KR20220115632A - Apparatus for processing low concentration semiconductor waste gas - Google Patents

Apparatus for processing low concentration semiconductor waste gas Download PDF

Info

Publication number
KR20220115632A
KR20220115632A KR1020210017189A KR20210017189A KR20220115632A KR 20220115632 A KR20220115632 A KR 20220115632A KR 1020210017189 A KR1020210017189 A KR 1020210017189A KR 20210017189 A KR20210017189 A KR 20210017189A KR 20220115632 A KR20220115632 A KR 20220115632A
Authority
KR
South Korea
Prior art keywords
adsorbent
mixing
weight
parts
mixed powder
Prior art date
Application number
KR1020210017189A
Other languages
Korean (ko)
Other versions
KR102518202B1 (en
Inventor
윤등기
목진성
김진한
안재용
Original Assignee
주식회사 에스알디글로벌
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스알디글로벌, 삼성전자주식회사 filed Critical 주식회사 에스알디글로벌
Priority to KR1020210017189A priority Critical patent/KR102518202B1/en
Priority to PCT/KR2022/000514 priority patent/WO2022169126A1/en
Publication of KR20220115632A publication Critical patent/KR20220115632A/en
Application granted granted Critical
Publication of KR102518202B1 publication Critical patent/KR102518202B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3014Kneading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a device for treating low concentration semiconductor waste gas, and more specifically, to a device for treating low concentration semiconductor waste gas, which can reduce the risk of a fire and improve economic efficiency by using an adsorbent specialized for the treatment of semiconductor waste gas having low concentration (5 ppm or less) through a primary pre-treatment process such as plasma and catalysts, and can efficiently remove organic gas, acid gas, and alkali gas at once.

Description

저농도의 반도체 폐가스 처리용 장치{Apparatus for processing low concentration semiconductor waste gas}Apparatus for processing low concentration semiconductor waste gas

본 발명은 저농도의 반도체 폐가스 처리용 장치에 대한 것으로, 더욱 상세하게는 플라즈마, 촉매 등의 1차 전처리 과정을 거쳐, 저농도(5ppm 이하)를 가지는 반도체 폐가스의 처리에 특성화된 흡착제를 이용하여, 화재 위험성을 낮출 수 있고, 경제성을 향상시킬 수 있으며, 유기 가스, 산 가스 및 알칼리 가스를 한꺼번에 효율적으로 제거할 수 있는 저농도의 반도체 폐가스 처리용 장치에 대한 것이다.The present invention relates to an apparatus for treating semiconductor waste gas with a low concentration, and more specifically, using an adsorbent specialized for the treatment of semiconductor waste gas having a low concentration (5ppm or less) through a primary pretreatment process such as plasma, catalyst, etc. It relates to an apparatus for processing low-concentration semiconductor waste gas, which can reduce risk, improve economic efficiency, and efficiently remove organic gas, acid gas and alkali gas at once.

반도체 제조공정에서는 다양한 반도체 가스가 사용되는데, 상기 반도체 가스는 유독성분을 포함하고 있어 사용후 반도체 가스(이하, '반도체 폐가스'라 함)를 대기로 배출할 경우 환경을 오염시키게 된다. 따라서, 반도체를 제조하는 설비의 배기 라인에는 하기 특허문헌에 기재된 바와 같은 반도체 폐가스를 정화하여 대기로 배출하기 위한 장치가 설치되며, 예컨대 상기 반도체 폐가스는 플라즈마, 촉매 등에 의해 1차 처리되어 5ppm 이하의 저농도로 처리되고, 저농도의 반도체 폐가스는 활성탄 등이 사용된 정제장치에 의해 최종적으로 제거될 수 있다.Various semiconductor gases are used in the semiconductor manufacturing process. The semiconductor gas contains toxic components, and thus, when the semiconductor gas (hereinafter, referred to as 'semiconductor waste gas') is discharged into the atmosphere after use, the environment is polluted. Therefore, a device for purifying semiconductor waste gas as described in the following patent document and discharging it to the atmosphere is installed in the exhaust line of the facility for manufacturing semiconductors, for example, the semiconductor waste gas is primarily treated by plasma, catalyst, etc. The low concentration semiconductor waste gas may be finally removed by a purification apparatus using activated carbon or the like.

<특허문헌><Patent Literature>

특허공보 제10-1395275호(2014. 05. 08. 등록) "폐가스의 정제방법 및 정제장치"Patent Publication No. 10-1395275 (Registered on May 08, 2014) "Waste gas purification method and purification apparatus"

하지만, 저농도의 반도체 폐가스는 고온을 가지는데, 종래의 흡착제로 이용되는 활성탄은 발화점이 낮기 때문에, 순간적인 발화에 의한 화재의 위험성이 있다.However, the semiconductor waste gas of low concentration has a high temperature, and since activated carbon used as a conventional adsorbent has a low flash point, there is a risk of fire due to instantaneous ignition.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로,The present invention has been devised to solve the above problems,

본 발명은 플라즈마, 촉매 등의 1차 전처리 과정을 거쳐, 저농도(5ppm 이하)를 가지는 반도체 폐가스의 처리에 특성화된 흡착제를 이용하는 저농도의 반도체 폐가스 처리용 장치를 제공하는데 그 목적이 있다.An object of the present invention is to provide an apparatus for treating semiconductor waste gas of low concentration using an adsorbent that is specialized for treating semiconductor waste gas having a low concentration (5 ppm or less) through a primary pretreatment process such as plasma and catalyst.

또한, 본 발명은 화재 위험성을 낮출 수 있고, 경제성을 향상시킬 수 있으며, 유기 가스, 산 가스, 알칼리 가스를 한꺼번에 제거할 수 있는 저농도의 반도체 폐가스 처리용 장치를 제공하는데 그 목적이 있다.In addition, an object of the present invention is to provide an apparatus for treating semiconductor waste gas of low concentration, which can lower the risk of fire, improve economic efficiency, and can remove organic gas, acid gas, and alkali gas at once.

본 발병은 앞서 본 목적을 달성하기 위하여 다음과 같은 구성을 가진 실시예에 의해 구현된다.The present invention is implemented by an embodiment having the following configuration in order to achieve the above object.

본 발명의 일 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법은 유기 악취 가스를 제거하기 위한 제1흡착제를 제조하는 제1흡착제제조단계와, 알칼리 가스를 제거하기 위한 제2흡착제를 제조하는 제2흡착제제조단계와, 산 가스를 제거하기 위한 제3흡착제를 제조하는 제3흡착제제조단계와, 유입부와 유출부가 형성된 반응기 내부에 제1흡착제, 제2흡착제 및 제3흡착제를 차례로 적층하는 흡착제적재단계를 포함하는 것을 특징으로 한다.According to an embodiment of the present invention, the method of manufacturing an apparatus for processing low concentration semiconductor waste gas according to the present invention includes a first adsorbent manufacturing step of preparing a first adsorbent for removing an organic malodorous gas, and removing an alkali gas A second adsorbent manufacturing step of preparing a second adsorbent for and an adsorbent loading step of sequentially stacking a third adsorbent.

본 발명의 다른 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서 상기 유입부를 통해 유입된 저농도의 반도체 폐가스는 제1흡착제, 제2흡착제 및 제3흡착제를 차례로 통과하여 유출부를 통해 외부로 배출되게 되며, 상기 저농도의 반도체 폐가스는 1 내지 5ppm의 농도를 가지며, 메틸 메르캅탄, 암모니아 및 황화수소를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the method for manufacturing a device for processing low concentration semiconductor waste gas according to the present invention, the low concentration semiconductor waste gas introduced through the inlet is sequentially formed by a first adsorbent, a second adsorbent and a third adsorbent. It passes through and is discharged to the outside through the outlet, and the low-concentration semiconductor waste gas has a concentration of 1 to 5 ppm, and includes methyl mercaptan, ammonia, and hydrogen sulfide.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서 상기 제1흡착제제조단계는 석탄계 활성탄 80 내지 120중량부 및 제올라이트 240 내지 360중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 수산화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 수산화나트륨 용액을 준비하는 수산화나트륨용액준비단계와, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 혼합단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고 분쇄하여 파우더 형태의 분쇄물을 형성하는 분쇄물 형성단계와, 상기 분쇄물에 실리카 160 내지 240중량부 및 알루미나 240 내지 360중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제1흡착제를 형성하는 성형건조단계를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the method for manufacturing a device for processing low concentration semiconductor waste gas according to the present invention, the first adsorbent manufacturing step is a mixture of 80 to 120 parts by weight of coal-based activated carbon and 240 to 360 parts by weight of zeolite. A mixed powder forming step of forming a mixed powder, a sodium hydroxide solution preparation step of dissolving 320 to 480 parts by weight of sodium hydroxide in 800 to 1200 parts by weight of distilled water to prepare a sodium hydroxide solution, and mixing and stirring the mixed powder in the sodium hydroxide solution a mixing step of filtration under reduced pressure to form a cake and washing with distilled water; A mixed powder preparation step of preparing a mixed powder by mixing 160 to 240 parts by weight of silica and 240 to 360 parts by weight of alumina, mixing a calcium carbonate solution with the mixed powder to form a dough, molding and drying the dough 1 It is characterized in that it comprises a drying step of forming an adsorbent.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서 상기 제1흡착제는 2 내지 2.5nm의 기공 크기를 가지는 것을 특징으로 한다.According to another embodiment of the present invention, in the method of manufacturing a device for processing low concentration semiconductor waste gas according to the present invention, the first adsorbent is characterized in that it has a pore size of 2 to 2.5 nm.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서 상게 2흡착제제조단계는 석탄계 활성탄 240 내지 360중량부 및 제올라이트 80 내지 120중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 염화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 염화나트륨 용액을 준비하는 염화나트륨용액준비단계와, 상기 혼합분말을 상기 염화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 세척단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하는 분쇄물형성단계와, 상기 분쇄물에 실리카 120 내지 180중량부 및 알루미나 280 내지 420중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 염화칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제2흡착제를 형성하는 성형건조단계를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the manufacturing method of the apparatus for processing low concentration semiconductor waste gas according to the present invention, the second adsorbent manufacturing step is mixed by mixing 240 to 360 parts by weight of coal-based activated carbon and 80 to 120 parts by weight of zeolite. A mixed powder forming step of forming a powder, a sodium chloride solution preparation step of preparing a sodium chloride solution by dissolving 320 to 480 parts by weight of sodium chloride in 800 to 1200 parts by weight of distilled water, and mixing and stirring the mixed powder in the sodium chloride solution and filtering under reduced pressure A washing step of forming a cake and washing it with distilled water; a pulverized product forming step of drying and calcining the washed cake obtained in the mixing step to form a pulverized product in powder form through pulverization; A mixed powder preparation step of preparing a mixed powder by mixing 180 parts by weight and 280 to 420 parts by weight of alumina, mixing a calcium chloride solution with the mixed powder to form a dough, forming the dough and drying the dough to form a second adsorbent It is characterized in that it comprises a molding drying step.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서 상기 제2흡착제는 5 내지 8nm의 기공 크기를 가지는 것을 특징으로 한다.According to another embodiment of the present invention, in the method for manufacturing a device for processing low concentration semiconductor waste gas according to the present invention, the second adsorbent is characterized in that it has a pore size of 5 to 8 nm.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서 상기 제3흡착제제조단계는 석탄계 활성탄 240 내지 360중량부 및 제올라이트 80 내지 120중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 수산화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 수산화나트륨 용액을 준비하는 수산화나트륨용액준비단계와, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 세척단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하는 분쇄물형성단계와, 상기 분쇄물에 실리카 120 내지 180중량부 및 알루미나 280 내지 420중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제3흡착제를 형성하는 성형건조단계를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the manufacturing method of the apparatus for processing low concentration semiconductor waste gas according to the present invention, the third adsorbent manufacturing step is a mixture of 240 to 360 parts by weight of coal-based activated carbon and 80 to 120 parts by weight of zeolite. A mixed powder forming step of forming a mixed powder, a sodium hydroxide solution preparation step of dissolving 320 to 480 parts by weight of sodium hydroxide in 800 to 1200 parts by weight of distilled water to prepare a sodium hydroxide solution, and mixing and stirring the mixed powder in the sodium hydroxide solution and a washing step of filtration under reduced pressure to form a cake and washing with distilled water; a pulverized product forming step of drying and calcining the washed cake obtained in the mixing step to form a pulverized product in powder form through pulverization; A mixed powder preparation step of preparing a mixed powder by mixing 120 to 180 parts by weight of silica and 280 to 420 parts by weight of alumina in water, mixing a calcium carbonate solution with the mixed powder to form a dough, forming the dough, and drying the mixture It is characterized in that it comprises a molding drying step of forming a third adsorbent.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서 상기 제3흡착제는 2.8 내지 3.4의 기공 크기를 가지는 것을 특징으로 한다.According to another embodiment of the present invention, the third adsorbent in the method for manufacturing a device for processing low concentration semiconductor waste gas according to the present invention is characterized in that it has a pore size of 2.8 to 3.4.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서 상기 제3흡착제는 황화수소를 흡착할뿐만 아니라 암모니아를 흡착하는 것을 특징으로 한다.According to another embodiment of the present invention, in the method for manufacturing a device for treating low concentration semiconductor waste gas according to the present invention, the third adsorbent not only adsorbs hydrogen sulfide but also adsorbs ammonia.

본 발명은 앞서 본 실시예에 의해 다음과 같은 효과를 얻을 수 있다.The present invention can obtain the following effects by the present embodiment above.

본 발명은 플라즈마, 촉매 등의 1차 전처리 과정을 거쳐, 저농도(5ppm 이하)를 가지는 반도체 폐가스의 처리에 특성화된 흡착제를 이용하는 저농도의 반도체 폐가스 처리용 장치를 제공하는데 그 목적이 있다.An object of the present invention is to provide an apparatus for treating semiconductor waste gas of low concentration using an adsorbent that is specialized for treating semiconductor waste gas having a low concentration (5 ppm or less) through a primary pretreatment process such as plasma and catalyst.

또한, 본 발명은 화재 위험성을 낮출 수 있고, 경제성을 향상시킬 수 있으며, 유기 가스, 산 가스, 알칼리 가스를 한꺼번에 제거할 수 있는 저농도의 반도체 폐가스 처리용 장치를 제공하는데 그 목적이 있다.In addition, an object of the present invention is to provide an apparatus for treating semiconductor waste gas of low concentration, which can lower the risk of fire, improve economic efficiency, and can remove organic gas, acid gas, and alkali gas at once.

도 1은 본 발명의 일 실시예에 따른 저농도의 반도체 폐가스 처리용 장치의 단면도.1 is a cross-sectional view of an apparatus for processing low concentration semiconductor waste gas according to an embodiment of the present invention.

이하에서는 본 발명에 따른 저농도의 반도체 폐가스 처리용 장치 및 이의 제조방법을 도면을 참조하여 상세히 설명한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적 의미와 동일하고 만약 본 명세서에 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에 사용된 정의에 따른다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대해 상세한 설명은 생략한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, an apparatus for processing low concentration semiconductor waste gas and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings. Unless otherwise defined, all terms in this specification have the same general meaning as understood by those of ordinary skill in the art to which the present invention belongs, and if they conflict with the meaning of the terms used in this specification, the According to the definition used in the specification. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted. Throughout the specification, when a part "includes" a certain element, it means that other elements may be further included, rather than excluding other elements, unless otherwise stated.

본 발명의 일 실시예에 따른 저농도의 반도체 폐가스 처리용 장치를 도 1을 참조하여 설명하면, 상기 저농도의 반도체 폐가스 처리용 장치는 외형을 형성하는 하우징(1)과, 상기 하우징(1)의 내부 하측에 위치하는 제1흡착제(2)와, 상기 제1흡착제(2)의 상측에 위치하는 제2흡착제(3)와, 상기 제2흡착제(3)의 상측에 위치하는 제3흡착제(4)를 포함한다. 상기 저농도의 반도체 폐가스는 반도체를 제조하는 설비의 배기 라인에서 배출되어 플라즈마, 촉매 등에 의해 1차 처리되어 1 내지 5ppm의 농도를 가지며, 메틸 메르캅탄(유기 악취 가스), 황화수소(산 가스), 암모니아(알칼리 가스) 등을 포함한다.When an apparatus for processing a semiconductor waste gas of low concentration according to an embodiment of the present invention is described with reference to FIG. 1 , the apparatus for processing a semiconductor waste gas of low concentration includes a housing 1 forming an outer shape, and the interior of the housing 1 . The first adsorbent (2) positioned at the lower side, the second adsorbent (3) positioned above the first adsorbent (2), and the third adsorbent (4) positioned above the second adsorbent (3) includes The low-concentration semiconductor waste gas is discharged from the exhaust line of a semiconductor manufacturing facility, and is primarily treated by plasma, catalyst, etc. to have a concentration of 1 to 5 ppm, methyl mercaptan (organic malodorous gas), hydrogen sulfide (acid gas), ammonia (alkaline gas) and the like.

상기 하우징(1)은 상기 저농도의 반도체 폐가스 처리용 장치의 외형을 형성하며 흡착제를 수용하는 구성으로, 상기 하우징(1)의 하측에 형성되어 저농도의 반도체 폐가스가 유입되는 유입부(11)와, 상기 하우징(1)의 상측에 형성되어 흡착제(2, 3, 4)에서 유해 물질이 제거된 폐가스가 배출되는 유출부(12)와, 상기 유입부(11)와 유출부(12) 사이의 내부 공간으로 흡착제가 수용되는 수용부(13) 등을 포함한다. 다수의 중공이 형성된 제1격벽(14)과 제2격벽(15)이 일정 간격을 두고 하우징(1) 내부에 위치함으로써, 상기 수용부(13)는 제1수용부(131), 제2수용부(132), 제3수용부(133)로 구획되며, 상기 제1수용부(131)에는 제1흡착제(2)가 위치하고, 상기 제2수용부(132)에는 제2흡착제(3)가 위치하고, 상기 제3수용부(133)에는 제3흡착제(4)가 위치하게 된다.The housing 1 forms the outer shape of the device for processing the low concentration semiconductor waste gas and accommodates the adsorbent. An outlet (12) formed on the upper side of the housing (1) and from which harmful substances are removed from the adsorbents (2, 3, 4) is discharged, and the interior between the inlet (11) and the outlet (12) and an accommodating part 13 in which the adsorbent is accommodated in the space. Since the first partition wall 14 and the second partition wall 15 having a plurality of hollows are spaced apart from each other and located inside the housing 1, the accommodating part 13 includes the first accommodating part 131 and the second accommodating part 13 . It is divided into a part 132 and a third accommodating part 133 , a first adsorbent 2 is located in the first accommodating part 131 , and a second adsorbent 3 is located in the second accommodating part 132 . and a third adsorbent 4 is positioned in the third accommodating part 133 .

상기 제1흡착제(2)는 상기 하우징(1)의 내부 하측에 위치하여 유기 악취 가스(예컨대, 메틸 메르캅탄 등)를 흡착하는 구성으로, 상기 제1수용부(131)에 위치하게 된다.The first adsorbent 2 is positioned below the inner side of the housing 1 to adsorb an organic malodorous gas (eg, methyl mercaptan, etc.), and is positioned in the first accommodating part 131 .

상기 제2흡착제(3)는 상기 하우징(1) 내부의 제1흡착제(2) 상측에 위치하여 알칼리 가스(예컨대, 암모니아 등)를 흡착하는 구성으로, 상기 제2수용부(132)에 위치하게 된다.The second adsorbent 3 is positioned on the upper side of the first adsorbent 2 inside the housing 1 to adsorb alkali gas (eg, ammonia, etc.), and is positioned in the second accommodating part 132 . do.

상기 제3흡착제(4)는 상기 하우징(1) 내부의 제2흡착제(3) 상측에 위치하여 산 가스(예컨대, 황화수소 등)를 흡착하는 구성으로, 상기 제3수용부(133)에 위치하게 된다. 상기 제1 내지 제3흡착제(2, 3, 4)는 저농도 반도체 폐가스 처리에 사용되는 종래의 활성탄과 달리 열적 안정성을 가지는 흡착제가 사용되는 것이 바람직하며, 상기 제1흡착제(1)는 제2흡착제 및 제3흡착제보다 열에 강한 특성을 갖는 것이 바람직하고, 상기 메틸 메르캅탄은 안정한 물질로 입자 크기가 작으므로 상기 제1흡착제는 2 내지 2.5nm의 기공 크기를 가지는 것이 바람직하다. 상기 제2흡착제 및 제3흡착제는 산, 알칼리 가스의 제거 효율을 향상시키기 위해 3 내지 7nm의 기공 크기를 가지는 것이 바람직하다. 상기와 같은 구성을 포함하는 장치를 이용하여 저농도의 반도체 폐가스를 처리하는 과정을 살펴보면, 상기 저농도의 반도체 폐가스는 유입부(11)를 통해 하우징(1) 내부에 유입되어 제1흡착제(2), 제2흡착제(3) 및 제3흡착제(4)를 차례로 통과하여, 메틸 메르캅탄, 암모니아, 황화수소 등의 유해물질이 제거된 후, 유출부(13)를 통해 배출되게 된다.The third adsorbent 4 is positioned above the second adsorbent 3 inside the housing 1 to adsorb acid gas (eg, hydrogen sulfide, etc.), and is positioned in the third receiving part 133 . do. The first to third adsorbents 2, 3, and 4 are preferably an adsorbent having thermal stability unlike conventional activated carbon used for low-concentration semiconductor waste gas treatment, and the first adsorbent 1 is a second adsorbent and a third adsorbent, preferably having a heat-resistant property, and since the methyl mercaptan is a stable material and has a small particle size, the first adsorbent preferably has a pore size of 2 to 2.5 nm. The second adsorbent and the third adsorbent preferably have a pore size of 3 to 7 nm in order to improve the removal efficiency of acid and alkali gas. Looking at the process of treating the semiconductor waste gas of low concentration using the apparatus including the above configuration, the semiconductor waste gas of the low concentration is introduced into the housing 1 through the inlet 11 and a first adsorbent 2, After passing through the second adsorbent 3 and the third adsorbent 4 in sequence, harmful substances such as methyl mercaptan, ammonia, and hydrogen sulfide are removed, and then discharged through the outlet 13 .

본 발명의 다른 실시예에 따른 저농도의 반도체 폐가스 처리용 장치의 제조방법을 설명하면, 상기 방법은 유기 악취 가스(예컨대, 메틸 메르캅탄 등)를 제거하기 위한 제1흡착제(2)를 제조하는 제1흡착제제조단계와, 알칼리 가스(예컨대, 암모니아 등)를 제거하기 위한 제2흡착제(3)를 제조하는 제2흡착제제조단계와, 산 가스(예컨대, 황화수소 등)를 제거하기 위한 제3흡착제(4)를 제조하는 제3흡착제제조단계와, 유입부(11)와 유출부(12)가 형성된 반응기(1) 내부에 제1흡착제(2), 제2흡착제(3) 및 제3흡착제(4)를 차례로 적층하는 흡착제적재단계 등을 포함한다. 상기 유입부(11)를 통해 유입된 저농도의 반도체 폐가스는 제1흡착제(2), 제2흡착제(3) 및 제3흡착제(4)를 차례로 통과하여 유출부(12)를 통해 외부로 배출되게 된다.When explaining the manufacturing method of the apparatus for processing low concentration semiconductor waste gas according to another embodiment of the present invention, the method is a first adsorbent 2 for removing organic malodorous gas (eg, methyl mercaptan, etc.) 1 adsorbent manufacturing step, a second adsorbent manufacturing step of preparing a second adsorbent 3 for removing alkali gas (eg, ammonia, etc.), and a third adsorbent for removing acid gas (eg, hydrogen sulfide, etc.) ( 4) the third adsorbent manufacturing step, and the first adsorbent (2), the second adsorbent (3) and the third adsorbent (4) in the reactor (1) in which the inlet (11) and the outlet (12) are formed ) and an adsorbent loading step of sequentially stacking. The semiconductor waste gas of low concentration introduced through the inlet 11 passes through the first adsorbent 2, the second adsorbent 3, and the third adsorbent 4 in order to be discharged to the outside through the outlet 12. do.

상기 제1흡착제제조단계는 유기 악취 가스(예컨대, 메틸 메르캅탄 등)를 제거하기 위한 제1흡착제(2)를 제조하는 단계로, 예컨대 석탄계 활성탄 80 내지 120중량부 및 제올라이트 240 내지 360중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 수산화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 수산화나트륨 용액을 준비하는 수산화나트륨용액준비단계와, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 혼합단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고 분쇄하여 파우더 형태의 분쇄물을 형성하는 분쇄물 형성단계와, 상기 분쇄물에 실리카 160 내지 240중량부 및 알루미나 240 내지 360중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제1흡착제(2)를 형성하는 성형건조단계 등을 포함한다. 상기 제1흡착제는 2 내지 2.5nm의 기공 크기를 가지는 것이 바람직하다.The first adsorbent manufacturing step is a step of preparing the first adsorbent 2 for removing organic malodorous gas (eg, methyl mercaptan, etc.), for example, 80 to 120 parts by weight of coal-based activated carbon and 240 to 360 parts by weight of zeolite are mixed. A mixed powder forming step of forming a mixed powder, and a sodium hydroxide solution preparation step of dissolving 320 to 480 parts by weight of sodium hydroxide in 800 to 1200 parts by weight of distilled water to prepare a sodium hydroxide solution, and mixing the mixed powder with the sodium hydroxide solution A mixing step of stirring, filtration under reduced pressure to form a cake and washing with distilled water; a pulverized product forming step of drying, calcining, and pulverizing the washed cake obtained in the mixing step to form a pulverized product in powder form; Mixing 160 to 240 parts by weight of silica and 240 to 360 parts by weight of alumina, a mixed powder preparation step of preparing a mixed powder, and mixing a calcium carbonate solution with the mixed powder to form a dough, forming the dough and drying the and a molding drying step of forming the first adsorbent 2 . The first adsorbent preferably has a pore size of 2 to 2.5 nm.

상기 제2흡착제제조단계는 알칼리 가스(예컨대, 암모니아 등)를 제거하기 위한 제2흡착제(3)를 제조하는 단계로, 예컨대 석탄계 활성탄 240 내지 360중량부 및 제올라이트 80 내지 120중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 염화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 염화나트륨 용액을 준비하는 염화나트륨용액준비단계와, 상기 혼합분말을 상기 염화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 세척단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하는 분쇄물형성단계와, 상기 분쇄물에 실리카 120 내지 180중량부 및 알루미나 280 내지 420중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 염화칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제2흡착제(3)를 형성하는 성형건조단계를 포함한다. 상기 제2흡착제(3)는 5 내지 8nm의 기공 크기를 가지는 것이 바람직하다.The second adsorbent manufacturing step is a step of preparing the second adsorbent 3 for removing alkali gas (eg, ammonia, etc.), for example, by mixing 240 to 360 parts by weight of coal-based activated carbon and 80 to 120 parts by weight of zeolite to mix powder A mixed powder forming step of forming a sodium chloride solution preparation step of dissolving 320 to 480 parts by weight of sodium chloride in 800 to 1200 parts by weight of distilled water to prepare a sodium chloride solution, and mixing and stirring the mixed powder in the sodium chloride solution, and filtering the cake under reduced pressure A washing step of forming and washing with distilled water, a pulverized product forming step of drying and calcining the washed cake obtained in the mixing step, and pulverizing to form a pulverized product in powder form, and silica 120 to 180 in the pulverized product A mixed powder preparation step of preparing a mixed powder by mixing parts by weight and 280 to 420 parts by weight of alumina, mixing a calcium chloride solution with the mixed powder to form a dough, forming the dough and drying the second adsorbent (3) It includes a molding drying step to form a. The second adsorbent 3 preferably has a pore size of 5 to 8 nm.

상기 제3흡착제제조단계는 산 가스(예컨대, 황화수소 등)를 제거하기 위한 제3흡착제(4)를 제조하는 단계로, 석탄계 활성탄 240 내지 360중량부 및 제올라이트 80 내지 120중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 수산화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 수산화나트륨 용액을 준비하는 수산화나트륨용액준비단계와, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 세척단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하는 분쇄물형성단계와, 상기 분쇄물에 실리카 120 내지 180중량부 및 알루미나 280 내지 420중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제3흡착제(4)를 형성하는 성형건조단계를 포함한다. 상기 제3흡착제(4)는 2.8 내지 3.4의 기공 크기를 가지는 것이 바람직하다. 상기 제3흡착제제조단계에서 제조된 제3흡착제는 황화수소를 흡착할뿐만 아니라 암모니아를 흡착할 수 있게 된다.The third adsorbent manufacturing step is a step of preparing a third adsorbent 4 for removing acid gas (eg, hydrogen sulfide, etc.), by mixing 240 to 360 parts by weight of coal-based activated carbon and 80 to 120 parts by weight of zeolite to obtain a mixed powder A mixed powder forming step of forming a mixture, a sodium hydroxide solution preparation step of dissolving 320 to 480 parts by weight of sodium hydroxide in 800 to 1200 parts by weight of distilled water to prepare a sodium hydroxide solution, and mixing and stirring the mixed powder in the sodium hydroxide solution, under reduced pressure A washing step of filtration to form a cake and washing with distilled water, a pulverized product forming step of drying and calcining the washed cake obtained in the mixing step, and pulverizing to form a pulverized product in powder form, and silica in the pulverized product A mixed powder preparation step of preparing a mixed powder by mixing 120 to 180 parts by weight and 280 to 420 parts by weight of alumina, mixing a calcium carbonate solution with the mixed powder to form a dough, forming the dough and drying the third and a molding drying step of forming the adsorbent (4). The third adsorbent 4 preferably has a pore size of 2.8 to 3.4. The third adsorbent prepared in the third adsorbent manufacturing step is capable of adsorbing ammonia as well as adsorbing hydrogen sulfide.

상기 흡착제적재단계는 유입부(11)와 유출부(12)가 형성된 반응기(1) 내부에 제1흡착제(2), 제2흡착제(3) 및 제3흡착제(4)를 차례로 적층하는 단계로, 상기 제1흡착제(2), 제2흡착제(3) 및 제3흡착제(4)는 저농도의 반도체 폐가스를 처리하는 활성탄에 비해 열적 안정성이 뛰어나나, 상기 제1흡착제(2)는 제2흡착제(3) 및 제3흡착제(4)에 비해 열적 안정성이 더 뛰어나므로, 반응기 내부로 유입되는 저농도의 반도체 폐가스와 가장 먼저 반응할 수 있도록 반응기 하단에 위치하게 된다. 또한, 제3흡착제(4)는 황화수소를 흡착할 뿐만 아니라 물리적 흡착에 의해 암모니아 흡착하므로, 최 상단에 위치하게 된다. 상기 장치에 사용되는 흡착제는 활성탄의 사용 비율 등을 조절하여 열적 안정성을 향상시키고, 기공 크기 조절을 통해 선택적으로 유해물질을 제거하여 저농도의 반도체 폐가스를 처리하므로, 비교적 갑싼 재료를 간단한 방법으로 흡착제를 제조할 수 있어 경제성을 향상시킬 수 있다.The adsorbent loading step is a step of sequentially stacking the first adsorbent (2), the second adsorbent (3) and the third adsorbent (4) inside the reactor (1) having the inlet (11) and outlet (12) formed therein. , The first adsorbent (2), the second adsorbent (3), and the third adsorbent (4) have excellent thermal stability compared to activated carbon that treats semiconductor waste gas with a low concentration, but the first adsorbent (2) is a second adsorbent (3) and the third adsorbent (4) because it has better thermal stability, it is located at the bottom of the reactor to react first with the semiconductor waste gas of low concentration flowing into the reactor. In addition, the third adsorbent 4 not only adsorbs hydrogen sulfide but also adsorbs ammonia by physical adsorption, so it is located at the top. The adsorbent used in the device improves thermal stability by controlling the use ratio of activated carbon, etc., and selectively removes harmful substances through pore size control to treat low-concentration semiconductor waste gas. It can be manufactured and thus economical efficiency can be improved.

이하, 실시예를 통해서 본 발명을 보다 상세히 설명하기로 한다. 하지만, 이들은 본 발명을 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these are only for describing the present invention in more detail, and the scope of the present invention is not limited thereto.

<실시예 1> 흡착제의 제조<Example 1> Preparation of adsorbent

1. 석탄계 활성탄 100g 및 제올라이트 300g을 혼합하여 혼합분말을 준비하고, 수산화나트륨 400g을 증류수 1000ml에 녹여 수산화나트륨 용액을 준비하고, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합하고 1시간 동안 교반하고, 감압 여과하여 케이크를 형성하고 증류수로 3회 세척하였다. 이후, 150℃에서 3시간 동안 건조하고 350℃에서 1시간 동안 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하고, 상기 분쇄물에 실리카 200g 및 알루미나 300g을 혼합하여, 혼합 파우더를 준비하였다. 이후, 상기 혼합 파우더에 2.5mol의 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 회전성형기를 이용하여 구형 형태로 성형한 후 건조하여 흡착제 1을 형성하였다.1. Prepare a mixed powder by mixing 100 g of coal-based activated carbon and 300 g of zeolite, dissolving 400 g of sodium hydroxide in 1000 ml of distilled water to prepare a sodium hydroxide solution, and mixing the mixed powder with the sodium hydroxide solution, stirring for 1 hour, and reducing the pressure Filtration formed a cake and washed 3 times with distilled water. Thereafter, dried at 150° C. for 3 hours, calcined at 350° C. for 1 hour, and pulverized to form a pulverized product, and 200 g of silica and 300 g of alumina were mixed with the pulverized product to prepare a mixed powder. Thereafter, a dough was formed by mixing 2.5 mol of calcium carbonate solution with the mixed powder, and the dough was molded into a spherical shape using a rotary molding machine, and then dried to form an adsorbent 1.

2. 석탄계 활성탄 300g 및 제올라이트 100g을 혼합하여 혼합분말을 준비하고, 수산화나트륨 400g을 증류수 1000ml에 녹여 수산화나트륨 용액을 준비하고, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합하고 1시간 동안 교반하고, 감압 여과하여 케이크를 형성하고 증류수로 3회 세척하였다. 이후, 150℃에서 3시간 동안 건조하고 350℃에서 1시간 동안 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하고, 상기 분쇄물에 실리카 150g 및 알루미나 350g을 혼합하여, 혼합 파우더를 준비하였다. 이후, 상기 혼합 파우더에 2.5mol의 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 회전성형기를 이용하여 구형 형태로 성형한 후 건조하여 흡착제 2를 형성하였다.2. Prepare a mixed powder by mixing 300 g of coal-based activated carbon and 100 g of zeolite, dissolving 400 g of sodium hydroxide in 1000 ml of distilled water to prepare a sodium hydroxide solution, and mixing the mixed powder with the sodium hydroxide solution and stirring for 1 hour, under reduced pressure Filtration formed a cake and washed 3 times with distilled water. Thereafter, dried at 150° C. for 3 hours, calcined at 350° C. for 1 hour, pulverized to form a pulverized product, and 150 g of silica and 350 g of alumina were mixed with the pulverized product to prepare a mixed powder. Thereafter, a dough was formed by mixing 2.5 mol of calcium carbonate solution with the mixed powder, and the dough was molded into a spherical shape using a rotary molding machine, and then dried to form an adsorbent 2.

3. 석탄계 활성탄 300g 및 제올라이트 100g을 혼합하여 혼합분말을 준비하고, 염화나트륨 400g을 증류수 1000ml에 녹여 염화나트륨 용액을 준비하고, 상기 혼합분말을 상기 염화나트륨 용액에 혼합하고 1시간 동안 교반하고, 감압 여과하여 케이크를 형성하고 증류수로 3회 세척하였다. 이후, 150℃에서 3시간 동안 건조하고 350℃에서 1시간 동안 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하고, 상기 분쇄물에 실리카 150g 및 알루미나 350g을 혼합하여, 혼합 파우더를 준비하였다. 이후, 상기 혼합 파우더에 2.5mol의 염화칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 회전성형기를 이용하여 구형 형태로 성형한 후 건조하여 흡착제 3을 형성하였다.3. Prepare a mixed powder by mixing 300 g of coal-based activated carbon and 100 g of zeolite, and dissolving 400 g of sodium chloride in 1000 ml of distilled water to prepare a sodium chloride solution, and mixing the mixed powder with the sodium chloride solution, stirring for 1 hour, and filtering under reduced pressure to make a cake was formed and washed 3 times with distilled water. Thereafter, dried at 150° C. for 3 hours, calcined at 350° C. for 1 hour, pulverized to form a pulverized product, and 150 g of silica and 350 g of alumina were mixed with the pulverized product to prepare a mixed powder. Thereafter, a dough was formed by mixing 2.5 mol of a calcium chloride solution with the mixed powder, and the dough was molded into a spherical shape using a rotary molding machine, and then dried to form an adsorbent 3 .

4. 석탄계 활성탄 100g, 제올라이트 300g, 실리카 200g 및 알루미나 300g을 혼합하여 혼합분말을 준비하고, 수산화나트륨 400g을 증류수 1000ml에 녹여 수산화나트륨 용액을 준비하고, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합하고 1시간 동안 교반하고, 감압 여과하여 케이크를 형성하고 증류수로 3회 세척하였다. 이후, 150℃에서 3시간 동안 건조하고 350℃에서 1시간 동안 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하였다. 이후, 상기 분쇄물에 2.5mol의 염화칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 회전성형기를 이용하여 구형 형태로 성형한 후 건조하여 흡착제 4를 형성하였다.4. Prepare a mixed powder by mixing 100 g of coal-based activated carbon, 300 g of zeolite, 200 g of silica and 300 g of alumina, and dissolving 400 g of sodium hydroxide in 1000 ml of distilled water to prepare a sodium hydroxide solution, and mixing the mixed powder with the sodium hydroxide solution 1 After stirring for an hour, filtration under reduced pressure to form a cake and washing with distilled water 3 times. Thereafter, dried at 150° C. for 3 hours, calcined at 350° C. for 1 hour, and pulverized to form a pulverized product in the form of a powder. Thereafter, a dough was formed by mixing 2.5 mol of calcium chloride solution with the pulverized material, and the dough was molded into a spherical shape using a rotary molding machine and dried to form an adsorbent 4.

5. 석탄계 활성탄 300g, 제올라이트 100g, 실리카 150g 및 알루미나 350g을 혼합하여 혼합분말을 준비하고, 수산화나트륨 400g을 증류수 1000ml에 녹여 수산화나트륨 용액을 준비하고, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합하고 1시간 동안 교반하고, 감압 여과하여 케이크를 형성하고 증류수로 3회 세척하였다. 이후, 150℃에서 3시간 동안 건조하고 350℃에서 1시간 동안 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하였다. 이후, 상기 혼합 파우더에 2.5mol의 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 회전성형기를 이용하여 구형 형태로 성형한 후 건조하여 흡착제 5를 형성하였다.5. Prepare a mixed powder by mixing 300 g of coal-based activated carbon, 100 g of zeolite, 150 g of silica and 350 g of alumina, and dissolving 400 g of sodium hydroxide in 1000 ml of distilled water to prepare a sodium hydroxide solution, and mixing the mixed powder with the sodium hydroxide solution 1 After stirring for an hour, filtration under reduced pressure to form a cake and washing with distilled water 3 times. Thereafter, dried at 150° C. for 3 hours, calcined at 350° C. for 1 hour, and pulverized to form a pulverized product in the form of a powder. Thereafter, a dough was formed by mixing 2.5 mol of calcium carbonate solution with the mixed powder, and the dough was molded into a spherical shape using a rotary molding machine, and then dried to form an adsorbent 5.

6. 석탄계 활성탄 300g, 제올라이트 100g, 실리카 150g 및 알루미나 350g을 혼합하여 혼합분말을 준비하고, 염화나트륨 400g을 증류수 1000ml에 녹여 염화나트륨 용액을 준비하고, 상기 혼합분말을 상기 염화나트륨 용액에 혼합하고 1시간 동안 교반하고, 감압 여과하여 케이크를 형성하고 증류수로 3회 세척하였다. 이후, 150℃에서 3시간 동안 건조하고 350℃에서 1시간 동안 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하였다. 이후, 상기 혼합 파우더에 2.5mol의 염화칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 회전성형기를 이용하여 구형 형태로 성형한 후 건조하여 흡착제 6을 형성하였다.6. Prepare a mixed powder by mixing 300 g of coal-based activated carbon, 100 g of zeolite, 150 g of silica and 350 g of alumina, and dissolving 400 g of sodium chloride in 1000 ml of distilled water to prepare a sodium chloride solution, and mixing the mixed powder with the sodium chloride solution and stirring for 1 hour and filtered under reduced pressure to form a cake and washed 3 times with distilled water. Thereafter, dried at 150° C. for 3 hours, calcined at 350° C. for 1 hour, and pulverized to form a pulverized product in the form of a powder. Then, a dough was formed by mixing 2.5 mol of calcium chloride solution with the mixed powder, and the dough was molded into a spherical shape using a rotary molding machine, and then dried to form an adsorbent 6.

7. 석탄계 활성탄 100g, 제올라이트 300g 대신에 석탄계 활성탄 200g, 제올라이트 200g을 사용한 것을 제외하고는 다른 조건을 실시예 1의 1과 동일하게 하여 흡착제 7을 형성하였다.7. Adsorbent 7 was formed in the same manner as in Example 1 except that 200 g of coal-based activated carbon and 200 g of zeolite were used instead of 100 g of coal-based activated carbon and 300 g of zeolite.

8. 석탄계 활성탄 300g, 제올라이트 100g 대신에 석탄계 활성탄 200g, 제올라이트 200g을 사용한 것을 제외하고는 다른 조건을 실시예 1의 3과 동일하게 하여 흡착제 8을 형성하였다.8. Adsorbent 8 was formed in the same manner as in Example 3 except that 200 g of coal-based activated carbon and 200 g of zeolite were used instead of 300 g of coal-based activated carbon and 100 g of zeolite.

9. 실리카 200g 및 알루미나 300g 대신에 실리카 150g 및 알루미나 350g을 사용한 것을 제외하고는 다른 조건을 실시예 1의 1과 동일하게 하여 흡착제 9를 형성하였다.9. Adsorbent 9 was formed in the same manner as in Example 1, except that 150 g of silica and 350 g of alumina were used instead of 200 g of silica and 300 g of alumina.

10. 실리카 150g 및 알루미나 350g 대신에 실리카 200g 및 알루미나 300g을 사용한 것을 제외하고는 다른 조건을 실시예 1의 2와 동일하게 하여 흡착제 10을 형성하였다.10. Adsorbent 10 was formed in the same manner as in Example 1 2 except that 200 g of silica and 300 g of alumina were used instead of 150 g of silica and 350 g of alumina.

11. 염화칼슘 용액 대신에 탄산칼슘 용액을 사용한 것을 제외하고는 다른 조건을 실시예 1의 3과 동일하게 하여 흡착제 11을 형성하였다.11. Adsorbent 11 was formed in the same manner as in Example 1 3 except that a calcium carbonate solution was used instead of the calcium chloride solution.

<실시예 2> 열적 안정성 평가<Example 2> Thermal stability evaluation

1. 저농도의 반도체 폐가스 처리에 일반적으로 사용되는 활성탄 및 흡착제 1 내지 11에 대하여, 불을 직접 가할 때(직화) 발화가 있었는지 확인하여, 그 결과를 표 1에 나타내였다. 또한, 흡착제 1 내지 3에 대하여 열중량분석기(TGA)를 이용하여 실험하여 열적 안정성을 상대 비교하였다.1. For activated carbon and adsorbents 1 to 11, which are generally used for treating low-concentration semiconductor waste gas, it was checked whether there was ignition when fire was directly applied (direct fire), and the results are shown in Table 1. In addition, by using a thermogravimetric analyzer (TGA) for the adsorbents 1 to 3, the thermal stability was compared relative to each other.

2. 표 1을 보면, 활성탄은 직화시 발화가 발생하나 흡착제 1 내지 11은 발화가 일어나지 않은 것을 확인할 수 있고, TGA 실험 결과 흡착제 1이 흡착제 2 및 3에 비하여 열정 안정성이 더 우수한 것을 확인할 수 있었다.2. Referring to Table 1, it can be seen that the activated carbon ignites upon direct fire, but adsorbents 1 to 11 do not ignite, and as a result of the TGA test, it was confirmed that adsorbent 1 had better thermal stability than adsorbents 2 and 3. .


활성탄

activated carbon
흡착제absorbent
1One 22 33 44 55 66 77 88 99 1010 1111 발화여부ignited ×× ×× ×× ×× ×× ×× ×× ×× ×× ×× ××

<실시예 3> 물성 평가<Example 3> Physical property evaluation

1. 활성탄, 흡착제 1 내지 3 및 7에 대하여 비중, 기공크기, 비표면적을 측정하여 그 결과를 표 2에 나타내었다.1. Specific gravity, pore size, and specific surface area were measured for activated carbon and adsorbents 1 to 3 and 7, and the results are shown in Table 2.

2. 표 2를 보면, 활성탄의 기공 크기는 1.85nm이며, 흡착제 1의 기공 크기는 2.48nm이고, 흡착제 2의 기공 크기는 3.1nm이고, 흡착제 3의 기공 크기는 6.66nm이고, 흡착제 7의 기공 크기는 2.80nm임을 확인할 수 있다.2. Referring to Table 2, the pore size of activated carbon is 1.85 nm, the pore size of adsorbent 1 is 2.48 nm, the pore size of adsorbent 2 is 3.1 nm, the pore size of adsorbent 3 is 6.66 nm, and the pore size of adsorbent 7 It can be seen that the size is 2.80 nm.

비중(g/ml)Specific gravity (g/ml) 기공크기(nm)Pore size (nm) 비표면적
BET(m3/g)
specific surface area
BET (m 3 / g)
활성탄activated carbon 0.550.55 1.851.85 999999 흡착제 1adsorbent 1 0.70.7 2.482.48 300300 흡착제 2adsorbent 2 0.70.7 3.103.10 406406 흡착제 3adsorbent 3 0.80.8 6.666.66 215215 흡착제 7adsorbent 7 0.720.72 2.802.80 360360

<실시예 4> 반도체 폐가스의 제거 효율 평가<Example 4> Evaluation of removal efficiency of semiconductor waste gas

1. 산 가스(H2S) 및 알칼리 가스(NH3)의 흡착 능력 평가1. Evaluation of adsorption capacity of acid gas (H 2 S) and alkali gas (NH 3 )

(1) 활성탄 및 흡착제 1 내지 11 각각을 유리반응실린더에 채워넣고, 불활성 가스 N2와 혼합된 H2S 가스, 불활성 가스 N2와 혼합된 NH3 가스 각각을 유리반응실린더에 1LPM으로 흘러주고, 반응 후 흘러나온 가스는 FT-IR을 통해 분석하여 흡착제(또는 활성탄) 1L당 제거된 H2S 가스(또는 NH3 가스)의 양을 계산하여 그 결과를 표 3에 나타내었다.(1) Each of the activated carbon and the adsorbents 1 to 11 is filled in a glass reaction cylinder, and each of the H 2 S gas mixed with the inert gas N 2 and the NH 3 gas mixed with the inert gas N 2 is flowed into the glass reaction cylinder at 1LPM, , the gas flowing out after the reaction was analyzed through FT-IR to calculate the amount of H 2 S gas (or NH 3 gas) removed per 1 L of adsorbent (or activated carbon), and the results are shown in Table 3.

(2) 표 3을 보면, 흡착제 2는 황화수소 흡착 능력이 뛰어나고, 흡착제 3은 암모니아 흡착 능력이 뛰어남을 알 수 있다. 또한, 흡착제 1이 흡착제 4에 비하여 흡착 능력이 뛰어나고, 흡착제 2가 흡착제 5에 비하여 흡착 능력이 뛰어나고, 흡착제 3이 흡착제 6에 비하여 흡착 능력이 뛰어남을 확인할 수 있어, 흡착제를 구성하는 분말을 한꺼번에 혼합하여 생성하는 경우 흡착 능력이 떨어짐을 알 수 있다. 또한, 흡착제 7이 흡착제 1에 비해 흡착 능력이 뛰어나고, 흡착제 3이 흡착제 8에 비해 흡착 능력이 뛰어남을 확인할 수 있어, 활성탄과 제올라이트의 양을 조절하는 경우, 황화 수소 가스 및 암모니아 가스의 흡착량을 향상시킬 수 있음을 알 수 있다. 또한, 실시예 2가 실시예 10에 비하여 흡착 능력이 뛰어남을 알 수 있어, 실리카와 알루미나의 양을 조절하여 가스 흡착량이 변화됨을 알 수 있다.(2) Referring to Table 3, it can be seen that adsorbent 2 has excellent hydrogen sulfide adsorption capacity, and adsorbent 3 has excellent ammonia adsorption capacity. In addition, it can be seen that adsorbent 1 has superior adsorption capacity compared to adsorbent 4, adsorbent 2 has superior adsorption capacity compared to adsorbent 5, and adsorbent 3 has superior adsorption capacity compared to adsorbent 6, so that the powders constituting the adsorbent are mixed at once It can be seen that the adsorption capacity is lowered when it is produced. In addition, it can be seen that adsorbent 7 has superior adsorption capacity compared to adsorbent 1 and adsorbent 3 has superior adsorption capacity compared to adsorbent 8. It can be seen that it can be improved. In addition, it can be seen that Example 2 has superior adsorption capacity compared to Example 10, and thus the amount of gas adsorption is changed by adjusting the amounts of silica and alumina.

H2S 흡착량(L/L)H 2 S adsorption amount (L/L) NH3 흡착량(L/L)NH 3 adsorption amount (L/L) 활성탄activated carbon 0.070.07 0.210.21 흡착제 1adsorbent 1 0.270.27 0.530.53 흡착제 2adsorbent 2 1.211.21 2.382.38 흡착제 3adsorbent 3 0.070.07 4.754.75 흡착제 4adsorbent 4 0.250.25 0.480.48 흡착제 5adsorbent 5 0.580.58 0.890.89 흡착제 6adsorbent 6 0.060.06 2.012.01 흡착제 7adsorbent 7 0.890.89 1.551.55 흡착제 8Adsorbent 8 0.040.04 3.543.54 흡착제 9adsorbent 9 0.250.25 0.470.47 흡착제 10adsorbent 10 1.111.11 2.112.11 흡착제 11adsorbent 11 0.660.66 3.243.24

2. 저농도 반도체 폐가스의 구성 성분의 흡착 능력 평가2. Evaluation of adsorption capacity of components of low-concentration semiconductor waste gas

(1) 저농도의 반도체 폐가스는 5ppm 이하의 메틸 메르캅탄, 황화수소, 암모니아 등을 포함하는데, 상기 흡착제가 저농도의 메틸 메르캅탄, 황화수소, 암모니아를 흡착하는지 실험하여 그 결과를 표 4에 나타내었다. 상기 실험은 활성탄, 흡착제 1 내지 4, 7 및 9가 채워진 반응기에 4.84PPM의 메틸 메르캅탄을 주입하고 출구에서 메틸 메르캅탄의 농도를 측정하였으며, 흡착제 2가 채워진 반응기에 4.94PPM의 황화수소를 주입하고 출구에서 황화수소의 농도를 측정하였으며, 흡착제 3이 채워진 반응기에 4.86PPM의 암노니아를 주입하고 출구에서 암모니아의 농도를 측정하였다.(1) The semiconductor waste gas of low concentration contains 5 ppm or less of methyl mercaptan, hydrogen sulfide, ammonia, etc., and the results are shown in Table 4 by testing whether the adsorbent adsorbs low concentrations of methyl mercaptan, hydrogen sulfide, and ammonia. In the above experiment, 4.84 PPM of methyl mercaptan was injected into a reactor filled with activated carbon, adsorbents 1 to 4, 7 and 9, and the concentration of methyl mercaptan was measured at the outlet, and 4.94 PPM of hydrogen sulfide was injected into the reactor filled with adsorbent 2 and The concentration of hydrogen sulfide was measured at the outlet, and 4.86 PPM of ammonia was injected into the reactor filled with adsorbent 3, and the concentration of ammonia was measured at the outlet.

(2) 표 4를 보면, 흡착제 1이 저농도의 메틸 메르캅탄을 완전히 제거하고, 흡착제 2가 저농도의 황화수소를 완전히 제거하고, 흡착제 3이 저농도의 암모니아를 완전히 제거함을 알 수 있다. 또한, 흡착제 1이 흡착제 2, 3, 4, 7 및 9에 비해 저농도의 메틸 메르캅탄 흡착 효율이 뛰어남을 알 수 있어, 흡착제 구성 성분의 혼합 방법, 활성탄과 제올라이트의 양, 실리카와 알루미나의 양을 조절하여 가스 흡착량이 변화됨을 알 수 있다.(2) Referring to Table 4, it can be seen that adsorbent 1 completely removes low-concentration methyl mercaptan, adsorbent 2 completely removes low-concentration hydrogen sulfide, and adsorbent 3 completely removes low-concentration ammonia. In addition, it can be seen that adsorbent 1 has superior adsorption efficiency of methyl mercaptan at low concentrations compared to adsorbents 2, 3, 4, 7 and 9. It can be seen that the amount of gas adsorption is changed by adjusting.

GAS 종류GAS type INLET 농도(PPM)INLET concentration (PPM) 흡착제absorbent OUTLET 농도(PPM)OUTLET Concentration (PPM) Methyl mercaptanMethyl mercaptan 4.844.84 활성탄activated carbon 00 흡착제 1adsorbent 1 00 흡착제 2adsorbent 2 0.140.14 흡착제 3adsorbent 3 0.960.96 흡착제 4adsorbent 4 0.220.22 흡착제 7adsorbent 7 0.090.09 흡착제 9adsorbent 9 0.040.04 Hydrogen sulfideHydrogen sulfide 4.944.94 흡착제 2adsorbent 2 00 AmmoniaAmmonia 4.864.86 흡착제 3adsorbent 3 00

이상에서, 출원인은 본 발명의 바람직한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다.In the above, the applicant has described preferred embodiments of the present invention, but these embodiments are only one embodiment implementing the technical idea of the present invention, and any changes or modifications as long as the technical idea of the present invention is implemented. should be construed as within the scope.

1: 하우징 2: 제1흡착제 3: 제2흡착제
4: 제3흡착제 11: 유입부 12: 유출부
13: 수용부 14: 제1격벽 15: 제2격벽
131: 제1수용부 132: 제2수용부 133: 제3수용부
1: housing 2: first adsorbent 3: second adsorbent
4: third adsorbent 11: inlet part 12: outlet part
13: accommodating part 14: first bulkhead 15: second bulkhead
131: first accommodating part 132: second accommodating part 133: third accommodating part

Claims (9)

저농도의 반도체 페가스 처리용 장치의 제조방법에 있어서,
상기 제조방법은 유기 악취 가스를 제거하기 위한 제1흡착제를 제조하는 제1흡착제제조단계와, 알칼리 가스를 제거하기 위한 제2흡착제를 제조하는 제2흡착제제조단계와, 산 가스를 제거하기 위한 제3흡착제를 제조하는 제3흡착제제조단계와, 유입부와 유출부가 형성된 반응기 내부에 제1흡착제, 제2흡착제 및 제3흡착제를 차례로 적층하는 흡착제적재단계를 포함하는 것을 특징으로 하는 저농도의 반도체 페가스 처리용 장치의 제조방법.
In the manufacturing method of the apparatus for processing low concentration semiconductor waste gas,
The manufacturing method includes a first adsorbent manufacturing step of preparing a first adsorbent for removing organic malodorous gas, a second adsorbent manufacturing step of preparing a second adsorbent for removing alkali gas, and a second adsorbent manufacturing step for removing acid gas 3 A third adsorbent manufacturing step of manufacturing an adsorbent, and an adsorbent loading step of sequentially stacking a first adsorbent, a second adsorbent, and a third adsorbent in a reactor in which an inlet and an outlet are formed. A method of manufacturing an apparatus for gas treatment.
제1항에 있어서,
상기 유입부를 통해 유입된 저농도의 반도체 폐가스는 제1흡착제, 제2흡착제 및 제3흡착제를 차례로 통과하여 유출부를 통해 외부로 배출되게 되며,
상기 저농도의 반도체 폐가스는 1 내지 5ppm의 농도를 가지며, 메틸 메르캅탄, 암모니아 및 황화수소를 포함하는 것을 특징으로 하는 저농도의 반도체 페가스 처리용 장치의 제조방법.
According to claim 1,
The semiconductor waste gas of low concentration introduced through the inlet passes sequentially through the first adsorbent, the second adsorbent, and the third adsorbent, and is discharged to the outside through the outlet,
The low-concentration semiconductor waste gas has a concentration of 1 to 5 ppm, and comprises methyl mercaptan, ammonia and hydrogen sulfide.
제2항에 있어서,
상기 제1흡착제제조단계는 석탄계 활성탄 80 내지 120중량부 및 제올라이트 240 내지 360중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 수산화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 수산화나트륨 용액을 준비하는 수산화나트륨용액준비단계와, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 혼합단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고 분쇄하여 파우더 형태의 분쇄물을 형성하는 분쇄물 형성단계와, 상기 분쇄물에 실리카 160 내지 240중량부 및 알루미나 240 내지 360중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제1흡착제를 형성하는 성형건조단계를 포함하는 것을 특징으로 하는 저농도의 반도체 페가스 처리용 장치의 제조방법.
3. The method of claim 2,
The first adsorbent manufacturing step is a mixed powder forming step of mixing 80 to 120 parts by weight of coal-based activated carbon and 240 to 360 parts by weight of zeolite to form a mixed powder, and 320 to 480 parts by weight of sodium hydroxide dissolved in 800 to 1200 parts by weight of distilled water to hydroxide A sodium hydroxide solution preparation step of preparing a sodium solution, a mixing step of mixing and stirring the mixed powder in the sodium hydroxide solution, filtration under reduced pressure to form a cake and washing with distilled water, and drying the washed cake obtained in the mixing step A pulverized product forming step of forming a pulverized product in powder form by calcining and pulverizing, and mixing 160 to 240 parts by weight of silica and 240 to 360 parts by weight of alumina with the pulverized product to prepare a mixed powder; Forming a dough by mixing a calcium carbonate solution with the mixed powder, and molding and drying the dough to form a first adsorbent.
제3항에 있어서,
상기 제1흡착제는 2 내지 2.5nm의 기공 크기를 가지는 것을 특징으로 하는 저농도의 반도체 페가스 처리용 장치의 제조방법.
4. The method of claim 3,
The first adsorbent is a method of manufacturing a device for processing a semiconductor waste gas of low concentration, characterized in that it has a pore size of 2 to 2.5 nm.
제4항에 있어서,
상게 2흡착제제조단계는 석탄계 활성탄 240 내지 360중량부 및 제올라이트 80 내지 120중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 염화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 염화나트륨 용액을 준비하는 염화나트륨용액준비단계와, 상기 혼합분말을 상기 염화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 세척단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하는 분쇄물형성단계와, 상기 분쇄물에 실리카 120 내지 180중량부 및 알루미나 280 내지 420중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 염화칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제2흡착제를 형성하는 성형건조단계를 포함하는 것을 특징으로 하는 저농도의 반도체 페가스 처리용 장치의 제조방법.
5. The method of claim 4,
The second adsorbent manufacturing step is a mixed powder forming step of mixing 240 to 360 parts by weight of coal-based activated carbon and 80 to 120 parts by weight of zeolite to form a mixed powder, and 320 to 480 parts by weight of sodium chloride dissolved in 800 to 1200 parts by weight of distilled water to prepare a sodium chloride solution A sodium chloride solution preparation step to prepare, a washing step of mixing and stirring the mixed powder with the sodium chloride solution, filtration under reduced pressure to form a cake and washing with distilled water, drying and calcining the washed cake obtained in the mixing step, and pulverizing A pulverized product forming step of forming a pulverized product in powder form through A method of manufacturing a low-concentration semiconductor waste gas processing apparatus, comprising: forming a dough by mixing a calcium chloride solution with the mixture; forming and drying the dough to form a second adsorbent.
제5항에 잇어서,
상기 제2흡착제는 5 내지 8nm의 기공 크기를 가지는 것을 특징으로 하는 저농도의 반도체 페가스 처리용 장치의 제조방법.
According to claim 5,
The second adsorbent is a method of manufacturing a device for processing a low concentration semiconductor waste gas, characterized in that it has a pore size of 5 to 8 nm.
제6항에 있어서,
상기 제3흡착제제조단계는 석탄계 활성탄 240 내지 360중량부 및 제올라이트 80 내지 120중량부를 혼합하여 혼합분말을 형성하는 혼합분말형성단계와, 수산화나트륨 320 내지 480중량부를 증류수 800 내지 1200중량부에 녹여 수산화나트륨 용액을 준비하는 수산화나트륨용액준비단계와, 상기 혼합분말을 상기 수산화나트륨 용액에 혼합교반하고, 감압 여과하여 케이크를 형성하고 증류수로 세척하는 세척단계와, 상기 혼합단계에서 얻은 세척한 케이크를 건조하고 소성하고, 분쇄를 통해 파우더 형태의 분쇄물을 형성하는 분쇄물형성단계와, 상기 분쇄물에 실리카 120 내지 180중량부 및 알루미나 280 내지 420중량부를 혼합하여, 혼합 파우더를 준비하는 혼합파우더준비단계와, 상기 혼합 파우더에 탄산칼슘 용액을 혼합하여 반죽을 형성하고, 상기 반죽을 성형하고 건조하여 제3흡착제를 형성하는 성형건조단계를 포함하는 것을 특징으로 하는 저농도의 반도체 페가스 처리용 장치의 제조방법.
7. The method of claim 6,
The third adsorbent manufacturing step is a mixed powder forming step of mixing 240 to 360 parts by weight of coal-based activated carbon and 80 to 120 parts by weight of zeolite to form a mixed powder, and 320 to 480 parts by weight of sodium hydroxide dissolved in 800 to 1200 parts by weight of distilled water to hydroxide A sodium hydroxide solution preparation step of preparing a sodium solution, a washing step of mixing and stirring the mixed powder in the sodium hydroxide solution, filtration under reduced pressure to form a cake and washing with distilled water, and drying the washed cake obtained in the mixing step A pulverized product forming step of forming a pulverized product in powder form through pulverization and calcining, and a mixed powder preparation step of preparing a mixed powder by mixing 120 to 180 parts by weight of silica and 280 to 420 parts by weight of alumina with the pulverized product and forming a dough by mixing the calcium carbonate solution with the mixed powder, and forming and drying the dough to form a third adsorbent. Way.
제7항에 있어서,
상기 제3흡착제는 2.8 내지 3.4의 기공 크기를 가지는 것을 특징으로 하는 저농도의 반도체 페가스 처리용 장치의 제조방법.
8. The method of claim 7,
The third adsorbent is a method of manufacturing a device for processing a low concentration of semiconductor waste gas, characterized in that it has a pore size of 2.8 to 3.4.
제8항에 있어서,
상기 제3흡착제는 황화수소를 흡착할뿐만 아니라 암모니아를 흡착하는 것을 특징으로 하는 반도체 페가스 처리용 장치의 제조방법.
9. The method of claim 8,
The third adsorbent is a method of manufacturing a device for treating semiconductor waste gas, characterized in that it adsorbs ammonia as well as adsorbs hydrogen sulfide.
KR1020210017189A 2021-02-08 2021-02-08 Apparatus for processing low concentration semiconductor waste gas KR102518202B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210017189A KR102518202B1 (en) 2021-02-08 2021-02-08 Apparatus for processing low concentration semiconductor waste gas
PCT/KR2022/000514 WO2022169126A1 (en) 2021-02-08 2022-01-12 Apparatus for treating low-concentration semiconductor waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210017189A KR102518202B1 (en) 2021-02-08 2021-02-08 Apparatus for processing low concentration semiconductor waste gas

Publications (2)

Publication Number Publication Date
KR20220115632A true KR20220115632A (en) 2022-08-18
KR102518202B1 KR102518202B1 (en) 2023-04-06

Family

ID=82741328

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210017189A KR102518202B1 (en) 2021-02-08 2021-02-08 Apparatus for processing low concentration semiconductor waste gas

Country Status (2)

Country Link
KR (1) KR102518202B1 (en)
WO (1) WO2022169126A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102508352B1 (en) * 2022-08-29 2023-03-13 주식회사 원익홀딩스 Gas processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200389209Y1 (en) * 2005-04-07 2005-07-08 Hybrid deodorization system adopted real-time controller
KR20150104454A (en) * 2014-03-05 2015-09-15 한국과학기술연구원 Hierarchically porous amine-silica monolith and preparation method thereof
KR20160085034A (en) * 2015-01-07 2016-07-15 경상대학교산학협력단 Method for preparing adsorbent for removing stench gas from waste and the adsorbent for removing stench gas thereby
KR102129988B1 (en) * 2020-03-06 2020-07-03 주식회사 퓨어스피어 Apparatus for treating waste gas in producing semiconductor and method for treating waste gas
KR20200135655A (en) * 2019-05-24 2020-12-03 주식회사 에스알디글로벌 Adsorbent for removing acidic gas and Method for preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6616928B2 (en) * 2013-06-19 2019-12-04 カルゴン カーボン コーポレーション Reduction method of heavy metal leaching from activated carbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200389209Y1 (en) * 2005-04-07 2005-07-08 Hybrid deodorization system adopted real-time controller
KR20150104454A (en) * 2014-03-05 2015-09-15 한국과학기술연구원 Hierarchically porous amine-silica monolith and preparation method thereof
KR20160085034A (en) * 2015-01-07 2016-07-15 경상대학교산학협력단 Method for preparing adsorbent for removing stench gas from waste and the adsorbent for removing stench gas thereby
KR20200135655A (en) * 2019-05-24 2020-12-03 주식회사 에스알디글로벌 Adsorbent for removing acidic gas and Method for preparing the same
KR102129988B1 (en) * 2020-03-06 2020-07-03 주식회사 퓨어스피어 Apparatus for treating waste gas in producing semiconductor and method for treating waste gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102508352B1 (en) * 2022-08-29 2023-03-13 주식회사 원익홀딩스 Gas processing device

Also Published As

Publication number Publication date
KR102518202B1 (en) 2023-04-06
WO2022169126A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
Hassan et al. Equilibrium, Kinetic and Thermodynamic studies of adsorption of cationic dyes from aqueous solution using ZIF-8
US7429551B2 (en) Adsorbents for removing heavy metals
Akolekar et al. Synthesis of macro-, meso-, and microporous carbons from natural and synthetic sources, and their application as adsorbents for the removal of quaternary ammonium compounds from aqueous solution
AU2017344205B2 (en) Gas detoxification agent, and preparing and detoxification methods thereof
US20050093189A1 (en) Adsorbents for removing heavy metals and methods for producing and using the same
BG62122B1 (en) Sorbent compositions
KR20110100169A (en) Light regenerative absorbents and use thereof
KR102518202B1 (en) Apparatus for processing low concentration semiconductor waste gas
Wang et al. A dual-functional UiO-66/TiO 2 composite for water treatment and CO 2 capture
Liu et al. Simultaneous efficient adsorption and accelerated photocatalytic degradation of chlortetracycline hydrochloride over novel Fe-based MOGs under visible light irradiation assisted by hydrogen peroxide
Sojoudi et al. Amine functionalized Kit-6 mesoporous magnetite nanocomposite as an efficient adsorbent for removal of Ponceau 4R dye from aqueous solutions
TW200808440A (en) Absorption composition and process for purifying streams of substances
JP2012512018A (en) Method for removing contaminants from a water-containing gas stream
KR0156811B1 (en) Alumina-based catalyst for the treatment of gases containing sulfur compounds, use of these catalysts for the treatment and processes for treatment of the said gases
KR100305028B1 (en) Hazardous Gas Purification Method
KR20060066072A (en) Processes and systems for making phosgene
KR102478525B1 (en) Activated carbon prepared from coffee beans
KR101722954B1 (en) Hydrogen sulfide removing agent and the preparation thereof
KR102520257B1 (en) Adsorbent composition for removing volatile organic compounds
KR19990009359A (en) Granular composite molecular sieve for deodorant and its manufacturing method
KR102484284B1 (en) Apparatus for treating waste gas with replaceable cartridge laterally
KR20220133339A (en) Smart apparatus for treating waste gas
CN110479233B (en) Photocatalyst particles with high ultraviolet light utilization rate for purifying air and preparation method thereof
KR20180072892A (en) Flame retardant adsorbent for exhaust gas removal odor and VOCs and its manufacturing method
CN111921494A (en) Xanthoceras sorbifolia activated carbon adsorbent and preparation method and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant