+= 637)In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine7 (27.2 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 28.3 g of compound 7. (yield 78%, MS: [M+H] + = 637)

제조예 8Preparation 8

Figure pat00129
Figure pat00129

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine8(24.3 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8을 21.1 g 제조하였다.(수율 63 %, MS: [M+H]+= 588) In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine8 (24.3 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.1 g of compound 8. (Yield 63%, MS: [M+H] + = 588)

제조예 9Preparation 9

Figure pat00130
Figure pat00130

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine9(29.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9를 24.2 g 제조하였다.(수율 63 %, MS: [M+H]+= 674)In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine9 (29.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.2 g of compound 9. (Yield 63%, MS: [M+H] + = 674)

제조예 10Preparation 10

Figure pat00131
Figure pat00131

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine10(29.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10을 27.3 g 제조하였다.(수율 71 %, MS: [M+H]+= 674)Compound A (15 g, 57.1 mmol) and compound amine10 (29.5 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.3 g of compound 10. (Yield 71%, MS: [M+H] + = 674)

제조예 11Preparation 11

Figure pat00132
Figure pat00132

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine11(29.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11을 26.5 g 제조하였다.(수율 69 %, MS: [M+H]+= 674)Compound A (15 g, 57.1 mmol) and compound amine 11 (29.5 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.5 g of compound 11. (yield 69%, MS: [M+H] + = 674)

제조예 12Preparation 12

Figure pat00133
Figure pat00133

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine12(32.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12를 24.8 g 제조하였다.(수율 60 %, MS: [M+H]+= 724)In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine12 (32.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.8 g of compound 12. (Yield 60%, MS: [M+H] + = 724)

제조예 13Preparation 13

Figure pat00134
Figure pat00134

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine13(34 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 13을 33.8 g 제조하였다.(수율 79 %, MS: [M+H]+= 750)In a nitrogen atmosphere, compound A (15 g, 57.1 mmol) and compound amine13 (34 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 33.8 g of compound 13. (Yield 79%, MS: [M+H] + = 750)

제조예 14Preparation 14

Figure pat00135
Figure pat00135

질소 분위기에서 화합물 A(15 g, 57.1 mmol)와 화합물 amine14(31 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14를 30.3 g 제조하였다.(수율 76 %, MS: [M+H]+= 700)Compound A (15 g, 57.1 mmol) and compound amine 14 (31 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.3 g of compound 14. (Yield 76%, MS: [M+H] + = 700)

제조예 15Preparation 15

Figure pat00136
Figure pat00136

질소 분위기에서 화합물 B(15 g, 57.1 mmol)와 화합물 amine15(24.9 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15를 21.8 g 제조하였다.(수율 64 %, MS: [M+H]+= 598)In a nitrogen atmosphere, compound B (15 g, 57.1 mmol) and compound amine15 (24.9 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.8 g of compound 15. (Yield 64%, MS: [M+H] + = 598)

제조예 16Preparation 16

Figure pat00137
Figure pat00137

질소 분위기에서 화합물 B(15 g, 57.1 mmol)와 화합물 amine16(31 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16을 26.3 g 제조하였다.(수율 66 %, MS: [M+H]+= 700)In a nitrogen atmosphere, compound B (15 g, 57.1 mmol) and compound amine 16 (31 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.3 g of compound 16. (Yield 66%, MS: [M+H] + = 700)

제조예 17Preparation 17

Figure pat00138
Figure pat00138

질소 분위기에서 화합물 B(15 g, 57.1 mmol)와 화합물 amine17(29.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17을 27.7 g 제조하였다.(수율 72 %, MS: [M+H]+= 674)In a nitrogen atmosphere, compound B (15 g, 57.1 mmol) and compound amine17 (29.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.7 g of compound 17. (Yield 72%, MS: [M+H] + = 674)

제조예 18Preparation 18

Figure pat00139
Figure pat00139

질소 분위기에서 화합물 B(15 g, 57.1 mmol)와 화합물 amine18(27.9 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18을 24.4 g 제조하였다.(수율 66 %, MS: [M+H]+= 648)In a nitrogen atmosphere, compound B (15 g, 57.1 mmol) and compound amine18 (27.9 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.4 g of compound 18. (Yield 66%, MS: [M+H] + = 648)

제조예 19Preparation 19

Figure pat00140
Figure pat00140

질소 분위기에서 화합물 B(15 g, 57.1 mmol)와 화합물 amine19(28.1 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19를 27.5 g 제조하였다.(수율 74 %, MS: [M+H]+= 652)In a nitrogen atmosphere, compound B (15 g, 57.1 mmol) and compound amine19 (28.1 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.5 g of compound 19. (Yield 74%, MS: [M+H] + = 652)

제조예 20Preparation 20

Figure pat00141
Figure pat00141

질소 분위기에서 화합물 B(15 g, 57.1 mmol)와 화합물 amine20(30.3 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20을 28.3 g 제조하였다.(수율 72 %, MS: [M+H]+= 688)In a nitrogen atmosphere, compound B (15 g, 57.1 mmol) and compound amine 20 (30.3 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 28.3 g of compound 20. (Yield 72%, MS: [M+H] + = 688)

제조예 21Preparation 21

Figure pat00142
Figure pat00142

질소 분위기에서 화합물 B(15 g, 57.1 mmol)와 화합물 amine21(28.9 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21을 25.8 g 제조하였다.(수율 68 %, MS: [M+H]+= 664)In a nitrogen atmosphere, compound B (15 g, 57.1 mmol) and compound amine21 (28.9 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.8 g of compound 21. (Yield 68%, MS: [M+H] + = 664)

제조예 22Preparation 22

Figure pat00143
Figure pat00143

질소 분위기에서 화합물 B(15 g, 57.1 mmol)와 화합물 amine22(30.3 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22를 30.6 g 제조하였다.(수율 78 %, MS: [M+H]+= 688)In a nitrogen atmosphere, compound B (15 g, 57.1 mmol) and compound amine22 (30.3 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.6 g of compound 22. (Yield 78%, MS: [M+H] + = 688)

제조예 23Preparation 23

Figure pat00144
Figure pat00144

질소 분위기에서 화합물 C(15 g, 57.1 mmol)와 화합물 amine23(26.5 g, 59.9 mmol)을 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23을 24.6 g 제조하였다.(수율 69 %, MS: [M+H]+= 624)In a nitrogen atmosphere, compound C (15 g, 57.1 mmol) and compound amine23 (26.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.6 g of compound 23. (yield 69%, MS: [M+H] + = 624)

제조예 24Preparation 24

Figure pat00145
Figure pat00145

질소 분위기에서 화합물 C(15 g, 57.1 mmol)와 화합물 amine24(27.9 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 24를 27.3 g 제조하였다.(수율 74 %, MS: [M+H]+= 648)In a nitrogen atmosphere, compound C (15 g, 57.1 mmol) and compound amine24 (27.9 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.3 g of Compound 24. (Yield 74%, MS: [M+H] + = 648)

제조예 25Preparation 25

Figure pat00146
Figure pat00146

질소 분위기에서 화합물 C(15 g, 57.1 mmol)와 화합물 amine25(26.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 25를 23.5 g 제조하였다.(수율 66 %, MS: [M+H]+= 624)In a nitrogen atmosphere, compound C (15 g, 57.1 mmol) and compound amine25 (26.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.5 g of compound 25. (Yield 66%, MS: [M+H] + = 624)

제조예 26Preparation 26

Figure pat00147
Figure pat00147

질소 분위기에서 화합물 C(15 g, 57.1 mmol)와 화합물 amine26(30.1 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 26을 24.2 g 제조하였다.(수율 62 %, MS: [M+H]+= 684)Compound C (15 g, 57.1 mmol) and compound amine 26 (30.1 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.2 g of compound 26. (Yield 62%, MS: [M+H] + = 684)

제조예 27Preparation 27

Figure pat00148
Figure pat00148

질소 분위기에서 화합물 C(15 g, 57.1 mmol)와 화합물 amine27(26.7 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 27을 24.7 g 제조하였다.(수율 69 %, MS: [M+H]+= 628)In a nitrogen atmosphere, compound C (15 g, 57.1 mmol) and compound amine27 (26.7 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.7 g of compound 27. (yield 69%, MS: [M+H] + = 628)

제조예 28Preparation 28

Figure pat00149
Figure pat00149

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine28(26.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 28을 24.2 g 제조하였다.(수율 68 %, MS: [M+H]+= 624)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine28 (26.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.2 g of compound 28. (Yield 68%, MS: [M+H] + = 624)

제조예 29Preparation 29

Figure pat00150
Figure pat00150

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine29(32.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 29를 24.8 g 제조하였다.(수율 60 %, MS: [M+H]+= 724)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine29 (32.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.8 g of compound 29. (Yield 60%, MS: [M+H] + = 724)

제조예 30Preparation 30

Figure pat00151
Figure pat00151

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine30(31 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 30을 31.9 g 제조하였다.(수율 80 %, MS: [M+H]+= 700)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine30 (31 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 31.9 g of compound 30. (Yield 80%, MS: [M+H] + = 700)

제조예 31Preparation 31

Figure pat00152
Figure pat00152

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine31(29.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 31을 30.8 g 제조하였다.(수율 80 %, MS: [M+H]+= 674)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine31 (29.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.8 g of compound 31. (yield 80%, MS: [M+H] + = 674)

제조예 32Preparation 32

Figure pat00153
Figure pat00153

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine32(29.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 32를 28.1 g 제조하였다.(수율 73 %, MS: [M+H]+= 674)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine32 (29.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 28.1 g of compound 32. (Yield 73%, MS: [M+H] + = 674)

제조예 33Preparation 33

Figure pat00154
Figure pat00154

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine33(28.9 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 33을 29.9 g 제조하였다.(수율 79 %, MS: [M+H]+= 664)Compound D (15 g, 57.1 mmol) and compound amine 33 (28.9 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.9 g of compound 33. (yield 79%, MS: [M+H] + = 664)

제조예 34Preparation 34

Figure pat00155
Figure pat00155

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine34(29.1 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 34를 27.4 g 제조하였다.(수율 72 %, MS: [M+H]+= 668)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine34 (29.1 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.4 g of compound 34. (Yield 72%, MS: [M+H] + = 668)

제조예 35Preparation 35

Figure pat00156
Figure pat00156

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine35(30.3 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 35를 23.5 g 제조하였다.(수율 60 %, MS: [M+H]+= 688)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine35 (30.3 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.5 g of compound 35. (Yield 60%, MS: [M+H] + = 688)

제조예 36Preparation 36

Figure pat00157
Figure pat00157

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine36(26.7 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 36을 25.4 g 제조하였다.(수율 71 %, MS: [M+H]+= 628)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine36 (26.7 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.4 g of compound 36. (Yield 71%, MS: [M+H] + = 628)

제조예 37Preparation 37

Figure pat00158
Figure pat00158

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine37(31 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 37을 31.9 g 제조하였다.(수율 80 %, MS: [M+H]+= 700)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine37 (31 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 31.9 g of compound 37. (Yield 80%, MS: [M+H] + = 700)

제조예 38Preparation 38

Figure pat00159
Figure pat00159

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine38(24.9 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 38을 23.5 g 제조하였다.(수율 69 %, MS: [M+H]+= 598)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine38 (24.9 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.5 g of compound 38. (yield 69%, MS: [M+H] + = 598)

제조예 39Preparation 39

Figure pat00160
Figure pat00160

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine39(32.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 39를 30.6 g 제조하였다.(수율 74 %, MS: [M+H]+= 724)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine39 (32.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.6 g of compound 39. (Yield 74%, MS: [M+H] + = 724)

제조예 40Preparation 40

Figure pat00161
Figure pat00161

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine40(34 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 40을 30.8 g 제조하였다.(수율 72 %, MS: [M+H]+= 750)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine 40 (34 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.8 g of compound 40. (Yield 72%, MS: [M+H] + = 750)

제조예 41Preparation 41

Figure pat00162
Figure pat00162

질소 분위기에서 화합물 D(15 g, 57.1 mmol)와 화합물 amine41(32.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 41을 26 g 제조하였다.(수율 63 %, MS: [M+H]+= 724)In a nitrogen atmosphere, compound D (15 g, 57.1 mmol) and compound amine41 (32.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26 g of compound 41. (Yield 63%, MS: [M+H] + = 724)

제조예 42Preparation 42

Figure pat00163
Figure pat00163

질소 분위기에서 화합물 E(15 g, 57.1 mmol)와 화합물 amine42(26.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 42를 25.6 g 제조하였다.(수율 72 %, MS: [M+H]+= 624)In a nitrogen atmosphere, compound E (15 g, 57.1 mmol) and compound amine42 (26.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.6 g of compound 42. (Yield 72%, MS: [M+H] + = 624)

제조예 43Preparation 43

Figure pat00164
Figure pat00164

질소 분위기에서 화합물 E(15 g, 57.1 mmol)와 화합물 amine43(29.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 43을 29.2 g 제조하였다.(수율 76 %, MS: [M+H]+= 674)In a nitrogen atmosphere, compound E (15 g, 57.1 mmol) and compound amine 43 (29.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.2 g of compound 43. (Yield 76%, MS: [M+H] + = 674)

제조예 44Preparation 44

Figure pat00165
Figure pat00165

질소 분위기에서 화합물 E(15 g, 57.1 mmol)와 화합물 amine44(32.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 44를 26.4 g 제조하였다.(수율 64 %, MS: [M+H]+= 724)In a nitrogen atmosphere, compound E (15 g, 57.1 mmol) and compound amine 44 (32.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.4 g of compound 44. (Yield 64%, MS: [M+H] + = 724)

제조예 45Preparation 45

Figure pat00166
Figure pat00166

질소 분위기에서 화합물 E(15 g, 57.1 mmol)와 화합물 amine45(22.7 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 45를 22.4 g 제조하였다.(수율 70 %, MS: [M+H]+= 562)In a nitrogen atmosphere, compound E (15 g, 57.1 mmol) and compound amine45 (22.7 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 22.4 g of compound 45. (Yield 70%, MS: [M+H] + = 562)

제조예 46Preparation 46

Figure pat00167
Figure pat00167

질소 분위기에서 화합물 E(15 g, 57.1 mmol)와 화합물 amine46(31.8 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 46을 25.6 g 제조하였다.(수율 63 %, MS: [M+H]+= 713)In a nitrogen atmosphere, compound E (15 g, 57.1 mmol) and compound amine46 (31.8 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.6 g of compound 46. (Yield 63%, MS: [M+H] + = 713)

제조예 47Preparation 47

Figure pat00168
Figure pat00168

질소 분위기에서 화합물 E(15 g, 57.1 mmol)와 화합물 amine47(25.7 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 47을 24.4 g 제조하였다.(수율 70 %, MS: [M+H]+= 612)In a nitrogen atmosphere, compound E (15 g, 57.1 mmol) and compound amine 47 (25.7 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.4 g of compound 47. (Yield 70%, MS: [M+H] + = 612)

제조예 48Preparation 48

Figure pat00169
Figure pat00169

질소 분위기에서 화합물 E(15 g, 57.1 mmol)와 화합물 amine48(31 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 48을 31.5 g 제조하였다.(수율 79 %, MS: [M+H]+= 700)Compound E (15 g, 57.1 mmol) and compound amine48 (31 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 31.5 g of compound 48. (yield 79%, MS: [M+H] + = 700)

제조예 49Preparation 49

Figure pat00170
Figure pat00170

질소 분위기에서 화합물 E(15 g, 57.1 mmol)와 화합물 amine49(32.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 49를 25.2 g 제조하였다.(수율 61 %, MS: [M+H]+= 724)In a nitrogen atmosphere, compound E (15 g, 57.1 mmol) and compound amine49 (32.5 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.2 g of compound 49. (Yield 61%, MS: [M+H] + = 724)

제조예 50Preparation 50

Figure pat00171
Figure pat00171

질소 분위기에서 화합물 F(15 g, 57.1 mmol)와 화합물 amine50(26.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 50을 25.3 g 제조하였다.(수율 71 %, MS: [M+H]+= 624)Compound F (15 g, 57.1 mmol) and compound amine 50 (26.5 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.3 g of compound 50. (Yield 71%, MS: [M+H] + = 624)

제조예 51Preparation 51

Figure pat00172
Figure pat00172

질소 분위기에서 화합물 F(15 g, 57.1 mmol)와 화합물 amine51(31 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 51을 25.2 g 제조하였다.(수율 63 %, MS: [M+H]+= 700)In a nitrogen atmosphere, compound F (15 g, 57.1 mmol) and compound amine51 (31 g, 59.9 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.2 g of compound 51. (Yield 63%, MS: [M+H] + = 700)

제조예 52Preparation 52

Figure pat00173
Figure pat00173

질소 분위기에서 화합물 F(15 g, 57.1 mmol)와 화합물 amine52(29.5 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 52를 28.1 g 제조하였다.(수율 73 %, MS: [M+H]+= 674)In a nitrogen atmosphere, compound F (15 g, 57.1 mmol) and compound amine52 (29.5 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 28.1 g of compound 52. (Yield 73%, MS: [M+H] + = 674)

제조예 53Preparation 53

Figure pat00174
Figure pat00174

질소 분위기에서 화합물 F(15 g, 57.1 mmol)와 화합물 amine53(31 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 53을 25.9 g 제조하였다.(수율 65 %, MS: [M+H]+= 700)In a nitrogen atmosphere, compound F (15 g, 57.1 mmol) and compound amine53 (31 g, 59.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.9 g of compound 53. (Yield 65%, MS: [M+H] + = 700)

제조예 54Preparation 54

Figure pat00175
Figure pat00175

질소 분위기에서 화합물 F(15 g, 57.1 mmol)와 화합물 amine54(34 g, 59.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.7 g, 171.3 mmol)를 물 71 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 54를 30.4 g 제조하였다.(수율 71 %, MS: [M+H]+= 750)Compound F (15 g, 57.1 mmol) and compound amine54 (34 g, 59.9 mmol) were added to 300 ml of THF in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.4 g of compound 54. (Yield 71%, MS: [M+H] + = 750)

[실시예][Example]

실시예 1Example 1

ITO(indium tin oxide)가 1000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30 분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with indium tin oxide (ITO) to a thickness of 1000 Å was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves. At this time, a product manufactured by Fischer Co. was used as the detergent, and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing ITO for 30 minutes, ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.

이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 화합물 HI-1을 1150 Å의 두께로 형성하되 하기 화합물 A-1을 1.5 wt%로 p-doping 했다. 상기 정공주입층 위에 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150 Å으로 상기 제조예 1에서 제조된 화합물 1을 진공 증착하여 전자억제층을 형성했다. 이어서, 상기 전자억제층 위에 호스트로 하기 화합물 RH-1, 도판트로 하기 화합물 Dp-7을 98:2의 중량비로 진공 증착하여 400 Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30 Å으로 하기 화합물 HB-1을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 화합물 ET-1과 하기 화합물 LiQ를 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1000 Å 두께로 알루미늄을 증착하여 음극을 형성했다. The following compound HI-1 was formed to a thickness of 1150 Å as a hole injection layer on the prepared ITO transparent electrode, but the following compound A-1 was p-doped at 1.5 wt%. The following compound HT-1 was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Subsequently, the compound 1 prepared in Preparation Example 1 was vacuum-deposited to a film thickness of 150 Å on the hole transport layer to form an electron suppression layer. Then, the following compound RH-1 as a host and the following compound Dp-7 as a dopant were vacuum-deposited on the electron suppression layer in a weight ratio of 98:2 to form a red light-emitting layer having a thickness of 400 Å. A hole blocking layer was formed by vacuum-depositing the following compound HB-1 to a thickness of 30 Å on the light emitting layer. Then, on the hole blocking layer, the following compound ET-1 and the following compound LiQ were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 Å. A cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1000 Å on the electron injection and transport layer.

Figure pat00176
Figure pat00176

상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2ⅹ10-7 ~ 5ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작했다.In the above process, the deposition rate of organic material was maintained at 0.4 ~ 0.7 Å/sec, the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3 Å/sec, and the deposition rate of aluminum was maintained at 2 Å/sec, and the vacuum degree during deposition was 2×10 -7 ~ 5×10 -6 torr was maintained, and an organic light emitting device was manufactured.

실시예 2 내지 실시예 54Examples 2 to 54

실시예 1의 유기 발광 소자에서 화합물1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. An organic light emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1.

비교예 1 내지 비교예 16Comparative Examples 1 to 16

실시예 1의 유기 발광 소자에서 화합물1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다. 하기 표 1의 화합물 C-1 내지 화합물 C-16의 구조는 아래와 같다.An organic light emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1. The structures of compounds C-1 to C-16 of Table 1 are as follows.

Figure pat00177
Figure pat00177

[실험예][Experimental example]

상기 실시예 1 내지 실시예 54 및 비교예 1 내지 비교예 16에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15mA/cm2)하고 그 결과를 하기 표1에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.When a current was applied to the organic light emitting diodes prepared in Examples 1 to 54 and Comparative Examples 1 to 16, voltage and efficiency were measured (15 mA/cm 2 ), and the results are shown in Table 1 below. The lifetime T95 means the time it takes for the luminance to decrease to 95% from the initial luminance (6000 nit).

구분division 물질matter 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color 실시예 1Example 1 화합물 1compound 1 3.62 3.62 19.5019.50 213213 적색Red 실시예 2Example 2 화합물 2compound 2 3.58 3.58 19.2719.27 222222 적색Red 실시예 3Example 3 화합물 3compound 3 3.57 3.57 19.9519.95 206206 적색Red 실시예 4Example 4 화합물 4compound 4 3.59 3.59 20.2720.27 219219 적색Red 실시예 5Example 5 화합물 5compound 5 3.61 3.61 20.1720.17 213213 적색Red 실시예 6Example 6 화합물 6compound 6 3.57 3.57 20.2520.25 208208 적색Red 실시예 7Example 7 화합물 7compound 7 3.61 3.61 18.9618.96 222222 적색Red 실시예 8Example 8 화합물 8compound 8 3.58 3.58 19.7619.76 217217 적색Red 실시예 9Example 9 화합물 9compound 9 3.62 3.62 19.7619.76 222222 적색Red 실시예 10Example 10 화합물 10compound 10 3.61 3.61 19.5619.56 208208 적색Red 실시예 11Example 11 화합물 11compound 11 3.57 3.57 20.5720.57 205205 적색Red 실시예 12Example 12 화합물 12compound 12 3.53 3.53 19.1219.12 210210 적색Red 실시예 13Example 13 화합물 13compound 13 3.53 3.53 20.3420.34 207207 적색Red 실시예 14Example 14 화합물 14compound 14 3.68 3.68 18.3118.31 177177 적색Red 실시예 15Example 15 화합물 15compound 15 3.73 3.73 18.2518.25 172172 적색Red 실시예 16Example 16 화합물 16compound 16 3.71 3.71 18.1718.17 179179 적색Red 실시예 17Example 17 화합물 17compound 17 3.76 3.76 18.2218.22 185185 적색Red 실시예 18Example 18 화합물 18compound 18 3.79 3.79 18.2818.28 184184 적색Red 실시예 19Example 19 화합물 19compound 19 3.77 3.77 17.6717.67 178178 적색Red 실시예 20Example 20 화합물 20compound 20 3.74 3.74 18.3318.33 180180 적색Red 실시예 21Example 21 화합물 21compound 21 3.68 3.68 18.0718.07 175175 적색Red 실시예 22Example 22 화합물 22compound 22 3.79 3.79 17.3717.37 169169 적색Red 실시예 23Example 23 화합물 23compound 23 3.86 3.86 17.2217.22 163163 적색Red 실시예 24Example 24 화합물 24compound 24 3.85 3.85 17.5817.58 169169 적색Red 실시예 25Example 25 화합물 25compound 25 3.86 3.86 16.9616.96 165165 적색Red 실시예 26Example 26 화합물 26compound 26 3.83 3.83 17.6217.62 159159 적색Red 실시예 27Example 27 화합물 27compound 27 3.59 3.59 19.0319.03 226226 적색Red 실시예 28Example 28 화합물 28compound 28 3.55 3.55 19.0719.07 225225 적색Red 실시예 29Example 29 화합물 29compound 29 3.59 3.59 20.3820.38 210210 적색Red 실시예 30Example 30 화합물 30compound 30 3.57 3.57 19.9419.94 225225 적색Red 실시예 31Example 31 화합물 31compound 31 3.61 3.61 20.7420.74 226226 적색Red 실시예 32Example 32 화합물 32compound 32 3.59 3.59 20.3320.33 208208 적색Red 실시예 33Example 33 화합물 33compound 33 3.53 3.53 19.7219.72 213213 적색Red 실시예 34Example 34 화합물 34compound 34 3.55 3.55 19.2919.29 217217 적색Red 실시예 35Example 35 화합물 35compound 35 3.59 3.59 20.1120.11 210210 적색Red 실시예 36Example 36 화합물 36compound 36 3.61 3.61 19.9919.99 223223 적색Red 실시예 37Example 37 화합물 37compound 37 3.61 3.61 20.6220.62 220220 적색Red 실시예 38Example 38 화합물 38compound 38 3.56 3.56 18.9718.97 220220 적색Red 실시예 39Example 39 화합물 39compound 39 3.55 3.55 20.8420.84 223223 적색Red 실시예 40Example 40 화합물 40compound 40 3.58 3.58 20.8820.88 222222 적색Red 실시예 41Example 41 화합물 41compound 41 3.70 3.70 19.0619.06 226226 적색Red 실시예 42Example 42 화합물 42compound 42 3.61 3.61 19.3919.39 211211 적색Red 실시예 43Example 43 화합물 43compound 43 3.70 3.70 19.0419.04 208208 적색Red 실시예 44Example 44 화합물 44compound 44 3.68 3.68 19.3719.37 213213 적색Red 실시예 45Example 45 화합물 45compound 45 3.69 3.69 20.6820.68 212212 적색Red 실시예 46Example 46 화합물 46compound 46 3.65 3.65 19.3019.30 206206 적색Red 실시예 47Example 47 화합물 47compound 47 3.61 3.61 20.0020.00 206206 적색Red 실시예 48Example 48 화합물 48compound 48 3.69 3.69 21.0621.06 208208 적색Red 실시예 49Example 49 화합물 49compound 49 3.76 3.76 18.2418.24 187187 적색Red 실시예 50Example 50 화합물 50compound 50 3.73 3.73 17.5617.56 174174 적색Red 실시예 51Example 51 화합물 51compound 51 3.78 3.78 18.2618.26 172172 적색Red 실시예 52Example 52 화합물 52compound 52 3.68 3.68 18.2518.25 170170 적색Red 실시예 53Example 53 화합물 53compound 53 3.76 3.76 17.5117.51 170170 적색Red 실시예 54Example 54 화합물 54compound 54 3.79 3.79 18.1718.17 177177 적색Red 비교예 1Comparative Example 1 화합물 C-1compound C-1 4.11 4.11 14.9714.97 125125 적색Red 비교예 2Comparative Example 2 화합물 C-2compound C-2 4.06 4.06 14.8814.88 112112 적색Red 비교예 3Comparative Example 3 화합물 C-3compound C-3 4.28 4.28 13.4813.48 9191 적색Red 비교예 4Comparative Example 4 화합물 C-4compound C-4 4.26 4.26 14.5814.58 9696 적색Red 비교예 5Comparative Example 5 화합물 C-5compound C-5 4.23 4.23 14.3014.30 9292 적색Red 비교예 6Comparative Example 6 화합물 C-6compound C-6 4.19 4.19 14.6014.60 9393 적색Red 비교예 7Comparative Example 7 화합물 C-7compound C-7 4.46 4.46 13.4113.41 8181 적색Red 비교예 8Comparative Example 8 화합물 C-8compound C-8 4.39 4.39 12.4812.48 6363 적색Red 비교예 9Comparative Example 9 화합물 C-9compound C-9 4.15 4.15 14.8814.88 121121 적색Red 비교예 10Comparative Example 10 화합물 C-10compound C-10 4.42 4.42 12.1812.18 6464 적색Red 비교예 11Comparative Example 11 화합물 C-11compound C-11 4.41 4.41 12.3212.32 5757 적색Red 비교예 12Comparative Example 12 화합물 C-12compound C-12 4.22 4.22 15.2815.28 103103 적색Red 비교예 13Comparative Example 13 화합물 C-13compound C-13 4.18 4.18 15.1115.11 101101 적색Red 비교예 14Comparative Example 14 화합물 C-14compound C-14 4.09 4.09 15.3615.36 126126 적색Red 비교예 15Comparative Example 15 화합물 C-15compound C-15 4.17 4.17 15.0615.06 9494 적색Red 비교예 16Comparative Example 16 화합물 C-16compound C-16 4.38 4.38 13.3313.33 7777 적색Red

실시예 1 내지 54 및 비교예 1 내지 16에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1의 결과를 얻었다. 상기 실시예 및 비교예에서 전자억제층 외의 물질로는 종래 널리 사용되고 있는 물질을 사용하였으며, 적색 발광층의 도판트로 Dp-7을 사용하는 구조이다. When a current was applied to the organic light emitting diodes fabricated in Examples 1 to 54 and Comparative Examples 1 to 16, the results shown in Table 1 were obtained. In the above Examples and Comparative Examples, a material that has been widely used in the prior art was used as a material other than the electron suppression layer, and Dp-7 is used as the dopant of the red light emitting layer.

상기 표 1의 결과를 보면 본 발명의 화합물이 전자억제층으로 사용되었을 때 비교예 물질에 비해서 구동 전압이 크게 낮아졌으며, 효율도 상승한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 크게 개선시킬 수 있는 것을 알 수 있었다. Looking at the results in Table 1, when the compound of the present invention was used as the electron suppression layer, the driving voltage was significantly lowered compared to the comparative example material, and the efficiency was also increased, indicating that energy transfer from the host to the red dopant was well performed. could In addition, it was found that the lifetime characteristics can be greatly improved while maintaining high efficiency.

결론적으로 본 발명의 화합물을 적색 발광층의 전자 억제층으로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인하였다. In conclusion, it was confirmed that the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting device could be improved when the compound of the present invention was used as the electron suppression layer of the red light emitting layer.

1: 기판 2: 양극
3: 전자억제층 4: 발광층
5: 음극 6: 정공주입층
7: 정공수송층 8: 정공저지층
9: 전자 수송 및 주입층
1: Substrate 2: Anode
3: electron suppression layer 4: light emitting layer
5: Cathode 6: Hole injection layer
7: hole transport layer 8: hole blocking layer
9: Electron transport and injection layer

Claims (10)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure pat00178

상기 화학식 1에서,
R1 내지 R12 중 어느 하나는 하기 화학식 2로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소 또는 중수소이고,
[화학식 2]
Figure pat00179

상기 화학식 2에서,
L1은 치환 또는 비치환된 페닐렌, 치환 또는 비치환된 비페닐디일, 치환 또는 비치환된 나프탈렌디일, 또는
Figure pat00180
이고,
L2 및 L3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
Ar1은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
Ar2는 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 페닐 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 페닐 카바졸, 디메틸 플루오레닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐이다.
A compound represented by the following formula (1):
[Formula 1]
Figure pat00178

In Formula 1,
Any one of R 1 to R 12 is a substituent represented by the following formula (2), and the rest are each independently hydrogen or deuterium;
[Formula 2]
Figure pat00179

In Formula 2,
L 1 is substituted or unsubstituted phenylene, substituted or unsubstituted biphenyldiyl, substituted or unsubstituted naphthalenediyl, or
Figure pat00180
ego,
L 2 and L 3 are each independently, a single bond; substituted or unsubstituted C 6-60 arylene; Or a C 2-60 heteroarylene comprising at least one selected from the group consisting of substituted or unsubstituted N, O and S,
Ar 1 is substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,
Ar 2 is biphenylyl, terphenylyl, naphthyl, phenanthrenyl, phenyl naphthyl, dibenzofuranyl, dibenzothiophenyl, phenyl carbazole, dimethyl fluorenyl, benzonaphthofuranyl, or benzonaphtho thiophenyl.
제1항에 있어서,
L1은 하기로 구성된 군으로부터 선택되는 어느 하나인,
화합물:
Figure pat00181
.
According to claim 1,
L 1 is any one selected from the group consisting of
compound:
Figure pat00181
.
제1항에 있어서,
L2 및 L3는 각각 독립적으로, 단일결합, 페닐렌, 1개의 페닐로 치환된 페닐렌, 비페닐디일, 1개의 페닐로 치환된 비페닐디일, 또는 나프탈렌디일인,
화합물.
According to claim 1,
L 2 and L 3 are each independently a single bond, phenylene, phenylene substituted with one phenyl, biphenyldiyl, biphenyldiyl substituted with one phenyl, or naphthalenediyl;
compound.
제1항에 있어서,
L2 및 L3는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure pat00182

.
According to claim 1,
L 2 and L 3 are each independently any one selected from the group consisting of a single bond or the following,
compound:
Figure pat00182

.
제1항에 있어서,
Ar1은 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 페닐 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 페닐 카바졸, 디메틸 플루오레닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐인,
화합물.
According to claim 1,
Ar 1 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, phenyl naphthyl, dibenzofuranyl, dibenzothiophenyl, phenyl carbazole, dimethyl fluorenyl, benzonaphthofuranyl, or benzo naphthothiophenyl,
compound.
제1항에 있어서,
Ar1은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure pat00183

.
According to claim 1,
Ar 1 is any one selected from the group consisting of
compound:
Figure pat00183

.
제1항에 있어서,
Ar2는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure pat00184

.
According to claim 1,
Ar 2 is any one selected from the group consisting of
compound:
Figure pat00184

.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure pat00185

Figure pat00186

Figure pat00187

Figure pat00188

Figure pat00189

Figure pat00190

Figure pat00191

Figure pat00192

Figure pat00193

Figure pat00194

Figure pat00195

Figure pat00196

Figure pat00197

Figure pat00198

Figure pat00199

Figure pat00200

Figure pat00201

Figure pat00202

Figure pat00203

Figure pat00204

Figure pat00205

Figure pat00206

Figure pat00207

Figure pat00208

Figure pat00209

Figure pat00210

Figure pat00211

Figure pat00212

Figure pat00213

Figure pat00214

Figure pat00215

Figure pat00216

Figure pat00217

Figure pat00218

Figure pat00219

Figure pat00220

Figure pat00221

Figure pat00222

Figure pat00223

Figure pat00224

Figure pat00225

Figure pat00226

Figure pat00227

Figure pat00228

Figure pat00229

Figure pat00230

Figure pat00231

Figure pat00232

Figure pat00233

Figure pat00234

Figure pat00235

Figure pat00236

Figure pat00237

Figure pat00238

Figure pat00239

Figure pat00240

Figure pat00241

Figure pat00242

Figure pat00243

Figure pat00244

Figure pat00245

Figure pat00246

Figure pat00247

Figure pat00248

Figure pat00249

Figure pat00250

Figure pat00251

Figure pat00252

Figure pat00253

Figure pat00254

Figure pat00255

Figure pat00256

Figure pat00257

Figure pat00258

Figure pat00259

Figure pat00260

Figure pat00261

Figure pat00262

Figure pat00263

Figure pat00264

Figure pat00265

Figure pat00266

Figure pat00267

Figure pat00268

Figure pat00269

Figure pat00270

Figure pat00271

Figure pat00272

Figure pat00273

Figure pat00274

Figure pat00275

Figure pat00276

Figure pat00277

Figure pat00278

Figure pat00279

Figure pat00280

Figure pat00281

Figure pat00282

Figure pat00283

.
According to claim 1,
The compound represented by Formula 1 is any one selected from the group consisting of
compound:
Figure pat00185

Figure pat00186

Figure pat00187

Figure pat00188

Figure pat00189

Figure pat00190

Figure pat00191

Figure pat00192

Figure pat00193

Figure pat00194

Figure pat00195

Figure pat00196

Figure pat00197

Figure pat00198

Figure pat00199

Figure pat00200

Figure pat00201

Figure pat00202

Figure pat00203

Figure pat00204

Figure pat00205

Figure pat00206

Figure pat00207

Figure pat00208

Figure pat00209

Figure pat00210

Figure pat00211

Figure pat00212

Figure pat00213

Figure pat00214

Figure pat00215

Figure pat00216

Figure pat00217

Figure pat00218

Figure pat00219

Figure pat00220

Figure pat00221

Figure pat00222

Figure pat00223

Figure pat00224

Figure pat00225

Figure pat00226

Figure pat00227

Figure pat00228

Figure pat00229

Figure pat00230

Figure pat00231

Figure pat00232

Figure pat00233

Figure pat00234

Figure pat00235

Figure pat00236

Figure pat00237

Figure pat00238

Figure pat00239

Figure pat00240

Figure pat00241

Figure pat00242

Figure pat00243

Figure pat00244

Figure pat00245

Figure pat00246

Figure pat00247

Figure pat00248

Figure pat00249

Figure pat00250

Figure pat00251

Figure pat00252

Figure pat00253

Figure pat00254

Figure pat00255

Figure pat00256

Figure pat00257

Figure pat00258

Figure pat00259

Figure pat00260

Figure pat00261

Figure pat00262

Figure pat00263

Figure pat00264

Figure pat00265

Figure pat00266

Figure pat00267

Figure pat00268

Figure pat00269

Figure pat00270

Figure pat00271

Figure pat00272

Figure pat00273

Figure pat00274

Figure pat00275

Figure pat00276

Figure pat00277

Figure pat00278

Figure pat00279

Figure pat00280

Figure pat00281

Figure pat00282

Figure pat00283

.
제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제8항 중 어느 하나의 항에 따른 화합물을 포함하는,
유기 발광 소자.
a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers contains the compound according to any one of claims 1 to 8 doing,
organic light emitting device.
제9항에 있어서,
상기 유기물층은 발광층인,
유기 발광 소자.
10. The method of claim 9,
The organic layer is a light emitting layer,
organic light emitting device.
KR1020220020090A 2021-02-16 2022-02-16 Novel compound and organic light emitting device comprising the same KR20220117848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2022/002287 WO2022177288A1 (en) 2021-02-16 2022-02-16 Novel compound and organic light emitting device comprising same
US18/035,106 US20240025840A1 (en) 2021-02-16 2022-02-16 Compound and organic light emitting device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210020508 2021-02-16
KR1020210020508 2021-02-16

Publications (1)

Publication Number Publication Date
KR20220117848A true KR20220117848A (en) 2022-08-24

Family

ID=83111736

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220020090A KR20220117848A (en) 2021-02-16 2022-02-16 Novel compound and organic light emitting device comprising the same

Country Status (2)

Country Link
KR (1) KR20220117848A (en)
CN (1) CN116438154A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes

Also Published As

Publication number Publication date
CN116438154A (en) 2023-07-14

Similar Documents

Publication Publication Date Title
KR102265929B1 (en) Novel compound and organic light emitting device comprising the same
KR102441470B1 (en) Novel compound and organic light emitting device comprising the same
KR102500849B1 (en) Novel compound and organic light emitting device comprising the same
KR20210065853A (en) Novel compound and organic light emitting device comprising the same
KR20220129519A (en) Novel compound and organic light emitting device comprising the same
KR102441471B1 (en) Novel compound and organic light emitting device comprising the same
KR20210031409A (en) Novel compound and organic light emitting device comprising the same
KR20210089524A (en) Novel compound and organic light emitting device comprising the same
KR20210091558A (en) Novel compound and organic light emitting device comprising the same
KR102441472B1 (en) Novel compound and organic light emitting device comprising the same
KR102437747B1 (en) Novel compound and organic light emitting device comprising the same
KR102413613B1 (en) Novel compound and organic light emitting device comprising the same
KR102412131B1 (en) Novel compound and organic light emitting device comprising the same
KR20220038009A (en) Novel compound and organic light emitting device comprising the same
KR20210098390A (en) Novel compound and organic light emitting device comprising the same
KR20210144979A (en) Novel compound and organic light emitting device comprising the same
KR20210098706A (en) Novel compound and organic light emitting device comprising the same
KR20210089523A (en) Novel compound and organic light emitting device comprising the same
KR102419609B1 (en) Novel compound and organic light emitting device comprising the same
KR102463816B1 (en) Novel compound and organic light emitting device comprising the same
KR102465241B1 (en) Novel compound and organic light emitting device comprising the same
KR102415264B1 (en) Novel compound and organic light emitting device comprising the same
KR102568928B1 (en) Novel compound and organic light emitting device comprising the same
KR20220117848A (en) Novel compound and organic light emitting device comprising the same
KR20220022880A (en) Novel compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal