KR20220099914A - Composition for Activating Probiotics through Inhibition of Harmful Bacteria - Google Patents

Composition for Activating Probiotics through Inhibition of Harmful Bacteria Download PDF

Info

Publication number
KR20220099914A
KR20220099914A KR1020220002086A KR20220002086A KR20220099914A KR 20220099914 A KR20220099914 A KR 20220099914A KR 1020220002086 A KR1020220002086 A KR 1020220002086A KR 20220002086 A KR20220002086 A KR 20220002086A KR 20220099914 A KR20220099914 A KR 20220099914A
Authority
KR
South Korea
Prior art keywords
lactobacillus
lactic acid
acid bacteria
composition
bacteria
Prior art date
Application number
KR1020220002086A
Other languages
Korean (ko)
Inventor
박승환
강성호
주성연
이혜미
Original Assignee
(주)에스앤에이치바이오텍
(주)에이스바이옴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스앤에이치바이오텍, (주)에이스바이옴 filed Critical (주)에스앤에이치바이오텍
Publication of KR20220099914A publication Critical patent/KR20220099914A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/32Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
    • A23V2200/3202Prebiotics, ingredients fermented in the gastrointestinal tract by beneficial microflora
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/32Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
    • A23V2200/3204Probiotics, living bacteria to be ingested for action in the digestive tract

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a prebiotics composition that activates probiotics and inhibits the growth of harmful bacteria, wherein the prebiotics composition inhibits the proliferation of intestinal harmful or neutral bacteria to create an environment in which the probiotics can dominate in intestines, can inhibit the proliferation of the harmful bacteria, thereby preventing or treating diseases caused by food poisoning or infection with pathogenic bacteria, helps the intestinal dominance of the probiotics to be able to expect excellent effects in consideration of effects exhibited with the same dosage or can reduce administration cost by controlling the number of administered lactic acid bacteria.

Description

유해균 억제를 통한 프로바이오틱스 활성화용 조성물{Composition for Activating Probiotics through Inhibition of Harmful Bacteria}Composition for Activating Probiotics through Inhibition of Harmful Bacteria

본 발명은 프로바이오틱스(probiotics)를 활성화하고 유해균의 성장을 억제하는 프리바이오틱스 조성물에 관한 것으로, 더욱 자세하게는 글루코오스 산화효소를 유효성분으로 포함하는 장내 유해균 증식억제 및 유산균 활성화용 프리바이오틱스(prebiotics) 조성물 및 상기 프리바이오틱스와 유산균을 함유하는 신바이오틱스(synbiotics) 조성물에 관한 것이다. The present invention relates to a prebiotic composition that activates probiotics and inhibits the growth of harmful bacteria, and more particularly, contains glucose oxidase as an active ingredient. It relates to a composition and a synbiotics composition containing the prebiotics and lactic acid bacteria.

프로바이오틱스(probiotics)는 장내에서 미생물의 균형을 개선시키고 숙주의 건강을 증진시키는 살아있는 박테리아이다. 프로바이오틱스는 몇몇 미네랄의 이용성을 강화시키고 비타민을 합성하며 장내의 질병을 일으키는 병원균을 막고, 면역력을 높일 뿐만 아니라 단백질의 소화를 도와 흡수를 도와주는 것으로 알려져 있다. 프리바이오틱스(prebiotics)는 위와 소장 내에서 소화 효소로 분해되지 않는 저분자 섬유소. 대장 내에서 유용 미생물이 선택적으로 이용함으로써 숙주의 건강을 증진시키는 물질. 라피노즈, 올리고당, 프럭토올리고당, 이눌린, 갈락토올리고당 따위의 올리고당류가 대표적이다(Gibson GR et al.,Nature Reviews. Gastroenterology & Hepatology. 14:491, 2017).Probiotics are live bacteria that improve the balance of microbes in the gut and promote the health of the host. Probiotics are known to enhance the availability of several minerals, synthesize vitamins, prevent pathogens that cause diseases in the intestine, boost immunity, and aid in protein digestion and absorption. Prebiotics are small-molecular fibers that are not broken down by digestive enzymes in the stomach and small intestine. A substance that improves the health of the host by selectively using useful microorganisms in the large intestine. Raffinose, oligosaccharides, fructooligosaccharides, inulin, oligosaccharides such as galactooligosaccharides are representative (Gibson GR et al., Nature Reviews. Gastroenterology & Hepatology . 14:491, 2017).

프로바이오틱스와 프리바이오틱스는 사람의 건강에 영향을 준다고 알려져 있으며, 프로바이오틱스와 프리바이오틱스의 결합은 시너지를 만들어내고 이 결합을 신바이오틱스(synbiotics)라고 명명하고 있다. 프로바이오틱스는 장내에서 미생물의 균형을 개선시키고 숙주의 건강을 증진시키는 살아있는 박테리아이다. 프로바이오틱스는 몇몇 미네랄의 이용성을 강화시키고 비타민을 합성하며 장내의 질병을 일으키는 병원균을 막고, 면역력을 높일 뿐만 아니라 단백질의 소화를 도와 흡수를 도와주는 것으로 알려져 있다. 일반적으로 프로바이오틱스는 요거트나 발효된 음식에 의해 섭취가 되는데 최근에는 capsules, powder 등 여러 가지 형태로 시장에서 판매가 되고 있다. 프리바이오틱스는 장 내 유익한 균주의 성장을 돕는 난소화성 성분으로써 프로바이오틱스의 영양원이 되어 장내 환경을 개선하는 데 도움을 주는 물질을 말한다. 대표적인 프리바이오틱스로는 이눌린, 프락토올리고당, 갈락토올리고당 등과 같은 식이섬유가 해당한다.Probiotics and prebiotics are known to affect human health, and the combination of probiotics and prebiotics creates synergy, and this combination is called synbiotics. Probiotics are live bacteria that improve the balance of microbes in the gut and promote the health of the host. Probiotics are known to enhance the availability of several minerals, synthesize vitamins, prevent pathogens that cause diseases in the intestine, boost immunity, and aid in protein digestion and absorption. In general, probiotics are ingested by yogurt or fermented food. Recently, they are being sold in various forms such as capsules and powder. Prebiotics are indigestible ingredients that help the growth of beneficial strains in the intestine, and are substances that help improve the intestinal environment by becoming a nutrient source for probiotics. Typical prebiotics include dietary fibers such as inulin, fructooligosaccharides, and galactooligosaccharides.

현재 사용되는 대표적인 프로바이오틱스(probiotics) 균주들은 대부분 생산비용이 높고, 장내 조건에서 우점(dominance) 하기 위해서는 충분한 양의 유익균(probiotics)과 유익균의 먹이가 되는 프리바이오틱스(prebiotics)의 공급 및 유익균의 성장에 적합한 장내환경의 조성이 고려되어야 한다. 대표적인 프로바이오틱스인 유산균의 경우 고농도 배양의 한계, 위산 및 담즙산등에 대한 저항성을 부여하기 위한 코팅제형의 적용 등으로 인해 높은 생산단가가 발생한다.Most of the currently used representative probiotics strains have high production costs, and in order to dominate the intestinal conditions, a sufficient amount of probiotics and prebiotics that feed the beneficial bacteria are supplied and the growth of beneficial bacteria The composition of the intestinal environment suitable for In the case of lactic acid bacteria, a representative probiotic, a high production cost occurs due to the limitation of high-concentration culture and the application of a coating formulation to impart resistance to gastric and bile acids.

이에, 본 발명에서는 장내 환경을 유익균이 생장하기에 적합하도록 조절하는 프리바이오틱스 조성물을 개발 예의 노력한 결과, 글루코오스 산화효소를 첨가한 조건에서 장내 세균(E.coli)과 유산균(lactobacillus)를 함께 배양할 경우, 유산균의 성장이 장내 세균보다 우점하는 것을 확인하고, 본 발명을 완성하게 되었다. Therefore, in the present invention, as a result of diligent efforts to develop a prebiotic composition that regulates the intestinal environment to be suitable for the growth of beneficial bacteria, intestinal bacteria (E. coli) and lactobacillus are cultured together under the condition of adding glucose oxidase In this case, it was confirmed that the growth of lactic acid bacteria is superior to intestinal bacteria, and the present invention has been completed.

본 발명의 목적은 장내 유해균의 증식을 억제하고, 유산균을 활성화하는 프리바이오틱스 조성물을 제공하는데 있다.It is an object of the present invention to provide a prebiotic composition that inhibits the growth of harmful bacteria in the intestine and activates lactic acid bacteria.

본 발명의 다른 목적은 상기 프리바이오틱스와 유산균을 함유하는 신바이오틱스 조성물을 제공하는데 있다.Another object of the present invention is to provide a synbiotic composition containing the prebiotics and lactic acid bacteria.

상기 목적을 달성하기 위하여, 본 발명은 글루코오스 산화효소(glucose oxidase)를 유효성분으로 포함하는 장내 유해균 증식억제 및 유산균 활성화용 프리바이오틱스 조성물을 제공한다.In order to achieve the above object, the present invention provides a prebiotic composition for inhibiting the growth of harmful intestinal bacteria and activating lactic acid bacteria comprising glucose oxidase as an active ingredient.

본 발명은 또한, 상기 프리바이오틱스 조성물과 유산균을 함유하는 신바이오틱스(synbiotics) 조성물을 제공한다.The present invention also provides a synbiotics composition containing the prebiotic composition and lactic acid bacteria.

본 발명은 또한, 상기 프리바이오틱스 조성물과 유산균을 유효성분으로 함유하는 식품을 제공한다. The present invention also provides a food containing the prebiotic composition and lactic acid bacteria as active ingredients.

본 발명은 또한, 상기 프리바이오틱스 조성물과 유산균을 유효성분으로 함유하는 사료첨가제를 제공한다. The present invention also provides a feed additive containing the prebiotic composition and lactic acid bacteria as active ingredients.

본 발명에 따른 프리바이오틱스 조성물은 내 유해균이나 중립균의 증식을 억제하여 프로바이오틱스가 장내에서 우점할 수 있는 환경을 만들고, 유해균의 증식을 억제할 수 있어 식중독이나 병원성균의 감염으로 인한 질병을 예방하거나 치료에 도움을 줄 수 있으며, 프로바이오틱스의 장내 우점을 도와 동일한 투여량 대비 우수한 효과를 기대할 수 있거나 투여 유산균의 수를 조절하여 투여 비용을 줄일 수 있는 이점이 있다. The prebiotic composition according to the present invention creates an environment in which probiotics can dominate the intestine by inhibiting the proliferation of harmful bacteria or neutral bacteria, and can inhibit the proliferation of harmful bacteria, thereby preventing diseases caused by food poisoning or infection of pathogenic bacteria Or it can help in treatment, and by helping the intestinal dominance of probiotics, an excellent effect can be expected compared to the same dose, or it has the advantage of reducing the administration cost by controlling the number of administered lactic acid bacteria.

도 1은 프리바이오틱스별 유산균(L. gasseri BNR17 균주 및 L. plantarum)에 대한 성장효과를 확인한 결과를 나타낸 것이다.
도 2은 장내 유해균(E. coliS. flexneri)의 갈락토올리고당 첨가에 의한 성장율 변화를 확인한 결과를 나타낸 것이다.
도 3는 유산균(L. gasseri BNR17 균주 및 L. plantarum)과 장내 유해균(E. coliS. flexneri)에 대한 과산화수소(H2O2) 농도별 처리에 대한 생존율을 비교한 결과를 나타낸 것이다.
도 4는 유산균(L. gasseri BNR17 균주 및 L. plantarum)과 장내 유해균(E. coliS. flexneri)에 대한 글로코오스산화효소 처리 농도에 따른 48시간 후 생존율(survival rate)을 비교한 결과를 나타낸 것이다.
도 5는 본 발명에 따른 조성물을 급여한 비만 개의 장내 미생물 변화를 확인한 결과를 나타낸 것이다.
1 shows the results of confirming the growth effect on each prebiotic lactic acid bacteria ( L. gasseri BNR17 strain and L. plantarum ).
Figure 2 shows the results of confirming the growth rate change by the addition of galactooligosaccharide of harmful intestinal bacteria ( E. coli and S. flexneri ).
Figure 3 shows the results of comparing the survival rate for each concentration of hydrogen peroxide (H 2 O 2 ) for lactic acid bacteria ( L. gasseri BNR17 strain and L. plantarum ) and intestinal harmful bacteria ( E. coli and S. flexneri ).
Figure 4 is a result of comparing the survival rate (survival rate) after 48 hours according to the glucose oxidase treatment concentration for lactic acid bacteria ( L. gasseri BNR17 strain and L. plantarum ) and intestinal harmful bacteria ( E. coli and S. flexneri ) it has been shown
Figure 5 shows the results of confirming the changes in the intestinal microflora of obese dogs fed the composition according to the present invention.

현재 사용되고 있는 프로바이오틱스(probiotics) 균주들은 대부분 생산비용이 높고, 장내 조건에서 우점(dominance) 하기 위해서는 충분한 양의 유익균(probiotics)과 유익균의 먹이가 되는 프리바이오틱스(prebiotics)의 공급 및 유익균의 성장에 적합한 장내환경의 조성이 고려되어야 한다. 프로바이오틱스인 유산균의 경우 고농도 배양의 한계, 위산 및 담즙산등에 대한 저항성을 부여하기 위한 코팅제형의 적용 등으로 인해 높은 생산단가가 발생한다.Most of the currently used probiotics strains have high production costs, and in order to dominate the intestinal conditions, it is necessary to supply a sufficient amount of probiotics and prebiotics to feed the beneficial bacteria and the growth of beneficial bacteria. The composition of an appropriate intestinal environment should be considered. In the case of lactic acid bacteria, which are probiotics, high production cost occurs due to the limitation of high-concentration culture and the application of coating formulations to impart resistance to gastric and bile acids.

본 발명에서는 장내 환경을 유익균이 생장하기에 적합하도록 바꾸어 줄수 있는 물질을 개발하고자 하였으며, 프리바이오틱스인 유산균이 장내 세균보다 과산화수소(H2O2)에 대한 저항성이 높다는 것을 확인하고, 장내에서 과산화수소를 발생할 수 있는 글루코오스 산화효소(glucose oxidase)를 처리하는 경우, 유산균의 생장하기에 적합한 장내환경으로 변화하여, 장내 유해균보다 유산균이 우점하여 생장할 수 있다는 것을 확인하였다. In the present invention, it was attempted to develop a material that can change the intestinal environment to be suitable for beneficial bacteria to grow. In the case of treatment with glucose oxidase, which can generate

따라서, 본 발명은 일 관점에서, 글루코오스 산화효소(glucose oxidase)를 유효성분으로 포함하는 장내 유해균 증식억제 및 유산균 활성화용 프리바이오틱스 조성물에 관한 것이다.Accordingly, the present invention, in one aspect, relates to a prebiotic composition for inhibiting the growth of harmful intestinal bacteria and activating lactic acid bacteria comprising glucose oxidase as an active ingredient.

본 발명에 있어서, 상기 글루코오스 산화효소(glucose oxidase)는 글루코스 산화에 의하여 과산화수소를 생성시킬 수 있는 효소라면 제한없이 사용할 수 있으나, 바람직하게는 아스파질러스(Aspergillus) 속 균주, 페니실리움(Penicillium) 속 균주 및 스트렙토마이세스(Streptomyces) 속 균주로 구성되는 군에서 선택되는 균주 유래의 효소 또는 이들의 조합을 사용할 수 있다.In the present invention, the glucose oxidase (glucose oxidase) can be used without limitation as long as it is an enzyme capable of generating hydrogen peroxide by glucose oxidation, preferably Aspergillus (Aspergillus) sp. strain, Penicillium (Penicillium) Enzymes derived from a strain selected from the group consisting of sp. strains and Streptomyces sp. strains or a combination thereof may be used.

본 발명에서, 상기 글루코오스 산화효소(glucose oxidase)는 바람직하게는 장내 소장액 1 ml 내에 0.01 ~ 1 unit로 작용하도록 포함될 수 있다. In the present invention, the glucose oxidase (glucose oxidase) may be preferably included to act as 0.01 ~ 1 unit in 1 ml of the intestinal fluid.

본 발명의 프리바이오틱스는 갈락토올리고당(galactooligosaccharide)을 추가로 포함할 수 있다.The prebiotics of the present invention may further include galactooligosaccharide.

본 발명의 일 양태에서는. 프리바이오틱스인 갈락토올리고당(galactooligosaccharide, GOS), 프락토올리고당(fructooligosaccharide, FOS), 폴리덱스트로오스(polydextrose) 및 난소화성 말토덱스트린 첨가가 유산균의 성장에 미치는 영향을 확인하였으며, 실험에 사용한 L. gasseri BNR17 균주와 L. plantarum 균주는 모두 프리바이오틱스 중 GOS의 이용성이 가장 뛰어났고, 대조군 대비 높은 성장을 보여주었다(도 1). In one aspect of the present invention. The addition of prebiotics such as galactooligosaccharide (GOS), fructooligosaccharide (FOS), polydextrose and indigestible maltodextrin The effect on growth was confirmed, and both the L. gasseri BNR17 strain and the L. plantarum strain used in the experiment had the best use of GOS among prebiotics, and showed higher growth compared to the control group (FIG. 1).

본 발명의 실시예에서 사용한 프로바이오틱스 균주인 Lactobacillus gasseri BMR17 균주는 모유에서 확인된 대표적인 균주로, 내산성, 내담즙성 및 장세포에 대한 부착활성과 병원성 세균에 대한 우수한 항균활성의 특성을 가지고 있을 뿐만 아니라 체지방 감소 및 과민성대장증후군(IBS) 치료효과, 혈당강화효과 등을 검증하고 이를 다수의 논문과 특허를 통해 발표했다.이미 건강기능식품 기능성 원료로 인정받았다.The Lactobacillus gasseri BMR17 strain, a probiotic strain used in the examples of the present invention, is a representative strain identified in breast milk. It verified the body fat reduction, irritable bowel syndrome (IBS) treatment effect, and blood sugar strengthening effect, and published it through a number of papers and patents. It has already been recognized as a functional ingredient for health functional food.

본 발명에 있어서, 상기 유산균은 과산화수소(hydrogen peroxide)에 저항성을 가지는 유산균인 것을 특징으로 할 수 있으며, 바람직하게는 비피도박테리움 (Bifidobacterium), 유산간균 (Lactobacillus), 유산구균 (Lactococcus) 또는 스트렙토코커스 (Streptococcus)일 수 있다.In the present invention, the lactic acid bacteria may be characterized as lactic acid bacteria having resistance to hydrogen peroxide, preferably Bifidobacterium, Lactobacillus, Lactococcus or Streptococcus. It may be a caucus (Streptococcus).

과산화수소(H2O2)는 에너지대사 과정에서 생성되는 물질로서 대표적으로 pyruvate oxidase, lactate oxidase 및 glucose oxidase에 의해 생성된다. 과산화수소는 강한 산화성이 있어, 주로 면이나 그 밖의 직물, 목재 펄프 등을 표백할 때 쓰이거나, 연료, 화장품, 의약품을 만들 때 에도 쓰인다. 과산화수소는 프로바이오틱스 균주들이 합성하여 이용하기도 하는데, 장내 환경에서 프로바이오틱스 균주들은 과산화수소를 합성하고 분비하여 다른 미생물의 성장을 억제시켜 장내 환경을 개선하는 것으로 나타났다.Hydrogen peroxide (H 2 O 2 ) is a substance produced during energy metabolism and is typically produced by pyruvate oxidase, lactate oxidase, and glucose oxidase. Hydrogen peroxide has strong oxidizing properties, so it is mainly used for bleaching cotton, other textiles, wood pulp, etc., or for making fuel, cosmetics, and pharmaceuticals. Hydrogen peroxide is also synthesized and used by probiotic strains. In the intestinal environment, probiotic strains synthesize and secrete hydrogen peroxide to inhibit the growth of other microorganisms, thereby improving the intestinal environment.

본 발명에 있어서, 상기 유해균은 시게렐라 플렉스너리(Shigella flexneri), 스타필로코커스 아우레우스(Staphylococcus aureus), 에스케리치아 콜라이(Escherichia coli), 엔테로코커스 패칼리스(Enterococcus faecalis), 클로스트리디움 부티리쿰(Clostridium butyricum), 프리보텔라 인터메디아(Prevotella intermedia) 또는 클로스트리디움 라모숨(Clostridium ramosum)인 것을 특징으로 할 수 있다.In the present invention, the harmful bacteria Shigella flexneri ( Shigella flexneri ), Staphylococcus aureus ( Staphylococcus aureus ), Escherichia coli ( Escherichia coli ), Enterococcus faecalis ( Enterococcus faecalis ), Clostridium buty Likum ( Clostridium butyricum ), Prevotella intermedia ( Prevotella intermedia ) or Clostridium ramosum ( Clostridium ramosum ) It may be characterized as being.

상당수의 유해균이나 기회균은 유산균에 비해 과산화수소에 대한 저항성이 낮다.Many harmful or opportunistic bacteria have lower resistance to hydrogen peroxide than lactic acid bacteria.

본 발명은 Lactobacillus 유산균의 프리바이오틱스 사용을 통해 유산균의 성장을 증진을 위한 것이다. 본원에 이를테면, 프로바이오틱스인 Lactobacillus 유산균과 프리바이오틱스를 첨가하여 성장을 증진하고, 효소를 이용한 경쟁적 배제효과(competitive exclustion)로 인한 우점효과를 확인하였다.The present invention is for promoting the growth of lactic acid bacteria through the use of prebiotics of Lactobacillus lactic acid bacteria. In this application, for example, Lactobacillus lactobacilli and prebiotics, which are probiotics, were added to enhance growth, and a dominant effect due to competitive exclusion using enzymes was confirmed.

따라서, 본 발명은 다른 관점에서, 상기 프리바이오틱스 조성물과 유산균을 함유하는 신바이오틱스(synbiotics) 조성물에 관한 것이다.Accordingly, the present invention relates to a synbiotics composition containing the prebiotic composition and lactic acid bacteria from another aspect.

본 발명의 일양태에서는 L. gasseri BNR17 균주와 적합한 프리바이오틱스를 확인하여 함께 신바이오틱스(synbiotics)로 만들어 L. gasseri BNR17 균주의 성장을 돕도록하였다. 또한, 글루코오스옥시다아제 효소를 이용하여 H2O2를 장내에 합성시켜 타 균주에 비해 H2O2 저항성이 높은 L. gasseri BNR17 이외의 균주의 성장을 막아 상대적 우점도를 높여 성장을 증진시켰다.In one aspect of the present invention, the L. gasseri BNR17 strain and suitable prebiotics were identified, and synbiotics were made together to help the growth of the L. gasseri BNR17 strain. In addition, by using a glucose oxidase enzyme, H 2 O 2 was synthesized in the intestine to prevent the growth of strains other than L. gasseri BNR17, which has high H 2 O 2 resistance compared to other strains, thereby increasing the relative dominance to promote growth.

본 발명에 있어서, 상기 유산균은 과산화수소(hydrogen peroxide)에 저항성을 가지는 유산균인 것을 특징으로 할 수 있으며, 바람직하게는 상기 유산균은 비피도박테리움 (Bifidobacterium), 유산간균 (Lactobacillus), 유산구균 (Lactococcus) 및 스트렙토코커스 (Streptococcus)으로 구성되는 군에서 선택되는 유산균 또는 이들의 조합을 사용할 수 있다.In the present invention, the lactic acid bacteria may be characterized as lactic acid bacteria having resistance to hydrogen peroxide, preferably, the lactic acid bacteria are Bifidobacterium, Lactobacillus, Lactococcus ) and lactic acid bacteria selected from the group consisting of Streptococcus or a combination thereof may be used.

더욱 바람직하게는, 본 발명의 상기 유산균은 락토바실러스 가세리(Lactobacillus gasseri), 락토바실러스 풀란타룸(Lactobacillus plantarum), 락토바실러스 아시도필러스(Lactobacillus acidophilus), 락토바실러스 델브릭키이(Lactobacillus delbrueckii) 및 락토바실러스 람노서스(Lactobacillus rhamnosus)으로 구성되는 군에서 선택되는 유산균 또는 이들의 조합을 사용할 수 있다. More preferably, the lactic acid bacteria of the present invention is Lactobacillus gasseri ( Lactobacillus gasseri ), Lactobacillus pullantarum ( Lactobacillus plantarum ), Lactobacillus acidophilus ( Lactobacillus acidophilus ), Lactobacillus delbrueckii ( Lactobacillus delbrueckii ) And Lactobacillus rhamnosus ( Lactobacillus rhamnosus ) Lactobacillus selected from the group consisting of or a combination thereof may be used.

본 발명의 다른 양태에서는 글루코오스 산화효소와 갈락토올리고당을 유효성분으로 함유하고, 유산균으로 L. gasseri BNR17 및 L. plantarum을 함유하는 조성물을 비만 개에 10주간 섭취시킨 후, 체중과 신체충실지수 및 지방면적이 모두 유의미하게 감소하는 것을 확인하였다.In another aspect of the present invention, after ingesting a composition containing glucose oxidase and galactooligosaccharide as active ingredients, and L. gasseri BNR17 and L. plantarum as lactic acid bacteria to obese dogs for 10 weeks, weight and body fullness index and It was confirmed that all fat areas were significantly reduced.

따라서, 본 발명은 또 다른 관점에서, 상기 프리바이오틱스 조성물과 유산균을 유효성분으로 함유하는 식품에 관한 것이다. Accordingly, in another aspect, the present invention relates to a food containing the prebiotic composition and lactic acid bacteria as active ingredients.

본 발명에 있어서, 상기 유산균은 락토바실러스 가세리(Lactobacillus gasseri), 락토바실러스 풀란타룸(Lactobacillus plantarum), 락토바실러스 아시도필러스(Lactobacillus acidophilus), 락토바실러스 델브릭키이(Lactobacillus delbrueckii) 및 락토바실러스 람노서스(Lactobacillus rhamnosus)으로 구성되는 군에서 선택되는 유산균 또는 이들의 조합인 것을 특징으로 할 수 있다. In the present invention, the lactic acid bacteria are Lactobacillus gasseri ( Lactobacillus gasseri ), Lactobacillus pullantarum ( Lactobacillus plantarum ), Lactobacillus acidophilus ( Lactobacillus acidophilus ), Lactobacillus delbruckii ( Lactobacillus delbrueckii ) and lactobacillus delbrueckii Rhamnosus ( Lactobacillus rhamnosus ) It may be characterized in that the lactic acid bacteria selected from the group consisting of or a combination thereof.

본 발명에 있어서, 상기 식품은 사람 또는 동물 섭취용 식품일 수 있으며, 사람 또는 동물의 다이어트 보조용 식품일 수 있다. In the present invention, the food may be a food for human or animal intake, and may be a food for a human or animal diet supplement.

본 발명은 또 다른 관점에서, 상기 프리바이오틱스 조성물과 유산균을 유효성분으로 함유하는 사료첨가제에 관한 것이다. In another aspect, the present invention relates to a feed additive containing the prebiotic composition and lactic acid bacteria as active ingredients.

반려동물산업이 성장함에 따라 반려동물 비만 문제가 야기되고 있는 실정이고, 비만과 관련된 질병으로 인한 반려동물의 치료비용이 매년 증가하고 있는 추세이다. 이에 따라 반려동물의 체중 관리가 필요한 실정이다. As the companion animal industry grows, the problem of companion animal obesity is caused, and the treatment cost of companion animals due to obesity-related diseases is increasing every year. Accordingly, it is necessary to manage the weight of companion animals.

본 발명에 있어서, 상기 사료첨가제는 동물용 건강기능성 사료첨가제 또는 다이어트 보조용 사료첨가제일 수 있다. In the present invention, the feed additive may be a health functional feed additive for animals or a feed additive for diet supplementation.

이하, 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 이에 의해 본 발명의 기술적 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail by way of Examples. These examples are merely for illustrating the present invention in more detail, and thereby it will be apparent to those skilled in the art that the technical scope of the present invention is not limited to these examples.

실시예 1 : 프리바이오틱스별 Lactobacillus 유산균 성장효과 비교Example 1: Comparison of Lactobacillus Lactobacillus Growth Effect by Prebiotics

프리바이오틱스인 갈락토올리고당(galactooligosaccharide, GOS), 프락토올리고당(fructooligosaccharide, FOS), 폴리덱스트로오스(polydextrose) 및 난소화성 말토덱스트린 첨가에 의한 Lactobacillus. gasseri BNR17(KCTC 109202BP) 및 Lactobacillus. plantarum(LALLEMAND, canada) 성장에 미치는 영향을 확인하였다. Lactobacillus by the addition of prebiotics galactooligosaccharide (GOS), fructooligosaccharide (FOS), polydextrose and indigestible maltodextrin . gasseri BNR17 (KCTC 109202BP) and Lactobacillus. plantarum (LALLEMAND, Canada) was confirmed to have an effect on growth.

유산균 배양을 위한 배지로는 포도당(glucose)을 함유하지 않은 modified MRS(mMRS) broth를 사용하였다. mMRS 배지는 펩톤(peptone) 10 g, Yeast extract 2.5 g, tryptose 3 g, Tween 80 1 ml, K2HPO4 3 g, KH2PO4 3 g, ammonium citrate 0.2 g, pyruvic acid sodium salt 0.2 g, MgSO4 7H2O 0.575 g, MnSO4 H2O 0.12 g, FeSO4 7H2O 0.034 g을 증류수(distilled water) 녹여 1 리터(liter)로 맞춘 후 고압멸균(121℃, 15 min)하여 준비하였다. Cys-Hcl 0.5 g/L는 시린지필터 (0.45 μm)로 여과(filtration) 한 뒤 배지에 첨가하였고, 최종 배지의 pH를 6.8로 맞추어 배양 배지로 사용하였다. 배양 시 각각의 탄소원 농도를 0.5%로 맞추어 배양을 수행하였다. 본 배양을 수행하기 전 단일 배양된 한천배지(Agar plate)에서 각각의 균주를 선발하여 3ml 액체배양을 24 hr, 37 ℃, 100 rpm 수행하였다. 이 후, plate reader인 SYNERGY H1 microplate reader를 사용하여 24 well plate (SPL life science)에서 배양을 수행하였다. 이 때, plate film은 (Diversifiedbiotech, Cas. BEM-1)을 사용하였다. 배양조건은 500μl, 37 ℃, slow shaking, interval 30 min, 1% 시딩(seeding) 조건으로 수행하였다. As a medium for culturing lactic acid bacteria, modified MRS (mMRS) broth not containing glucose was used. mMRS medium is peptone 10 g, yeast extract 2.5 g, tryptose 3 g, Tween 80 1 ml, K 2 HPO 4 3 g, KH 2 PO 4 3 g, ammonium citrate 0.2 g, pyruvic acid sodium salt 0.2 g, 0.575 g of MgSO 4 7H 2 O, 0.12 g of MnSO 4 H 2 O, and 0.034 g of FeSO 4 7H 2 O were dissolved in distilled water, adjusted to 1 liter, and prepared by autoclaving (121° C., 15 min). . Cys-Hcl 0.5 g/L was added to the medium after filtration with a syringe filter (0.45 μm), and the pH of the final medium was adjusted to 6.8 and used as a culture medium. Cultivation was performed by adjusting the concentration of each carbon source to 0.5% during culturing. Before performing the main culture, each strain was selected from a single cultured agar plate, and 3ml liquid culture was performed at 24 hr, 37°C, 100 rpm. Thereafter, culture was performed in a 24-well plate (SPL life science) using a plate reader, SYNERGY H1 microplate reader. At this time, the plate film (Diversified biotech, Cas. BEM-1) was used. Culture conditions were 500 μl, 37° C., slow shaking, interval 30 min, and 1% seeding conditions.

그 결과, 도 1에 나타난 바와 같이, L. gasseri BNR17 균주는 실험에 사용한 모든 프리바이오틱스 첨가 조건에서 비슷한 성장속도를 보였다. 그러나, 탄소원이 없는 only mMRS 조건보다 성장이 우수한 탄소원은 glucose와 GOS로 나타났고, 다른 프리바이오틱스 조건에서는 only mMRS 조건과 유사한 성장을 확인하였다. 대조군인 glucose 조건과 GOS 조건을 비교해 보았을 때, glucose 조건에서는 점차 성장이 떨어지는 것으로 나타났고, GOS 조건에서는 지속적인 성장을 나타내었다. 대조군 대비 GOS 조건에서 약 20% 이상 성장률이 증가하였다. As a result, as shown in Figure 1, the L. gasseri BNR17 strain showed a similar growth rate in all prebiotics added conditions used in the experiment. However, the carbon sources that showed better growth than the only mMRS condition without a carbon source were glucose and GOS, and growth similar to the only mMRS condition was confirmed under other prebiotic conditions. When comparing the control group, glucose condition and GOS condition, growth was gradually decreased under glucose condition, and continued growth under GOS condition. The growth rate was increased by about 20% or more in the GOS condition compared to the control group.

L. plantarum 균주는 only mMRS 조건에서는 성장이 미미한 것으로 나타났고, FOS, polydextrose 및 난소화성 말토덱스트린 조건에서는 only mMRS 조건보다 OD 값이 증가한 것으로 나타났다. L. plantarum 균주는 탄소원이 없는 조건에서는 성장이 어려운 것으로 나타났다. L. plantarum 균주는 대조군인 glucose와 비교하였을 때, FOS, polydextrose 및 난소화성 말토덱스트린 조건에서는 OD값이 약 1.5 ~ 2배 낮았다. 이에 반하여 GOS 조건에서는 glucose 조건보다 성장속도는 느리게 나타났으나, 최대 OD는 약 10% 더 높게 나타났다(도 1). 두 균주 모두 프리바이오틱스 중 GOS의 이용성이 가장 뛰어났고, 대조군 대비 높은 성장을 보여주었다. The L. plantarum strain showed insignificant growth in only mMRS conditions, and increased OD values in FOS, polydextrose and indigestible maltodextrin conditions than in only mMRS conditions. L. plantarum strain was found to be difficult to grow in the absence of a carbon source. The L. plantarum strain had an OD value about 1.5 to 2 times lower in FOS, polydextrose, and indigestible maltodextrin conditions when compared to glucose as a control. In contrast, the GOS condition showed a slower growth rate than the glucose condition, but the maximum OD was about 10% higher (Fig. 1). Both strains showed the highest availability of GOS among prebiotics, and showed high growth compared to the control group.

실시예 2: 유해균의 갈락토올리고당(GOS)을 이용성Example 2: Use of galactooligosaccharide (GOS) of harmful bacteria

Lactobacillus 유산균의 프리바이오틱스 성장증진 효과를 비교하기 위해 장내 미생물인 Escherichia coli(KCTC 1039) 및 Shigellar flexneri(KCTC 12073)를 이용하여 성장 효과를 확인하였다. 실험방법은 실시예 1번과 같은 방식으로 성장률을 확인하였다. E. coliS. flexneri는 LB broth를 배양 배지로 사용하여 연구를 수행했다. In order to compare the growth promoting effect of Lactobacillus lactic acid bacteria, the growth effect was confirmed using intestinal microorganisms Escherichia coli (KCTC 1039) and Shigellar flexneri (KCTC 12073). The experimental method confirmed the growth rate in the same manner as in Example 1. E. coli and S. flexneri were studied using LB broth as a culture medium.

그 결과, 도 2에 나타난 바와 같이, E. coliS. flexneri 균주는 GOS를 첨가한 조건보다 glucose 조건에서 더 높은 OD값을 나타내었고, glucose 조건 대비 GOS 조건에서의 성장률이 E. coli는 약 95%, S. flexneri는 92% 성장률을 보여주었다. 두 균주 모두 glucose 조건과 GOS 조건에서의 성장속도는 유사하지만 최종 성장률은 GOS 조건에서 더 낮은 것으로 확인되었다.As a result, as shown in FIG. 2 , the E. coli and S. flexneri strains exhibited higher OD values under the glucose condition than under the GOS-added condition, and the growth rate under the GOS condition compared to the glucose condition was about the same as that of E. coli . 95% and S. flexneri showed growth rates of 92%. Both strains showed similar growth rates under glucose and GOS conditions, but the final growth rate was lower under GOS conditions.

결론적으로 프리바이오틱스인 GOS를 탄소원으로 하였을 때, 장내 미생물인 E. coliS. flexneri 균주의 성장이 Lactobacillus보다 떨어지는 것으로 나타나, GOS를 첨가할 경우 Lactobacillus 균주가 우점할 수 있는 환경을 만들어 줄 것으로 예상된다. In conclusion, when GOS , a prebiotic, is used as a carbon source, the growth of E. coli and S. flexneri strains, which are intestinal microbes, is lower than that of Lactobacillus . expected.

실시예 3 : 유산균과 유해균의 과산화수소(hydrogen peroxidase, HExample 3: Hydrogen peroxidase (H) of lactic acid bacteria and harmful bacteria 22 OO 22 ) 저항성 확인) resistance check

Lactobacillus의 경쟁적 배제효과로 인한 우점성을 높이기 위한 실험으로 균주별 과산화수소(H2O2) 저항성을 측정하였다. As an experiment to increase the dominance due to the competitive exclusion effect of Lactobacillus, hydrogen peroxide (H 2 O 2 ) resistance was measured for each strain.

L. gasseri BNR17, L. plantarum, E. coliS. flexneri 균주를 각각 한천배지 플레이트에서 순수배양 하여 3 ml broth에 접종하고 37 ℃, 100 rpm으로 24 hr 동안 진탕배양하였다. 이 후 배양된 균주를 새로운 20 ml broth에 5% 접종하여 동일한 조건에서 배양하였다. 배양 2~3시간 이후 배양액 OD가 0.8 일 때, 배양액을 원심분리(4000 rpm, 5 min) 수행하여 균을 회수하였다. 상층액을 버린 후, 배양액의 절반만큼 2X broth를 첨가하여 다시 균을 현탁(resuspension)하였다. 현탁한 균을 2 ml tube에 1 ml 씩 각각 분주(aliquots) 하였다. L. gasseri BNR17, L. plantarum, E. coli and S. flexneri strains were each purely cultured on an agar plate, inoculated in 3 ml broth, and cultured with shaking at 37 °C and 100 rpm for 24 hr. After that, the cultured strain was inoculated 5% in a new 20 ml broth and cultured under the same conditions. After 2 to 3 hours of incubation, when the OD of the culture medium was 0.8, the culture medium was centrifuged (4000 rpm, 5 min) to recover the bacteria. After discarding the supernatant, 2X broth was added to half of the culture medium to re-suspend the bacteria (resuspension). Each of the suspended bacteria was aliquoted in 1 ml each in a 2 ml tube.

장내환경을 조성하기 위해 인공소장액(simulated intestinal fluid)을 2X 가 되도록 DW에 녹인 후 시린지 필터(0.45μm)를 이용하여 여과제균(filtration)을 수행하였고, 이후 각각의 튜브에 2X SSIF를 1X가 되도록 첨가하였다. 인공소장액 SSIF의 조성은 g/L : 0.87g NaOH, NaH2PO4 2H2O 4.46g, NaCl 3.48g이다. H2O2 농도는 0~20 mM로 첨가하였다. To create an intestinal environment, simulated intestinal fluid was dissolved in DW to 2X, and filtration was performed using a syringe filter (0.45μm), and then 2X SSIF was added to each tube with 1X. was added as much as possible. The composition of artificial small intestine SSIF is g/L: 0.87 g NaOH, NaH 2 PO 4 2H 2 O 4.46 g, NaCl 3.48 g. H 2 O 2 concentration was added to 0-20 mM.

과산화수소 처리농도는 0~10 mM 농도로 설정하였다. 모든 실험군은 37 ℃, 100 rpm에서 반응을 진행하고, 실험 0 min 및 30 min 일 때, 각각의 시료를 한천배지(agar plate)에 도말하였다, 배지는 37 ℃, 48 hr 이상 배양하여 생균수를 측정하였다. 생존율의 계산은 반응 0 min일 때의 생균수 기준으로 30 min일 때의 생균수를 비교하였다.The hydrogen peroxide treatment concentration was set at a concentration of 0 to 10 mM. All experimental groups were reacted at 37 °C and 100 rpm, and at 0 min and 30 min of the experiment, each sample was plated on an agar plate. measured. The survival rate was calculated by comparing the number of viable cells at 30 min to the number of viable cells at 0 min of the reaction.

그 결과, 도 3에 나타난 바와같이, L. gasseri BNR17 균주는 H2O2 농도가 약 8 mM 농도부터 점차 생존율이 감소하는 것으로 나타났고, 약 10 mM 농도에서 80%의 생존율을 보였다. Lb. gasseri BNR17 균주는 농도별 급격하게 생존율이 떨어지는 경향을 보이지 않았다. Lb. plantarum 균주는 6 mM 농도까지는 대조군과 유사한 생균수를 보여주었으나, 농도가 6 mM ~ 8 mM로 증가함에 따라 생존율이 급격하게 떨어지는 것으로 나타났다. Lb. gasseri BNR17 균주가 Lb. plantarum 균주보다 과산화수소의 저항성이 높은 것으로 나타났다.As a result, as shown in FIG. 3 , the L. gasseri BNR17 strain showed a gradual decrease in the survival rate from the H 2 O 2 concentration of about 8 mM, and showed a survival rate of 80% at the concentration of about 10 mM. Lb. gasseri BNR17 strain did not show a tendency to rapidly decrease the survival rate by concentration. Lb. The plantarum strain showed a similar number of viable cells to the control until the concentration of 6 mM, but as the concentration increased to 6 mM to 8 mM, the survival rate was found to drop sharply. Lb. gasseri BNR17 strain Lb. It was found that the resistance to hydrogen peroxide was higher than that of the plantarum strain.

E. coli 균주는 2mM 농도부터 약 10% 이하의 생존율을 보여주었고, 6mM 이상부터는 균주가 생존하지 못하는 것으로 나타났다. S. flexneri 균주는 0~2 mM 농도에서 생존율이 50%로 감소하였고, 4 mM 농도에서는 10% 이하의 생존율로 나타났며, 8 mM 이상 농도에서는 생존하지 못하는 것으로 나타났다.The E. coli strain showed a survival rate of about 10% or less from a concentration of 2mM, and it was found that the strain did not survive from a concentration of 6mM or more. The S. flexneri strain showed a survival rate of 50% at a concentration of 0 to 2 mM, a survival rate of less than 10% at a concentration of 4 mM, and did not survive at a concentration of 8 mM or more.

결과적으로 Lactobacillus의 과산화수소 저항성이 E.coli S flexneri 균주보다 더 높게 나타나 과산화수소를 이용한 장내 미생물의 경쟁적 배제효과로 인한 Lactobacillus의 우점효과를 볼 수 있을 것으로 판단된다.As a result, the hydrogen peroxide resistance of Lactobacillus was higher than that of E. coli and S flexneri strains, suggesting that the dominant effect of Lactobacillus can be seen due to the competitive exclusion effect of intestinal microorganisms using hydrogen peroxide.

실시예 4: 글루코오스 산화효소(glucose oxidase) 처리에 따른 균주별 생존율 비교Example 4: Comparison of survival rates for each strain according to glucose oxidase treatment

포도당을 이용하여 H2O2을 생산하는 글루코오스 산화효소를 이용한 성장저해 효과 확인하였다. Growth inhibitory effect using glucose oxidase to produce H 2 O 2 using glucose was confirmed.

L. gasseri BNR17, L. plantarum, E. coliS. flexneri 균주를 broth에서 24 hr, 37 ℃, 100 rpm에서 배양하였다. 본 배양은 24 well plate에서 수행하였고, 배양조건은 2X broth, 2X SSIF, glucose oxidase 및 glucose 첨가하여 총 500 μl로 맞추어 실험을 수행하였다. 배양조건은 24 hr, 37 ℃, slow shaking, interval 30 min 조건에서 배양을 수행하였다. 글루코오스산화효소(sunson)는 1 U/ml 농도로 녹인 후 syringe filter (0.45 μm)를 이용하여 여과제균(filtration)을 수행하였다. 글루코오스산화효소 첨가량은 0.01~0.05 U/ml 범위로 처리하였고, OD 값 측정은 Synergy H1 기기를 사용하여 측정하였고, 성장률은 배양이 끝난 후 Control OD값 대비 효소처리 농도별 OD값을 비교하여 성장률을 비교하였다. L. gasseri BNR17, L. plantarum, E. coli and S. flexneri strains were cultured in broth at 24 hr, 37°C, 100 rpm. This culture was performed in a 24-well plate, and the culture conditions were adjusted to a total of 500 μl by adding 2X broth, 2X SSIF, glucose oxidase and glucose. Culture conditions were 24 hr, 37 °C, slow shaking, and culture was performed at 30 min interval. After dissolving glucose oxidase (sunson) at a concentration of 1 U/ml, filtration was performed using a syringe filter (0.45 μm). The amount of glucose oxidase added was in the range of 0.01~0.05 U/ml, and the OD value was measured using a Synergy H1 instrument. compared.

그 결과, 도 4에 나타난 바와 같이, Lb. gasseri BNR17 균주는 효소 농도가 0~0.02 U/ml에서는 성장률에 영향을 끼치지 않는 것으로 나타났고, 0.03 ~ 0.05 U/ml의 농도로 증가함에 따라 성장률이 각각 89%에서 70%로 떨어지는 것으로 나타났다. Lb. plantarum 균주는 대조군 조건과 비교하였을 때, 0.01 U/ml 농도부터 지속적으로 감소하는 경향을 보여주었고, 0.03~0.05 U/ml 농도에서는 약 80% 수준의 성장률을 보여주었다. E. coli 균주는 0~0.02 U/ml 농도에서는 영향이 거의 없는 것으로 나타났지만, 0.03 U/ml 이상의 농도에서는 성장하지 못하는 것으로 나타났다. S. flexneri 균주는 0~0.03 U/ml 농도에서는 유사한 성장률을 나타내었으나, 0.04 U/ml 농도에서 90%로 성장률이 떨어지는 것으로 타나났고, 0.05 U/ml 농도 이상일 때는 자라지 못하는 것으로 나타났다.As a result, as shown in FIG. 4, Lb. gasseri BNR17 strain showed no effect on the growth rate when the enzyme concentration was 0~0.02 U/ml, and the growth rate decreased from 89% to 70%, respectively, as the concentration increased from 0.03 to 0.05 U/ml. Lb. plantarum strain showed a tendency to continuously decrease from the concentration of 0.01 U/ml when compared to the control condition, and showed a growth rate of about 80% at the concentration of 0.03 to 0.05 U/ml. E. coli strain was shown to have little effect at a concentration of 0 ~ 0.02 U / ml, but it was found that it did not grow at a concentration of 0.03 U / ml or more. S. flexneri strain showed a similar growth rate at a concentration of 0 to 0.03 U/ml, but it was found that the growth rate dropped to 90% at a concentration of 0.04 U/ml, and it did not grow at a concentration of 0.05 U/ml or more.

결과적으로 글루코오스산화효소의 농도가 0.05 U/ml 일 때, 장내 미생물인 E. coli 및 S. flexneri 균주는 자라지 못하는 것으로 나타났고, 이에 반하여 Lactobacillus 균주의 성장에 일부 영향을 끼치지만 다른 균주에 비해 저항성이 뛰어나 장내 우점에 도움이 될 것으로 사료된다. As a result, when the concentration of glucose oxidase is 0.05 U/ml, it was found that the intestinal microbes, E. coli and S. flexneri strains, did not grow, and on the contrary, it partially affects the growth of Lactobacillus strains, but is resistant to other strains. It is believed that this is excellent and will help dominance of the intestine.

실시예 5 : 비만 개에서의 본 발명의 조성물 섭취효과 확인Example 5: Confirmation of the effect of intake of the composition of the present invention in obese dogs

질병이 없는 건강한 비만개를 대상으로하여, 유산균과 프리바이오틱스의 혼합 조성물을 섭취시킨 후, 신체 변화를 확인하였다. 제조된 조성물의 배합비는 표 1에 나타내었다.After ingesting a mixed composition of lactic acid bacteria and prebiotics for healthy obese dogs without disease, body changes were confirmed. The mixing ratio of the prepared composition is shown in Table 1.

조성물 배합비composition ratio 원료Raw material 배합비mixing ratio 규격standard 제조사manufacturing company 제조국country of manufacture L. gasseri BNR17 L. gasseri BNR17 3.00%3.00% ≥ 1.0 X 1010 cfu/g≥ 1.0 X 10 10 cfu/g Bioneer Bioneer koreakorea L. plantarumL. plantarum 1.70%1.70% ≥ 1.7 X 1011 cfu/g≥ 1.7 X 10 11 cfu/g Lallemand Lallemand canadacanada 갈락토올리고당 Galactooligosaccharide 6.00%6.00% ≥ 90%≥ 90% Quantum Hi-Tech Biological co., ltd Quantum Hi-Tech Biological co., ltd chinachina 프락토올리고당fructooligosaccharide 6.00%6.00% ≥ 95%≥ 95% Quantum Hi-Tech Biological co., ltd Quantum Hi-Tech Biological co., ltd chinachina 난소화성말토덱스트린indigestible maltodextrin 23.15%23.15% ≥ 85%≥ 85% Daesang Daesang koreakorea 폴리덱스트린polydextrin 60.00%60.00% ≥ 90%≥ 90% Samyang Samyang koreakorea 글루코오스산화효소glucose oxidase 0.15%0.15% > 850 U/g> 850 U/g Sunson Sunson chinachina

실험동물은 나이와 성별에 구별없이 건강한 비만개를 대상으로 진행하였으며, 0주~10주차까지 프로바이오틱스를 포함하는 프로바이오틱스 활성용 조성물을 하루에 1g씩 사료에 섞어 먹여 미생물의 변화를 확인하였다. Experimental animals were conducted on healthy obese dogs regardless of age and sex. From week 0 to week 10, 1 g of a composition for activating probiotics containing probiotics was mixed with the feed and fed to confirm the change of microorganisms.

체중의 측정은 조성물 처리 전 후, 0주 및 10주 차 각각 경과된 시점에 동일한 디지털 체중계를 이용하여 측정하였다. 신체충실지수 (body condition score, BCS)의 평가는 조성물 처리 전, 후 0주 차와 10주 차 각각 경과된 시점에 동일한 관찰자에 의해 진행되었다. 체형이 다양한 강아지에서 신체충실지수는 체계적으로 비만도를 평가할 수 있다. 1에서 5, 1에서 9 범위의 2가지 신체충실지수 시스템이 존재하지만 체중의 미묘한 변화를 식별하기 위해 1에서 9등급 시스템을 선호하는 편이다. 본 점수를 매기기 위해서는 시각화와 촉진이 필요하다. 흉곽 뒤로 구부러진 허리의 선을 따라 시각적인 비만 정도를 평가하였다. 정상 체중의 개에서는 갈비뼈가 쉽게 만져지는데 엄지를 척추에 두고 손가락으로 흉곽을 촉진하며 갈비뼈 바로 밑에 지방층을 촉진하는 방법을 통해 평가하였다. 위와 같은 방법으로 내린 평가를 종합하여 신체충실지수를 판단하였다. 강아지의 비만 관리 시 이상적인 체중에 도달했는지 등을 판단하기 위해서 신체충실지수와 실제 체중 모두를 고려하였다. Body weight was measured using the same digital scale before and after treatment with the composition, and at the time points at 0 weeks and 10 weeks respectively. The evaluation of the body condition score (BCS) was conducted by the same observer before and after the composition treatment at 0 weeks and 10 weeks respectively. In puppies of various body types, the body fidelity index can systematically evaluate the degree of obesity. There are two body fidelity index systems, ranging from 1 to 5 and 1 to 9, but the 1 to 9 scale system is preferred to identify subtle changes in body weight. This scoring requires visualization and facilitation. The degree of visual obesity was evaluated along the line of the waist bent behind the rib cage. In dogs of normal weight, the ribs are easily palpable. This evaluation was conducted by placing the thumb on the spine, palpation of the rib cage with the fingers, and palpation of the fat layer just below the ribs. The body fidelity index was determined by synthesizing the evaluations made in the same way as above. In order to determine whether the dog has reached the ideal weight during obesity management, both the body fidelity index and the actual weight were considered.

전혈구검사 (백혈구, 호중구 등)는 경정맥에서 채혈한 혈액으로 실시하였고, 혈청을 분리하여 alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), blood urea nitrogen (BUN), cholesterol, C-reactive protein (CRP) 등의 항목에 대하여 측정하였고, 0주 차와 10주 차 각각 경과된 시점에 동일한 측정기계로 진행하였다.Complete blood counts (leukocytes, neutrophils, etc.) were performed with blood collected from the jugular vein, and serum was separated, alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), blood urea nitrogen (BUN), cholesterol, C-reactive protein ( CRP), etc. were measured, and the same measuring machine was used at the time of the 0th week and the 10th week respectively.

디지털 방사선 촬영 시스템을 이용한 우측 복부 방사선 촬영을 시행하였다. 측방 방사선 촬영상 제3요추 (L3)와 제6요추 (L6)의 수준에서 피하지방의 두께 (subcutaneous fat thickness, ST)를 측정하였다. 각 실험 대상자의 다른 신체 형태를 설명하기 위하여 피하지방의 두께 비율 (rST) 은 각 요추 (L3, L6) 의 신체 길이에 대한 피하지방의 두께 비율로 계산하였다. 방사선 촬영은 0주 차와 10주 차 경과된 시점에 동일한 기계로 진행하였다. Right abdominal radiography was performed using a digital radiography system. Subcutaneous fat thickness (ST) was measured at the level of the third lumbar vertebrae (L3) and sixth lumbar vertebrae (L6) on lateral radiographs. To explain the different body shapes of each test subject, the thickness ratio of subcutaneous fat (rST) was calculated as the ratio of the thickness of subcutaneous fat to the body length of each lumbar vertebrae (L3, L6). Radiography was performed with the same machine at weeks 0 and 10.

32행 다중 검출기 CT 스캐너를 사용하여 스캔을 수행했다. 개별 대상에서 얻은 디지털 이미지 데이터 세트를 분석하여 체지방 함량 영역을 결정했다. L3 및 L6의 CT 가로 단면 이미지에서 관심 영역을 신체 주변에 수동으로 그려 신체 면적 (total area, TA) 과 총 지방면적 (subcutaneous fat area, SA)를 추정했다. 복강 장기 등의 면적 (visceral area, VA)을 평가하기 위해 복막강으로 둘러싼 관심 영역을 그리고 TA에서 VA를 빼 SA를 계산했다. 신체 면적에 대한 총 지방면적의 비율을 계산하였다. 컴퓨터 단층 촬영은 0주 차와 10주 차 경과된 시점에 동일한 기계로 진행하였다.Scans were performed using a 32-row multi-detector CT scanner. Body fat content regions were determined by analyzing digital image data sets obtained from individual subjects. The total area (TA) and subcutaneous fat area (SA) were estimated by manually drawing the region of interest around the body from the CT transverse cross-sectional images of L3 and L6. To evaluate the visceral area (VA) of the abdominal cavity, the area of interest surrounded by the peritoneal cavity was drawn and SA was calculated by subtracting VA from TA. The ratio of total fat area to body area was calculated. Computed tomography was performed with the same machine at weeks 0 and 10.

추가적으로 조성물 투여가 체지방 감소에 미치는 영향을 검정하기 위해 paired t-test, Wilcoxon signed-rank test를 실시하였다. 이 때, 통계 분석을 위한 프로그램은 IBM SPSS Statistics 23.0을 사용하였다.Additionally, paired t-test and Wilcoxon signed-rank test were performed to test the effect of composition administration on body fat reduction. At this time, the program for statistical analysis was IBM SPSS Statistics 23.0.

조성물 급여 전후의 강아지의 신체 변화 차이를 결과 표 2에 나타내었다. The difference in the body changes of dogs before and after the composition is shown in Table 2 of the results.

Figure pat00001
Figure pat00001

그 결과, 체중과 신체충실지수 (BCS), 제3요추 (L3) 수준의 지방면적 (SA3), 제3요추 수준의 지방면적 비율 (pSA3)에서 유의성을 보였다. 체중의 중앙값은 0주차 14.0 kg에서 10주차 13.5 kg으로 유의미하게 감소하였다 (p<0.05). 신체충실지수는 0주차 9.0에서 10주차 7.5로 유의미하게 감소하였다 (p<0.05). 또한 제3요추 수준의 지방면적의 평균이 0주차 99.86±34.81에서 10주차 82.70±31.13으로 유의미하게 감소했으며(p<0.05) 제3요추 수준의 지방면적 비율의 평균도 0주차 36.14±5.47%에서 10주차 31.05±7.24% 로 유의미하게 감소한 것으로 나타났다. 반면에, 방사선상 제3요추 수준의 요추와 피하지방의 비율 (rST3), 방사선상 제6요추 수준의 요추와 피하지방의 비율 (rST6), 제6요추 수준의 지방면적 (SA6), 제6요추 수준의 지방면적 비율 (pSA6) 등 다른 변수들은 유의미하지 않았다.As a result, there were significant differences in body weight and body fidelity index (BCS), fat area at the third lumbar (L3) level (SA3), and fat area ratio at the third lumbar level (pSA3). The median body weight significantly decreased from 14.0 kg at week 0 to 13.5 kg at week 10 (p<0.05). The body fidelity index significantly decreased from 9.0 at week 0 to 7.5 at week 10 (p<0.05). Also, the average of the fat area at the 3rd lumbar vertebrae level significantly decreased from 99.86±34.81 at week 0 to 82.70±31.13 at week 10 (p<0.05), and the average of the fat area at the 3rd lumbar level was also at 36.14±5.47% at week 0. At week 10, it was significantly reduced to 31.05±7.24%. On the other hand, the radiographic ratio of lumbar to subcutaneous fat at the level of the third lumbar vertebrae (rST3), the radiographic ratio of the lumbar vertebrae and subcutaneous fat at the level of the sixth lumbar vertebrae (rST6), the fat area at the level of the sixth lumbar (SA6), and the sixth Other variables such as fat area ratio at the lumbar level (pSA6) were not significant.

실시예 6 : 본 발명에 따른 조성물 급여 전 후 강아지 장내 미생물 변화 분석Example 6: Analysis of changes in the intestinal microflora of dogs before and after feeding the composition according to the present invention

실시예 5에서 실험을 수행한 비만 개의 본 발명에 따른 조성물 섭취 전 후의 장내미생물 변화를 확인하였다. In Example 5, the change of intestinal microflora before and after ingestion of the composition according to the present invention was confirmed in obese dogs who performed the experiment.

미생물의 분석은 비만 개의 분변의 total DNA를 추출하고, 추출된 DNA에서 16S rRNA gene의 V5-V6 region을 타겟으로 하는 프라이머를 이용하여 16S rRNA gene amplicon을 제작하였다. 제작된 amplicon에 대하여 Illumina MiSeq 방법을 활용하여 sequencing을 진행하여 raw data를 확보하였다. Raw data는 QIIME 및 mothur를 이용하여 QC를 진행한 후 PCR 프라이머들과 같지 않은 sequence들과 판정하기 어렵거나 sequencing에 무작위적으로 오류를 유발하는 100bp 이하의 sequence들을 제거하였다. 그 밖에도 trimming, chemera detection과 removing을 통해 sequence를 정렬한 뒤 OTU clustering으로 세균총 분포도 및 다양성 분석을 진행하였다. For the analysis of microorganisms, total DNA of the feces of obese dogs was extracted, and a 16S rRNA gene amplicon was prepared using primers targeting the V5-V6 region of the 16S rRNA gene from the extracted DNA. For the prepared amplicon, sequencing was performed using the Illumina MiSeq method to obtain raw data. For raw data, after QC using QIIME and mothur, sequences that are not the same as PCR primers and sequences less than 100bp that are difficult to determine or cause random errors in sequencing were removed. In addition, after sorting the sequences through trimming, chemera detection and removing, OTU clustering was used to analyze bacterial flora distribution and diversity.

급여 전 후 미생물을 속단위에서 비교한 결과를 도 5에 나타내었다. The results of comparing microorganisms before and after feeding in genus units are shown in FIG. 5 .

급여 전 최대 우점종이었던 Enterococcus가 50%에서 10%로 우점도가 낮아졌고, 이에 반하여 Bacteroides는 약 7% 함량에서 20% 이상으로 증가하였다. 결과적으로 병원성 종인 Enterococcus가 급여 후 유의적으로 감소하였고, 탄수화물 발효를 통한 에너지 활용 가능성을 갖고 있는 휘발성 지발상(VFA) 생성에 관여하는 Bacteriodes가 증가하는 경향을 보였다. 또한 섬유소 분해능과 장내염증 예방에 관여하는 Prevotella가 약 3% 증가한 경향을 나타내었다. 상기 결과를 통하여, 본 발명에 따른 조성물 급여가 진행됨에 따라 장내 균총 구성의 변화가 긍정적으로 이루어졌음을 확인할 수 있었다. Enterococcus , which was the most dominant species before feeding, decreased from 50% to 10%, whereas Bacteroides increased from about 7% to more than 20%. As a result, the pathogenic species, Enterococcus , decreased significantly after feeding, and Bacteriodes , which is involved in the generation of volatile delayed phase (VFA), which has the potential to utilize energy through carbohydrate fermentation, showed a tendency to increase. In addition, Prevotella , which is involved in fibrin decomposition and prevention of intestinal inflammation, showed a tendency to increase by about 3%. Through the above results, it was confirmed that the composition of the intestinal flora was positively changed as the composition according to the present invention was fed.

조성물 급여 전 후 장관 미생물의 다양성 분석을 통해 균총 구성 변화를 표 3에 나타내었다. 조성물 급여 후 종의 수는 약 1.46배 증가하였고, 종의 풍부도는 1.08배 종의 다양성은 1.32배, 종의 농도는 1.21배 증가한 것으로 나타났다. 전체적으로 급여후 종의 다양성 및 농도가 증가한 것으로 확인되었다. Table 3 shows changes in the composition of the flora through the diversity analysis of intestinal microflora before and after composition feeding. After application of the composition, the number of species increased by about 1.46 times, the species abundance increased by 1.08 times, the species diversity by 1.32 times, and the species concentration increased by 1.21 times. Overall, it was confirmed that species diversity and concentration increased after feeding.

Figure pat00002
Figure pat00002

종 수준에서 미생물을 분석한 결과 중 섭취 전 후 대비 감소한 균주에 대한 자료를 표 4에 나타내었다. Table 4 shows data on strains that were reduced compared to before and after ingestion among the results of analyzing microorganisms at the species level.

Figure pat00003
Figure pat00003

가장 많이 감소한 균주는 Enterococcus hirae로 12.07%나 감소하였다. 이 균주는 장내에서 균혈증 및 패혈증에 관여하는 균주로 병원균으로 알려져 있다. 다음으로 많이 감소한 균주는 10.04%로 Enterococcus saigonensis로 어떤 질병에 연관이 있는지에 대해서는 아직 밝혀져 있지 않지만, Enterococcus 균주들이 대부분 요로감염과 연관이 있을 것으로 사료된다. Enterococcus 균주 이외에도 Mediterraneibacter, Bacteroides, Klebsiella, PeptacetobacterEscherichia 등과 같은 속의 균주들이 감소한 경향을 나타내었다. 이 균주들은 대부분 장내에서 질병을 일으키는 균주들로 알려져 있다. The most decreased strain was Enterococcus hirae , which decreased by 12.07%. This strain is known as a pathogen as a strain involved in bacteremia and sepsis in the intestine. The next most decreased strain was Enterococcus saigonensis , which was 10.04%, and although it is not yet known what disease it is related to, it is thought that most Enterococcus strains are related to urinary tract infection. In addition to Enterococcus strains, strains of genera such as Mediterraneibacter, Bacteroides, Klebsiella, Peptacetobacter and Escherichia showed a decreasing trend. Most of these strains are known to cause disease in the intestine.

감소한 균주와는 대조적으로 조성물 섭취 후 증가한 균주를 표 5에 나타내었다. In contrast to the decreased strains, the strains increased after ingestion of the composition are shown in Table 5.

Figure pat00004
Figure pat00004

가장 크게 증가한 균주는 Fusobacterium mortiferum 균주로 8.38%증가 하였다. 다음 순으로 증가한 균주는 Kineothrix alysoides 균주로 이 균주는 butyrate 생산과 같이 유기산의 생산을 하는 균주로 알려져 있다. 이외 증가한 균주들은 phocaeicola, Megamonas, Colinesella, Blautialactobacilus 등과 같은 균주들의 함량이 증가하였다. 증가한 균주 중 일부 균주들은 butyrate와 같은 유기산을 생산하는 유익한 균주였다. 추가적으로 목적 유산균인 Lactobacillus 두 균주의 함량이 증가한 것으로 나타났다.The strain that increased the most was the strain Fusobacterium mortiferum , which increased by 8.38%. The strain that increased in the next order was Kineothrix alysoides strain, which is known as a strain that produces organic acids such as butyrate production. In addition to the increased strains, the content of strains such as phocaeicola, Megamonas, Colinesella, Blautia and lactobacilus increased. Among the increased strains, some strains were beneficial strains that produced organic acids such as butyrate. Additionally, it was found that the content of two strains of Lactobacillus, the target lactic acid bacteria, was increased.

결과적으로 조성물의 섭취로 인한 미생물 변화를 확인하였을 때, 감소한 미생물의 경우 대부분 병원균과 관련된 미생물로 확인되었고, 증가한 미생물의 경우 대부분 유익균으로 나타났다. As a result, when checking the microbial change due to ingestion of the composition, most of the decreased microorganisms were confirmed as pathogen-related microorganisms, and the increased microorganisms were mostly beneficial bacteria.

이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. 본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby It will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents. Simple modifications or changes of the present invention can be easily used by those of ordinary skill in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (13)

글루코오스 산화효소(glucose oxidase)를 유효성분으로 포함하는 장내 유해균 증식억제 및 유산균 활성화용 프리바이오틱스 조성물.
A prebiotic composition for inhibiting the growth of harmful intestinal bacteria and activating lactic acid bacteria, comprising glucose oxidase as an active ingredient.
제1항에 있어서, 상기 글루코오스 산화효소(glucose oxidase)는 아스파질러스(Aspergillus) 속 균주, 페니실리움(Penicillium) 속 균주 및 스트렙토마이세스(Streptomyces) 속 균주로 구성되는 군에서 선택되는 균주 유래의 효소 또는 이들의 조합인 것을 특징으로 하는 프리바이오틱스 조성물.
The method according to claim 1, wherein the glucose oxidase is derived from a strain selected from the group consisting of Aspergillus sp. strain, Penicillium sp. strain and Streptomyces sp. strain. Prebiotic composition, characterized in that the enzyme or a combination thereof.
제1항에 있어서, 갈락토올리고당(galactooligosaccharide)을 추가로 포함하는 것을 특징으로 하는 프리바이오틱스 조성물.
The prebiotic composition according to claim 1, further comprising galactooligosaccharide.
제1항에 있어서, 상기 유산균은 과산화수소(hydrogen peroxide)에 저항성을 가지는 유산균인 것을 특징으로 하는 프리바이오틱스 조성물.
The prebiotic composition according to claim 1, wherein the lactic acid bacteria are lactic acid bacteria resistant to hydrogen peroxide.
제1항에 있어서, 상기 유해균은 시게렐라 플렉스너리(Shigella flexneri), 스타필로코커스 아우레우스(Staphylococcus aureus), 에스케리치아 콜라이(Escherichia coli), 엔테로코커스 패칼리스(Enterococcus faecalis), 클로스트리디움 부티리쿰(Clostridium butyricum), 프리보텔라 인터메디아(Prevotella intermedia) 및 클로스트리디움 라모숨(Clostridium ramosum)으로 구성되는 군에서 선택되는 것을 특징으로 하는 프리바이오틱스 조성물.
According to claim 1, wherein the harmful bacteria Shigella flexneri ( Shigella flexneri ), Staphylococcus aureus ( Staphylococcus aureus ), Escherichia coli ( Escherichia coli ), Enterococcus faecalis ), Clostridium Butyricum ( Clostridium butyricum ), Prevotella intermedia ( Prevotella intermedia ) and Clostridium ramosum ( Clostridium ramosum ) Prebiotic composition, characterized in that selected from the group consisting of.
제1항의 프리바이오틱스 조성물과 유산균을 함유하는 신바이오틱스(synbiotics) 조성물.
A synbiotics composition comprising the prebiotic composition of claim 1 and lactic acid bacteria.
제6항에 있어서, 상기 유산균은 과산화수소(hydrogen peroxide)에 저항성을 가지는 유산균인 것을 특징으로 하는 신바이오틱스(synbiotics) 조성물.
The synbiotics composition according to claim 6, wherein the lactic acid bacteria are lactic acid bacteria resistant to hydrogen peroxide.
제6항에 있어서, 상기 유산균은 비피도박테리움 (Bifidobacterium), 유산간균 (Lactobacillus), 유산구균 (Lactococcus) 및 스트렙토코커스 (Streptococcus)으로 구성되는 군에서 선택되는 유산균 또는 이들의 조합인 것을 특징으로 하는 신바이오틱스(synbiotics) 조성물.
According to claim 6, wherein the lactic acid bacteria is a lactic acid bacteria selected from the group consisting of Bifidobacterium, Lactobacillus, Lactococcus and Streptococcus or a combination thereof, characterized in that A synbiotics composition.
제6항에 있어서, 상기 유산균은 락토바실러스 가세리(Lactobacillus gasseri), 락토바실러스 풀란타룸(Lactobacillus plantarum), 락토바실러스 아시도필러스(Lactobacillus acidophilus), 락토바실러스 델브릭키이(Lactobacillus delbrueckii) 및 락토바실러스 람노서스(Lactobacillus rhamnosus)으로 구성되는 군에서 선택되는 유산균 또는 이들의 조합인 것을 특징으로 하는 신바이오틱스(synbiotics) 조성물.
According to claim 6, wherein the lactic acid bacteria is Lactobacillus gasseri ( Lactobacillus gasseri ), Lactobacillus pullantarum ( Lactobacillus plantarum ), Lactobacillus acidophilus ( Lactobacillus acidophilus ), Lactobacillus acidophilus ( Lactobacillus delbrueckii ) and Lactobacillus delbrueckii (Lactobacillus delbrueckii) Bacillus rhamnosus ( Lactobacillus rhamnosus ) Synbiotics (synbiotics) composition, characterized in that the lactic acid bacteria or a combination thereof selected from the group consisting of.
제1항의 프리바이오틱스 조성물과 유산균을 유효성분으로 함유하는 식품.
A food containing the prebiotic composition of claim 1 and lactic acid bacteria as active ingredients.
제10항에 있어서, 상기 유산균은 락토바실러스 가세리(Lactobacillus gasseri), 락토바실러스 풀란타룸(Lactobacillus plantarum), 락토바실러스 아시도필러스(Lactobacillus acidophilus), 락토바실러스 델브릭키이(Lactobacillus delbrueckii) 및 락토바실러스 람노서스(Lactobacillus rhamnosus)으로 구성되는 군에서 선택되는 유산균 또는 이들의 조합인 것을 특징으로 하는 식품.
11. The method of claim 10, wherein the lactic acid bacteria is Lactobacillus gasseri ( Lactobacillus gasseri ), Lactobacillus pullantarum ( Lactobacillus plantarum ), Lactobacillus acidophilus ( Lactobacillus acidophilus ), Lactobacillus acidophilus ( Lactobacillus delbrueckii ) and Lactobacillus delbrueckii (Lactobacillus delbrueckii) Bacillus rhamnosus ( Lactobacillus rhamnosus ) Food, characterized in that the lactic acid bacteria or a combination thereof selected from the group consisting of.
제1항의 프리바이오틱스 조성물과 유산균을 유효성분으로 함유하는 사료첨가제.
A feed additive comprising the prebiotic composition of claim 1 and lactic acid bacteria as active ingredients.
제12항에 있어서, 상기 유산균은 락토바실러스 가세리(Lactobacillus gasseri), 락토바실러스 풀란타룸(Lactobacillus plantarum), 락토바실러스 아시도필러스(Lactobacillus acidophilus), 락토바실러스 델브릭키이(Lactobacillus delbrueckii) 및 락토바실러스 람노서스(Lactobacillus rhamnosus)으로 구성되는 군에서 선택되는 유산균 또는 이들의 조합인 것을 특징으로 하는 사료첨가제.The method of claim 12, wherein the lactic acid bacteria is Lactobacillus gasseri ( Lactobacillus gasseri ), Lactobacillus pullantarum ( Lactobacillus plantarum ), Lactobacillus acidophilus ( Lactobacillus acidophilus ), Lactobacillus acidophilus ( Lactobacillus delbrueckii ) and Lactobacillus delbrueckii Bacillus rhamnosus ( Lactobacillus rhamnosus ) Feed additive, characterized in that the lactic acid bacteria or a combination thereof selected from the group consisting of.
KR1020220002086A 2021-01-07 2022-01-06 Composition for Activating Probiotics through Inhibition of Harmful Bacteria KR20220099914A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210001810 2021-01-07
KR1020210001810 2021-01-07

Publications (1)

Publication Number Publication Date
KR20220099914A true KR20220099914A (en) 2022-07-14

Family

ID=82358257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220002086A KR20220099914A (en) 2021-01-07 2022-01-06 Composition for Activating Probiotics through Inhibition of Harmful Bacteria

Country Status (2)

Country Link
KR (1) KR20220099914A (en)
WO (1) WO2022149869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102649857B1 (en) * 2023-09-26 2024-03-21 주식회사 마이웰에프앤에프 Feed additive composition to improve digestive function and method for manufacturing feed additive composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI109602B (en) * 2001-01-25 2002-09-13 Valio Oy Probiotkombination
WO2016059654A1 (en) * 2014-10-16 2016-04-21 Giuseppe Baricco Use of glucose oxidase for the control, the prevention and the cure of intestinal disorders
KR101973514B1 (en) * 2017-03-13 2019-04-29 한양대학교 산학협력단 Prebiotics Containing Grape seed flour

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102649857B1 (en) * 2023-09-26 2024-03-21 주식회사 마이웰에프앤에프 Feed additive composition to improve digestive function and method for manufacturing feed additive composition

Also Published As

Publication number Publication date
WO2022149869A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
CN101262779B (en) Probiotic health or fitness promoting foodstuff, feed, and/or drinking water additive and use thereof
JP4455333B2 (en) Probiotic bacteria: Lactobacillus fermentum
Bomba et al. Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids
EP2900805B1 (en) Probiotic and prebiotic compositions
AU2010213007B2 (en) Lactobacillus helveticus CNCM I-4095 and weight control
RU2704133C2 (en) Using lactobacillus paracasei for enhancing recovery of variety of intestinal microflora after dysbacteriosis
CN113122467A (en) Lactobacillus paracasei and composition thereof
WO2019112053A1 (en) Novel bifidobacterium bacteria and composition including novel bifidobacterium bacteria
JP2006256993A (en) Lactic bacterium having aging-inhibiting activity and application thereof
JP5082048B2 (en) A novel lactic acid bacterium having immunostimulatory action and / or allergy-suppressing action and gastric juice resistance
KR20220099914A (en) Composition for Activating Probiotics through Inhibition of Harmful Bacteria
JP5610472B2 (en) Novel lactic acid bacteria and novel lactic acid bacteria-containing composition
US11478525B2 (en) Method for promoting growth of Akkermansia muciniphila using musa ferments
EP2166083B1 (en) Novel Lactobacillus paracasei subsp. paracasei SG96, a bacteriostatic composition containing the same and use thereof
JP2007028920A (en) Fermented milk and method for producing the same
US11045507B2 (en) Bifidobacterium animalis AMT30 strain and the composition containing the strain of Bifidobacterium animalis AMT30
JPWO2020203792A1 (en) Composition for slowing skeletal muscle
KR101779719B1 (en) Novel Lactobacillus kefiranofaciens DN1 and composition for treating or preventing constipation comprising the same
CN107836721A (en) A kind of composition with intestines and stomach healthcare function and preparation method thereof
KR20180056896A (en) Microbial preparation(powder) for formula-fed babies produced with Lactobacillus gasseri J12P4 and Staphylococcus epidermidis J4P1 isolated from Korean breast milk
CN114456969A (en) Probiotic preparation for losing weight and reducing blood sugar as well as preparation method and application thereof
KR20220164034A (en) Composition for improving intestinal flora
JP2008167708A (en) Lipid metabolism promoting feed, and feed additive
James Effect of inulin on the growth and antimicrobial activity of Bifidobacterium animalis Subsp. Lactis 420-an assessment
US20230248787A1 (en) Probiotic strain selected by targeted in vivo enrichment to aid with healthy lactose digestion

Legal Events

Date Code Title Description
E902 Notification of reason for refusal