KR20220095112A - Screening method for mdsc inhibitor - Google Patents
Screening method for mdsc inhibitor Download PDFInfo
- Publication number
- KR20220095112A KR20220095112A KR1020210166493A KR20210166493A KR20220095112A KR 20220095112 A KR20220095112 A KR 20220095112A KR 1020210166493 A KR1020210166493 A KR 1020210166493A KR 20210166493 A KR20210166493 A KR 20210166493A KR 20220095112 A KR20220095112 A KR 20220095112A
- Authority
- KR
- South Korea
- Prior art keywords
- mdsc
- mitf
- cancer
- activity
- inhibitor
- Prior art date
Links
- 239000003112 inhibitor Substances 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims description 74
- 238000012216 screening Methods 0.000 title claims description 19
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 claims abstract description 477
- 108010050345 Microphthalmia-Associated Transcription Factor Proteins 0.000 claims abstract description 241
- 102000013760 Microphthalmia-Associated Transcription Factor Human genes 0.000 claims abstract description 240
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 102
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 52
- 201000011510 cancer Diseases 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 230000000694 effects Effects 0.000 claims description 217
- 230000014509 gene expression Effects 0.000 claims description 123
- 230000004069 differentiation Effects 0.000 claims description 106
- 239000003814 drug Substances 0.000 claims description 82
- 229940079593 drug Drugs 0.000 claims description 73
- 101150087532 mitF gene Proteins 0.000 claims description 37
- 239000000126 substance Substances 0.000 claims description 37
- 230000008859 change Effects 0.000 claims description 30
- 239000004055 small Interfering RNA Substances 0.000 claims description 30
- 230000001939 inductive effect Effects 0.000 claims description 29
- 238000011529 RT qPCR Methods 0.000 claims description 26
- 210000002798 bone marrow cell Anatomy 0.000 claims description 26
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 20
- 230000004952 protein activity Effects 0.000 claims description 19
- 229940122498 Gene expression inhibitor Drugs 0.000 claims description 18
- 108091027967 Small hairpin RNA Proteins 0.000 claims description 18
- 238000012258 culturing Methods 0.000 claims description 17
- 230000006052 T cell proliferation Effects 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 14
- 108020004459 Small interfering RNA Proteins 0.000 claims description 13
- 239000002773 nucleotide Substances 0.000 claims description 13
- 125000003729 nucleotide group Chemical group 0.000 claims description 13
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 11
- 239000002679 microRNA Substances 0.000 claims description 11
- 108091023037 Aptamer Proteins 0.000 claims description 10
- 108700011259 MicroRNAs Proteins 0.000 claims description 10
- 208000009956 adenocarcinoma Diseases 0.000 claims description 10
- 230000000692 anti-sense effect Effects 0.000 claims description 9
- 230000000295 complement effect Effects 0.000 claims description 9
- 108020004999 messenger RNA Proteins 0.000 claims description 9
- 238000001262 western blot Methods 0.000 claims description 9
- 206010005003 Bladder cancer Diseases 0.000 claims description 8
- 206010006187 Breast cancer Diseases 0.000 claims description 8
- 208000026310 Breast neoplasm Diseases 0.000 claims description 8
- 206010009944 Colon cancer Diseases 0.000 claims description 8
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 8
- 201000002314 small intestine cancer Diseases 0.000 claims description 8
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 8
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 7
- 201000005202 lung cancer Diseases 0.000 claims description 7
- 208000020816 lung neoplasm Diseases 0.000 claims description 7
- 230000025020 negative regulation of T cell proliferation Effects 0.000 claims description 7
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 7
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 7
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 7
- 239000000816 peptidomimetic Substances 0.000 claims description 6
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 5
- 206010038389 Renal cancer Diseases 0.000 claims description 5
- 201000010982 kidney cancer Diseases 0.000 claims description 5
- 206010000830 Acute leukaemia Diseases 0.000 claims description 4
- 206010005949 Bone cancer Diseases 0.000 claims description 4
- 208000018084 Bone neoplasm Diseases 0.000 claims description 4
- 206010006143 Brain stem glioma Diseases 0.000 claims description 4
- 201000009030 Carcinoma Diseases 0.000 claims description 4
- 108090000994 Catalytic RNA Proteins 0.000 claims description 4
- 102000053642 Catalytic RNA Human genes 0.000 claims description 4
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 4
- 206010014733 Endometrial cancer Diseases 0.000 claims description 4
- 206010014759 Endometrial neoplasm Diseases 0.000 claims description 4
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 4
- 208000022072 Gallbladder Neoplasms Diseases 0.000 claims description 4
- 208000017604 Hodgkin disease Diseases 0.000 claims description 4
- 208000010747 Hodgkins lymphoma Diseases 0.000 claims description 4
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 claims description 4
- 206010052178 Lymphocytic lymphoma Diseases 0.000 claims description 4
- 208000032271 Malignant tumor of penis Diseases 0.000 claims description 4
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 4
- 206010033128 Ovarian cancer Diseases 0.000 claims description 4
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 4
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 4
- 208000000821 Parathyroid Neoplasms Diseases 0.000 claims description 4
- 208000002471 Penile Neoplasms Diseases 0.000 claims description 4
- 206010034299 Penile cancer Diseases 0.000 claims description 4
- 206010060862 Prostate cancer Diseases 0.000 claims description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 4
- 208000015634 Rectal Neoplasms Diseases 0.000 claims description 4
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 4
- 206010039491 Sarcoma Diseases 0.000 claims description 4
- 208000000453 Skin Neoplasms Diseases 0.000 claims description 4
- 208000021712 Soft tissue sarcoma Diseases 0.000 claims description 4
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 4
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 4
- 208000023915 Ureteral Neoplasms Diseases 0.000 claims description 4
- 206010046392 Ureteric cancer Diseases 0.000 claims description 4
- 206010046431 Urethral cancer Diseases 0.000 claims description 4
- 206010046458 Urethral neoplasms Diseases 0.000 claims description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 4
- 201000003761 Vaginal carcinoma Diseases 0.000 claims description 4
- 206010047741 Vulval cancer Diseases 0.000 claims description 4
- 201000005188 adrenal gland cancer Diseases 0.000 claims description 4
- 208000024447 adrenal gland neoplasm Diseases 0.000 claims description 4
- 201000007455 central nervous system cancer Diseases 0.000 claims description 4
- 208000025997 central nervous system neoplasm Diseases 0.000 claims description 4
- 201000010881 cervical cancer Diseases 0.000 claims description 4
- 208000019065 cervical carcinoma Diseases 0.000 claims description 4
- 230000001684 chronic effect Effects 0.000 claims description 4
- 208000024207 chronic leukemia Diseases 0.000 claims description 4
- 208000029742 colonic neoplasm Diseases 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 230000002124 endocrine Effects 0.000 claims description 4
- 201000003914 endometrial carcinoma Diseases 0.000 claims description 4
- 201000004101 esophageal cancer Diseases 0.000 claims description 4
- 201000001343 fallopian tube carcinoma Diseases 0.000 claims description 4
- 201000010175 gallbladder cancer Diseases 0.000 claims description 4
- 206010017758 gastric cancer Diseases 0.000 claims description 4
- 210000003734 kidney Anatomy 0.000 claims description 4
- 201000007270 liver cancer Diseases 0.000 claims description 4
- 208000014018 liver neoplasm Diseases 0.000 claims description 4
- 210000002751 lymph Anatomy 0.000 claims description 4
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 4
- 208000026037 malignant tumor of neck Diseases 0.000 claims description 4
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 claims description 4
- 201000002528 pancreatic cancer Diseases 0.000 claims description 4
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 4
- 206010038038 rectal cancer Diseases 0.000 claims description 4
- 201000001275 rectum cancer Diseases 0.000 claims description 4
- 108091092562 ribozyme Proteins 0.000 claims description 4
- 201000000849 skin cancer Diseases 0.000 claims description 4
- 206010062261 spinal cord neoplasm Diseases 0.000 claims description 4
- 201000011549 stomach cancer Diseases 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 201000002510 thyroid cancer Diseases 0.000 claims description 4
- 201000011294 ureter cancer Diseases 0.000 claims description 4
- 201000004916 vulva carcinoma Diseases 0.000 claims description 4
- 208000013013 vulvar carcinoma Diseases 0.000 claims description 4
- 206010007953 Central nervous system lymphoma Diseases 0.000 claims description 3
- 239000002259 anti human immunodeficiency virus agent Substances 0.000 claims description 3
- 229940124411 anti-hiv antiviral agent Drugs 0.000 claims description 3
- 238000000684 flow cytometry Methods 0.000 claims description 3
- 208000016800 primary central nervous system lymphoma Diseases 0.000 claims description 3
- 102100036009 5'-AMP-activated protein kinase catalytic subunit alpha-2 Human genes 0.000 claims description 2
- 101000783681 Homo sapiens 5'-AMP-activated protein kinase catalytic subunit alpha-2 Proteins 0.000 claims description 2
- 210000004907 gland Anatomy 0.000 claims description 2
- 238000001565 modulated differential scanning calorimetry Methods 0.000 claims 16
- 208000003200 Adenoma Diseases 0.000 claims 1
- 208000007860 Anus Neoplasms Diseases 0.000 claims 1
- 206010062767 Hypophysitis Diseases 0.000 claims 1
- 238000010240 RT-PCR analysis Methods 0.000 claims 1
- 201000011165 anus cancer Diseases 0.000 claims 1
- 238000007877 drug screening Methods 0.000 claims 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 claims 1
- 108091070501 miRNA Proteins 0.000 claims 1
- 210000003635 pituitary gland Anatomy 0.000 claims 1
- 238000010187 selection method Methods 0.000 claims 1
- 201000000360 urethra cancer Diseases 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 120
- 230000028993 immune response Effects 0.000 abstract description 35
- 230000004913 activation Effects 0.000 abstract description 27
- 239000004480 active ingredient Substances 0.000 abstract description 17
- 238000011224 anti-cancer immunotherapy Methods 0.000 abstract description 7
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 60
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 60
- 238000011282 treatment Methods 0.000 description 49
- 210000001185 bone marrow Anatomy 0.000 description 39
- 241000699666 Mus <mouse, genus> Species 0.000 description 33
- 241000699670 Mus sp. Species 0.000 description 30
- 239000012979 RPMI medium Substances 0.000 description 29
- 108090000623 proteins and genes Proteins 0.000 description 26
- 230000005764 inhibitory process Effects 0.000 description 23
- 230000001093 anti-cancer Effects 0.000 description 19
- 102000004169 proteins and genes Human genes 0.000 description 19
- 238000012790 confirmation Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 17
- 210000001519 tissue Anatomy 0.000 description 16
- 231100000588 tumorigenic Toxicity 0.000 description 16
- 230000000381 tumorigenic effect Effects 0.000 description 16
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 15
- 229940093265 berberine Drugs 0.000 description 15
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 15
- 239000003642 reactive oxygen metabolite Substances 0.000 description 15
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 14
- 210000000952 spleen Anatomy 0.000 description 14
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 102000003814 Interleukin-10 Human genes 0.000 description 11
- 108090000174 Interleukin-10 Proteins 0.000 description 11
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 11
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 11
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 11
- 239000002158 endotoxin Substances 0.000 description 11
- 229920006008 lipopolysaccharide Polymers 0.000 description 11
- 229960004844 lovastatin Drugs 0.000 description 11
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 11
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 229930002330 retinoic acid Natural products 0.000 description 11
- 229960002855 simvastatin Drugs 0.000 description 11
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 11
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 10
- 239000002671 adjuvant Substances 0.000 description 10
- 239000002246 antineoplastic agent Substances 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 9
- QAGYKUNXZHXKMR-UHFFFAOYSA-N CPD000469186 Natural products CC1=C(O)C=CC=C1C(=O)NC(C(O)CN1C(CC2CCCCC2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-UHFFFAOYSA-N 0.000 description 9
- 229960000884 nelfinavir Drugs 0.000 description 9
- QAGYKUNXZHXKMR-HKWSIXNMSA-N nelfinavir Chemical compound CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-HKWSIXNMSA-N 0.000 description 9
- VUDQSRFCCHQIIU-UHFFFAOYSA-N 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one Chemical compound CCCCCC(=O)C1=C(O)C(Cl)=C(OC)C(Cl)=C1O VUDQSRFCCHQIIU-UHFFFAOYSA-N 0.000 description 8
- 101000942967 Homo sapiens Leukemia inhibitory factor Proteins 0.000 description 8
- 108090000978 Interleukin-4 Proteins 0.000 description 8
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 7
- 230000009368 gene silencing by RNA Effects 0.000 description 7
- 239000002955 immunomodulating agent Substances 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 6
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 6
- 102100022338 Integrin alpha-M Human genes 0.000 description 6
- 229960005370 atorvastatin Drugs 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 108020005004 Guide RNA Proteins 0.000 description 5
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 5
- 101710089543 Nitric oxide synthase, inducible Proteins 0.000 description 5
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 5
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 5
- 239000003636 conditioned culture medium Substances 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 239000000411 inducer Substances 0.000 description 5
- 201000001441 melanoma Diseases 0.000 description 5
- 210000000066 myeloid cell Anatomy 0.000 description 5
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 5
- 108091033409 CRISPR Proteins 0.000 description 4
- 238000010354 CRISPR gene editing Methods 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 4
- 102100030126 Interferon regulatory factor 4 Human genes 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 4
- 108010051920 interferon regulatory factor-4 Proteins 0.000 description 4
- 210000001165 lymph node Anatomy 0.000 description 4
- 210000002752 melanocyte Anatomy 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- 239000007845 reactive nitrogen species Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229960000672 rosuvastatin Drugs 0.000 description 4
- BPRHUIZQVSMCRT-VEUZHWNKSA-N rosuvastatin Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC(O)=O BPRHUIZQVSMCRT-VEUZHWNKSA-N 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- MVHAAGZZSATGDD-GOSISDBHSA-N 4-[(2r)-7-hydroxy-3,4-dihydro-2h-chromen-2-yl]-3-(3-methylbut-2-enyl)benzene-1,2-diol Chemical compound CC(C)=CCC1=C(O)C(O)=CC=C1[C@@H]1OC2=CC(O)=CC=C2CC1 MVHAAGZZSATGDD-GOSISDBHSA-N 0.000 description 3
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 3
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 3
- 102000001493 Cyclophilins Human genes 0.000 description 3
- 108010068682 Cyclophilins Proteins 0.000 description 3
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 description 3
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 description 3
- MVHAAGZZSATGDD-UHFFFAOYSA-N Kazinol U Natural products CC(C)=CCC1=C(O)C(O)=CC=C1C1OC2=CC(O)=CC=C2CC1 MVHAAGZZSATGDD-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 3
- 201000005746 Pituitary adenoma Diseases 0.000 description 3
- 206010061538 Pituitary tumour benign Diseases 0.000 description 3
- -1 Rosu) Chemical compound 0.000 description 3
- 108091027544 Subgenomic mRNA Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229940022399 cancer vaccine Drugs 0.000 description 3
- 238000009566 cancer vaccine Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229960002949 fluorouracil Drugs 0.000 description 3
- 201000010536 head and neck cancer Diseases 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 102000004311 liver X receptors Human genes 0.000 description 3
- 108090000865 liver X receptors Proteins 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 208000021310 pituitary gland adenoma Diseases 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 102000010825 Actinin Human genes 0.000 description 2
- 108010063503 Actinin Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 229940045513 CTLA4 antagonist Drugs 0.000 description 2
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 2
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 102000003815 Interleukin-11 Human genes 0.000 description 2
- 108090000177 Interleukin-11 Proteins 0.000 description 2
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 2
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 2
- 102000004495 STAT3 Transcription Factor Human genes 0.000 description 2
- 108010017324 STAT3 Transcription Factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 229960004308 acetylcysteine Drugs 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 239000008004 cell lysis buffer Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 208000037976 chronic inflammation Diseases 0.000 description 2
- 230000006020 chronic inflammation Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 2
- 229960000452 diethylstilbestrol Drugs 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229940000406 drug candidate Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 210000005008 immunosuppressive cell Anatomy 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 230000003061 melanogenesis Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 239000002547 new drug Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- BTIHMVBBUGXLCJ-OAHLLOKOSA-N seliciclib Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)CC)=NC=1NCC1=CC=CC=C1 BTIHMVBBUGXLCJ-OAHLLOKOSA-N 0.000 description 2
- 229950000055 seliciclib Drugs 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000004981 tumor-associated macrophage Anatomy 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- XXJWYDDUDKYVKI-UHFFFAOYSA-N 4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline Chemical compound COC1=CC2=C(OC=3C(=C4C=C(C)NC4=CC=3)F)N=CN=C2C=C1OCCCN1CCCC1 XXJWYDDUDKYVKI-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- MPLLLQUZNJSVTK-UHFFFAOYSA-N 5-[3-[4-[2-(4-fluorophenyl)ethoxy]phenyl]propyl]furan-2-carboxylic acid Chemical compound O1C(C(=O)O)=CC=C1CCCC(C=C1)=CC=C1OCCC1=CC=C(F)C=C1 MPLLLQUZNJSVTK-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- LJIRBXZDQGQUOO-KVTDHHQDSA-N 6-amino-3-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,4-dihydro-1,3,5-triazin-2-one Chemical compound C1NC(N)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 LJIRBXZDQGQUOO-KVTDHHQDSA-N 0.000 description 1
- 102000002281 Adenylate kinase Human genes 0.000 description 1
- 108020000543 Adenylate kinase Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000019058 Glycogen Synthase Kinase 3 beta Human genes 0.000 description 1
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 229940122440 HIV protease inhibitor Drugs 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 101000574648 Homo sapiens Retinoid-inducible serine carboxypeptidase Proteins 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 1
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 1
- 239000005536 L01XE08 - Nilotinib Substances 0.000 description 1
- 239000002118 L01XE12 - Vandetanib Substances 0.000 description 1
- 239000002145 L01XE14 - Bosutinib Substances 0.000 description 1
- UIARLYUEJFELEN-LROUJFHJSA-N LSM-1231 Chemical compound C12=C3N4C5=CC=CC=C5C3=C3C(=O)NCC3=C2C2=CC=CC=C2N1[C@]1(C)[C@](CO)(O)C[C@H]4O1 UIARLYUEJFELEN-LROUJFHJSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 101100260702 Mus musculus Tinagl1 gene Proteins 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102100025483 Retinoid-inducible serine carboxypeptidase Human genes 0.000 description 1
- 238000010818 SYBR green PCR Master Mix Methods 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 229950010817 alvocidib Drugs 0.000 description 1
- BIIVYFLTOXDAOV-YVEFUNNKSA-N alvocidib Chemical compound O[C@@H]1CN(C)CC[C@@H]1C1=C(O)C=C(O)C2=C1OC(C=1C(=CC=CC=1)Cl)=CC2=O BIIVYFLTOXDAOV-YVEFUNNKSA-N 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940124691 antibody therapeutics Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 101150088826 arg1 gene Proteins 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 229950002916 avelumab Drugs 0.000 description 1
- 229960003005 axitinib Drugs 0.000 description 1
- RITAVMQDGBJQJZ-FMIVXFBMSA-N axitinib Chemical compound CNC(=O)C1=CC=CC=C1SC1=CC=C(C(\C=C\C=2N=CC=CC=2)=NN2)C2=C1 RITAVMQDGBJQJZ-FMIVXFBMSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229960003736 bosutinib Drugs 0.000 description 1
- UBPYILGKFZZVDX-UHFFFAOYSA-N bosutinib Chemical compound C1=C(Cl)C(OC)=CC(NC=2C3=CC(OC)=C(OCCCN4CCN(C)CC4)C=C3N=CC=2C#N)=C1Cl UBPYILGKFZZVDX-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229960002412 cediranib Drugs 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000002875 cyclin dependent kinase inhibitor Substances 0.000 description 1
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 229960002448 dasatinib Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229960001776 edrecolomab Drugs 0.000 description 1
- 238000001378 electrochemiluminescence detection Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960000578 gemtuzumab Drugs 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 239000004030 hiv protease inhibitor Substances 0.000 description 1
- 229940075628 hypomethylating agent Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000006028 immune-suppresssive effect Effects 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 229940074383 interleukin-11 Drugs 0.000 description 1
- 108040006849 interleukin-2 receptor activity proteins Proteins 0.000 description 1
- 230000008316 intracellular mechanism Effects 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229960004891 lapatinib Drugs 0.000 description 1
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229950001845 lestaurtinib Drugs 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 210000003593 megakaryocyte Anatomy 0.000 description 1
- 230000008099 melanin synthesis Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229960001346 nilotinib Drugs 0.000 description 1
- HHZIURLSWUIHRB-UHFFFAOYSA-N nilotinib Chemical compound C1=NC(C)=CN1C1=CC(NC(=O)C=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)=CC(C(F)(F)F)=C1 HHZIURLSWUIHRB-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229960003301 nivolumab Drugs 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 229960001972 panitumumab Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229960002621 pembrolizumab Drugs 0.000 description 1
- 229940083251 peripheral vasodilators purine derivative Drugs 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 229960002965 pravastatin Drugs 0.000 description 1
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229950003647 semaxanib Drugs 0.000 description 1
- WUWDLXZGHZSWQZ-WQLSENKSSA-N semaxanib Chemical compound N1C(C)=CC(C)=C1\C=C/1C2=CC=CC=C2NC\1=O WUWDLXZGHZSWQZ-WQLSENKSSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 229960001796 sunitinib Drugs 0.000 description 1
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960005267 tositumomab Drugs 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229960000241 vandetanib Drugs 0.000 description 1
- UHTHHESEBZOYNR-UHFFFAOYSA-N vandetanib Chemical compound COC1=CC(C(/N=CN2)=N/C=3C(=CC(Br)=CC=3)F)=C2C=C1OCC1CCN(C)CC1 UHTHHESEBZOYNR-UHFFFAOYSA-N 0.000 description 1
- 239000002525 vasculotropin inhibitor Substances 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- RPQZTTQVRYEKCR-WCTZXXKLSA-N zebularine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)N=CC=C1 RPQZTTQVRYEKCR-WCTZXXKLSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4375—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/63—Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
본 발명은 골수-유래 억제세포(MDSC; myeloid-derived suppressor cell) 저해용 조성물을 제조하기 위하여, 특정물질에 의한 MDSC에서의 MITF(microphthalmia-associated transcription factor) 억제효과를 분석하여 MDSC 활성 저해 약물을 선별하는 방법에 관한 것으로, 구체적으로 특정물질이 MITF의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제인지 선별하고, MDSC 활성 저해 약물을 선별하는 방법 및 이렇게 선별된 MITF 억제제를 포함하는 조성물에 관한 것이다.In order to prepare a composition for inhibiting myeloid-derived suppressor cell (MDSC), the present invention analyzes the MITF (microphthalmia-associated transcription factor) inhibitory effect in MDSC by a specific substance to prepare an MDSC activity inhibitory drug. The present invention relates to a method for screening, specifically, to a method for screening whether a specific substance is a gene expression inhibitor of MITF or an inhibitor of MITF protein activity, a method for screening an MDSC activity inhibitory drug, and a composition comprising the thus-selected MITF inhibitor.
골수성 세포(myeloid cells)는 조혈모줄기세포(hematopoietic stem cell)에서 기원한다. 이는 우리 몸에 가장 많이 존재하는 조혈모세포로, 골수 및 림프 조직에 주로 존재한다. 최종적으로는 대식세포(macrophage), 수지상세포(dendritic cell) 그리고 과립구(granulocyte)로 분화하나, 이들은 특정 계층 구조를 띄지 않고 다양한 단계의 분화도를 가진 골수성 세포가 조직과 환경에 특이적으로 다양하게 분포되는 특징을 가지고 있다.Myeloid cells originate from hematopoietic stem cells. These are the most abundant hematopoietic stem cells in our body and are mainly present in bone marrow and lymphoid tissues. Finally, they differentiate into macrophages, dendritic cells, and granulocytes, but these do not show a specific hierarchical structure and myeloid cells with various levels of differentiation are specifically and diversely distributed in tissues and environments. has the characteristics to be
골수-유래 억제세포(myeloid-derived suppressor cells, MDSC)는 골수성 세포 계통 중에서 면역반응 억제 작용을 가진 세포들로서, 매우 광범위한 미분화 골수성 세포를 포함하는 세포군이다. MDSC는 여러 전사 인자들을 통해 활성화가 매개되고, 그 결과 활성산소종(reactive oxygen species, ROS)이나 활성질소종(reactive nitrogen species, RNS)이 생산되어 T 세포의 증식에서부터 기능까지 다양한 과정을 저해하여 T 세포를 효과적으로 억제하는 것으로 알려져 있다. 이러한 MDSC의 작용이 자가면역반응을 억제하는 점에서는 유익하지만, MDSC의 축적으로 면역 억제 환경이 지속되면 생체가 지속적으로 알러젠 및/또는 바이러스 감염에 노출되고, 이를 인해 만성 염증이 나타날 수 있다. 생체가 효과적인 면역반응을 할 수 없게 되면 만성 염증 시 조직 손상이 일어나게 될 수 있다. 또한, MDSC는 암세포 미세환경(tumor microenvironment, TME)에서 종양 세포의 침입 및 전이를 보조하는 것이 확인되었다. Myeloid-derived suppressor cells (MDSCs) are cells with an immune response suppressing action among myeloid cell lineages, and are a cell group that includes a very wide range of undifferentiated myeloid cells. MDSC activation is mediated through several transcription factors, and as a result, reactive oxygen species (ROS) or reactive nitrogen species (RNS) are produced, inhibiting various processes from T cell proliferation to function. It is known to effectively inhibit T cells. Although the action of MDSC is beneficial in that it suppresses autoimmune response, if the immune suppressive environment continues due to the accumulation of MDSC, the living body is continuously exposed to allergens and/or viral infection, which may result in chronic inflammation. If the living body cannot make an effective immune response, tissue damage may occur during chronic inflammation. In addition, it was confirmed that MDSC aids in invasion and metastasis of tumor cells in the cancer cell microenvironment (TME).
이러한 MDSC의 기능과 작용 기전에 대한 연구를 바탕으로 최근에는 이들의 조절을 통해 새로운 암 치료법을 개발하고자 하는 노력이 가속화되고 있다. 대표적으로 젬시타빈(Gemcitabine) 및 5-플루오로우라실(5-fluorouracil, 5-FU)은 MDSC를 직접적으로 감소시키는 화학요법제로 알려져 있다.Based on the research on the function and mechanism of action of these MDSCs, efforts to develop new cancer treatments through their control are accelerating. Typically, gemcitabine and 5-fluorouracil (5-fluorouracil, 5-FU) are known as chemotherapeutic agents that directly reduce MDSC.
또한, MDSC의 빈도 및 기능이 최근 임상에서 항암면역치료제로 활발하게 사용되고 있는 면역관문억제제(immune checkpoint inhibitor, ICI)에 대한 환자의 내성에 기여하는 것이 알려지면서, MDSC의 중요성이 강조되고 있다. ICI는 암세포에 의한 T 세포의 억제를 막아줌으로써 암 환자의 항암 면역반응을 향상시킨다. 실제로 CTLA-4(cytotoxic T-lymphocyte-associated protein 4) 및 PD-1(programmed cell death protein) 및 PD-L1(programmed cell death ligand 1)을 표적으로 하는 다양한 항체들이 악성흑색종, 편평비소세포폐암 및 신장암 등의 치료 목적으로 허가된 바 있다. 그러나 최대 80%에 달하는 많은 환자들이 이러한 치료법에 반응하지 않는 것으로 알려져 있고, 그 주된 원인으로 암세포 미세환경, 즉, TME (Tumor Micro-Environment)를 구성하는 면역억제세포들 때문이라고 추정되고 있다. ICI 치료 효능에 영향을 주는 TME에서의 면역억제세포들은 Treg 세포, MDSC, TH2 CD4+ 세포, CAF(cancer-associated fibroblast) 및 M2로 분극된 TAM(tumor-associated macrophage)이 잘 알려져 있다. 특히, MDSC를 결핍시키면 항암면역반응이 증강되어 ICI에 대하여 내재되어 있던 저항성이 극복된다는 결과들이 보고되면서, MDSC를 ICI 치료에서의 중요한 예후인자로서 사용할 수 있음이 강조되고 있다.In addition, as the frequency and function of MDSCs are known to contribute to patient resistance to immune checkpoint inhibitors (ICIs), which are currently actively used as anticancer immunotherapeutic agents in clinical practice, the importance of MDSCs is being emphasized. ICI improves the anticancer immune response of cancer patients by preventing the suppression of T cells by cancer cells. In fact, various antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein (PD-1) and programmed cell death ligand 1 (PD-L1) have been shown to be effective against malignant melanoma, squamous non-small cell lung cancer and It has been approved for the treatment of kidney cancer, etc. However, it is known that up to 80% of patients do not respond to these treatments, and it is estimated that the main cause is the cancer cell microenvironment, that is, immunosuppressive cells that make up the Tumor Micro-Environment (TME). The immunosuppressive cells in TME that affect the efficacy of ICI treatment are Treg cells, MDSCs, TH2 CD4 + cells, cancer-associated fibroblasts (CAFs) and M2-polarized tumor-associated macrophages (TAMs) are well known. In particular, it is emphasized that MDSC can be used as an important prognostic factor in the treatment of ICI as the results of overcoming the inherent resistance to ICI by enhancing the anticancer immune response when MDSC is deficient have been reported.
한편, ICI에 대한 비반응 또는 낮은 반응성을 극복하기 위해 최근 다른 종류의 ICI와 조합하여 병용 치료하는 방법이 시도되고 있으며, 이 경우 단일치료(monotherapy)에 비해 임상적 이득이 의미 있게 높아짐이 보고되었다. 또한, 항-CTLA4와 항-PD-1의 병용, 항-PD-1과 IL-2R 작용제(agonist)의 병용, VEGF 억제제 또는 케모카인(chemokine) 조절제와 ICI의 병용, 항-CTLA4와 CTL 치료제의 병용 등이 임상 연구되고 있다. 나아가 방사선 치료와 함께 ICI를 투여하거나, ICI와 저농도의 다양한 기존 화학요법제 또는 표적 항암제를 병용하여 T 세포의 활성화와 종양으로의 침투를 유도함으로써, 치료반응을 높이고 항암면역반응의 효과를 상승시키기 위한 다양한 시도들도 이루어지고 있다. On the other hand, in order to overcome non-response or low reactivity to ICI, a combination treatment method in combination with other types of ICI has recently been attempted, and in this case, it has been reported that the clinical benefit is significantly increased compared to monotherapy. . In addition, anti-CTLA4 and anti-PD-1 combination, anti-PD-1 and IL-2R agonist combination, VEGF inhibitor or chemokine modulator and ICI combination, anti-CTLA4 and CTL therapeutic agent The combination is being studied clinically. Furthermore, by administering ICI together with radiation therapy or by using ICI and various conventional chemotherapeutic agents or targeted anticancer agents in combination with radiation therapy to induce T cell activation and invasion into the tumor, increase the therapeutic response and the effect of the anticancer immune response. Various attempts are being made for this.
MITF(microphthalmia-associated transcription factor)는 멜라닌 세포, 골 세포 및 비만 세포를 포함한 다양한 유형의 계통 특이적 경로 조절(lineage-specific pathway regulation)에 관여하는 헬릭스-루프-헬릭스 루신 지퍼(Helix-loop-helix leucine zipper) 전사인자이다. 계통 특이적이란, 특정 세포 유형에서만 발견되는 유전자나 형질을 의미한다. 따라서, MITF는 정상 세포 전구체의 생존 및 생리적 기능에 특별히 필요한 신호전달 캐스케이드의 재설계에 관여할 수 있다. 특히, MITF는 멜라닌 세포(Melanocyte)와 흑생종(Melanoma)의 생존과 분화를 조절하며 멜라닌 형성 기전에 관여하는 것으로 알려져 있다. MITF에 대한 연구 결과는 최근에 보고되기 시작했는데, LXR(Liver X receptor)이 활성화되면 MITF의 분해를 촉진하여 멜라닌 합성(Melanogenesis)이 저해된다는 것이 알려져 있으나, MDSC에서 MITF의 역할에 대해서는 아직 밝혀진 바 없다.MITF (microphthalmia-associated transcription factor) is a helix-loop-helix involved in the regulation of various types of lineage-specific pathways, including melanocytes, osteocytes and mast cells. leucine zipper) is a transcription factor. Lineage-specific refers to a gene or trait found only in a specific cell type. Thus, MITFs may be involved in the redesign of signaling cascades specifically required for the survival and physiological function of normal cell progenitors. In particular, MITF regulates the survival and differentiation of melanocytes and melanoma, and is known to be involved in the mechanism of melanin formation. Research results on MITF have started to be reported recently. It is known that the activation of LXR (Liver X receptor) promotes the degradation of MITF and inhibits melanogenesis, but the role of MITF in MDSC has not yet been elucidated. none.
[특허문헌][Patent Literature]
(특허문헌 0001) 국제 공개특허 제2013-082591호 (Patent Document 0001) International Patent Publication No. 2013-082591
(특허문헌 0002) 국제 공개특허 제2011-116299호 (Patent Document 0002) International Patent Publication No. 2011-116299
(특허문헌 0003) 대한민국 등록특허 제1902355호 (Patent Document 0003) Republic of Korea Patent No. 1902355
(특허문헌 0004) 대한민국 등록특허 제1826753호 (Patent Document 0004) Republic of Korea Patent No. 1826753
[비특허문헌][Non-patent literature]
(비특허문헌 0001) Gabrilovich DI, et al., Coordinated regulation of myeloid cells by tumours, Nat Rev Immunol. 12(4):253-68 (2012) (Non-Patent Document 0001) Gabrilovich DI, et al., Coordinated regulation of myeloid cells by tumours, Nat Rev Immunol. 12(4):253-68 (2012)
(비특허문헌 0002) De Veirman K, et al., Myeloid-derived suppressor cells as therapeutic target in hematological malignancies, Front Oncol. 4:349 (2014) (Non-Patent Document 0002) De Veirman K, et al., Myeloid-derived suppressor cells as therapeutic target in hematological malignancies, Front Oncol. 4:349 (2014)
(비특허문헌 0003) Dufait I, et al., Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget. 7(27):42698-42715 (2016) (Non-Patent Document 0003) Dufait I, et al., Signal transducer and activator of
(비특허문헌 0004) Russell W Jenkins, et al., Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer. 118: 9-16 (2018) (Non-Patent Document 0004) Russell W Jenkins, et al., Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer. 118: 9-16 (2018)
(비특허문헌 0005) Chae YK, et al., Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC), J Immunother Cancer. 6(1):39 (2018) (Non-Patent Document 0005) Chae YK, et al., Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; Lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC), J Immunother Cancer. 6(1):39 (2018)
(비특허문헌 0006) David Killock, et al., Targeting MDSCs with LXR agonists, Nature Reviews Clinical Oncology. 15: 200-201 (2018) (Non-Patent Document 0006) David Killock, et al., Targeting MDSCs with LXR agonists, Nature Reviews Clinical Oncology. 15: 200-201 (2018)
(비특허문헌 0007) Nam S, et al., Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J Leukoc Biol. 100(6):1273-1284 (2016) (Non-Patent Document 0007) Nam S, et al., Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J Leukoc Biol. 100(6):1273-1284 (2016)
(비특허문헌 0008) Richard P. Tobin, et al., Effects of in vitro ATRA treatment on human MDSC expansion and function. Journal of Clinical Oncology. 35(7):125 (2017) (Non-Patent Document 0008) Richard P. Tobin, et al., Effects of in vitro ATRA treatment on human MDSC expansion and function. Journal of Clinical Oncology. 35(7):125 (2017)
(비특허문헌 0009) Song YC, et al., Berberine regulates melanin synthesis by activating PI3K/AKT, ERK and GSK3β in B16F10 melanoma cells. Int J Mol Med. 35(4):1011-6 (2015) (Non-Patent Document 0009) Song YC, et al., Berberine regulates melanin synthesis by activating PI3K/AKT, ERK and GSK3β in B16F10 melanoma cells. Int J Mol Med. 35(4):1011-6 (2015)
(비특허문헌 0010) Lim J, et al., Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation. Br J Pharmacol. 176(5):737-750 (2019) (Non-Patent Document 0010) Lim J, et al., Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation. Br J Pharmacol. 176(5):737-750 (2019)
본 발명의 목적은 MITF(microphthalmia-associated transcription factor)의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제를 유효성분으로 함유하는, 골수-유래 억제세포에 의한 면역반응 저하의 완화, 치료 또는 예방용 조성물을 제공하는 것이다.It is an object of the present invention to provide a composition for alleviating, treating or preventing the decrease in immune response caused by bone marrow-derived suppressor cells, containing a gene expression inhibitor of MITF (microphthalmia-associated transcription factor) or a protein activity inhibitor of MITF as an active ingredient will do
본 발명의 다른 목적은 MITF(microphthalmia-associated transcription factor)의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제를 골수-유래 억제세포의 저해가 필요한 개체에 투여하는 단계를 포함하는, 골수-유래 억제세포 저해방법을 제공하는 것이다.Another object of the present invention is a method for inhibiting bone marrow-derived suppressor cells, comprising administering a gene expression inhibitor of microphthalmia-associated transcription factor (MITF) or an inhibitor of protein activity of MITF to an individual in need of inhibition of bone marrow-derived suppressor cells. is to provide
본 발명의 다른 목적은 특정물질에 의한 MDSC에서의 MITF(microphthalmia-associated transcription factor) 억제효과를 분석하여 MDSC 활성 저해 약물을 선별하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for screening MDSC activity inhibitory drugs by analyzing the inhibitory effect of microphthalmia-associated transcription factor (MITF) in MDSC by a specific substance.
본 발명의 다른 목적은 특정물질이 MITF의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제인지 선별하고, MDSC 활성 저해 약물을 선별하는 방법 및 이렇게 선별된 MITF 억제제를 포함하는 조성물을 제공하는 것이다.Another object of the present invention is to provide a method for screening whether a specific substance is a gene expression inhibitor of MITF or a protein activity inhibitor of MITF, a method for screening an MDSC activity inhibitory drug, and a composition comprising the thus-selected MITF inhibitor.
본 발명의 기술적 과제는 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제는 아래의 기재로부터 해당 기술 분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The technical problem of the present invention is not limited to the technical problems mentioned above, and another technical problem not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시태양에서 특정물질에 의한 MDSC에서의 MITF 유전자 발현 또는 MITF 단백질 발현 정도를 qRT-PCR, 웨스턴 블롯팅 및 유세포 분석법 (FACS)으로부터 선택된 어느 하나의 방법으로 분석하여 MDSC 활성 변화 정도를 예측하고 선별하는, MDSC 활성 저해 약물의 선별 방법을 제공한다.In one embodiment of the present invention, the degree of MDSC activity change by analyzing the MITF gene expression or the MITF protein expression level in MDSC by a specific substance by any one method selected from qRT-PCR, Western blotting and flow cytometry (FACS) Provided is a method for predicting and selecting a drug that inhibits MDSC activity.
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은 상기 특정물질이 MITF의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제일 수 있다.In one embodiment of the present invention, in the method for selecting a drug for inhibiting MDSC activity, the specific substance may be a gene expression inhibitor of MITF or a protein activity inhibitor of MITF.
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은 (a) 골수 세포를 준비하는 단계; (b) 상기 골수 세포로부터 MDSC 분화 및 활성을 유도하는 단계; (c) 상기 (b) 단계에서 분화된 MDSC를 회수하여 MITF 유전자 또는 MITF 단백질 발현 정도를 분석하는 단계; 및 (d) 상기 (c)의 분석결과로부터 상기 특정물질 중 MDSC 활성 저해 약물을 선별하는 단계를 포함할 수 있다.In one embodiment of the present invention, the method for screening a drug for inhibiting MDSC activity comprises the steps of (a) preparing bone marrow cells; (b) inducing MDSC differentiation and activity from the bone marrow cells; (c) recovering the MDSC differentiated in step (b) and analyzing the expression level of the MITF gene or MITF protein; and (d) selecting an MDSC activity-inhibiting drug among the specific substances from the analysis result of (c).
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법에 사용되는 상기 골수 세포는 종양을 갖는 개체로부터 얻은 골수 세포일 수 있다.In one embodiment of the present invention, the bone marrow cells used in the method for screening an MDSC activity inhibitory drug may be bone marrow cells obtained from a subject having a tumor.
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은 상기 (b) 단계에서 시험군 배지인 암세포 조건 배지에 MDSC 분화 유도 인자 및 상기 특정물질을 처리하고, 대조군 배지로서 상기 특정물질이 포함되지 않은 배지를 사용하여, MITF 유전자 또는 MITF 단백질 발현 정도를 비교할 수 있다.In one embodiment of the present invention, in the method of screening for a drug inhibiting MDSC activity, in the step (b), an MDSC differentiation inducing factor and the specific substance are treated in a cancer cell conditioned medium, which is the test group medium, and the specific substance is included as a control medium Using an untreated medium, the expression level of the MITF gene or MITF protein can be compared.
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은, 상기 (d) 단계에서 MITF 유전자 또는 MITF 단백질의 발현 정도가 qRT-PCR 분석법 시행시 직접적인 MITF 저해 물질의 경우 대조군 대비 시험군에서 qRT-PCR 측정값이 50 % 이상 저해된 경우에, 간접적인 경로로 MITF를 저해하는 물질의 경우 대조군 대비 시험군에서 30 % 이상 저해된 경우에 해당 물질을 MDSC 활성 저해 약물로 결정하는 단계를 추가로 포함할 수 있다.In one embodiment of the present invention, in the method for screening MDSC activity inhibitory drugs, the expression level of the MITF gene or MITF protein in step (d) is qRT in the test group compared to the control group in the case of a direct MITF inhibitor when the qRT-PCR analysis is performed. -When the PCR measurement value is inhibited by 50% or more, in the case of a substance that inhibits MITF by an indirect route, if it is inhibited by 30% or more in the test group compared to the control group, the step of determining the substance as an MDSC activity inhibitory drug is additionally may include
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은 상기 종양이 유방암, 간암, 위암, 결장암, 폐암, 비소세포성폐암, 골암, 췌장암, 피부암, 두부 또는 경부암, 자궁경부암, 난소암, 대장암, 소장암, 직장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병, 식도암, 소장암, 임파선암, 방광암, 담낭암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 선암종, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관 암, 신장세포 암종, 신장골반 암종, 중추신경계 종양, 1차 CNS 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.In one embodiment of the present invention, the method for selecting a drug for inhibiting MDSC activity is that the tumor is breast cancer, liver cancer, stomach cancer, colon cancer, lung cancer, non-small cell lung cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, cervical cancer, ovarian cancer, Colorectal cancer, small intestine cancer, rectal cancer, perianal cancer, fallopian tube carcinoma, endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, lymph adenocarcinoma, bladder cancer, gallbladder cancer, endocrine adenocarcinoma, thyroid cancer, Parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, adenocarcinoma, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system tumor, primary CNS It may be one or more selected from the group consisting of lymphoma, spinal cord tumor, brainstem glioma, and pituitary adenoma.
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은 상기 MDSC 활성 저해 약물을 선별하기 위하여, 보조적으로 상기 MDSC와 T 세포를 공동배양하고, T 세포 증식 억제 정도를 판단하는 단계를 포함할 수 있다.In one embodiment of the present invention, the method for selecting a drug for inhibiting MDSC activity may include co-culturing the MDSC and T cells and determining the degree of inhibition of T cell proliferation in order to select the drug for inhibiting MDSC activity. can
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은 상기 MITF의 유전자 발현 억제제가 MITF 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 앱타머, 짧은 헤어핀 RNA(small hairpin RNA, shRNA), 작은 간섭 RNA(small interfering RNA, siRNA), 마이크로 RNA(microRNA, miRNA) 및 리보자임(ribozyme)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.In one embodiment of the present invention, the method for selecting a drug for inhibiting MDSC activity comprises an antisense nucleotide, an aptamer, a short hairpin RNA (small hairpin RNA, shRNA), wherein the gene expression inhibitor of the MITF is complementary to the mRNA of the MITF gene; It may be at least one selected from the group consisting of small interfering RNA (siRNA), microRNA (miRNA), and ribozyme.
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은 상기 MITF의 단백질 활성 억제제가 MITF 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 모방체, 기질 유사체, 앱타머, 및 항체로 이루어진 군으로부터 선택된 1종 이상일 수 있다.In one embodiment of the present invention, the method for screening a drug for inhibiting MDSC activity comprises a compound in which the protein activity inhibitor of MITF specifically binds to MITF protein, a peptide, a peptidomimetic, a substrate analogue, an aptamer, and an antibody. It may be at least one selected from
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법은 상기 특정 물질이 AMPK 활성 촉진제, ML-329, MITF-gRNA 클로닝된 벡터, 항HIV제로부터 선택되는 1종 이상일 수 있다.In one embodiment of the present invention, in the method for selecting a drug for inhibiting MDSC activity, the specific substance may be at least one selected from AMPK activity promoter, ML-329, MITF-gRNA cloned vector, and anti-HIV agent.
본 발명의 일 실시태양에서, MDSC 활성 저해 약물의 선별 방법에 의해 선별된 MDSC 활성 저해 약물을 포함하고, T 세포 증식을 회복시켜주는 조성물에 관한 것일 수 있다.In one embodiment of the present invention, it may relate to a composition comprising the MDSC activity inhibitory drug selected by the method for selecting the MDSC activity inhibitory drug, and for restoring T cell proliferation.
본 발명은 MITF(microphthalmia-associated transcription factor)의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제를 유효성분으로 함유하는, 골수-유래 억제세포(myeloid-derived suppressor cell; MDSC)에 의한 면역 반응 저하의 완화, 치료 또는 예방용 조성물을 제공한다.The present invention contains a gene expression inhibitor of MITF (microphthalmia-associated transcription factor) or a protein activity inhibitor of MITF as an active ingredient, myeloid-derived suppressor cell (MDSC) for alleviating the decrease in immune response by, A composition for treatment or prevention is provided.
또한, 본 발명은 상기 조성물을 유효성분으로 함유하는, 항암 보조제를 제공한다.In addition, the present invention provides an anticancer adjuvant containing the composition as an active ingredient.
아울러, 본 발명은 MITF의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제를 MDSC의 저해가 필요한 개체에 투여하는 단계를 포함하는, MDSC 저해방법을 제공한다.In addition, the present invention provides a method for inhibiting MDSC, comprising administering an MITF gene expression inhibitor or MITF protein activity inhibitor to an individual in need of MDSC inhibition.
기타 실시 예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
본 발명자들은 MDSC 저해에 의한 MDSC의 면역반응 저하를 완화하고, 항암면역치료제의 치료 효과를 향상시킬 수 있는 제제를 개발하기 위해서 MDSC 활성에 직접적으로 영향을 미치는 인자를 밝혀내기 위하여 노력한 결과, 암세포 미세환경에서 MDSC가 활성화되어 면역반응이 저하되고, 상기 MDSC의 활성화에 MITF가 관여한다는 사실을 밝혀내었다. 따라서, MITF의 억제제를 이용하여 MDSC를 저해할 수 있음을 확인한 것에 기초하여, 광범위한 물질들 중 MITF 억제제를 선별하여 MDSC 활성 저해 약물로 사용할 수 있음을 밝힘으로써 본 발명을 완성하였다. 이로부터 MDSC의 면역반응 저하의 완화 및 항암 면역 치료에 이용할 수 있는 유효성분을 보다 효과적으로 특정할 수 있다.The present inventors have made efforts to discover factors that directly affect MDSC activity in order to develop a formulation capable of alleviating the decrease in the immune response of MDSC caused by MDSC inhibition and improving the therapeutic effect of an anticancer immunotherapeutic agent. It has been found that MDSCs are activated in the environment and the immune response is lowered, and that MITF is involved in the activation of the MDSCs. Therefore, based on the confirmation that MDSC can be inhibited using an MITF inhibitor, the present invention was completed by selecting an MITF inhibitor from a wide range of substances and revealing that it can be used as an MDSC activity inhibitory drug. From this, it is possible to more effectively specify active ingredients that can be used for alleviating the decrease in the immune response of MDSC and for anticancer immunotherapy.
구체적으로, 본 발명자들은 MITF 발현을 억제하면 필연적으로 MDSC의 활성이 저해되고, MITF 발현 증가시 MDSC 활성도 증가함을 밝혀냈다. 따라서 특정물질에 의한 MITF 발현 정도를 분석하는 것에 의해, 특정물질에 의한 MDSC 활성 반응결과를 예측할 수 있게 되었다. 또한, 이로부터 MDSC가 활성화된 개체나 이에 의해 T 세포가 억제된 것으로 확인되는 개체에 대하여, 생체 내에 투여되는 경우 가장 적합하게 작용할 것으로 기대되는 MITF 발현 억제제를 선별해낼 수 있다. 또한, 환자는 직접 투여하기 전에 본인에게 가장 적합할 것으로 기대되는 MITF 발현 억제제를 유효성분으로 포함하는 항암 조성물 또는 항암 보조제 조성물을 선택할 수 있게 되며, 기존에 치료가 진행 중이었던 경우에도 투여 조성물 변경여부나 새로운 약물 후보군을 고려할 수 있으며, MDSC 활성 반응 결과를 예측할 수 있으므로, 암의 종류나 예후를 고려하여 가장 적절한 MITF 억제제를 선택할 수 있도록 하는 기틀을 마련한다.Specifically, the present inventors found that when MITF expression is suppressed, the activity of MDSC is inevitably inhibited, and when MITF expression is increased, MDSC activity is also increased. Therefore, by analyzing the level of MITF expression by a specific substance, it became possible to predict the MDSC activity reaction result by a specific substance. In addition, it is possible to select an MITF expression inhibitor, which is expected to act most suitably when administered in vivo, to an individual in which MDSC is activated or an individual in which T cells are confirmed to be inhibited thereby. In addition, before direct administration, the patient can select an anti-cancer composition or anti-cancer adjuvant composition containing an MITF expression inhibitor as an active ingredient, which is expected to be most suitable for him or her, and whether to change the administration composition even if treatment is in progress However, a new drug candidate group can be considered and the result of MDSC activity can be predicted, thus laying the foundation for selecting the most appropriate MITF inhibitor considering the type and prognosis of cancer.
또한, 상기 선별된 MITF 억제제를 유효성분으로 함유하는 조성물을 개발하여 MDSC에 의한 면역반응 저하를 완화하고, 항암 면역치료 효율을 증대하는데 유용하게 사용할 수 있다.In addition, by developing a composition containing the selected MITF inhibitor as an active ingredient, it can be usefully used to alleviate the decrease in immune response caused by MDSC and to increase the anticancer immunotherapy efficiency.
도 1은 마우스의 골수유래 골수-유래 억제세포(myeloid-derived suppressor cell, MDSC) 제작방법을 모식화한 도이다.
도 2는 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MDSC의 분화 유도 인자인 GM-CSF와 함께 암세포를 배양한 배지(tumor cell-conditioned medium; TCCM)를 처리한 후 MDSC의 분화(도 2A) 및 활성(도 2B) 변화를 확인한 도이다.
도 3은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 GM-CSF와 함께 TCCM을 처리한 후 MDSC에서 MITF(microphthalmia-associated transcription factor)의 유전자(도 3A) 및 단백질(도 3B) 발현 변화를 확인한 도이다.
도 4는 본 발명의 일 실시예에 따라 종양형성 마우스의 비장에서 분리한 세포(도 4A) 또는 마우스의 골수에서 분리한 세포(도 4B)에 GM-CSF와 함께 TCCM을 처리하여 MDSC의 분화 및 활성을 유도한 후, MDSC의 T 세포 증식 억제 변화를 확인한 도이다.
도 5는 종양 형성 마우스에서 MDSC의 분화(도 5A), 활성(도 5B) 및 MITF 유전자 발현(도 5C) 변화를 확인한 도이다.
도 6은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MDSC의 활성을 유도하는 약물로 IL-18 및 IL-10을 GM-CSF와 함께 96시간 처리한 후(도 6A, 도 6B, 도 6E, 및 도 6F) 또는 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 GM-CSF을 처리하여 분화를 유도한 이후 IL-18을 24시간 동안 처리한 후(도 6C 및 도 6D), MDSC의 분화(도 6A 및 도 6C), 활성 및 MITF의 유전자 발현(도 6B 및 도 6D) 변화를 확인한 도이다.
도 7은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MDSC의 활성을 유도하는 약물로 IL-4를 GM-CSF와 함께 처리한 후 MDSC의 분화(도 7A), 활성(도 7B) 및 MITF의 유전자 발현(도 7C) 변화를 확인한 도이다.
도 8은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MDSC의 활성을 유도하는 약물로 지질다당류 (LPS; lipopolysaccharide)를 GM-CSF와 함께 처리한 후 MDSC의 분화(도 8A), 활성(도 8B) 및 MITF의 유전자 발현(도 8C) 변화를 확인한 도이다.
도 9는 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MDSC의 활성을 유도하는 약물로 심바스타틴(Simvastatin, Sim), 로바스타틴(Lovastatin, Lova), 프로바스타틴(Provastatin, Prav), 로수바스타틴(Rosuvastatin, Rosu), 또는 아토바스타틴(Atorvastatin, Ator)을 GM-CSF와 함께 처리한 후 MDSC의 분화 변화를 확인한 도이다.
도 10은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MDSC의 활성을 유도하는 약물로 심바스타틴(Simvastatin, Sim), 로바스타틴(Lovastatin, Lova), 프로바스타틴(Provastatin, Prav), 로수바스타틴(Rosuvastatin, Rosu), 또는 아토바스타틴(Atorvastatin, Ator)을 GM-CSF와 함께 처리한 후 MDSC의 활성(도 10A) 및 MITF의 유전자 발현(도 10B) 변화를 확인한 도이다.
도 11은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 GM-CSF를 처리하여 분화를 유도한 이후, MDSC의 활성을 유도하는 약물로 심바스타틴(Simvastatin, Sim), 로바스타틴(Lovastatin, Lova)을 24시간 동안 처리한 후 MDSC의 분화 변화를 확인한 도이다.
도 12는 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 GM-CSF를 처리하여 분화를 유도한 이후, MDSC의 활성을 유도하는 약물로 심바스타틴(Simvastatin, Sim) 및 로바스타틴(Lovastatin, Lova) 을 24시간 동안 처리한 후 MDSC의 활성(도 12) 및 MITF의 유전자 발현(도 12) 변화를 확인한 도이다.
도 13은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MDSC의 활성을 억제하는 약물로 ATRA(All-trans retinoic acid)를 GM-CSF와 함께 처리한 후 MDSC의 분화(도 13A), 활성(도 13B) 및 MITF의 유전자 발현(도 13C) 변화를 확인한 도이다.
도 14는 본 발명의 실시예에 따라 마우스의 골수에서 분리한 세포에 MITF 유도제로 IBMX를 GM-CSF와 함께 처리한 후 MDSC의 분화(도 14A), MDSC의 활성 및 MITF의 유전자 발현(도 14B 및 14C), 및 MDSC의 T 세포 증식 억제(도 14D) 변화를 확인한 도이다.
도 15는 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MITF 억제제로 5 μM 및 10 μM의 베르베린(Berberine)을 GM-CSF와 함께 처리한 후 MDSC의 분화 (도 15A 및 15B) 변화 및 10 μM의 베르베린(Berberine)을 GM-CSF와 함께 처리한 경우의 MITF의 유전자 발현(도 15C)을 확인한 도이다.
도 16은 인간의 폐암 및 두경부암(H&N cancer) 조직에서 MITF를 발현하는 MDSC의 분포를 확인한 도이다.
도 17은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MITF 억제제로 ML-329를 GM-CSF와 함께 처리한 후 MDSC의 활성(도 17A) 및 MITF의 유전자 발현(도 17B) 변화를 확인한 도이다.
도 18은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 ML-329를 GM-CSF 및 TCCM과 함께 처리한 후 MDSC의 분화(도 18A), 활성 및 MITF의 유전자 및 단백질 발현(도 18B 및 도 18C), MDSC의 T 세포 증식 억제(도 18D) 변화를 확인한 도이다.
도 19는 본 발명의 일 실시예에 따라 종양형성 마우스의 비장에서 분리한 MDSC에 ML-329 또는 베르베린(BBR)을 GM-CSF 및 TCCM과 함께 처리한 후 MDSC에서 만들어지는 ROS 생성 변화를 확인한 도이다.
도 20은 본 발명의 일 실시예에 따라 RNA간섭(RNA interference, RNAi) 및 CRISPR 기술을 이용하여 MITF 발현을 억제한 MDSC에서 MITF의 단백질 발현(도 20A), MDSC의 ROS 생성(도 20B) 및 T 세포 증식 억제(도 20C) 변화를 확인하고, 본 발명의 일 실시예에 따라 MITF를 과발현한 MDSC에서 MITF의 단백질 발현(도 20D) 및 MDSC의 T 세포 증식 억제(도 20E) 변화를 확인한 도이다.
도 21은 본 발명의 일 실시예에 따라 마우스의 골수에서 분리한 세포에 MITF 억제제로 넬피나비르(Nelfinavir)를 GM-CSF 및 TCCM과 함께 처리한 후, MITF의 유전자 발현 저하(도 21A)를 확인하고, MDSC의 활성 변화(도 21B 및 도 21C)를 확인한 도이다.도 22는 본 발명의 일 실시예에 따라 종양 형성 마우스에 ML-329를 GM-CSF 및 TCCM과 함께 처리한 MDSC를 투여하는 방법(도 22A), 상기 종양 형성 마우스에서 종양 부피 변화(도 22B 및 도 22C) 및 상기 종양 형성 마우스의 종양 조직에서 MDSC의 population 변화(도 22D)를 확인한 도이다.1 is a diagram schematically illustrating a method for manufacturing a mouse bone marrow-derived bone marrow-derived suppressor cell (MDSC).
2 is a view of MDSC after treatment with a tumor cell-conditioned medium (TCCM) in which cells isolated from the bone marrow of a mouse are cultured with GM-CSF, a differentiation inducing factor of MDSC, according to an embodiment of the present invention; It is a diagram confirming differentiation (FIG. 2A) and activity (FIG. 2B) changes.
3 is a microphthalmia-associated transcription factor (MITF) gene (FIG. 3A) and protein (FIG. 3B) in MDSC after TCCM treatment with GM-CSF in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention; ) is a diagram confirming the expression change.
Figure 4 shows the differentiation and differentiation of MDSCs by treating cells isolated from the spleen of a tumorigenic mouse (FIG. 4A) or cells isolated from the bone marrow of a mouse (FIG. 4B) with GM-CSF according to an embodiment of the present invention; After inducing the activity, it is a diagram confirming the change in the inhibition of T cell proliferation of MDSC.
5 is a diagram confirming the differentiation (FIG. 5A), activity (FIG. 5B) and MITF gene expression (FIG. 5C) changes of MDSC in tumorigenic mice.
6 is a drug inducing MDSC activity in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention, after treatment with IL-18 and IL-10 with GM-CSF for 96 hours (FIG. 6A, FIG. 6A, FIG. 6B, 6E, and 6F) or after inducing differentiation by treatment with GM-CSF in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention and then IL-18 treatment for 24 hours (FIG. 6C) and Fig. 6D), MDSC differentiation (Fig. 6A and Fig. 6C), activity and MITF gene expression (Fig. 6B and Fig. 6D) confirming changes.
7 is a drug inducing MDSC activity in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention, after treatment with IL-4 with GM-CSF, differentiation of MDSC ( FIG. 7A ), activity ( FIG. 7A ) 7B) and MITF gene expression (FIG. 7C) is a diagram confirming the change.
8 is a drug inducing MDSC activity in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention. After treatment with GM-CSF, lipopolysaccharide (LPS; lipopolysaccharide), differentiation of MDSC (FIG. 8A) , is a diagram confirming the activity (FIG. 8B) and gene expression of MITF (FIG. 8C).
9 is a drug inducing MDSC activity in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention. Simvastatin (Simvastatin, Sim), lovastatin (Lovastatin, Lova), It is a diagram confirming the differentiation change of MDSC after treatment with GM-CSF with suvastatin (Rosuvastatin, Rosu), or atorvastatin (Atorvastatin, Ator).
10 is a drug inducing MDSC activity in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention. Simvastatin (Simvastatin, Sim), lovastatin (Lovastatin, Lova), After treatment with suvastatin (Rosuvastatin, Rosu), or atorvastatin (Atorvastatin, Ator) with GM-CSF, the activity of MDSC ( FIG. 10A ) and the gene expression of MITF ( FIG. 10B ) were confirmed.
11 is a drug inducing MDSC activity after inducing differentiation by treating cells isolated from the bone marrow of a mouse according to an embodiment of the present invention, simvastatin (Simvastatin, Sim), lovastatin (Lovastatin, Lova) is a diagram confirming the differentiation change of MDSC after treatment for 24 hours.
12 is a drug inducing MDSC activity after inducing differentiation by treating cells isolated from the bone marrow of a mouse according to an embodiment of the present invention, simvastatin (Simvastatin, Sim) and lovastatin (Lovastatin, Lova) is a diagram confirming changes in MDSC activity (FIG. 12) and MITF gene expression (FIG. 12) after treatment for 24 hours.
13 is a drug that inhibits the activity of MDSC in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention. ), activity (FIG. 13B) and MITF gene expression (FIG. 13C) is a diagram confirming the change.
14 is a MDSC differentiation (FIG. 14A), MDSC activity and MITF gene expression (FIG. 14B) after treating IBMX with GM-CSF as an MITF inducer in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention; and 14C), and a diagram confirming the change in T cell proliferation inhibition of MDSC (FIG. 14D).
Figure 15 shows the differentiation of MDSCs after treatment with GM-CSF at 5 μM and 10 μM as an MITF inhibitor in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention ( FIGS. 15A and 15B ) It is a diagram confirming the gene expression of MITF ( FIG. 15C ) when the change and 10 μM of berberine were treated together with GM-CSF.
16 is a diagram confirming the distribution of MDSC expressing MITF in human lung and head and neck cancer (H&N cancer) tissues.
Figure 17 is an MDSC activity (FIG. 17A) and MITF gene expression (FIG. 17B) after treatment with GM-CSF with ML-329 as an MITF inhibitor in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention This is a diagram that confirms the change.
Figure 18 is MDSC differentiation (Figure 18A), activity and MITF gene and protein expression ( 18B and 18C), is a view confirming the change in the inhibition of T cell proliferation of MDSC (FIG. 18D).
19 is a diagram confirming the change in ROS production made in MDSC after treatment with GM-CSF and TCCM with ML-329 or berberine (BBR) in MDSC isolated from the spleen of a tumorigenic mouse according to an embodiment of the present invention to be.
20 is a protein expression of MITF in MDSC that suppressed MITF expression using RNA interference (RNAi) and CRISPR technology according to an embodiment of the present invention (FIG. 20A), ROS generation of MDSC (FIG. 20B) and Confirming the change in T cell proliferation inhibition (FIG. 20C), the protein expression of MITF in MDSC overexpressing MITF according to an embodiment of the present invention (FIG. 20D) and T cell proliferation inhibition of MDSC (FIG. 20E) confirming the change to be.
Figure 21 is after treatment with GM-CSF and TCCM with nelfinavir as an MITF inhibitor in cells isolated from the bone marrow of a mouse according to an embodiment of the present invention, the decrease in gene expression of MITF (FIG. 21A) It is a view confirming the change in activity of MDSC ( FIGS. 21B and 21C ). FIG. 22 is MDSC treated with GM-CSF and TCCM in tumor-forming mice according to an embodiment of the present invention. Methods (FIG. 22A), changes in tumor volume in the tumor-forming mice (FIGS. 22B and 22C), and changes in the population of MDSCs in the tumor tissues of the tumor-forming mice (FIG. 22D) are confirmed.
아래에서는 첨부한 도면을 참조하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement them with reference to the accompanying drawings. However, the present invention may be implemented in several different forms and is not limited to the embodiments described herein.
명세서 및 청구범위 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification and claims, when a part "includes" a certain element, it means that other elements may be further included, rather than excluding other elements, unless otherwise stated.
본 발명은 특정물질에 의한 MDSC에서의 MITF 유전자 발현 또는 MITF 단백질 발현 정도를 분석하여 MDSC 활성 변화 정도를 예측하고 선별하는, MDSC 활성 저해 약물의 선별 방법을 제공한다.The present invention provides a method for screening MDSC activity inhibitory drugs, which predicts and selects the degree of MDSC activity change by analyzing the MITF gene expression or MITF protein expression level in MDSC by a specific substance.
본 발명은 MITF의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제를 유효성분으로 함유하는, 골수-유래 억제세포(myeloid-derived suppressor cell; MDSC)에 의한 면역 반응 저하의 완화, 치료 또는 예방용 조성물을 제공한다.The present invention provides a composition for alleviating, treating or preventing the decrease in immune response caused by myeloid-derived suppressor cells (MDSC), containing an MITF gene expression inhibitor or MITF protein activity inhibitor as an active ingredient do.
본 발명에서 "특정 물질"이란, MDSC에서 MITF의 유전자 발현 또는 단백질 활성을 변화시킬 것으로 기대되는 물질을 지칭하며, 특히, MITF 유전자 발현 억제제, MITF 단백질 활성 억제제, MDSC 활성 저해제, MDSC 활성 억제제로 공지되거나 기대되는 물질 및 그의 염을 포함한다. In the present invention, "specific substance" refers to a substance expected to change the gene expression or protein activity of MITF in MDSC, in particular, known as MITF gene expression inhibitor, MITF protein activity inhibitor, MDSC activity inhibitor, MDSC activity inhibitor substances and salts thereof.
본 발명에서, 상기 MITF의 유전자 발현 억제제는 MITF 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 앱타머, 짧은 헤어핀 RNA(small hairpin RNA, shRNA), 작은 간섭 RNA(small interfering RNA, siRNA), 마이크로 RNA(microRNA, miRNA) 및 리보자임(ribozyme)으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the MITF gene expression inhibitor is an antisense nucleotide complementary to the mRNA of the MITF gene, an aptamer, a short hairpin RNA (shRNA), a small interfering RNA (siRNA), a micro It may be one or more selected from the group consisting of RNA (microRNA, miRNA) and ribozyme, but is not limited thereto.
본 발명에서 MITF 억제제는 MITF 유전자 발현 억제제 및 MITF 단백질 활성 억제제를 포함하는 의미이며, MDSC 활성 저해는 MDSC가 보여주는 T 세포의 활성 억제효과가 사라짐을 의미한다In the present invention, MITF inhibitor is meant to include MITF gene expression inhibitor and MITF protein activity inhibitor, and inhibition of MDSC activity means that the inhibitory effect of T cell activity shown by MDSC disappears.
상기 "안티센스 뉴클레오타이드"는 왓슨-클릭 염기쌍에 정의된 바에 따라, DNA, 미성숙-mRNA 또는 성숙된 mRNA의 상보적 염기서열에 결합(혼성화)하여 DNA에서 단백질로서 유전정보의 흐름을 방해하는 것이다. 표적 서열에 특이성이 있는 안티센스 뉴클레오타이드의 성질은 그것들을 예외적으로 다기능이 되도록 한다. 안티센스 뉴클레오타이드는 모노머 단위의 긴 사슬이기 때문에 이들은 표적 RNA 서열에 대해 쉽게 합성될 수 있다. 최근 많은 연구들은 표적 단백질을 연구하기 위한 생화학적 수단으로 안티센스 뉴클레오타이드의 유용성을 증명하였다(Rothenberg et al., J. Natl. Cancer Inst., 81:1539-1544, 1999). 올리고뉴클레오타이드 화학 및 향상된 세포흡착, 표적결합 친화도 및 뉴클레아제 내성을 나타내는 뉴클레오타이드 합성 분야에서 최근 많은 진보가 있었으므로 안티센스 뉴클레오타이드의 사용은 새로운 형태의 억제제로 고려될 수 있다.The "antisense nucleotide" binds (hybridizes) to the complementary base sequence of DNA, immature-mRNA or mature mRNA, as defined in Watson-Click base pairing, and interferes with the flow of genetic information from DNA to protein. The nature of antisense nucleotides that are specific for a target sequence makes them exceptionally versatile. Since antisense nucleotides are long chains of monomeric units, they can be readily synthesized for the target RNA sequence. Many recent studies have demonstrated the usefulness of antisense nucleotides as biochemical means for studying target proteins (Rothenberg et al., J. Natl. Cancer Inst., 81:1539-1544, 1999). Since many recent advances have been made in the field of oligonucleotide chemistry and nucleotide synthesis exhibiting improved cell adsorption, target binding affinity and nuclease resistance, the use of antisense nucleotides can be considered as a new type of inhibitor.
상기 "짧은 헤어핀 RNA(small hairpin RNA)" 또는 "shRNA"는 단일 가닥으로 50-60개로 구성된 뉴클레오타이드를 의미하며, in vivo에서 스템-루프(stem-loop) 구조를 이루고 있다. 즉, shRNA는 RNA간섭(RNA interference; RNAi)을 통해 유전자 발현을 억제하기 위한 타이트한 헤어핀 구조를 만드는 RNA 서열이다. 5-10개의 뉴클레오타이드의 루프 부위 양쪽으로 상보적으로 15-30개의 뉴클레오타이드의 긴 RNA가 염기쌍을 이루어 이중가닥의 스템을 형성한다. shRNA는 일반적으로 발현되도록 하기 위하여 U6 프로모터를 포함하는 벡터를 통해 세포 내로 형질도입되며 대개 딸세포로 전달되어 유전자 발현억제가 유전되도록 한다. shRNA 헤어핀 구조는 세포 내 기작에 의하여 절단되어 siRNA가 된 후 RISC(RNA-induced silencing complex)에 결합한다. 이들 RISC는 mRNA에 결합하여 이를 절단한다. shRNA는 RNA 폴리머레이즈(polymerase)에 의해 전사된다.The "short hairpin RNA (small hairpin RNA)" or "shRNA" refers to a single strand consisting of 50 to 60 nucleotides, and forms a stem-loop structure in vivo . That is, shRNA is an RNA sequence that makes a tight hairpin structure for suppressing gene expression through RNA interference (RNAi). A long RNA of 15-30 nucleotides is complementary to both sides of a loop of 5-10 nucleotides to form a double-stranded stem. For general expression, shRNA is transduced into a cell through a vector containing a U6 promoter, and is usually transferred to daughter cells so that gene expression inhibition is inherited. The shRNA hairpin structure is cleaved by an intracellular mechanism to become siRNA and then binds to RISC (RNA-induced silencing complex). These RISCs bind to and cleave mRNA. shRNA is transcribed by RNA polymerase.
상기 "작은 간섭 RNA(small interfering RNA)" 또는 "siRNA"는 특정 mRNA의 절단(cleavage)을 통하여 RNA간섭 현상을 유도할 수 있는 짧은 이중사슬 RNA를 의미한다. 타겟 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA 가닥과 이와 상보적인 서열을 가지는 안티센스 RNA 가닥으로 구성된다. siRNA는 타겟 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운(knock-down) 방법으로서 또는, 유전자치료(gene therapy)의 방법으로 제공된다.The “small interfering RNA” or “siRNA” refers to a short double-stranded RNA capable of inducing RNA interference through specific mRNA cleavage. It is composed of a sense RNA strand having a sequence homologous to the mRNA of a target gene and an antisense RNA strand having a sequence complementary thereto. Since siRNA can inhibit the expression of a target gene, it is provided as an efficient gene knock-down method or as a gene therapy method.
상기 "마이크로 RNA(microRNA)" 또는 "miRNA"는 약 22개의 염기서열로 이루어진 짧은 non-coding RNA를 의미한다. 유전자의 발현 과정에서 전사 후 조절인자(post-transcriptional regulator)로서 기능을 한다고 알려져 있다. 상보적인 염기 서열을 가진 표적(target) mRNA에 상보적으로 결합함으로써 표적 mRNA들을 분해시키거나 단백질로 번역되는 것을 억제한다.The “microRNA” or “miRNA” refers to a short non-coding RNA consisting of about 22 nucleotide sequences. It is known to function as a post-transcriptional regulator in the process of gene expression. By complementary binding to a target mRNA having a complementary base sequence, degradation of the target mRNA or translation into a protein is inhibited.
또한, 상기 MITF의 단백질 활성 억제제는 MITF 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 모방체, 기질 유사체, 앱타머, 및 항체로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.In addition, the protein activity inhibitor of MITF may be at least one selected from the group consisting of a compound that specifically binds to the MITF protein, a peptide, a peptidomimetic, a substrate analog, an aptamer, and an antibody, but is not limited thereto.
상기 "펩티드 모방체(peptide mimetics)"는 MITF 단백질의 결합 도메인을 억제하여 MITF 단백질의 활성을 억제하는 것이다. 펩티드 모방체는 펩티드 또는 비펩티드일 수 있고, psi 결합과 같은, 비펩티드 결합에 의해 결합된 아미노산으로 구성될 수 있다. 또한, "구조적으로 강제된(conformationally constrained)" 펩티드, 사이클릭 모방체(cyclic mimetics), 적어도 하나의 엑소사이클릭 도메인(exocyclic domain), 결합 부분(결합 아미노산) 및 활성 부위를 포함하는 사이클릭 모방체일 수 있다. 펩티드 모방체는 MITF 단백질의 이차구조 특성과 유사하게 구조화되고 항체 또는 수용성 수용체와 같은 거대한 분자의 억제 특성을 모방할 수 있으며, 천연의 길항제와 동등한 효과로 작용할 수 있는 신규한 소분자일 수 있다.The "peptide mimetics" inhibits the activity of the MITF protein by inhibiting the binding domain of the MITF protein. A peptidomimetic may be peptide or non-peptide, and may consist of amino acids joined by non-peptide bonds, such as psi bonds. In addition, "conformationally constrained" peptides, cyclic mimetics, cyclic mimetics comprising at least one exocyclic domain, a binding moiety (binding amino acid) and an active site can be sieve The peptidomimetic is structured similarly to the secondary structural properties of the MITF protein, can mimic the inhibitory properties of large molecules such as antibodies or water-soluble receptors, and can be a novel small molecule that can act with an effect equivalent to that of a natural antagonist.
상기 "앱타머(aptamer)"는 단일 사슬 DNA 또는 RNA 분자로서, SELEX(systematic evolution of ligands by exponential enrichment)라 불리는 올리고 뉴클레오타이드(oligonucleotide) 라이브러리를 이용한 진화적인 방법에 의해 특정 화학 분자나 생물학적 분자에 높은 친화력과 선별력을 갖고 결합하는 올리고머를 분리하여 수득할 수 있다. 앱타머는 표적에 특이적으로 결합하고 표적의 활성을 조정할 수 있는데, 예컨대, 결합을 통하여 표적의 기능을 차단할 수 있다.The "aptamer" is a single-stranded DNA or RNA molecule, and is high in a specific chemical molecule or biological molecule by an evolutionary method using an oligonucleotide library called SELEX (systematic evolution of ligands by exponential enrichment). It can be obtained by isolating an oligomer that binds with affinity and selectivity. Aptamers can specifically bind to a target and modulate the activity of the target, eg, block the function of the target through binding.
상기 "항체"는 MITF 단백질에 특이적이고 직접적으로 결합하여 MITF 단백질의 활성을 효과적으로 억제할 수 있다. 상기 MITF 단백질에 특이적으로 결합하는 항체로는 폴리클로날(polyclonal) 항체 또는 모노클로날(monoclonal) 항체를 사용할 수 있다. 상기 MITF 단백질에 특이적으로 결합하는 항체는 당업자에게 알려진 공지의 방법으로 제작하여도 무방하며, 상업적으로 알려진 MITF 항체를 구입하여 사용할 수 있다. 상기 항체는 당업자에게 알려진 종래 방법에 따라 면역원인 MITF 단백질을 외부 숙주에 주사함으로써 제조될 수 있다. 외부 숙주는 마우스, 랫트, 양, 토끼와 같은 포유동물을 포함한다. 면역원은 근육 내, 복강 내 또는 피하 주사방법으로 주사되며, 일반적으로 항원성을 증가시키기 위한 보조제(adjuvant)와 함께 투여할 수 있다. 외부 숙주로부터 정기적으로 혈액을 채취하여 형성된 역가 및 항원에 대한 특이성을 보이는 혈청을 수거하여 항체를 분리할 수 있다.The "antibody" can specifically and directly bind to the MITF protein to effectively inhibit the activity of the MITF protein. As the antibody specifically binding to the MITF protein, a polyclonal antibody or a monoclonal antibody may be used. The antibody specifically binding to the MITF protein may be prepared by a known method known to those skilled in the art, or a commercially known MITF antibody may be purchased and used. The antibody can be prepared by injecting the immunogen MITF protein into an external host according to a conventional method known to those skilled in the art. External hosts include mammals such as mice, rats, sheep, and rabbits. The immunogen is injected by an intramuscular, intraperitoneal or subcutaneous injection method, and in general, it may be administered together with an adjuvant to increase antigenicity. Antibodies can be isolated by routinely collecting blood from an external host and collecting sera showing a titer and antigen specificity formed.
본 발명에서, 상기 "골수-유래 억제세포" 또는 "MDSC"는 세포독성 T 림프구 (cytotoxic T lymphocyte), NK 세포의 활성을 저해함으로써 면역을 억제하는 기능을 한다. 자가면역과 같이 불필요한 과도한 면역반응을 억제하는 순기능이 있지만, 면역반응이 필요한 상황에서 면역을 억제하여 질병을 발생시키거나 악화시키거나 또는 적절한 치료를 방해하는 역기능도 있다. 예컨대, MDSC는 종양 또는 암 환자에서 많이 증가되어 있는데, 이는 암 백신 투여의 효과를 현저히 감소시킴으로써 암 백신의 효능을 무력화시킨다. 또한, 항암면역 치료제로 사용되고 있는 면역관문억제제(Imuune Checkpoint Inhibitor, ICI)에 대한 환자의 내성에 기여하여 항암면역치료제의 효율을 떨어뜨린다. 이러한 상황, 구체적으로 종양을 갖는 개체의 MDSC의 수를 효과적으로 감소시키거나, MDSC의 활성을 효과적으로 억제시킨다면 MDSC에 의한 면역반응 저하를 막아 암 백신 또는 항암 면역 치료제의 효능을 증대시킬 수 있고, 암 치료를 원활하고 효과적으로 수행할 수 있게 될 것이다. In the present invention, the "bone marrow-derived suppressor cells" or "MDSCs" function to suppress immunity by inhibiting the activity of cytotoxic T lymphocytes and NK cells. It has a positive function of suppressing an unnecessary excessive immune response, such as autoimmunity, but it also has a negative function of suppressing immunity in situations where an immune response is required to cause or aggravate a disease or prevent an appropriate treatment. For example, MDSCs are highly elevated in tumor or cancer patients, which significantly reduces the effectiveness of cancer vaccine administration, thereby neutralizing the efficacy of cancer vaccines. In addition, it contributes to the patient's resistance to the Imuune Checkpoint Inhibitor (ICI), which is used as an anticancer immunotherapeutic agent, thereby reducing the effectiveness of the anticancer immunotherapeutic agent. In this situation, specifically, if the number of MDSCs in a tumor-bearing individual is effectively reduced or the activity of MDSCs is effectively inhibited, it is possible to increase the efficacy of a cancer vaccine or anticancer immunotherapeutic agent by preventing a decrease in the immune response by MDSC, and to treat cancer will be able to perform smoothly and effectively.
본 발명에서 MDSC 활성 저해 약물을 선별하기 위하여 사용되는 MDSC는 종양을 가진 개체로부터 골수세포를 추출하여 이를 분화시켜서 얻어질 수 있다. In the present invention, the MDSC used to select the MDSC activity inhibitory drug can be obtained by extracting bone marrow cells from a tumor-bearing individual and differentiating them.
상기 종양을 갖는 개체의 MDSC는 표현형이 CD11b+Gr1+PD-L1+인 것일 수 있으나, 이에 제한되는 것은 아니다.The MDSC of an individual having the tumor may have a phenotype of CD11b + Gr1 + PD-L1 + , but is not limited thereto.
상기 종양은 구체적으로 유방암, 간암, 위암, 결장암, 폐암, 비소세포성폐암, 골암, 췌장암, 피부암, 두부 또는 경부암, 자궁경부암, 난소암, 대장암, 소장암, 직장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병, 식도암, 소장암, 임파선암, 방광암, 담낭암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 선암종, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관 암, 신장세포 암종, 신장골반 암종, 중추신경계 종양, 1차 CNS 림프종, 척수 종양, 뇌간 신경교종 또는 뇌하수체 선종일 수 있으나, 이에 제한되는 것은 아니다.The tumor is specifically breast cancer, liver cancer, stomach cancer, colon cancer, lung cancer, non-small cell lung cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, cervical cancer, ovarian cancer, colorectal cancer, small intestine cancer, rectal cancer, perianal cancer, fallopian tube carcinoma , endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, lymph adenocarcinoma, bladder cancer, gallbladder cancer, endocrine adenocarcinoma, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer , prostate cancer, adenocarcinoma, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system tumor, primary CNS lymphoma, spinal cord tumor, brainstem glioma or pituitary adenoma , but is not limited thereto.
본 발명에서, 상기 조성물은 MDSC를 저해할 필요가 있는 개체에 투여하는 것이 바람직하다.In the present invention, the composition is preferably administered to a subject in need of inhibiting MDSC.
본 발명의 구체적인 실시예에서, 본 발명자들은 마우스의 골수에서 분리한 세포에 MDSC의 분화 유도 인자로 GM-CSF를 처리하여 마우스 골수유래 MDSC를 제작할 수 있다.In a specific embodiment of the present invention, the present inventors can prepare mouse bone marrow-derived MDSCs by treating GM-CSF as an MDSC differentiation inducing factor in cells isolated from mouse bone marrow.
또한, 본 발명자들은 마우스의 골수에서 분리한 세포를 MDSC의 분화 유도 인자인 GM-CSF와 함께 마우스 유방암 세포주를 배양한 배지(tumor cell-conditioned medium; TCCM)에서 처리한 결과, GM-CSF에 의해 MDSC의 분화가 유도되고, TCCM에 의해 MDSC의 활성이 유도되며, 상기 활성이 유도된 MDSC에서 MITF의 유전자 및 단백질 발현이 증가하는 것을 확인하였다. 또한, 상기 TCCM에 의해 활성이 유도된 MDSC와 T 세포를 공동배양한 결과, 활성이 유도된 MDSC에 의해 CD3+CD8+ T 세포 수가 감소하는 것을 확인하였다. 상기의 결과를 통해 암세포 미세환경에서 MDSC가 활성화되어 면역반응이 저하되고, MITF가 상기 MDSC의 활성화의 표적 인자로서 MDSC의 활성화에 관여하는 것을 확인하였다.In addition, the present inventors treated the cells isolated from the mouse bone marrow in a tumor cell-conditioned medium (TCCM) culturing a mouse breast cancer cell line together with GM-CSF, a differentiation inducing factor of MDSC, by GM-CSF. It was confirmed that differentiation of MDSC was induced, MDSC activity was induced by TCCM, and gene and protein expression of MITF was increased in the MDSC induced by the activity. In addition, as a result of co-culturing the TCCM-induced MDSCs and T cells, it was confirmed that the number of CD3 + CD8 + T cells decreased by the activity-induced MDSCs. Through the above results, it was confirmed that MDSCs were activated in the cancer cell microenvironment to lower the immune response, and that MITF was involved in the activation of MDSCs as a target factor for the activation of MDSCs.
또한, 본 발명자들은 종양 형성 마우스의 비장 및 종양 부위에서 MDSC를 획득하였고, 상기 종양 부위에서 얻은 MDSC에서 높은 활성화 및 MITF의 발현이 나타나는 것을 확인하였다. 또한, 폐암 및 두경부암 조직 주변에서 MITF를 발현하는 MDSC가 증가되어 있는 것을 확인하였다. 상기의 결과를 통해 암세포 미세환경에서 MDSC가 활성화되고, 상기 MDSC의 활성화에 MITF가 관여하는 것을 확인하였다.In addition, the present inventors obtained MDSCs from the spleen and tumor sites of tumorigenic mice, and confirmed that MDSCs obtained from the tumor sites showed high activation and expression of MITF. In addition, it was confirmed that MDSC expressing MITF was increased around lung cancer and head and neck cancer tissues. Through the above results, it was confirmed that MDSC was activated in the cancer cell microenvironment, and that MITF was involved in the activation of the MDSC.
본 발명에서 "MDSC 분화 유도 인자"는 조혈전구세포(hematopoietic progenitor cell)의 증식과 분화를 조절하는 당단백질 호르몬과 이들의 작용을 모방한 약물들을 포함하며, 생체로부터 유래한 걸 직접적으로 정제한 것을 사용하거나, 재조합 DNA 기술을 이용해 대량 생산된 것을 사용할 수 있다. 예시적으로, 적혈구형성인자 (EPO), 골수성장인자(G-CSF), 과립구대식구집락자극인자(GM-CSF), 거핵구성장인자(MGF), 혈소판증식촉진인자(TPO), 인터루킨-11(IL-11) 등을 들 수 있으며, 바람직하게는 GM-CSF를 사용할 수 있으나, 이에 제한되지 않는다. In the present invention, "MDSC differentiation inducing factor" includes glycoprotein hormones regulating the proliferation and differentiation of hematopoietic progenitor cells and drugs that mimic their actions. or mass-produced using recombinant DNA technology may be used. Exemplarily, erythropoietin (EPO), bone marrow growth factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), megakaryocyte growth factor (MGF), platelet growth promoting factor (TPO), interleukin-11 ( IL-11) and the like, and preferably GM-CSF, but is not limited thereto.
또한, 본 발명자들은 마우스의 골수에서 분리한 세포에 MDSC의 분화 유도 인자인 GM-CSF와 함께 MDSC 활성을 유도하는 약물들, IL-18, IL-4, LPS 또는 스타틴(Statin) 계열 약물들을 처리한 결과, GM-CSF에 의해 MDSC의 분화가 유도되고, 상기 MDSC 활성 유도 약물들에 의해 MDSC의 활성이 유도되며, 상기 활성이 유도된 MDSC에서 MITF의 유전자 및 단백질 발현이 증가한 것을 확인하였다. 또한, 마우스의 골수에서 분리한 세포에 MDSC의 분화 유도 인자인 GM-CSF와 함께 MDSC 활성을 억제하는 약물로 ATRA(all-trans retinoic acid)를 처리한 결과, GM-CSF에 의해 MDSC의 분화가 유도되고, 상기 MDSC 활성 저해 약물에 의해 MDSC의 활성이 억제되며, 상기 활성이 억제된 MDSC에서 MITF의 유전자 발현이 감소한 것을 확인하였다. 상기의 결과를 통해 MDSC의 활성화에 MITF가 관여하는 것을 확인하였다.In addition, the present inventors treated the cells isolated from the bone marrow of the mouse together with GM-CSF, a differentiation inducing factor of MDSC, drugs that induce MDSC activity, IL-18, IL-4, LPS, or statin-based drugs As a result, it was confirmed that MDSC differentiation was induced by GM-CSF, MDSC activity was induced by the MDSC activity-inducing drugs, and gene and protein expression of MITF was increased in the activity-induced MDSC. In addition, as a result of treating cells isolated from mouse bone marrow with ATRA (all-trans retinoic acid) as a drug that inhibits MDSC activity together with GM-CSF, a factor for inducing MDSC differentiation, the differentiation of MDSCs by GM-CSF was inhibited. induced, the activity of MDSC was inhibited by the MDSC activity inhibitory drug, and it was confirmed that the gene expression of MITF was decreased in the MDSC in which the activity was suppressed. Through the above results, it was confirmed that MITF was involved in the activation of MDSC.
또한, 본 발명자들은 마우스의 골수에서 분리한 세포에 MDSC의 분화 유도 인자인 GM-CSF와 함께 MITF 유도제로 IBMX를 처리한 결과, GM-CSF에 의해 MDSC의 분화가 유도되고, IBMX에 의해 MITF의 발현이 증가하며, 이때 MDSC가 활성화되는 것을 확인하였다. 반면, 마우스의 골수 또는 비장에서 분리한 세포에 MDSC의 분화 유도 인자인 GM-CSF와 함께 MITF 억제제로 베르베린(Berberine) 또는 ML-329를 처리한 결과, GM-CSF에 의해 MDSC의 분화가 유도되나, 상기 MITF 억제제에 의해 MITF 발현이 감소하고, 이때 MDSC의 활성이 억제되는 것을 확인하였다. 또한, MDSC에서 MITF 발현을 억제한 결과, MDSC의 활성이 억제되는 것을 확인하였다. 아울러, 본 발명의 일 실시예에서 제작한 종양 형성 마우스에 ML-329를 사전 처리한 MDSC를 투여한 결과, 면역반응이 증진되어 종양 성장이 억제되고 종양 부위에서 MDSC의 침입 정도가 약화되는 것을 확인하였다. 상기의 결과를 통해 MITF의 억제제를 이용하여 MDSC의 활성을 저해할 수 있음을 확인하였다.In addition, the present inventors treated cells isolated from the bone marrow of mice with IBMX as an MITF inducer together with GM-CSF, a differentiation inducing factor of MDSC. As a result, MDSC differentiation was induced by GM-CSF, and Expression is increased, and it was confirmed that MDSC was activated at this time. On the other hand, as a result of treating cells isolated from the bone marrow or spleen of mice with berberine or ML-329 as an MITF inhibitor together with GM-CSF, which is an MDSC differentiation inducing factor, MDSC differentiation was induced by GM-CSF. , It was confirmed that the MITF expression was decreased by the MITF inhibitor, and the activity of MDSC was inhibited at this time. In addition, as a result of suppressing MITF expression in MDSC, it was confirmed that the activity of MDSC was suppressed. In addition, as a result of administering MDSC pre-treated with ML-329 to the tumor-forming mouse prepared in an embodiment of the present invention, it was confirmed that the immune response was enhanced, tumor growth was suppressed, and the degree of MDSC invasion at the tumor site was weakened. did Through the above results, it was confirmed that the activity of MDSC can be inhibited by using an inhibitor of MITF.
또한, 본 발명자들은 마우스의 골수에서 분리한 세포에 MDSC 활성유도를 위한 암세포 미세환경에서, MDSC의 분화 유도 인자인 GM-CSF와 함께 MITF 억제제로 항HIV제의 일종인 넬피나비르(Nelfinavir)를 처리한 결과, 넬피나비르에 의해 MITF의 발현이 감소하고, MDSC 활성이 저해되는 것을 확인하였다.In addition, the present inventors used nelfinavir, a type of anti-HIV agent, as an MITF inhibitor together with GM-CSF, a factor for inducing MDSC differentiation, in a cancer cell microenvironment for inducing MDSC activity in cells isolated from the bone marrow of a mouse. As a result of the treatment, it was confirmed that the expression of MITF was decreased by nelfinavir, and the MDSC activity was inhibited.
이와 같이, 본 발명자들에 의해, 암세포 미세환경에서 MDSC가 활성화되며, MDSC의 활성화에 MITF가 결정적으로 관여한다는 점이 밝혀졌다. 따라서, MITF의 억제제를 이용하면, MDSC를 저해할 수 있음을 확인하였으며, 따라서, MITF 억제제를 선별하고 그로부터 MDSC 활성을 예측할 수 있게 되었다. 이는 MITF 억제제를 유효성분으로 함유하는 조성물을 개발하는데 유용하게 사용될 수 있으며, MDSC 활성 저해 약물의 투여가 필요한 경우에, 약물을 결정하는 데에도 유용하게 사용될 수 있다. 즉, 본 발명은 MDSC에 의한 면역반응 저하를 완화하고, 항암 면역치료 효율을 증대하는데 유용하게 사용할 수 있다. As such, it was found by the present inventors that MDSCs are activated in the cancer cell microenvironment, and that MITF is critically involved in the activation of MDSCs. Therefore, using an inhibitor of MITF, it was confirmed that MDSC could be inhibited, and thus, it was possible to select an MITF inhibitor and predict MDSC activity therefrom. This can be usefully used to develop a composition containing an MITF inhibitor as an active ingredient, and can be usefully used to determine a drug when administration of an MDSC activity inhibitory drug is required. That is, the present invention can be usefully used to alleviate the decrease in immune response caused by MDSC and to increase the efficiency of anticancer immunotherapy.
본 발명에서 특정물질이 MDSC 활성에 미칠 영향을 MITF 유전자 발현 또는 MITF 단백질에 미치는 영향을 분석하여 예측할 수 있다. 이를 위하여, MDSC 분화를 유도할 골수 세포를 준비하는데, 골수 세포는 종양을 가진 개체로부터 추출될 수 있으며, 추출된 골수 세포를 배지에서 MDSC 분화 및/또는 활성화시킬 수 있다. MDSC 분화는 MDSC 분화 유도 인자가 포함된 배지에서 골수세포를 배양함으로써 이루어질 수 있다. 분화 및 활성 유도는 동시에 또는 개별적으로 이루어질 수 있다. 분석을 위한 MDSC 활성화는 암세포 미세환경이 조성된 배지, 즉, TCCM에서 이루어질 수 있으며, 분석하려는 대상인 특정물질의 영향을 알기 위해, TCCM에 특정물질을 처리된 배지를 이용할 수 있거나 후속적으로 처리할 수 있다. 예를 들어서, 시험군으로서 암세포 미세환경이 조성되고 특정물질이 처리된 배지와 대조군으로 그렇지 않은 배지를 사용할 수 있거나, 또는 시험군과 대조군 모두 암세포 미세환경을 조성하고, 시험군에만 특정물질을 처리할 수도 있다. 또는 시험군으로서 암세포 미세환경이 조성된 배지와 대조군으로 그렇지 않은 배지를 사용한 후, 시험군의 MDSC를 회수한 후 특정물질을 처리할 수도 있다. 다양한 예시를 들었으나, 본 발명의 시험군과 대조군은 이에 한정되지 않으며, 필요에 따라 통상의 기술자가 적절히 설계할 수 있다.In the present invention, the effect of a specific substance on MDSC activity can be predicted by analyzing the effect on MITF gene expression or MITF protein. To this end, to prepare bone marrow cells to induce MDSC differentiation, bone marrow cells can be extracted from a tumor-bearing individual, and the extracted bone marrow cells can differentiate and/or activate MDSCs in a medium. MDSC differentiation can be achieved by culturing bone marrow cells in a medium containing MDSC differentiation inducing factors. Differentiation and induction of activity may occur simultaneously or separately. MDSC activation for analysis can be made in a medium in which the cancer cell microenvironment is formed, that is, TCCM. can For example, a cancer cell microenvironment is created as a test group and a medium treated with a specific substance and a medium not treated with a specific substance can be used as a control group, or both the test group and the control group create a cancer cell microenvironment and only the test group is treated with a specific substance You may. Alternatively, after using a medium in which the cancer cell microenvironment is formed as a test group and a medium not having a cancer cell microenvironment as a control group, MDSCs from the test group may be recovered and then treated with a specific substance. Although various examples have been given, the test group and the control group of the present invention are not limited thereto, and a person skilled in the art may appropriately design them if necessary.
분화 및 활성 유도가 완료된 MDSC를 회수하여 MITF 유전자 또는 MITF 단백질 발현 정도를 분석하여 특정물질이 MDSC 활성에 미치는 영향을 예측할 수 있다 It is possible to predict the effect of a specific substance on MDSC activity by recovering MDSC that has undergone differentiation and activity induction and analyzing the expression level of MITF gene or MITF protein.
구체적으로, 본 발명에서 분화 및 활성유도가 완료된 MDSC를 회수한 후, MITF 유전자 발현 정도를 분석하기 위해서, qRT-PCR를 사용할 수 있다. qRT-PCR을 사용하는 경우, MDSC의 활성 마커로서 iNOS, IL-10 및 TGF-β 등을 사용할 수 있으나, 이에 제한되지 않는다. 분화 및/또는 활성을 유도한 MDSC를 회수하고 적절한 용액, 예를 들면, TRIzol Reagent® Solution(Invitrogen)을 사용하여 총 RNA를 분리한다. 그 후, 분리한 총 RNA를 이용하여 qRT-PCR을 수행할 수 있다.Specifically, in the present invention, qRT-PCR can be used to analyze the level of MITF gene expression after recovery of MDSCs that have undergone differentiation and induction of activity. In the case of using qRT-PCR, iNOS, IL-10, TGF-β, etc. may be used as MDSC activity markers, but the present invention is not limited thereto. MDSCs that induced differentiation and/or activity are recovered and total RNA is isolated using an appropriate solution, for example, TRIzol Reagent® Solution (Invitrogen). Thereafter, qRT-PCR can be performed using the isolated total RNA.
본 발명에서 분화 및 활성 유도가 완료된 MDSC를 회수한 후, MITF 단백질 발현 정도를 분석하기 위해서, 웨스턴 블럿팅을 수행할 수 있다. 예시적인 방법으로, 회수한 MDSC에 적절한 용액, 예를 들면, 세포 용해 버퍼를 처리하여 용해한 후, 세포 용해물을 전기영동하여 분리할 수 있다. 사용될 수 있는 일차 항체로는 예를 들어서, 항-MITF 항체 및 항-액티닌(actinin) 항체를 들 수 있으며, 이차 항체로는 HRP-접합 이차 항체를 고려할 수 있다. 이 때, 대조 단백질로 액티닌을 사용할 수 있다. In the present invention, after MDSCs that have undergone differentiation and activity induction are recovered, Western blotting may be performed to analyze the level of MITF protein expression. As an exemplary method, the recovered MDSC may be lysed by treatment with an appropriate solution, for example, a cell lysis buffer, and then separated by electrophoresis of the cell lysate. Primary antibodies that can be used include, for example, anti-MITF antibodies and anti-actinin antibodies, and HRP-conjugated secondary antibodies may be considered as secondary antibodies. In this case, actinin may be used as a control protein.
시험군과 대조군의 결과를 비교하여, 특정물질이 MITF 억제제, 즉, MDSC 활성 억제제인지, 또는 MITF 발현 증가제, 즉, MDSC 활성 유도제인지를 판단할 수 있으며, 이로부터 체내 투입시 MDSC 활성 반응을 예측할 수 있다. 따라서, MDSC 활성 억제제 투여 등에 의해 MDSC의 활성이 억제되어, 체내 T 세포 기능의 회복으로 이어질 것을 기대할 수 있으며, MDSC 활성 증가제의 경우, MDSC에 의한 T 세포 증식을 억제할 것을 기대할 수 있다. 이로부터, MITF 억제제를 유효성분으로 포함하는 조성물을 제조할 수 있다. By comparing the results of the test group and the control group, it can be determined whether a specific substance is an MITF inhibitor, that is, an MDSC activity inhibitor, or an MITF expression increaser, that is, an MDSC activity inducer. predictable. Therefore, it can be expected that MDSC activity is inhibited by administration of an MDSC activity inhibitor, etc., leading to recovery of T cell function in the body. From this, it is possible to prepare a composition comprising the MITF inhibitor as an active ingredient.
본 발명에서 MDSC 활성 저해 약물의 선별 방법은, MITF 유전자 또는 MITF 단백질의 발현 정도가 예를 들어, qRT-PCR 분석법을 이용하는 경우, 대조군 대비 시험군에서 qRT-PCR 측정값이 낮은 경우에 MDSC 저해약물로 결정할 수 있다. 예를 들어, 직접적인 MITF 저해 물질의 경우 대조군 대비 시험군에서 qRT-PCR 측정값이 바람직하게는 50 % 이상 저해된 경우에, 간접적인 경로로 MITF를 저해하는 물질의 경우 대조군 대비 시험군에서 바람직하게는 30 % 이상 저해된 경우일 수 있으나, 이 범위에 한정되는 것은 아니며, 통상의 기술자는 필요한 범위에서 저해의 정도를 결정할 수 있다.In the present invention, the screening method of the MDSC activity inhibitory drug is when the expression level of the MITF gene or MITF protein is, for example, using qRT-PCR analysis, the qRT-PCR measurement value in the test group compared to the control group is low when the MDSC inhibitor drug can be decided with For example, in the case of a direct MITF inhibitor, when the qRT-PCR measurement value is preferably inhibited by 50% or more in the test group compared to the control group, in the case of a substance that inhibits MITF by an indirect route, it is preferable in the test group compared to the control group may be 30% or more of inhibition, but is not limited to this range, and those skilled in the art can determine the degree of inhibition in a necessary range.
본 발명의 방법으로 선별된 MDSC 활성 저해 약물을 포함하는 조성물은 투여를 위해서 상기 기재한 유효성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 약제학적 조성물로 바람직하게 제제화할 수 있다. The composition containing the MDSC activity inhibitory drug selected by the method of the present invention may be preferably formulated as a pharmaceutical composition by including one or more pharmaceutically acceptable carriers in addition to the active ingredients described above for administration.
액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다.In the composition formulated as a liquid solution, acceptable pharmaceutical carriers are sterile and biocompatible, and include saline, sterile water, Ringer's solution, buffered saline, albumin injection, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostats may be added as needed.
또한, 상기 본 발명의 조성물은 상기 유효 성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다.In addition, the composition of the present invention may be prepared using a pharmaceutically suitable and physiologically acceptable adjuvant in addition to the active ingredient, and the adjuvant includes an excipient, a disintegrant, a sweetener, a binder, a coating agent, a swelling agent, and a lubricant. , a solubilizing agent such as a lubricant or flavoring agent may be used.
또한, 본 발명의 조성물은 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 해당분야의 적절한 방법으로 Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.In addition, the composition of the present invention may be formulated into an injectable formulation such as an aqueous solution, suspension, emulsion, etc., pills, capsules, granules or tablets by additionally adding diluents, dispersants, surfactants, binders and lubricants. Furthermore, by using the method disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA by an appropriate method in the art, it can be preferably formulated according to the disease or component.
또한, 본 발명의 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. 본 발명의 조성물은 약제학적으로 유효한 양으로 투여한다. 본 발명에서, "약제학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.In addition, the compositions of the present invention may be administered via conventional, intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, intrasternal, transdermal, intranasal, inhalational, topical, rectal, oral, intraocular or intradermal routes. method can be administered. The composition of the present invention is administered in a pharmaceutically effective amount. In the present invention, "pharmaceutically effective amount" means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type, severity, drug activity, and type of the patient's disease; Sensitivity to the drug, administration time, administration route and excretion rate, treatment period, factors including concurrent drugs and other factors well known in the medical field may be determined. The composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. In consideration of all of the above factors, it is important to administer an amount that can obtain the maximum effect with a minimum amount without side effects, which can be easily determined by a person skilled in the art.
구체적으로, 본 발명에 따른 조성물의 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 1 kg 당 0.1 mg 내지 100 mg, 보다 구체적으로 0.5 mg 내지 10 mg을 매일 또는 격일 투여하거나 1일 1 내지 3회로 나누어 투여할 수 있다. 그러나 투여 경로, 질환의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 제한하는 것은 아니다.Specifically, the effective amount of the composition according to the present invention may vary depending on the age, sex, and weight of the patient, and generally 0.1 mg to 100 mg per kg body weight, more specifically 0.5 mg to 10 mg per kg body weight, administered daily or every other day Or it can be administered in divided
또한, 본 발명은 MITF(microphthalmia-associated transcription factor)의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제를 유효성분으로 함유하는, 골수-유래 억제세포(myeloid-derived suppressor cell; MDSC)에 의한 면역 반응 저하의 완화, 치료 또는 예방용 조성물을 유효성분으로 함유하는, 항암 보조제를 제공한다.In addition, the present invention contains a gene expression inhibitor of MITF (microphthalmia-associated transcription factor) or an inhibitor of protein activity of MITF as an active ingredient, myeloid-derived suppressor cell (MDSC) for reducing immune response by It provides an anticancer adjuvant containing a composition for alleviation, treatment or prevention as an active ingredient.
본 발명에서, 상기 MITF의 유전자 발현 억제제는 MITF 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 앱타머, 짧은 헤어핀 RNA(small hairpin RNA, shRNA), 작은 간섭 RNA(small interfering RNA, siRNA), 마이크로 RNA(microRNA, miRNA) 및 리보자임(ribozyme)으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the MITF gene expression inhibitor is an antisense nucleotide complementary to the mRNA of the MITF gene, an aptamer, a short hairpin RNA (shRNA), a small interfering RNA (siRNA), a micro It may be one or more selected from the group consisting of RNA (microRNA, miRNA) and ribozyme, but is not limited thereto.
상기 MITF의 단백질 활성 억제제는 MITF 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 모방체, 기질 유사체, 앱타머, 및 항체로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.The protein activity inhibitor of MITF may be at least one selected from the group consisting of a compound that specifically binds to the MITF protein, a peptide, a peptidomimetic, a substrate analog, an aptamer, and an antibody, but is not limited thereto.
본 발명에서, 상기 항암 보조제는 항암제와 병용 투여될 수 있고, 상기 항암 보조제는 MDSC의 활성을 억제하여 MDSC에 의한 면역반응 저하를 완화함으로써, 항암제의 효과를 유의적으로 상승시키는 항암 보조 효과를 나타낼 수 있다.In the present invention, the anti-cancer adjuvant may be administered in combination with an anti-cancer agent, and the anti-cancer adjuvant suppresses the activity of MDSC to alleviate the decrease in the immune response caused by MDSC, thereby exhibiting an anti-cancer adjuvant effect that significantly increases the effect of the anti-cancer agent. can
상기 항암제는 화학치료제, 타겟화된 치료제, 항체 치료제, 면역치료제 및 호르몬 치료제로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.The anticancer agent may be one or more selected from the group consisting of chemotherapeutic agents, targeted therapeutics, antibody therapeutics, immunotherapeutics, and hormone therapeutics, but is not limited thereto.
상기 화학치료제는 예를 들어, 대사길항물질(예를 들어, 폴산, 푸린, 및 피리미딘 유도체), 알킬화제(예를 들어, 질소 머스타드, 니트로소우레아, 백금, 알킬 설포네이트, 히드라진, 트리아젠, 아지리딘, 방추체 저해제, 세포독성제, 토포이소머라제 억제제 및 기타) 또는 저메틸화제(예를 들어, 제불라린, 이소티오시아네이트, 아자시티딘(5-아자시티딘), 5-플루오로-2'-데옥시시티딘, 5,6-디하이드로-5-아자시티딘 및 기타)가 있으나 이에 제한되는 것은 아니다.Such chemotherapeutic agents include, for example, antimetabolites (eg, folic acid, purine, and pyrimidine derivatives), alkylating agents (eg, nitrogen mustards, nitrosoureas, platinum, alkyl sulfonates, hydrazine, triazines, aziridine, spindle inhibitors, cytotoxic agents, topoisomerase inhibitors, and others) or hypomethylating agents (eg, zebularine, isothiocyanate, azacitidine (5-azacytidine), 5-fluoro rho-2'-deoxycytidine, 5,6-dihydro-5-azacytidine and others).
상기 타겟화된 치료제는 암 세포의 조절되지 않는 단백질에 대해 특이적인 제제로 예를 들어, 티로신 키나제 억제제, 예를 들어 악시티니브(Axitinib), 보수티니브(Bosutinib), 세디라니브(Cediranib), 다사티니브(Dasatinib), 에르로티니브(Erlotinib), 이마티니브(Imatinib), 게피티니브(Gefitinib), 라파티니브(Lapatinib), 레스타우르티니브(Lestaurtinib), 닐로티니브(Nilotinib), 세막사니브(Semaxanib), 소라페니브(Sorafenib), 수니티니브(Sunitinib), 및 반데타니브(Vandetanib), 또는 시클린-의존성 키나제 억제제, 예를 들어 알보시디브(Alvocidib) 및 셀리시크리브(Seliciclib)가 있으나 이에 제한되는 것은 아니다.The targeted therapeutic agent is an agent specific for a protein that is not regulated in cancer cells, for example, a tyrosine kinase inhibitor such as Axitinib, Bosutinib, Cediranib. , Dasatinib, Erlotinib, Imatinib, Gefitinib, Lapatinib, Lestaurtinib, Nilotinib , Semaxanib, Sorafenib, Sunitinib, and Vandetanib, or cyclin-dependent kinase inhibitors such as Alvocidib and Selicic lib (Seliciclib), but is not limited thereto.
상기 항체 치료제는 암 세포의 표면 상에서 단백질에 특이적으로 결합하는 항체 제제로 예를 들어, 트라스투주맙(Trastuzumab), 리툭시맙(Rituximab), 토시투모맙(Tositumomab), 세툭시맙(Cetuximab), 파니투무맙(Panitumumab), 알렘투주맙(Alemtuzumab), 베바시주맙(Bevacizumab), 에드레콜로맙(Edrecolomab) 또는 겜투주맙(Gemtuzumab)이 있으나 이에 제한되는 것은 아니다.The antibody therapeutic agent is an antibody preparation that specifically binds to a protein on the surface of cancer cells, for example, trastuzumab, rituximab, tositumomab, cetuximab). , Panitumumab, Alemtuzumab, Bevacizumab, Edrecolomab, or Gemtuzumab.
상기 면역 치료제는 종양을 공격하기 위해 피검체의 자체 면역계를 유도하도록 설계된 제제로 예를 들어, 이필리루맙(Ipilimumab), 아벨루맙(Avelumab), 니볼루맙(Nivolumab) 또는 펨브롤리주맙(Pembrolizumab)이 있으나 이에 제한되는 것은 아니다.The immunotherapeutic agent is an agent designed to induce the subject's own immune system to attack a tumor. For example, Ipilimumab, Avelumab, Nivolumab, or Pembrolizumab. However, the present invention is not limited thereto.
상기 호르몬 치료제는 특정 암에서 호르몬을 제공하거나 차단함으로써 암의 성장을 억제하는 제제로 예를 들어, 타목시펜(Tamoxifen) 또는 디에틸스틸베스테롤(diethylstilbestrol)이 있으나 이에 제한되는 것은 아니다.The hormone therapeutic agent is an agent that inhibits cancer growth by providing or blocking hormones in a specific cancer, for example, tamoxifen (Tamoxifen) or diethylstilbestrol (diethylstilbestrol), but is not limited thereto.
상기 항암제의 적절한 투여량은 이미 당업계에 널리 알려져 있으므로, 각 환자의 상태에 따라 당업계에 알려진 기준에 의해 투여할 수 있다. 구체적인 투여량 결정은 당업자의 수준 내에 있으며, 이의 1일 투여 용량은 예를 들어 구체적으로는 1 mg/kg/일 내지 10 g/kg/일, 더 구체적으로는 10 mg/kg/일 내지 100 mg/kg/일이 될 수 있으나, 이에 제한되지 않으며, 투여하고자 하는 대상의 연령, 건강 상태, 합병증 등 다양한 요인에 따라 달라질 수 있다.Since the appropriate dosage of the anticancer agent is already well known in the art, it may be administered according to the standards known in the art according to the condition of each patient. Determination of specific dosages is within the level of those skilled in the art, and the daily dosage thereof is, for example, specifically 1 mg/kg/day to 10 g/kg/day, more specifically 10 mg/kg/day to 100 mg It may be /kg/day, but is not limited thereto, and may vary depending on various factors such as the age, health condition, and complications of the subject to be administered.
본 발명의 구체적인 실시예에서, 본 발명자들은 암세포 미세환경에서 MDSC가 활성화되어 면역반응이 저하되고, 상기 MDSC의 활성화에 MITF가 관여하며, 상기 MITF의 억제제를 이용하여 MDSC의 활성을 억제할 수 있음을 확인하였으므로, 상기 MITF 억제제를 항암 면역치료의 항암 보조제로 이용할 수 있다.In a specific embodiment of the present invention, the present inventors found that MDSCs are activated in the cancer cell microenvironment and the immune response is lowered, MITF is involved in the activation of MDSCs, and the MITF inhibitors can be used to inhibit the activity of MDSCs. Therefore, the MITF inhibitor can be used as an anticancer adjuvant for anticancer immunotherapy.
또한, 본 발명은 MITF의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제를 MDSC의 저해가 필요한 개체에 투여하는 단계를 포함하는, MDSC 저해방법을 제공한다.In addition, the present invention provides a method for inhibiting MDSC, comprising administering a gene expression inhibitor of MITF or an inhibitor of protein activity of MITF to an individual in need of MDSC inhibition.
상기 MITF의 유전자 발현 억제제 또는 MITF의 단백질 활성 억제제, 및 MDSC에 대한 구체적인 설명은 상기 조성물에 대한 설명과 동일한 바, 구체적인 설명은 상기 내용을 원용하고, 이하에서는 MDSC 저해방법에 특유한 구성에 대해서만 설명하도록 한다.The specific description of the gene expression inhibitor of MITF or the protein activity inhibitor of MITF, and MDSC is the same as the description of the composition, and the specific description refers to the above content, and in the following, only the composition specific to the MDSC inhibition method will be described. do.
본 발명에서, 상기 "골수-유래 억제세포 저해" 또는 "MDSC 저해"는 MDSC의 활성을 억제시키는 것뿐만 아니라, MDSC의 수를 감소시키는 것까지도 포함한다. 수를 감소시키는 것은 세포의 생성을 억제하는 것뿐만 아니라, 이미 생성된 세포를 사멸시키거나 다른 세포로 분화시키는 것도 포함한다. 그 외에도 생물학적 관점에서 "저해"라고 지칭되고 있는 모든 매커니즘이 포함된다.In the present invention, the "inhibition of bone marrow-derived suppressor cells" or "MDSC inhibition" includes not only inhibiting the activity of MDSCs, but also reducing the number of MDSCs. Reducing the number includes not only inhibiting the production of cells, but also killing or differentiating cells that have already been formed into other cells. In addition, all mechanisms that are referred to as “inhibition” from a biological point of view are included.
본 발명에서, 상기 MDSC의 저해가 필요한 개체는 구체적으로 MDSC의 저해가 필요한 종양을 갖는 개체일 수 있고, 상기 종양을 갖는 개체의 MDSC는 표현형이 CD11b+Gr1+PD-L1+인 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the individual in need of MDSC inhibition may be an individual having a tumor that specifically requires MDSC inhibition, and the MDSC of the individual having the tumor may have a phenotype of CD11b + Gr1 + PD-L1 + , However, the present invention is not limited thereto.
또한, 상기 종양은 구체적으로 유방암, 간암, 위암, 결장암, 폐암, 비소세포성폐암, 골암, 췌장암, 피부암, 두부 또는 경부암, 자궁경부암, 난소암, 대장암, 소장암, 직장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병, 식도암, 소장암, 임파선암, 방광암, 담낭암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 선암종, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관 암, 신장세포 암종, 신장골반 암종, 중추신경계 종양, 1차 CNS 림프종, 척수 종양, 뇌간 신경교종 또는 뇌하수체 선종일 수 있으나, 이에 제한되는 것은 아니다.In addition, the tumor is specifically breast cancer, liver cancer, stomach cancer, colon cancer, lung cancer, non-small cell lung cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, cervical cancer, ovarian cancer, colorectal cancer, small intestine cancer, rectal cancer, perianal cancer, Fallopian tube carcinoma, endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, lymph gland cancer, bladder cancer, gallbladder cancer, endocrine adenocarcinoma, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, Penile cancer, prostate cancer, adenocarcinoma, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system tumor, primary CNS lymphoma, spinal cord tumor, brainstem glioma or pituitary adenoma However, the present invention is not limited thereto.
본 발명의 구체적인 실시예에서, 본 발명자들은 암세포 미세환경에서 MDSC가 활성화되어 면역반응이 저하되고, 상기 MDSC의 활성화에 MITF가 관여하며, 상기 MITF의 억제제를 이용하여 MDSC의 활성을 억제할 수 있음을 확인하였으므로, 상기 MITF 억제제를 MDSC의 저해가 필요한 개체에 투여하여 MDSC 관련 질환 치료에 이용할 수 있다.In a specific embodiment of the present invention, the present inventors found that MDSCs are activated in the cancer cell microenvironment and the immune response is lowered, MITF is involved in the activation of MDSCs, and the MITF inhibitors can be used to inhibit the activity of MDSCs. , it can be used to treat MDSC-related diseases by administering the MITF inhibitor to an individual in need of inhibition of MDSC.
이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of Examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples only illustrate the present invention, and the content of the present invention is not limited to the following examples.
<실시예 1> 골수-유래 억제세포(myeloid-derived suppressor cells, MDSC) 제작<Example 1> Bone marrow-derived suppressor cells (myeloid-derived suppressor cells, MDSC) production
<1-1> 마우스 골수유래 MDSC 제작<1-1> Production of mouse bone marrow-derived MDSC
Balb/c 마우스의 골수(bone marrow, BM)로부터 도 1의 모식도와 같이 골수-유래 억제세포(myeloid-derived suppressor cells, MDSC)를 제작하였다.As shown in the schematic diagram of FIG. 1, myeloid-derived suppressor cells (MDSC) were prepared from the bone marrow (BM) of Balb/c mice.
구체적으로, 6 내지 8주령 된 Balb/c 마우스는 Saeronbio. Inc.(Republic of Korea)에서 구입하였다. 동물실험은 Institutional Ethical Committee of Sookmyung Women's University (SMWU-IACUC-1708-017-02)의 승인을 받아 수행하였다. 6 내지 8주령 된 Balb/c 마우스의 넙적다리뼈를 적출하여 뼈 안의 골수를 분리한 뒤, RBC lysis buffer(Sigma-Aldrich, St. Louis, MO)를 처리하여 적혈구를 제거하여 세포를 얻었다. 얻어진 골수세포를 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 10 ng/㎖ 농도의 과립구 대식세포 콜로니 자극 인자(GM-CSF)가 포함된 RPMI 배지(Invitrogen, Grand Island, NY)로 96시간 동안 배양하여 MDSC의 분화를 유도하였다.Specifically, 6 to 8-week-old Balb/c mice were tested in Saeronbio. Inc. (Republic of Korea) was purchased. Animal experiments were performed with the approval of the Institutional Ethical Committee of Sookmyung Women's University (SMWU-IACUC-1708-017-02). After removing the femur from 6 to 8-week-old Balb/c mice, the bone marrow was isolated from the bones, and then treated with RBC lysis buffer (Sigma-Aldrich, St. Louis, MO) to remove red blood cells to obtain cells. The obtained bone marrow cells were treated with RPMI medium (Invitrogen, Grand Island, NY) containing granulocyte macrophage colony stimulating factor (GM-CSF) at a concentration of 10 ng/ml in a 24-well plate at a cell number of 5Х10 5 cells/ml for 96 hours. MDSC differentiation was induced.
<1-2> 종양 형성 마우스에서의 MDSC 제작<1-2> MDSC production in tumorigenic mice
Balb/c 마우스에 유방암 세포주를 주사하여 종양 형성 마우스를 제작하고, 상기 종양 형성 마우스로부터 MDSC를 제작하였다.Balb/c mice were injected with a breast cancer cell line to prepare tumorigenic mice, and MDSCs were prepared from the tumorigenic mice.
구체적으로 6 내지 8주령 된 Balb/c 마우스에 마우스 유방암 세포주인 4T1 세포를 5Х105 cells/100 ㎕ 의 세포 수로 포함하는 100 ㎕ PBS를 오른쪽 옆구리 쪽에 피하 주사하여 종양을 형성하였다. 상기 마우스는 12시간 명/암 주기에서 온도 23.5 ± 1℃, 습도 50 ± 5%의 숙명여자대학교 동물 실험실에서 사육하였다. 2주 뒤 종양, 골수 및 비장을 각각 적출하여 세포를 분리하였다. 그 다음, 형광 결합된 항-CD11b 항체, 항-Gr1 항체 및 MDSC 활성 마커인 PD-L1 항체를 이용하여 염색한 후, FACS(Fluorescence-acitivated cell sorting) 분석을 수행하여 MDSC의 분화 및 활성을 확인하였다. 상기 항체는 eBioscience (San Diago, CA)에서 구입하였다.Specifically, a tumor was formed by subcutaneously injecting 100 μl PBS containing 4T1 cells, a mouse breast cancer cell line, at a cell count of 5Х10 5 cells/100 μl to the right flank of 6-8 week old Balb/c mice. The mice were bred in the animal laboratory of Sookmyung Women's University at a temperature of 23.5 ± 1 °C and a humidity of 50 ± 5% in a 12-hour light/dark cycle. Two weeks later, the tumor, bone marrow, and spleen were removed, respectively, and cells were isolated. Then, after staining using a fluorescence-conjugated anti-CD11b antibody, an anti-Gr1 antibody, and an MDSC activity marker, PD-L1 antibody, FACS (Fluorescence-acitivated cell sorting) analysis was performed to confirm the differentiation and activity of MDSCs. did The antibody was purchased from eBioscience (San Diago, CA).
<실시예 2> 암세포 미세환경에서 MDSC에 의한 면역반응 저하 확인<Example 2> Confirmation of decreased immune response by MDSC in cancer cell microenvironment
<2-1> 암세포 미세환경에서 MDSC 활성 확인<2-1> Confirmation of MDSC activity in cancer cell microenvironment
암세포 미세환경에서 MDSC에 의해 면역반응이 저하되는지 알아보기 위하여, 암세포를 배양한 배지를 처리한 MDSC의 활성을 확인하였다.In order to determine whether the immune response is lowered by MDSCs in the cancer cell microenvironment, the activity of MDSCs treated with the cancer cell culture medium was checked.
구체적으로, 마우스 유방암 세포주인 4T1 세포를 10% 소태아혈청(FBS), 100 unit 항생제-항균제를 함유하는 RPMI 배지(Invitrogen, Grand Island, NY) 10 ml로 5% CO2, 37℃ 조건 하에서 3일 동안 배양하여 세포가 80% 포화 상태가 되도록 하였다. 그 다음, 배양 배지를 회수하고 4℃로 유지된 원심분리기에서 3000 Хg로 20분간 3000 NMWL(명목분자량 한계(nominal molecular weight limit)) 원심필터 (Merck Milipore, Billerica, MA)로 농축하여 암세포 조건 배지(TCCM; tumor cell-conditioned medium)을 획득하였다. 상기 <실시예 1-1>에서 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 상기 획득한 TCCM 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지에서 96시간 동안 배양하여 MDSC의 분화를 유도하였다. 대조군으로 GM-CSF가 포함된 RPMI 배지에서 분화를 유도한 MDSC를 이용하였다.Specifically, 4T1 cells, a mouse breast cancer cell line, were treated with 10 ml of RPMI medium (Invitrogen, Grand Island, NY) containing 10% fetal bovine serum (FBS) and 100 units of antibiotics (Invitrogen, Grand Island, NY) under 5% CO 2 , 3 Cells were allowed to reach 80% confluency by incubation for one day. Then, the culture medium was recovered and concentrated with a 3000 NMWL (nominal molecular weight limit) centrifugal filter (Merck Milipore, Billerica, MA) for 20 minutes at 3000 Хg in a centrifuge maintained at 4° C. to conditioned medium for cancer cells. (TCCM; tumor cell-conditioned medium) was obtained. After obtaining bone marrow cells in the same manner as described in <Example 1-1>, the obtained TCCM and GM-CSF at a concentration of 10 ng/ml were included in a 24-well plate at a cell number of 5Х10 5 cells/ml. Differentiation of MDSCs was induced by culturing for 96 hours in an RPMI medium. As a control, MDSCs induced to differentiate in RPMI medium containing GM-CSF were used.
MDSC의 분화를 확인하기 위하여, 상기 분화 유도한 MDSC를 회수하여 형광 결합된 항-CD11b 항체 및 항-Gr1 항체로 염색한 후, FACS 분석을 수행하였다(도 2A).In order to confirm the differentiation of MDSCs, the differentiation-induced MDSCs were recovered and stained with fluorescence-conjugated anti-CD11b and anti-Gr1 antibodies, followed by FACS analysis (FIG. 2A).
또한, MDSC의 활성을 확인하기 위하여, 상기 분화 유도한 MDSC를 회수하여 MDSC의 활성 마커인 iNOS, IL-10 및 TGF-β에 대한 qRT-PCR을 수행하였다. 상기 분화 유도한 MDSC를 회수하고 TRIzol Reagent® Solution(Invitrogen)을 사용하여 제조사의 절차에 따라 총 RNA를 분리하였다. 그 다음, 분리한 총 RNA를 이용하여 qRT-PCR을 수행하였다. M-MLV 역전사 키트(Promega, Madison, WI)와 oligo-(dT) 프라이머와 dNTP(Bioneer, Daejeon, Republic of Korea)를 사용하여 제조사의 절차에 따라 분리한 총 RNA를 역전사하고, ABI Real-time PCR 7500 시스템에서 iNOS, IL-10, TGF-β 및 시클로필린(cyclophilin)에 대한 프라이머 및 SYBR Green PCR Master Mix (Applied Bosystems, Foster City, CA)를 이용하여 제조사의 절차에 따라 정량적 PCR을 수행하였다. 이때 대조군으로 시클로필린을 사용하였다. iNOS, IL-10, TGF-β 및 시클로필린에 대한 프라이머는 Bioneer에서 구입하였다. 상기 실험은 3번 반복 수행하였다(도 2B).In addition, in order to confirm the activity of MDSC, the differentiation-induced MDSC was recovered and qRT-PCR was performed on iNOS, IL-10 and TGF-β, which are MDSC activity markers. The differentiation-induced MDSCs were recovered and total RNA was isolated using TRIzol Reagent® Solution (Invitrogen) according to the manufacturer's procedure. Then, qRT-PCR was performed using the isolated total RNA. Total RNA isolated according to the manufacturer's procedure was reverse transcribed using M-MLV reverse transcription kit (Promega, Madison, WI), oligo-(dT) primer and dNTP (Bioneer, Daejeon, Republic of Korea), and ABI Real-time Quantitative PCR was performed according to the manufacturer's procedure using primers for iNOS, IL-10, TGF-β and cyclophilin and SYBR Green PCR Master Mix (Applied Bosystems, Foster City, CA) in the PCR 7500 system. . At this time, cyclophilin was used as a control. Primers for iNOS, IL-10, TGF-β and cyclophilin were purchased from Bioneer. The experiment was repeated three times (FIG. 2B).
그 결과, 도 2에 나타낸 바와 같이, 대조군(GM-CSF가 포함된 RPMI 배지) 및 TCCM 처리군(GM+TCCM)에서 모두 유사한 정도로 MDSC의 분화가 유도됨을 확인하였다(도 2A). 반면, TCCM 처리군(GM+TCCM)의 경우 MDSC의 활성 마커로 iNOS, IL-10 및 TGF-β을 측정한 모든 경우에서, MDSC의 활성이 대조군에 비해 높게 나타나므로 TCCM에 의해 MDSC의 활성이 유도됨을 확인하였다(도 2B).As a result, as shown in FIG. 2, it was confirmed that MDSC differentiation was induced to a similar degree in both the control group (RPMI medium containing GM-CSF) and the TCCM treatment group (GM+TCCM) (FIG. 2A). On the other hand, in the case of the TCCM-treated group (GM+TCCM), in all cases where iNOS, IL-10 and TGF-β were measured as MDSC activity markers, MDSC activity was higher than that of the control group. Induction was confirmed (FIG. 2B).
<2-2> 암세포 미세환경에서 활성화된 MDSC의 MITF 발현 증가 확인<2-2> Confirmation of increased MITF expression of activated MDSC in cancer cell microenvironment
상기 실시예 <2-1>의 TCCM에 의해 활성이 유도된 MDSC에서 MITF(microphthalmia-associated transcription factor)의 유전자 및 단백질 발현 변화를 확인하였다.Changes in gene and protein expression of microphthalmia-associated transcription factor (MITF) were confirmed in MDSC induced by TCCM of Example <2-1>.
구체적으로, MITF의 유전자 발현을 확인하기 위하여 상기 실시예 <2-1>에서 회수한 MDSC를 이용하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 MITF에 대한 qRT-PCR을 수행하였다. MITF에 대한 프라이머는 Bioneer에서 구입하였다(도 3A). Specifically, in order to confirm the gene expression of MITF, qRT-PCR was performed on MITF using the MDSC recovered in Example <2-1> in the same manner as in Example <2-1>. . Primers for MITF were purchased from Bioneer (FIG. 3A).
또한, MITF의 단백질 발현을 확인하기 위하여 상기 실시예 <2-1>에서 회수한 MDSC를 이용하여 웨스턴 블럿팅을 수행하였다. 이를 위해 상기 실시예 <2-1>에서 회수한 MDSC에 세포 용해 버퍼를 처리하여 용해하였다. 세포 용해물을 10% SDS-PAGE 겔로 전기영동하여 분리하고, PVDF 멤브레인에 옮겼다. 그 다음, 일차 항체로 항-MITF 항체 및 항-액티닌(actinin) 항체를 처리하여 반응시킨 후, 상기 막에 붙은 일차 항체에 HRP-접합 이차 항체를 붙이고, 이를 증강 화학발광기법(PicoEPD?? Western Reagent kit, ELPIS-Biotech, 대전, 대한민국)을 이용하여 LAS-3000 영상 시스템(FUJIFILM 사, 도쿄, 일본)으로 분석하였다. 액티닌은 대조 단백질로 사용하였다(도 3B). 또한, MDSC의 활성을 확인하기 위하여 일차 항체로 항-Arg1 항체 및 항-pSTAT3 항체를 처리하여 상기에 기재된 바와 같이 웨스턴 블럿팅을 수행하였다.In addition, in order to confirm the protein expression of MITF, Western blotting was performed using the MDSC recovered in Example <2-1>. To this end, the MDSC recovered in Example <2-1> was treated with a cell lysis buffer and lysed. Cell lysates were separated by electrophoresis on a 10% SDS-PAGE gel and transferred to a PVDF membrane. Then, the primary antibody is treated with an anti-MITF antibody and an anti-actinin antibody and reacted, and then an HRP-conjugated secondary antibody is attached to the primary antibody attached to the membrane, and this enhanced chemiluminescence technique (PicoEPD?? Western Reagent kit, ELPIS-Biotech, Daejeon, Korea) was used for analysis with the LAS-3000 imaging system (FUJIFILM, Tokyo, Japan). Actinin was used as a control protein ( FIG. 3B ). In addition, in order to confirm the activity of MDSC, western blotting was performed as described above by treating an anti-Arg1 antibody and an anti-pSTAT3 antibody as a primary antibody.
그 결과, 도 3에 나타낸 바와 같이, TCCM 처리군(GM+TCCM)의 경우 대조군(GM-CSF)에 비해 MITF의 유전자 발현(도 3A) 및 단백질 발현(도 3B)이 증가하고, Arg1 및 STAT3 인산화가 증가하는 것으로 나타나므로, MITF가 TCCM에 의해 활성이 유도된 MDSC에서 특이적으로 발현되는 표적 인자임을 확인하였다.As a result, as shown in FIG. 3, in the case of the TCCM treatment group (GM+TCCM), the gene expression (FIG. 3A) and protein expression (FIG. 3B) of MITF increased compared to the control group (GM-CSF), Arg1 and STAT3 Since phosphorylation was shown to increase, it was confirmed that MITF was a target factor specifically expressed in MDSCs whose activity was induced by TCCM.
<2-3> 암세포 미세환경에서 MDSC에 의한 면역반응 저하 확인<2-3> Confirmation of decreased immune response by MDSC in cancer cell microenvironment
MDSC는 T 세포의 증식 및 기능을 억제하여 면역반응을 저하하는 것으로 알려져 있다. 이에 암세포 미세환경에서 MDSC에 의해 면역반응이 저하되는지 알아보기 위하여, 암세포를 배양한 배지를 처리한 MDSC를 이용하여 T 세포 증식 억제 정도를 확인하였다.MDSC is known to decrease the immune response by suppressing the proliferation and function of T cells. Accordingly, in order to examine whether the immune response is reduced by MDSC in the cancer cell microenvironment, the degree of inhibition of T cell proliferation was confirmed using MDSC treated with a medium in which cancer cells were cultured.
구체적으로, 종양형성 마우스의 비장에서 MACS cell separation kit(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany)를 이용하여 제조사의 절차에 따라 분리한 세포를 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 상기 실시예 <2-1>에서 획득한 TCCM 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 24시간 동안 배양하여 MDSC의 분화 및 활성을 유도하였다.Specifically, cells isolated from the spleen of tumorigenic mice using the MACS cell separation kit (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) according to the manufacturer's procedure were performed in a 24-well plate at a cell number of 5Х10 5 cells/ml. The differentiation and activity of MDSCs were induced by culturing for 24 hours in RPMI medium containing TCCM obtained in Example <2-1> and GM-CSF at a concentration of 10 ng/ml.
또한, T 세포를 얻기 위해, 6 내지 8주령 된 Balb/c 마우스의 비장을 적출하여 세포를 분리하였다. 그 다음, 형광 결합된 항-CD3 항체를 이용하여 염색한 후, FACS를 이용하여 T 세포를 분리하였다. 분리한 T 세포를 2.5 μM CFSE로 7 분간 염색하여 CFSE 표지(Labeling)을 수행하였다. 5Х105 개의 세포수의 CFSE 표지된 CD3+ T 세포를 항-CD3 단일 클론 항체 및 가용성 항-CD28 단일 클론 항체로 코팅한 플레이트에서 2시간 동안 자극한 후, 상기 종양형성 마우스의 비장에서 분리한 세포의 분화 및 활성을 유도하여 획득한 MDSC(도 4A) 및 상기 실시예 <2-1>에서 회수한 MDSC(도 4B)를 5Х105 세포 수 또는 10Х105 세포 수로 넣어주고, 3일 동안 배양하였다. 배양 3일 후 형광 결합된 항-CD8 항체를 이용하여 염색한 후, FACS 분석을 수행하여 CD8+ T 세포의 증식 정도를 측정하였다. 상기 항체는 eBioscience사에서 구입하였다. In addition, in order to obtain T cells, the spleens of 6 to 8-week-old Balb/c mice were removed and the cells were isolated. Then, after staining using a fluorescence-conjugated anti-CD3 antibody, T cells were isolated using FACS. The isolated T cells were stained with 2.5 μM CFSE for 7 minutes to perform CFSE labeling. 5Х10 CFSE-labeled CD3 + T cells of 5 cell numbers were stimulated for 2 hours on plates coated with anti-CD3 monoclonal antibody and soluble anti-CD28 monoclonal antibody, and then cells isolated from the spleen of the tumorigenic mice. The MDSCs obtained by inducing the differentiation and activity of (FIG. 4A) and the MDSCs recovered in Example <2-1> (FIG. 4B) were put into 5Х10 5 cells or 10Х10 5 cells, and cultured for 3 days. After 3 days of culture, the cells were stained using a fluorescence-conjugated anti-CD8 antibody, and then the degree of proliferation of CD8 + T cells was measured by performing FACS analysis. The antibody was purchased from eBioscience.
그 결과, 도 4에 나타낸 바와 같이, TCCM 처리군의 MDSC(GM+TCCM)와T 세포를 공동배양할 경우, 대조군(GM-CSF)의 MDSC와 공동배양한 경우에 비해 CD3+CD8+ T 세포 수가 감소하므로, TCCM에 의해 활성이 유도된 MDSC가 T 세포 증식을 억제함을 확인하였다.As a result, as shown in FIG. 4 , when MDSCs (GM+TCCM) and T cells of the TCCM-treated group were co-cultured, compared to the case of co-culture with MDSCs of the control group (GM-CSF), CD3 + CD8 + T cells. As the number decreased, it was confirmed that MDSC activity-induced by TCCM inhibited T cell proliferation.
상기 결과를 통해 암세포 미세환경에서 활성화된 MDSC가 면역반응을 저하하고, MITF가 상기 MDSC의 활성화의 표적 인자로서 MDSC의 활성화에 관여하는 것을 알 수 있다.From the above results, it can be seen that activated MDSC in the cancer cell microenvironment lowers the immune response, and MITF is involved in the activation of MDSC as a target factor for the activation of the MDSC.
<실시예 3> 종양 형성 마우스에서의 MDSC의 활성 및 MITF 발현 확인<Example 3> Confirmation of MDSC activity and MITF expression in tumorigenic mice
종양 형성 마우스에서 MDSC가 활성화되고, 상기 MDSC의 활성화에 MITF가 관여하는지 알아보기 위하여, 종양 형성 마우스의 MDSC를 이용하여 이의 활성 및 MITF의 유전자 발현 변화를 확인하였다.MDSC is activated in tumorigenic mice, and in order to find out whether MITF is involved in the activation of MDSC, its activity and gene expression change of MITF were confirmed using MDSC from tumorigenic mice.
구체적으로, MDSC의 활성을 확인하기 위하여 상기 실시예 <1-2>에 개시된 방법과 동일한 방법으로 종양 형성 마우스의 비장 및 종양 각각에서 세포를 분리한 후 FACS 분석을 수행하였다(도 5A). 또한, 상기 FACS 분류기(sorter)로 CD11b+Gr1+ MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하였다(도 5B). 대조군으로는 분리(sorting)하기 전의 종양 형성 마우스의 비장을 이용하였다.Specifically, in order to confirm the activity of MDSC, cells were isolated from each of the spleen and tumor of a tumor-forming mouse in the same manner as that described in Example <1-2>, and then FACS analysis was performed (FIG. 5A). In addition, CD11b + Gr1 + MDSC were recovered using the FACS sorter, and qRT-PCR was performed in the same manner as in Example <2-1> (FIG. 5B). As a control group, the spleen of tumor-forming mice before sorting was used.
또한, MITF의 유전자 발현을 확인하기 위하여, 상기 회수한 CD11b+Gr1+ MDSC를 이용하여 상기 실시예 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하였다(도 5C). In addition, in order to confirm the gene expression of MITF, qRT-PCR was performed using the recovered CD11b + Gr1 + MDSC in the same manner as in Example <2-2> (FIG. 5C).
그 결과, 도 5에 나타낸 바와 같이, 종양 형성 마우스의 비장 및 종양 부위에서 얻은 MDSC는 대조군에 비해 활성화된 형태를 띠고(도 5A 및 도 5B), MITF의 유전자 발현이 증가해 있음을 확인하였다(도 5C). 특히, 종양 부위에서 얻은 MDSC가 비장 부위에서 얻은 것에 비해 활성화가 더 많이 되어 있고, MITF의 발현이 현저히 높게 나타나는 것을 확인하였다.As a result, as shown in FIG. 5, MDSCs obtained from the spleen and tumor sites of tumorigenic mice took an activated form compared to the control group ( FIGS. 5A and 5B ), and it was confirmed that the gene expression of MITF was increased ( Figure 5C). In particular, it was confirmed that MDSCs obtained from the tumor site were more activated than those obtained from the spleen, and the expression of MITF was significantly higher.
상기 결과를 통해 암세포 미세환경에서 MDSC가 활성화되고, 상기 MDSC의 활성화에 MITF가 관여하는 것을 알 수 있다.From the above results, it can be seen that MDSC is activated in the cancer cell microenvironment, and MITF is involved in the activation of the MDSC.
<실시예 4> 종양 조직에서 MDSC 및 MITF 발현 확인<Example 4> Confirmation of MDSC and MITF expression in tumor tissue
종양 조직에서 MDSC가 활성화되고, 상기 MDSC의 활성화에 MITF가 관여하는지 알아보기 위하여, 종양 조직에서 MDSC 및 MITF의 발현 변화를 확인하였다.MDSC is activated in tumor tissue, and in order to examine whether MITF is involved in the activation of MDSC, expression changes of MDSC and MITF in tumor tissue were checked.
구체적으로, 폐암과 두경부암 조직 주변과 그에 상응하는 암이 없는 림프절 부위 조직 10 샘플 각각에 대하여 서울대학교 병리학 교실(Prof. Yoon Kyung Jeon)에서 조직염색을 수행하였다. 구체적으로, 조직을 4 % 포름 알데히드 용액에 고정시킨 후, 농도별 에탄올(70-100 %)에서 탈수시키고 파라핀에 끼워 넣었다. 조직을 마이크로톰으로 절편화하고(두께 4 μm) 헤마톡실린(hematoxylin)과 에오신(eosin)으로 염색(H&E)하였다. 광학 현미경(Olympus, Japan)으로 단면을 관찰하고 Х400 배율로 촬영하였다. IHC(immunohistochemistry)의 경우 조직 절편을 PBS로 희석한 3% 정상 말 혈청으로 30 분간 차단하였다. 절편을 블로킹하고 4℃에서 밤새 CD11b, CD14, MITF 항체(항-마우스 단일클론 일차항체(Cat. No 790-4367), Ventana Medical Systems, Oro Valley, AZ)와 함께 적절한 희석 배수(1:100 희석)에서 반응시켰다. 슬라이드를 PBS로 세척한 후, 아비딘-비오틴-퍼옥시다제 복합체 (ABC; Vector Laboratories, Burlingame, CA를 세척하였다. 슬라이드를 세척하고, 퍼옥시다아제 반응을 디아미노벤지딘 및 퍼옥사이드로 전개시키고, 아쿠아-마운트(Aqua-Mount)에 장착하여 광학 현미경 (Olympus) 하에서 Х400 배율로 평가하였다. 암조직과 림프절 조직에서 고배율시야(High Power Field, HPF)내에서 MITF+/CD11b+/CD14+인 MDSC의 수는 삼중양성인 세포들을 각각 세 군데 임의의 고배율시야내에서 count된 것의 평균값으로 표현하였다.Specifically, tissue staining was performed at Seoul National University's Department of Pathology (Prof. Yoon Kyung Jeon) for each of 10 samples of lymph node tissue surrounding lung and head and neck cancer tissues and corresponding cancer-free lymph nodes. Specifically, the tissue was fixed in 4% formaldehyde solution, dehydrated in ethanol (70-100%) according to concentration, and embedded in paraffin. The tissue was sectioned with a microtome (
그 결과, 도 16에 나타낸 바와 같이, 종양 주변 조직에서 MITF로 염색된 MDSC의 분포가 뚜렷한 반면, 종양이 없는 림프절 부위 조직에서는 MITF로 염색된 MDSC가 거의 관찰되지 않음을 확인하였다. As a result, as shown in FIG. 16 , it was confirmed that while the distribution of MDSC stained with MITF in the tissue surrounding the tumor was clear, MDSC stained with MITF was hardly observed in the tissue of the lymph node region without a tumor.
상기 결과를 통해 암 주변에서 MDSC가 활성화되고, 상기 MDSC의 활성화에 MITF가 관여하는 것을 알 수 있다.From the above results, it can be seen that MDSCs are activated around the cancer, and MITF is involved in the activation of the MDSCs.
<실시예 5> 활성을 유도한 MDSC에서 MITF 발현 증가 확인<Example 5> Confirmation of increase in MITF expression in MDSC induced activity
MITF와 MDSC의 상관성을 알아보기 위하여, MDSC의 활성을 유도하는 약물을 처리한 후 MITF 발현 변화를 확인하였다.In order to examine the correlation between MITF and MDSC, MITF expression change was confirmed after treatment with a drug that induces MDSC activity.
<5-1> IL-18로 활성 유도한 MDSC에서 MITF 발현 증가 확인<5-1> Confirmation of increased MITF expression in IL-18-induced MDSC
MDSC의 활성을 유도하는 약물로 IL-18을 처리하고 MDSC의 분화를 유도한 후, MITF의 유전자 발현 변화를 확인하였다.After IL-18 was treated with a drug that induces MDSC activity and differentiation of MDSC was induced, changes in MITF gene expression were confirmed.
구체적으로, 상기 실시예 <1-1>에서 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 10 또는 50 ng/㎖ 농도의 IL-18, 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하였다(도 6A 및 도 6B). 또한 상기 실시예 <1-1>에 기재된 방법에 따라 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하고, 10 또는 50 ng/㎖ 농도의 IL-18을 24시간 동안 처리하였다(도 6C 및 도 6D). 대조군으로 GM-CSF가 포함된 RPMI 배지로 분화를 유도한 MDSC를 이용하였다.Specifically, after obtaining bone marrow cells in the same manner as described in Example <1-1>, IL-18 at a concentration of 10 or 50 ng/ml in a 24-well plate at a cell number of 5Х10 5 cells/ml, and Differentiation of MDSCs was induced by culturing for 96 hours in RPMI medium containing GM-CSF at a concentration of 10 ng/ml ( FIGS. 6A and 6B ). In addition, according to the method described in Example <1-1>, MDSC differentiation was induced by culturing for 96 hours in RPMI medium containing GM-CSF, and IL-18 at a concentration of 10 or 50 ng/ml was administered for 24 hours. treated (FIGS. 6C and 6D). As a control, MDSCs induced to differentiate in RPMI medium containing GM-CSF were used.
상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 FACS 분석을 수행하여 MDSC의 분화를 확인하였다(도 6A 및 도 6C).The differentiation-induced MDSCs were recovered and FACS analysis was performed in the same manner as described in Example <2-1> to confirm the differentiation of MDSCs ( FIGS. 6A and 6C ).
또한, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1> 및 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하여 MDSC의 활성을 확인하고, MITF의 유전자 발현을 확인하였다(도 6B 및 도 6D).In addition, the differentiation-induced MDSCs were recovered and qRT-PCR was performed in the same manner as those described in Examples <2-1> and <2-2> to confirm the activity of MDSC, and to confirm the gene expression of MITF (FIGS. 6B and 6D).
그 결과, 도 6에 나타낸 바와 같이, 대조군 및 IL-18 처리군 모두 유사한 정도로 MDSC의 분화가 유도됨을 확인하였다(도 6A 및 도 6C). 반면, IL-18 처리군의 경우 MDSC의 활성이 증가하고, MITF의 유전자 발현이 증가한 것을 확인하였다(도 6B 및 도 6D).As a result, as shown in FIG. 6 , it was confirmed that MDSC differentiation was induced to a similar degree in both the control group and the IL-18 treatment group ( FIGS. 6A and 6C ). On the other hand, in the case of the IL-18 treatment group, it was confirmed that the activity of MDSC was increased and the gene expression of MITF was increased ( FIGS. 6B and 6D ).
<5-2> IL-10으로 분화 및 활성 유도한 MDSC에서 MITF 발현 증가 확인<5-2> Confirmation of increased MITF expression in MDSCs differentiated and activated by IL-10
MDSC의 활성을 유도하는 약물로 IL-10을 처리하고 MDSC의 분화를 유도한 후, MITF의 유전자 발현 변화를 확인하였다.After treatment with IL-10 with a drug inducing MDSC activity and inducing differentiation of MDSC, a change in MITF gene expression was confirmed.
구체적으로, 상기 실시예 <1-1>에서 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 5 ng/㎖ 농도의 IL-10, 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하였다(도 6E 및 도 6F). 대조군으로 GM-CSF가 포함된 RPMI 배지로 분화를 유도한 MDSC를 이용하였다.Specifically, after obtaining bone marrow cells in the same manner as described in Example <1-1>, IL-10 at a concentration of 5 ng/ml, and 10 ng in a 24-well plate at a cell number of 5Х10 5 cells/ml Differentiation of MDSCs was induced by culturing for 96 hours in RPMI medium containing GM-CSF at a concentration of /ml ( FIGS. 6E and 6F ). As a control, MDSCs induced to differentiate in RPMI medium containing GM-CSF were used.
상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 FACS 분석을 수행하여 MDSC의 분화를 확인하였다(도 6E).The differentiation-induced MDSCs were recovered and FACS analysis was performed in the same manner as described in Example <2-1> to confirm the differentiation of MDSCs (FIG. 6E).
또한, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1> 및 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하여 MDSC의 활성을 확인하고, MITF의 유전자 발현을 확인하였다(도 6F).In addition, the differentiation-induced MDSCs were recovered and qRT-PCR was performed in the same manner as those described in Examples <2-1> and <2-2> to confirm the activity of MDSC, and to confirm the gene expression of MITF (FIG. 6F).
그 결과, 도 6에 나타낸 바와 같이, 대조군 및 IL-10 처리군 모두 유사한 정도로 MDSC의 분화가 유도됨을 확인하였다(도 6E). 반면, IL-10 처리군의 경우 MDSC의 활성이 증가하고, MITF의 유전자 발현이 증가한 것을 확인하였다(도 6F).As a result, as shown in FIG. 6 , it was confirmed that MDSC differentiation was induced to a similar degree in both the control group and the IL-10 treatment group ( FIG. 6E ). On the other hand, in the case of the IL-10 treatment group, it was confirmed that the activity of MDSC was increased and the gene expression of MITF was increased (FIG. 6F).
<5-3> IL-4로 활성 유도한 MDSC에서 MITF 발현 증가 확인<5-3> Confirmation of increased expression of MITF in MDSC induced by IL-4
MDSC의 활성을 유도하는 약물로 IL-4를 처리하고 MDSC의 분화를 유도한 후, MITF의 유전자 발현 변화를 확인하였다.After IL-4 was treated with a drug that induces MDSC activity and differentiation of MDSC was induced, a change in MITF gene expression was confirmed.
구체적으로, 상기 실시예 <2-1>에 기재된 방법에 따라 MDSC의 분화 및 활성을 유도하되, 활성을 유도하는 약물로 10 ng/㎖의 IL-4를 처리하였다.Specifically, MDSC differentiation and activity were induced according to the method described in Example <2-1>, and 10 ng/ml of IL-4 was treated with an activity-inducing drug.
상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 FACS 분석을 수행하여 MDSC의 분화를 확인하였다(도 7A).The differentiation-induced MDSCs were recovered and FACS analysis was performed in the same manner as described in Example <2-1> to confirm the differentiation of MDSCs (FIG. 7A).
또한, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1> 및 <2-2>에 기재된 방법과 동일한 방법으로 MDSC의 활성을 확인하고(도 7B), MITF의 유전자 발현을 확인하였다(도 7C).In addition, by recovering the differentiation-induced MDSC, the activity of MDSC was confirmed in the same manner as in Examples <2-1> and <2-2> (FIG. 7B), and the gene expression of MITF was confirmed ( 7C).
그 결과, 도 7에 나타낸 바와 같이, 대조군 및 IL-4 처리군 모두 MDSC의 분화가 유도됨을 확인하였다(도 7A). 반면, IL-4 처리군의 경우 IL-4에 의해 MDSC의 활성화가 유도되고(도 7B), 대조군과 비교하여 MITF의 유전자 발현이 증가한 것을 확인하였다(도 7C).As a result, as shown in FIG. 7 , it was confirmed that MDSC differentiation was induced in both the control group and the IL-4 treatment group ( FIG. 7A ). On the other hand, in the case of the IL-4 treatment group, the activation of MDSC was induced by IL-4 (FIG. 7B), and it was confirmed that the gene expression of MITF was increased compared to the control group (FIG. 7C).
<5-4> LPS로 활성 유도한 MDSC에서 MITF 발현 증가 확인<5-4> Confirmation of increased MITF expression in LPS-induced MDSC
MDSC의 활성을 유도하는 약물로 LPS를 처리하고 MDSC의 분화를 유도한 후, MITF의 유전자 발현 변화를 확인하였다.After treating LPS with a drug that induces MDSC activity and inducing differentiation of MDSC, the change in MITF gene expression was confirmed.
구체적으로, 상기 실시예 <2-1>에 기재된 방법에 따라 MDSC의 분화 및 활성을 유도하되, 활성을 유도하는 약물로 100 ng/㎖의 LPS를 처리하였다.Specifically, the differentiation and activity of MDSC was induced according to the method described in Example <2-1>, but 100 ng/ml of LPS was treated with an activity-inducing drug.
상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 FACS 분석을 수행하여 MDSC의 분화를 확인하였다(도 8A).The differentiation-induced MDSCs were recovered and FACS analysis was performed in the same manner as in Example <2-1> to confirm the differentiation of MDSCs (FIG. 8A).
또한, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1> 및 <2-2>에 기재된 방법과 동일한 방법으로 MDSC의 활성을 확인하고(도 8B), MITF의 유전자 발현을 확인하였다(도 8C).In addition, by recovering the differentiation-induced MDSC, activity of MDSC was confirmed in the same manner as in Examples <2-1> and <2-2> (FIG. 8B), and gene expression of MITF was confirmed ( Figure 8C).
그 결과, 도 8에 나타낸 바와 같이, 대조군 및 LPS 처리군 모두 MDSC의 분화가 유도됨을 확인하였다(도 8A). 반면, LPS 처리군의 경우 LPS에 의해 MDSC의 활성화가 유도되고(도 8B), 대조군과 비교하여 MITF의 유전자 발현이 증가한 것을 확인하였다(도 8C).As a result, as shown in FIG. 8 , it was confirmed that MDSC differentiation was induced in both the control group and the LPS treatment group ( FIG. 8A ). On the other hand, in the case of the LPS-treated group, it was confirmed that the activation of MDSC was induced by LPS (FIG. 8B), and the gene expression of MITF was increased compared to the control group (FIG. 8C).
<5-5> 스타틴(Statin) 계열 약물로 활성 유도한 MDSC에서 MITF 발현 증가 확인<5-5> Confirmation of increased MITF expression in MDSC induced by statin-based drugs
스타틴(Statin) 계열 약물인 심바스타틴(Simvastatin)은 IRF4(Interferon regulatory factor 4)의 발현을 억제하여 MDSC의 활성을 유도하는 것으로 알려져 있다. 이에 MDSC의 활성을 유도하는 약물로 스타틴 계열 약물을 처리하고 MDSC의 분화를 유도한 후, MITF의 유전자 발현 변화를 확인하였다.Simvastatin, a statin-based drug, is known to induce MDSC activity by suppressing the expression of IRF4 (Interferon regulatory factor 4). Accordingly, statin-based drugs were treated with a drug inducing MDSC activity and MDSC differentiation was induced, and then the gene expression change of MITF was confirmed.
구체적으로, 상기 실시예 <2-1>에 기재된 방법에 따라 MDSC의 분화 및 활성을 유도하되, 활성을 유도하는 약물로 심바스타틴(Sim, 0.5 또는 1 μM), 로바스타틴(Lovastatin, Lova, 0.5 또는 1 μM), 프로바스타틴(Pravastatin, Prav, 5 또는 10 μM), 로수바스타틴(Rosuvastatin, Rosu, 0.5 또는 1 μM), 또는 아토바스타틴(Atorvastatin, Ator, 0.05 또는 0.1 μM) 을 처리하였다(도 9 및 도 10).Specifically, inducing differentiation and activity of MDSC according to the method described in Example <2-1>, simvastatin (Sim, 0.5 or 1 μM), lovastatin (Lovastatin, Lova, 0.5 or 1) as a drug inducing activity μM), provastatin (Pravastatin, Prav, 5 or 10 μM), rosuvastatin (Rosuvastatin, Rosu, 0.5 or 1 μM), or atorvastatin (Atorvastatin, Ator, 0.05 or 0.1 μM) was treated (FIG. 9) and Fig. 10).
또한, 상기 실시예 <1-1>에 기재된 방법에 따라 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하고, 상기 스타틴 계열 약물을 24시간 동안 처리하였다(도 11 및 도 12). In addition, according to the method described in Example <1-1>, the differentiation of MDSCs was induced by culturing for 96 hours in RPMI medium containing GM-CSF, and the statin drugs were treated for 24 hours (Fig. 11 and 12).
그 다음, 상기 MDSC를 회수하여 상기 실시예 <2-1> 및 <2-2>에 기재된 방법과 동일한 방법으로 MDSC의 분화(도 9 및 도 11)를 확인하였다. 또한, 심바스타틴 또는 로바스타틴 1 μM 처리군에서 MDSC의 활성(도 10A 및 도 12A)을 확인하고, MITF의 유전자 발현(도 10B 및 도 12B)을 확인하였다. Then, the MDSCs were recovered and the differentiation of MDSCs ( FIGS. 9 and 11 ) was confirmed in the same manner as those described in Examples <2-1> and <2-2>. In addition, in the simvastatin or
그 결과, 도 9 내지 도 12에 나타낸 바와 같이, 대조군 및 스타틴 계열 약물 처리군 모두 유사한 정도로 MDSC의 분화가 유도됨을 확인하였다(도 9 및 도 11). 반면, 스타틴 계열 약물 처리군의 경우 MDSC의 분화 초기부터 스타틴 계열 약물 처리한 경우(도 10) 및 이미 분화된 MDSC에 스타틴 계열 약물을 처리한 경우(도 12) 모두 스타틴 계열 약물에 의해 MDSC의 활성화가 유도되고(도 10A 및 도 12A), 대조군과 비교하여 MITF의 유전자 발현(도 10B 및 도 12B)이 증가한 것을 확인하였다.As a result, as shown in FIGS. 9 to 12 , it was confirmed that MDSC differentiation was induced to a similar degree in both the control group and the statin-based drug treatment group ( FIGS. 9 and 11 ). On the other hand, in the case of the statin-based drug-treated group, statin-based drug treatment from the initial stage of differentiation of MDSC (FIG. 10) and the already differentiated MDSC treated with statin-based drug (FIG. 12) Activation of MDSC by statin-based drug was induced ( FIGS. 10A and 12A ), and it was confirmed that the gene expression of MITF ( FIGS. 10B and 12B ) was increased compared to the control group.
상기 결과를 통해 활성이 유도된 MDSC에서 MITF의 발현이 증가한 것을 확인하였으므로, MDSC의 활성화에 MITF가 관여하는 것을 알 수 있다.Since it was confirmed that the expression of MITF was increased in the activity-induced MDSC through the above results, it can be seen that MITF is involved in the activation of MDSC.
<실시예 6> 활성을 억제한 MDSC에서 MITF 발현 감소 확인<Example 6> Confirmation of reduced expression of MITF in MDSCs with suppressed activity
ATRA(all-trans retinoic acid)는 MDSC의 활성을 억제하는 것으로 알려져 있다. 이에 MITF와 MDSC의 상관성을 알아보기 위하여, MDSC의 활성을 억제하는 약물로 ATRA를 처리한 후 MITF 발현 변화를 확인하였다.All-trans retinoic acid (ATRA) is known to inhibit the activity of MDSC. Accordingly, in order to examine the correlation between MITF and MDSC, MITF expression change was confirmed after treatment with ATRA with a drug that inhibits MDSC activity.
구체적으로, 상기 실시예 <1-1>에 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 ATRA(0.5 또는 1 μM) 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하였다(도 13).Specifically, after obtaining bone marrow cells in the same manner as described in Example <1-1>, ATRA (0.5 or 1 μM) and 10 ng/ml concentration in a 24-well plate at a cell number of 5Х10 5 cells/ml MDSC differentiation was induced by culturing for 96 hours in RPMI medium containing GM-CSF (FIG. 13).
상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 FACS 분석을 수행하여 MDSC의 분화를 확인하였다(도 13A).The differentiation-induced MDSCs were recovered and FACS analysis was performed in the same manner as described in Example <2-1> to confirm the differentiation of MDSCs (FIG. 13A).
또한, 상기 ATRA 1 μM을 처리하고 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1> 및 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하여 MDSC의 활성을 확인하였다(도 13B), MITF의 유전자 발현을 확인하였다(도 13C).In addition, MDSCs treated with 1 μM of ATRA and differentiation-induced MDSCs were recovered and qRT-PCR was performed in the same manner as those described in Examples <2-1> and <2-2> to confirm the activity of MDSCs ( 13B), the gene expression of MITF was confirmed (FIG. 13C).
그 결과, 도 13에 나타낸 바와 같이, 대조군 및 ATRA 처리군 모두 유사한 정도로 MDSC의 분화가 유도됨을 확인하였다(도 13A). 반면 ATRA 처리군의 경우 ATRA에 의해 MDSC의 활성화가 억제되고(도 13B), 대조군과 비교하여 MITF의 유전자 발현이 감소한 것을 확인하였다(도 13C).As a result, as shown in FIG. 13 , it was confirmed that MDSC differentiation was induced to a similar degree in both the control group and the ATRA-treated group ( FIG. 13A ). On the other hand, in the case of the ATRA-treated group, it was confirmed that the activation of MDSC was inhibited by ATRA (FIG. 13B), and the gene expression of MITF was decreased compared to the control group (FIG. 13C).
상기 결과를 통해 활성이 억제된 MDSC에서 MITF의 발현이 감소한 것을 확인하였으므로, MDSC의 활성화에 MITF가 관여하는 것을 알 수 있다.Since it was confirmed that the expression of MITF was decreased in the MDSCs whose activity was suppressed through the above results, it can be seen that MITF is involved in the activation of MDSCs.
<실시예 7> MITF 조절에 의한 MDSC 활성 변화 확인<Example 7> Confirmation of MDSC activity change by MITF regulation
<7-1> MITF 유도제에 의한 MDSC의 활성 증가 확인<7-1> Confirmation of increased activity of MDSC by MITF inducer
흑색종 세포에서 IBMX가 MITF의 발현을 유도하는 것이 알려져 있다. 이에, MITF의 발현 또는 활성 조절이 MDSC 활성에 미치는 영향을 알아보기 위하여, MITF 발현 유도제로 IBMX를 처리한 MDSC의 활성 변화 및 상기 MDSC에 의한 T 세포 증식 변화를 확인하였다. It is known that IBMX induces the expression of MITF in melanoma cells. Accordingly, in order to examine the effect of MITF expression or activity regulation on MDSC activity, changes in the activity of MDSCs treated with IBMX as an MITF expression inducer and changes in T cell proliferation by the MDSCs were confirmed.
구체적으로, 상기 실시예 <1-1>에서 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 10 μM 농도의 IBMX 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하였다. 대조군으로 GM-CSF가 포함된 RPMI 배지로 분화를 유도한 MDSC를 이용하였다.Specifically, after obtaining bone marrow cells in the same manner as described in Example <1-1>, IBMX at a concentration of 10 μM and GM at a concentration of 10 ng/ml in a 24-well plate at a cell number of 5Х10 5 cells/ml -CSF-containing RPMI medium was cultured for 96 hours to induce differentiation of MDSCs. As a control, MDSCs induced to differentiate in RPMI medium containing GM-CSF were used.
상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 FACS 분석을 수행하여 MDSC의 분화를 확인하였다(도 14A).The differentiation-induced MDSCs were recovered and FACS analysis was performed in the same manner as described in Example <2-1> to confirm the differentiation of MDSCs (FIG. 14A).
또한, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1> 및 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR 및 웨스턴 블럿팅을 수행하여 MDSC의 활성을 확인하고(도 14B 및 도 14C), MITF의 유전자 발현 및 단백질 발현(도 14C)을 확인하였다.In addition, the differentiation-induced MDSCs were recovered and qRT-PCR and Western blotting were performed in the same manner as those described in Examples <2-1> and <2-2> to confirm the activity of MDSCs (FIG. 14B). and Fig. 14C), gene expression and protein expression of MITF (Fig. 14C) were confirmed.
또한, 상기 분화 유도한 MDSC를 회수하여 실시예 <2-3>에 기재된 방법과 동일한 방법으로 T 세포 증식 억제 정도를 확인하였다(도 14D).In addition, the degree of inhibition of T cell proliferation was confirmed in the same manner as in Example <2-3> by recovering the differentiation-induced MDSC (FIG. 14D).
그 결과, 도 14에 나타낸 바와 같이, 대조군 및 IBMX 처리군 모두 유사한 정도로 MDSC의 분화가 유도됨을 확인하였다(도 14A). 반면, IBMX 처리군의 경우 대조군과 비교하여 MITF의 유전자 및 단백질 발현이 증가하고(도 14C), MDSC의 활성이 증가하는 것을 확인하였다(도 14B 및 도 14C). 또한, IBMX 처리군의 경우 MDSC의 활성이 증가하여 T 세포 증식이 억제되는 것을 확인하였다(도 14D).As a result, as shown in FIG. 14 , it was confirmed that MDSC differentiation was induced to a similar degree in both the control group and the IBMX treatment group ( FIG. 14A ). On the other hand, in the case of the IBMX-treated group, it was confirmed that the gene and protein expression of MITF increased ( FIG. 14C ), and the activity of MDSC was increased compared to the control group ( FIGS. 14B and 14C ). In addition, in the case of the IBMX-treated group, it was confirmed that the activity of MDSC was increased to suppress T cell proliferation ( FIG. 14D ).
<7-2> MITF 억제제에 의한 MDSC 활성 저해 확인<7-2> Confirmation of inhibition of MDSC activity by MITF inhibitor
베르베린(Berberine), 카지놀 U(Kazinol U) 등은 AMPK 활성촉진제(AMPK activator)이면서 멜라닌 세포에서 MITF의 발현 또는 활성을 억제하는 것이 알려져 있다. 이에 MITF의 발현 또는 활성 조절이 MDSC 활성에 미치는 영향을 알아보기 위하여, MITF 억제제로 농도를 달리한 베르베린을 처리한 MDSC의 활성 변화를 확인하였다.Berberine (Berberine), Kazinol U (Kazinol U) and the like are known to inhibit the expression or activity of MITF in melanocytes while being an AMPK activator. Accordingly, in order to examine the effect of MITF expression or activity regulation on MDSC activity, changes in the activity of MDSCs treated with berberine at different concentrations with an MITF inhibitor were confirmed.
구체적으로, 상기 실시예 <1-1>에 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 5 μM 농도의 베르베린 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지와 10 μM 농도의 베르베린 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지에서 각각 96시간 동안 배양하여 MDSC의 분화를 유도하였다. 대조군으로 GM-CSF가 포함된 RPMI 배지로 분화를 유도한 MDSC를 이용하였다.Specifically, after obtaining bone marrow cells by the same method as described in Example <1-1>, berberine at a concentration of 5 μM and GM at a concentration of 10 ng/ml in a 24-well plate at a cell number of 5Х10 5 cells/ml The differentiation of MDSCs was induced by culturing in RPMI medium containing -CSF and RPMI medium containing 10 μM berberine and 10 ng/ml GM-CSF for 96 hours, respectively. As a control, MDSCs induced to differentiate in RPMI medium containing GM-CSF were used.
또한, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 FACS 분석을 수행하여 MDSC의 분화를 확인하였다(도 15A 및 도 15B).In addition, the differentiation-induced MDSCs were recovered and FACS analysis was performed in the same manner as described in Example <2-1> to confirm the differentiation of MDSCs ( FIGS. 15A and 15B ).
또한, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하여 MDSC의 활성을 확인하였고, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하여 MITF의 발현을 확인하였다 (도 15C)In addition, the differentiation-induced MDSCs were recovered and qRT-PCR was performed in the same manner as described in Example <2-1> to confirm the activity of MDSCs. 2-2>, qRT-PCR was performed in the same manner as described above to confirm the expression of MITF (FIG. 15C)
그 결과, 도 15에 나타낸 바와 같이, 베르베린 처리군의 경우 MDSC의 분화가 다소 감소한 것을 확인하였다(도 15A 및 도 15B). 또한, 기대한 바와 같이, 베르베린 처리군의 경우 대조군과 비교하여 MDSC의 활성이 유의적으로 저해되는 것을 확인하였으며, MITF의 발현도 억제된 것을 확인하였다 (도 15C).As a result, as shown in FIG. 15 , it was confirmed that the differentiation of MDSCs was somewhat decreased in the berberine-treated group ( FIGS. 15A and 15B ). In addition, as expected, in the case of the berberine-treated group, it was confirmed that the activity of MDSC was significantly inhibited compared to the control group, and it was confirmed that the expression of MITF was also suppressed ( FIG. 15C ).
또한, ML-329는 멜라닌 세포에서 TRPM-1 프로모터 활성을 억제하여 MITF의 발현을 억제하는 것이 알려져 있다. 이에 MITF의 발현 또는 활성 조절이 MDSC 활성에 미치는 영향을 알아보기 위하여, MITF 억제제로 ML-329를 처리한 MDSC의 활성 변화 및 상기 MDSC에 의한 T 세포 증식 변화를 확인하였다.In addition, ML-329 is known to suppress the expression of MITF by suppressing the TRPM-1 promoter activity in melanocytes. Accordingly, in order to examine the effect of MITF expression or activity regulation on MDSC activity, the change in the activity of MDSC treated with ML-329 as an MITF inhibitor and the change in T cell proliferation by the MDSC were confirmed.
구체적으로, 상기 실시예 <1-1>에 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 0.5 또는 1 μM 농도의 ML-329(Cayman Chemical, Ann Arbor, MI) 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하였다. 대조군으로 GM-CSF가 포함된 RPMI 배지로 분화를 유도한 MDSC를 이용하였다. 그 다음, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1> 및 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하여 MDSC의 활성(도 17A) 및 MITF 발현을 확인하였다(도 17B).Specifically, after obtaining bone marrow cells in the same manner as described in Example <1-1>, ML-329 (Cayman Chemical, Ann Arbor, MI) and 10 ng/ml of GM-CSF were cultured in RPMI medium for 96 hours to induce differentiation of MDSCs. As a control, MDSCs induced to differentiate in RPMI medium containing GM-CSF were used. Then, the differentiation-induced MDSCs were recovered and qRT-PCR was performed in the same manner as those described in Examples <2-1> and <2-2> to confirm MDSC activity (FIG. 17A) and MITF expression. (FIG. 17B).
또한, TCCM에 의한 MDSC 활성 유도에 있어서 ML-329의 효과를 알아보기 위하여, 상기 실시예 <1-1>에 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 0.5, 1 또는 2 μM 농도의 ML-329(Cayman Chemical), 상기 실시예 <2-1>에서 획득한 TCCM 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하였다. 대조군으로 GM-CSF가 포함된 RPMI 배지로 분화를 유도한 MDSC를 이용하였다. 그 다음, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 FACS 분석을 수행하여 MDSC의 분화를 확인하고(도 18A), qRT-PCR을 수행하여 MDSC의 활성 정도를 측정하였다(도 18B). 또한, 상기 실시예 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR 및 웨스턴 블럿팅을 수행하여 MITF 발현을 확인하였다(도 18C). 또한, 상기에서 획득한 MDSC를 이용하여 상기 실시예 <2-3>에 기재된 방법과 동일한 방법으로 T 세포 증식 억제 정도를 확인하였다(도 18D).In addition, in order to examine the effect of ML-329 on the induction of MDSC activity by TCCM, bone marrow cells were obtained in the same manner as in Example <1-1>, and the cell number of 5Х10 5 cells/ml was 24 - 96 hours in RPMI medium containing 0.5, 1 or 2 μM concentration of ML-329 (Cayman Chemical), TCCM obtained in Example <2-1> and GM-CSF of 10 ng/ml concentration in a well plate MDSC differentiation was induced. As a control, MDSCs induced to differentiate in RPMI medium containing GM-CSF were used. Then, the differentiation-induced MDSCs were recovered and FACS analysis was performed in the same manner as described in Example <2-1> to confirm the differentiation of MDSCs (FIG. 18A), and qRT-PCR was performed to The degree of activity was measured (FIG. 18B). In addition, qRT-PCR and Western blotting were performed in the same manner as in Example <2-2> to confirm MITF expression (FIG. 18C). In addition, the degree of inhibition of T cell proliferation was confirmed in the same manner as in Example <2-3> using the MDSC obtained above (FIG. 18D).
그 결과, 도 17 및 도 18에 나타낸 바와 같이, ML-329 처리군의 경우 ML-329에 의해 MITF 발현이 억제되고 MDSC의 활성이 저해되는 것을 확인하였다(도 17A 및 도 17B). 또한, ML-329 처리군의 경우 TCCM에 의한 MDSC 활성이 저해되고(도 18B 및 도 18C), MITF 발현이 저해되며(도 18C), ML-329에 의한 MDSC 활성 저해로 T 세포 증식이 증가하는 것을 확인하였다(도 18D).As a result, as shown in FIGS. 17 and 18 , in the case of the ML-329 treatment group, it was confirmed that MITF expression was suppressed and the activity of MDSC was inhibited by ML-329 ( FIGS. 17A and 17B ). In addition, in the case of the ML-329 treatment group, MDSC activity by TCCM was inhibited ( FIGS. 18B and 18C ), MITF expression was inhibited ( FIG. 18C ), and T cell proliferation was increased by inhibition of MDSC activity by ML-329. was confirmed (FIG. 18D).
또한, MDSC는 활성산소종(reactive oxygen species, ROS)이나 활성질소종(reactive nitrogen species, RNS)을 만들어 T 세포의 증식에서부터 기능까지 다양한 과정을 저해하는 것으로 알려져 있다. 이에, MITF의 발현 또는 활성 조절이 MDSC 활성에 미치는 영향을 알아보기 위하여, MITF 억제제로 베르베린 또는 ML-329를 처리한 MDSC에서 ROS 생성 변화를 확인하였다.In addition, MDSC is known to inhibit various processes from proliferation to function of T cells by making reactive oxygen species (ROS) or reactive nitrogen species (RNS). Accordingly, in order to examine the effect of MITF expression or activity regulation on MDSC activity, ROS generation changes were confirmed in MDSCs treated with berberine or ML-329 as an MITF inhibitor.
구체적으로, 상기 실시예 <1-2>의 종양형성 마우스의 비장에서 MDSC를 분리하여 10 μM 농도의 베르베린 또는 1 μM 농도의 ML-329, 상기 실시예 <2-1>에서 획득한 TCCM 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 48시간 동안 배양하여 MDSC의 분화를 유도하였다. 상기 MDSC를 수집하여 1Х105 세포 수로 분주하고, LPS를 100 ng/ml 농도로 24시간 동안 처리하였다. 이때 ROS 저해제인 NAC(N-acetyl-cysteine)을 처리/무처리하였다. 24시간 후에 DCF-DA를 넣어 37℃에서 30분간 반응하고, 유세포분석기로 ROS 생성 정도를 측정하였다. Specifically, by separating MDSC from the spleen of the tumorigenic mouse of Example <1-2>, berberine at a concentration of 10 μM or ML-329 at a concentration of 1 μM, TCCM and 10 obtained in Example <2-1> Differentiation of MDSCs was induced by culturing in RPMI medium containing ng/ml concentration of GM-CSF for 48 hours. The MDSCs were collected and divided into 1Х10 5 cells, and LPS was treated at a concentration of 100 ng/ml for 24 hours. At this time, the ROS inhibitor NAC (N-acetyl-cysteine) was treated/untreated. After 24 hours, DCF-DA was added and reacted at 37° C. for 30 minutes, and the degree of ROS generation was measured by flow cytometry.
그 결과, 도 19에 나타낸 바와 같이, 베르베린 또는 ML-329 처리군의 경우 MDSC에 의한 ROS 생성이 저해되는 것을 확인하였고, ROS 저해제를 함께 처리한 경우 ROS가 강력하게 저해되는 것을 확인하였다.As a result, as shown in FIG. 19 , it was confirmed that ROS production by MDSC was inhibited in the berberine or ML-329 treatment group, and ROS was strongly inhibited when treated with the ROS inhibitor.
아울러, RNA간섭(RNA interference, RNAi) 및 CRISPR 기술을 이용하여 MDSC에서 MITF의 발현을 억제한 후, MDSC에 의한 ROS 생성 및 T 세포 증식 변화를 확인하였다.In addition, after suppressing the expression of MITF in MDSC using RNA interference (RNAi) and CRISPR technology, ROS generation and T cell proliferation changes by MDSC were confirmed.
구체적으로, 상기 실시예 <1-1>에 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 1Х106 cells/㎖의 세포 수의 골수세포에 CRISPR 벡터, 구체적으로 pLentiCRISPR-E 벡터에 다음의 sgRNA를 클로닝하였다; MITF gRNA FW oligo: 5'-CACCGTAAGGACTTCCATCGGCACC-3'(서열번호 1), MITF gRNA RV oligo: 5'-AAACGGTGCCGATGGAAGTCCTTAC-3'(서열번호 2). 또한, 대조군은 pLentiCRISPR-E 벡터에 다음의 non-target control gRNA를 클로닝하였다; non-target control sgRNA: 5'-CACCGGTATTACTGATATTGGTGGG-3'(서열번호 3). 상기 클로닝한 컨스트럭트를 리포펙타민(lipofectamine)을 이용하여 제조사의 절차에 따라 형질감염시켰다. 형질감염 24시간 후 상기 실시예 <2-1>에서 획득한 TCCM 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 72시간 동안 배양하여 MDSC의 분화를 유도하였다. 형질감염 72시간 후, MDSC를 회수하여 상기 <2-2>에 기재된 방법과 웨스턴 블럿팅을 수행하여 MITF의 발현 및 MDSC 활성을 확인하였다(도 20A). 또한, 상기에 기재된 방법과 동일한 방법으로 MDSC에 의한 ROS 생성 정도를 측정하고(도 20B), 상기 실시예 <2-3>에 기재된 방법과 동일한 방법으로 MDSC에 의한 T 세포 증식 정도를 측정하였다(도 20C).Specifically, after obtaining bone marrow cells in the same manner as described in Example <1-1>, the following sgRNA was added to the CRISPR vector, specifically the pLentiCRISPR-E vector, into bone marrow cells having a cell number of 1Х10 6 cells/ml. cloned; MITF gRNA FW oligo: 5'-CACCGTAAGGACTTCCATCGGCACC-3' (SEQ ID NO: 1), MITF gRNA RV oligo: 5'-AAACGGTGCCGATGGAAGTCCTTAC-3' (SEQ ID NO: 2). In addition, the control group cloned the following non-target control gRNA into the pLentiCRISPR-E vector; non-target control sgRNA: 5'-CACCGGTATTACTGATATTGGTGGG-3' (SEQ ID NO: 3). The cloned construct was transfected using lipofectamine according to the manufacturer's procedure. 24 hours after transfection, MDSC differentiation was induced by culturing for 72 hours in RPMI medium containing TCCM obtained in Example <2-1> and GM-CSF at a concentration of 10 ng/ml. 72 hours after transfection, MDSCs were recovered and MITF expression and MDSC activity were confirmed by performing the method described in <2-2> and Western blotting (FIG. 20A). In addition, the degree of ROS generation by MDSCs was measured in the same manner as described above (FIG. 20B), and the degree of T cell proliferation by MDSCs was measured in the same manner as in Example <2-3> ( Figure 20C).
또한, 비교군으로 MIFT가 과발현된 MDSC에 의한 T 세포 증식 정도를 측정하였다. 구체적으로, 상기 1Х106 cells/㎖의 세포 수의 골수세포에 MITF plasmid DNA(Addgene, Cambridge, MO)를 리포펙타민을 이용하여 제조사의 절차에 따라 형질감염시켰다. 형질감염 24시간 후 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 72시간 동안 배양하여 MDSC의 분화를 유도하였다. 형질감염 3일 후, MDSC를 회수하여 상기와 같이 MITF의 발현(도 20D) 및 MDSC에 의한 T 세포 증식 정도(도 20E)를 측정하였다. In addition, as a control group, the degree of T cell proliferation by MDSC overexpressing MIFT was measured. Specifically, MITF plasmid DNA (Addgene, Cambridge, MO) was transfected into bone marrow cells having a cell number of 1Х10 6 cells/ml using lipofectamine according to the manufacturer's procedure. 24 hours after transfection, MDSC differentiation was induced by culturing for 72 hours in RPMI medium containing GM-CSF at a concentration of 10 ng/ml. Three days after transfection, MDSCs were recovered and the expression of MITF (FIG. 20D) and the degree of T cell proliferation by MDSCs (FIG. 20E) were measured as described above.
그 결과, 도 20에 나타낸 바와 같이, MITF shRNA 및 CRISPR 기술을 이용하여 MDSC에서 MITF의 발현 및 MDSC 활성이 억제되는 것을 확인하였고(도 20A), MITF 발현 억제로 MDSC에 의한 ROS 생성이 억제되고(도 20B), MDSC에 의한 T 세포 저해가 완화되는 것을 확인하였다(도 20C). 반면, MITF가 과발현된 MDSC에서는 상반된 결과가 나타나는 것을 확인하였다(도 20D 및 도 20E).As a result, as shown in FIG. 20, it was confirmed that the expression of MITF and MDSC activity were suppressed in MDSC using MITF shRNA and CRISPR technology (FIG. 20A), and ROS production by MDSC was suppressed by suppression of MITF expression ( Fig. 20B), it was confirmed that the inhibition of T cells by MDSC was alleviated (Fig. 20C). On the other hand, it was confirmed that contradictory results appeared in MDSCs overexpressing MITF ( FIGS. 20D and 20E ).
상기의 결과를 통해 MITF의 발현 또는 활성을 억제하여 MDSC의 활성을 저해할 수 있음을 알 수 있다.Through the above results, it can be seen that the activity of MDSC can be inhibited by inhibiting the expression or activity of MITF.
또한, HIV 프로테아제 저해제인 넬피나비르(Nelfinavir)는 MITF 억제제로서, MITF 유전자 발현을 억제할 수 있다. 이에 TCCM에 의한 MDSC 활성 유도에 있어서 넬피나비르의 효과를 알아보기 위하여, 상기 실시예 <1-1>에 개시된 방법과 동일한 방법으로 골수세포를 얻은 후, 5Х105 cells/㎖의 세포 수로 24-웰 플레이트에서 1, 5 또는 10 μM 농도의 넬피나비르, 상기 실시예 <2-1>에서 획득한 TCCM 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 96시간 동안 배양하여 MDSC의 분화를 유도하였다. 대조군으로 넬피나비르가 포함되지 않은 TCCM 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 분화를 유도한 MDSC를 이용하였다. 그 다음, 상기 분화 유도한 MDSC를 회수하여 상기 실시예 <2-2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하여 MITF 발현을 확인하였다(도 21A). 그 다음, 상기 실시예 <2-1>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하여 MDSC의 활성 정도를 측정하였다(도 21B). 또한, MDSC의 활성을 확인하기 위하여 상기 실시예 <2-2>에 기재된 방법으로 웨스턴 블럿팅을 수행하여 MDSC 활성을 확인하였다(도 21C).In addition, nelfinavir, an HIV protease inhibitor, is an MITF inhibitor and can suppress MITF gene expression. Therefore, in order to examine the effect of nelfinavir on the induction of MDSC activity by TCCM, bone marrow cells were obtained in the same manner as in Example <1-1>, and the cell number of 5Х10 5 cells/ml was 24- In a well plate, 1, 5 or 10 μM concentration of nelfinavir, TCCM obtained in Example <2-1>, and 10 ng/ml of MDSC were cultured in RPMI medium containing GM-CSF for 96 hours. Differentiation was induced. As a control, MDSC inducing differentiation in RPMI medium containing TCCM without nelfinavir and GM-CSF at a concentration of 10 ng/ml was used. Then, the differentiation-induced MDSCs were recovered and qRT-PCR was performed in the same manner as in Example <2-2> to confirm MITF expression (FIG. 21A). Then, qRT-PCR was performed in the same manner as described in Example <2-1> to measure the degree of MDSC activity (FIG. 21B). In addition, in order to confirm the activity of MDSC, Western blotting was performed by the method described in Example <2-2> to confirm MDSC activity (FIG. 21C).
그 결과, 도 21에 나타낸 바와 같이, 넬피나비르 처리군의 경우 넬피나비르에 의해 MITF 발현이 억제되었고, TCCM에 의한 MDSC의 활성도 저해되는 것을 확인하였다(도 21) As a result, as shown in FIG. 21, in the case of the nelfinavir-treated group, it was confirmed that MITF expression was suppressed by nelfinavir, and the activity of MDSC by TCCM was also inhibited (FIG. 21)
<실시예 8> 종양 형성 마우스에서 MDSC 활성 저하에 의한 면역반응 증진 효과 확인<Example 8> Immune response enhancement effect by lowering MDSC activity in tumor-forming mice
상기 <실시예 7>을 통해 MITF 억제제에 의해 MDSC 활성이 저해되는 것을 확인하였다. 이에, 종양 형성 마우스에서 MDSC 활성 저하에 의한 효과를 알아보기 위하여, 종양 형성 마우스에 MITF 억제제에 의해 활성이 저하된 MDSC를 투여한 후 종양 성장 변화를 확인하였다.It was confirmed that the MDSC activity was inhibited by the MITF inhibitor through <Example 7>. Therefore, in order to examine the effect of the lowered MDSC activity in tumorigenic mice, tumor growth changes were confirmed after administration of MDSCs whose activity was reduced by the MITF inhibitor to tumorigenic mice.
구체적으로, 상기 실시예 <1-2>에 기재된 방법과 동일한 방법으로 제작한 종양 형성 마우스의 비장에서 MDSC를 분리하였다. 그 다음, 상기 실시예 <7-2>에 기재된 방법과 동일한 방법으로 1 μM 농도의 ML-329, 상기 실시예 <2-1>에서 획득한 TCCM 및 10 ng/㎖ 농도의 GM-CSF가 포함된 RPMI 배지로 48시간 동안 배양하여 MDSC의 분화를 유도하였다. 48시간 후 상기 MDSC + 4T1-luc(5Х104 + 2.5Х105/100 μl)를 함께 마우스의 왼쪽 옆구리 쪽의 피하에 주입하였다. 실험 종료 시점까지 지속적으로 vernier caliper로 종양 부피를 측정하였고(종양 부피 = a2Хb/2 mm3)(a = 종양 너비, b = 종양 높이)(도 22B), IVIS(In vivo imaging system) 분석을 수행하였다(도 22C). 또한, 2주 뒤에 종양 조직에서 MDSC의 population을 항-CD11b 항체, 항-Gr1 항체, 항-CD45 항체를 이용하여 염색한 후, FACS 분석을 수행하여 확인하였다(도 22D). 대조군은 ML-329가 불포함되고, TCCM 및 GM-CSF가 포함된 RPMI 배지로 배양한 MDSC를 주입하였다.Specifically, MDSCs were isolated from the spleen of tumor-forming mice prepared by the same method as described in Example <1-2>. Then, in the same manner as in Example <7-2>, ML-329 at a concentration of 1 μM, TCCM obtained in Example <2-1> and GM-CSF at a concentration of 10 ng/ml were included. Differentiation of MDSCs was induced by culturing for 48 hours with the used RPMI medium. After 48 hours, the MDSC + 4T1-luc (5Х10 4 + 2.5Х10 5 /100 μl) was injected subcutaneously into the left flank of the mouse. Tumor volume was continuously measured with a vernier caliper until the end of the experiment (tumor volume = a 2 Хb/2 mm 3 ) (a = tumor width, b = tumor height) (Fig. 22B), and IVIS (In vivo imaging system) analysis was performed (FIG. 22C). In addition, after 2 weeks, the population of MDSCs in the tumor tissue was confirmed by staining with anti-CD11b antibody, anti-Gr1 antibody, and anti-CD45 antibody, followed by FACS analysis ( FIG. 22D ). For the control group, MDSC cultured in RPMI medium containing ML-329 and TCCM and GM-CSF was injected.
그 결과, 도 22에 나타낸 바와 같이, ML-329를 사전에 처리한 MDSC의 경우 ML-329에 의해 MDSC 활성이 저하되고, 이로 인해 종양 형성 마우스에서 면역반응이 증진되어 종양 성장이 억제되고 종양 부위에서 MDSC의 침입 정도가 약화되는 것을 확인하였다(도 22B 내지 도 22D).As a result, as shown in FIG. 22 , in the case of MDSC treated with ML-329 in advance, MDSC activity was lowered by ML-329, thereby enhancing the immune response in tumor-forming mice, suppressing tumor growth, and reducing tumor site It was confirmed that the degree of invasion of MDSC was weakened ( FIGS. 22B to 22D ).
상기 <실시예 1> 내지 <실시예 8>을 통해 암세포 미세환경에서 MDSC가 활성화되어 면역반응이 저하되고, 상기 MDSC의 활성화에 MITF가 관여하며, 상기 MITF의 억제제를 이용하여 MDSC의 활성을 억제할 수 있음을 확인하였다. Through the <Example 1> to <Example 8>, MDSC is activated in the cancer cell microenvironment, and the immune response is lowered, MITF is involved in the activation of the MDSC, and the MITF inhibitor is used to inhibit the activity of MDSC confirmed that it can be done.
이에 기초하여, 광범위한 물질들 중 MITF 억제제를 선별하여 MDSC 활성 저해 약물로 사용할 수 있음을 밝혔다. MDSC의 면역반응 저하의 완화 및 항암 면역 치료에 이용할 수 있는 유효성분을 보다 효과적으로 특정할 수 있다. 또한, 이로부터 MDSC가 활성화된 개체나 이에 의해 T 세포가 억제된 것으로 확인되는 개체에 대하여, 생체 내에 투여되는 경우 가장 적합하게 작용할 것으로 기대되는 MITF 발현 억제제를 선별해낼 수 있다. 또한, 환자는 직접 투여하기 전에 본인에게 가장 적합할 것으로 기대되는 MITF 발현 억제제를 유효성분으로 포함하는 항암 조성물 또는 항암 보조제 조성물을 선택할 수 있게 되며, 기존에 치료가 진행 중이었던 경우에도 투여 조성물 변경여부나 새로운 약물 후보군을 고려할 수 있으며, MDSC 활성 반응 결과를 예측할 수 있으므로, 암의 종류나 예후를 고려하여 가장 적절한 MITF 억제제를 선택할 수 있도록 하는 기틀을 마련한다.Based on this, it was revealed that MITF inhibitors can be selected from a wide range of substances and can be used as MDSC activity inhibitory drugs. It is possible to more effectively specify active ingredients that can be used for alleviating the decrease in the immune response of MDSC and for anticancer immunotherapy. In addition, it is possible to select an MITF expression inhibitor, which is expected to act most suitably when administered in vivo, to an individual in which MDSC is activated or an individual in which T cells are confirmed to be inhibited thereby. In addition, before direct administration, the patient can select an anti-cancer composition or anti-cancer adjuvant composition containing an MITF expression inhibitor as an active ingredient, which is expected to be most suitable for him or her, and whether to change the administration composition even if treatment is in progress However, a new drug candidate group can be considered and the result of MDSC activity can be predicted, thus laying the foundation for selecting the most appropriate MITF inhibitor considering the type and prognosis of cancer.
본 발명에 의해 선별된 MITF 억제제를 포함하는 조성물을 MDSC의 저해가 필요한 개체, 예컨대 종양을 갖는 개체에 투여하여 MDSC에 의한 면역반응 저하를 완화하는데 유용하게 사용할 수 있다. 또한, 상기 MITF 억제제를 포함하는 조성물을 항암제, 예컨대 항암면역치료제와 병용 투여하여 항암 면역치료 효율을 증대하는 보조요법으로 유용하게 사용할 수 있다.The composition comprising the MITF inhibitor selected by the present invention can be usefully used to alleviate the decrease in immune response caused by MDSC by administering the composition to an individual in need of inhibition of MDSC, for example, an individual having a tumor. In addition, the composition containing the MITF inhibitor can be effectively used as an adjuvant therapy to increase the anticancer immunotherapy efficiency by co-administration with an anticancer agent, for example, an anticancer immunotherapeutic agent.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 설명하였으나, 본 발명은 상기 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiments and may be manufactured in various different forms, and those of ordinary skill in the art to which the present invention pertains It will be understood that the present invention may be embodied in other specific forms without changing the spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
<110> SOOKMYUNG WOMEN'S UNIVERSITY Research & Business Development Foundation <120> SCRENNING METHOD FOR MDSC INHIBITOR <130> DPC210262 <150> KR 10-2020-0186826 <151> 2020-12-29 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> MITF gRNA FW oligo <400> 1 caccgtaagg acttccatcg gcacc 25 <210> 2 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> MITF gRNA RV oligo <400> 2 aaacggtgcc gatggaagtc cttac 25 <210> 3 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> control sgRNA <400> 3 caccggtatt actgatattg gtggg 25 <110> SOOKMYUNG WOMEN'S UNIVERSITY Research & Business Development Foundation <120> SCRENNING METHOD FOR MDSC INHIBITOR <130> DPC210262 <150> KR 10-2020-0186826 <151> 2020-12-29 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> MITF gRNA FW oligo <400> 1 caccgtaagg acttccatcg gcacc 25 <210> 2 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> MITF gRNA RV oligo <400> 2 aaacggtgcc gatggaagtc cttac 25 <210> 3 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> control sgRNA <400> 3 caccggtatt actgatattg gtggg 25
Claims (12)
(a) 골수 세포를 준비하는 단계;
(b) 상기 골수 세포로부터 MDSC 분화 및 활성을 유도하는 단계;
(c) 상기 (b) 단계에서 분화 및 활성 유도된 MDSC를 회수하여 MITF 유전자 또는 MITF 단백질 발현 정도를 분석하는 단계; 및
(d) 상기 (c)의 분석결과로부터 상기 특정물질 중 MDSC 활성 저해 약물을 선별하는 단계The method according to claim 1, comprising the following steps:
(a) preparing bone marrow cells;
(b) inducing MDSC differentiation and activity from the bone marrow cells;
(c) recovering the differentiation and activity-induced MDSC in step (b) and analyzing the expression level of the MITF gene or MITF protein; and
(d) selecting a drug for inhibiting MDSC activity among the specific substances from the analysis result of (c)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2022/014211 WO2023096126A1 (en) | 2020-12-29 | 2022-09-23 | Method for screening mdsc inhibitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200186826 | 2020-12-29 | ||
KR1020200186826 | 2020-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220095112A true KR20220095112A (en) | 2022-07-06 |
Family
ID=82400472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210166493A KR20220095112A (en) | 2020-12-29 | 2021-11-29 | Screening method for mdsc inhibitor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20220095112A (en) |
WO (1) | WO2023096126A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116162659A (en) * | 2023-02-10 | 2023-05-26 | 上海诚益生物科技有限公司 | In vitro gene expression intervention method of primary MDSC |
WO2023096126A1 (en) * | 2020-12-29 | 2023-06-01 | (주)모임바이오 | Method for screening mdsc inhibitor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102044620B1 (en) * | 2018-02-05 | 2019-11-13 | 가톨릭대학교 산학협력단 | Cell Therapy Composition for Preventing or Treating Immune Disease |
KR20210023306A (en) * | 2019-08-22 | 2021-03-04 | 숙명여자대학교산학협력단 | Composition for inhibiting myeloid-derived suppressor cells comprising MITF inhibitor |
KR20220095112A (en) * | 2020-12-29 | 2022-07-06 | 숙명여자대학교산학협력단 | Screening method for mdsc inhibitor |
-
2021
- 2021-11-29 KR KR1020210166493A patent/KR20220095112A/en not_active Application Discontinuation
-
2022
- 2022-09-23 WO PCT/KR2022/014211 patent/WO2023096126A1/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023096126A1 (en) * | 2020-12-29 | 2023-06-01 | (주)모임바이오 | Method for screening mdsc inhibitor |
CN116162659A (en) * | 2023-02-10 | 2023-05-26 | 上海诚益生物科技有限公司 | In vitro gene expression intervention method of primary MDSC |
CN116162659B (en) * | 2023-02-10 | 2024-01-26 | 上海诚益生物科技有限公司 | In vitro gene expression intervention method of primary MDSC |
Also Published As
Publication number | Publication date |
---|---|
WO2023096126A1 (en) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190077856A1 (en) | Method of treating diseases using kinase modulators | |
AU2015287969B2 (en) | Methods of treating cancer | |
BR112018073414A2 (en) | molecule, pharmaceutical composition, and in vitro methods for predicting and / or diagnosing and / or assessing the risk of developing and / or monitoring progression and / or monitoring the effectiveness of a therapeutic treatment and / or screening for a therapeutic treatment of a tumor, to treat and / or prevent tumor and to identify a molecule. | |
KR20220095112A (en) | Screening method for mdsc inhibitor | |
EP3506944A2 (en) | Compositions and methods for treating a tumor suppressor deficient cancer | |
US20210301349A1 (en) | Compositions and methods for treating a tumor suppressor deficient cancer | |
Cui et al. | The glycosyltransferase ST6Gal-I is enriched in cancer stem-like cells in colorectal carcinoma and contributes to their chemo-resistance | |
KR102352127B1 (en) | Composition for inhibiting myeloid-derived suppressor cells comprising MITF inhibitor | |
EP2810655A1 (en) | Novel antitumor agent and method for screening same | |
Eglenen-Polat et al. | A telomere-targeting drug depletes cancer initiating cells and promotes anti-tumor immunity in small cell lung cancer | |
JP2021523098A (en) | How to regulate antigenicity to enhance recognition by T cells | |
JP2019131505A (en) | Anti-cancer agent | |
WO2018049187A1 (en) | Compositions and methods of treating cancer | |
Marrufo | Expression and Function of Ligands for Natural Killer Cell Receptors on Triple-negative Breast Cancer Cells | |
Nakata et al. | Autophagy inhibition in pancreatic cancer cells synergizes with immunotherapy via DC activation due to increased antigenicity and adjuvanticity | |
Xu | CRISPR/Cas9 library screening identifies PIP4K2C as regulator of PVR | |
Farina | CDK5 Involvement in Cancer and in the Tumor Microenvironment | |
Lyden et al. | Tumour-derived Extracellular Vesicle and Particle Reprogramming of Interstitial Macrophages in the Lung Pre-Metastatic Niche Enhances Vascular Permeability and Metastatic Potential | |
US10578608B1 (en) | Tools to detect, track and target cancer cells in vivo | |
Hou et al. | Research on curcumin mediating immunotherapy of colorectal cancer by regulating cancer associated fibroblasts | |
Liu et al. | PPP1R15A-expressing monocytic MDSCs promote immunosuppressive liver microenvironment in fibrosis-associated hepatocellular carcinoma | |
WO2023164689A2 (en) | Targeting neuropilin 2 (nrp2) in lethal prostate cancer | |
KR101753457B1 (en) | GPR50 as biomarker for detecting cancer stem like cell and use thereof | |
WO2022271955A1 (en) | Novel targeted shrna nanoparticles for cancer therapy | |
KR20220088294A (en) | A pharmaceutical composition for enhancing the therapeutic effect of melanoma comprising an oligodendrocyte transcription factor 2 inhibitor as an active ingredient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal |