KR20220063779A - Apparatus for determining the wind speed and direction using FBG sensor - Google Patents

Apparatus for determining the wind speed and direction using FBG sensor Download PDF

Info

Publication number
KR20220063779A
KR20220063779A KR1020200148442A KR20200148442A KR20220063779A KR 20220063779 A KR20220063779 A KR 20220063779A KR 1020200148442 A KR1020200148442 A KR 1020200148442A KR 20200148442 A KR20200148442 A KR 20200148442A KR 20220063779 A KR20220063779 A KR 20220063779A
Authority
KR
South Korea
Prior art keywords
fbg sensor
wind
wind speed
wind direction
measuring unit
Prior art date
Application number
KR1020200148442A
Other languages
Korean (ko)
Other versions
KR102443507B1 (en
KR102443507B9 (en
Inventor
김정헌
김왕기
김한필
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020200148442A priority Critical patent/KR102443507B1/en
Publication of KR20220063779A publication Critical patent/KR20220063779A/en
Application granted granted Critical
Publication of KR102443507B1 publication Critical patent/KR102443507B1/en
Publication of KR102443507B9 publication Critical patent/KR102443507B9/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention relates to a wind speed and wind vane capable of detecting wind strength and wind direction using a fiber bragg gratings (FBG) sensor for which is an optical fiber sensor. A device for measuring wind direction and wind speed using an FBG sensor comprises: a frame of a square pipe shape; a measuring part; and a fiber optic.

Description

FBG 센서를 이용한 풍향 및 풍속 측정장치 {Apparatus for determining the wind speed and direction using FBG sensor}{Apparatus for determining the wind speed and direction using FBG sensor}

본 발명은 광섬유 센서인 FBG(Fiber Bragg Gratings) 센서를 이용하여 바람의 세기, 바람의 방향을 감지할 수 있는 풍속 및 풍향계에 관한 것이다.The present invention relates to a wind speed and a wind vane capable of detecting the strength and direction of a wind using a Fiber Bragg Gratings (FBG) sensor, which is an optical fiber sensor.

일반적으로 풍향 및 풍속을 측정하는 장치로 풍차형의 풍향 풍속계를 사용하고 있다.In general, a windmill type wind direction anemometer is used as a device for measuring wind direction and wind speed.

이러한 풍차형 풍향 풍속계는 풍자의 회전속도가 풍속에 비례하는 원리를 이용한 것으로 풍차를 수직 꼬리날개를 가진 유선형 동체의 선단에 붙인 구조로 되어 있다.This windmill type wind direction anemometer uses the principle that the rotational speed of the wind is proportional to the wind speed, and has a structure in which the windmill is attached to the tip of a streamlined body with vertical tail blades.

또한, 풍차형 풍향 풍속계는 풍차의 회전축에 직류 또는 교류의 소형 발전기를 장착하고, 소형 발전기에서 생성되는 기전력을 통해 풍속을 측정하도록 되어 있다.In addition, the windmill type wind direction anemometer is configured to mount a small generator of direct current or alternating current on a rotating shaft of the windmill, and measure the wind speed through the electromotive force generated by the small generator.

또한, 풍차형 풍향 풍속계는 풍향에 따른 풍향 풍속계의 회전위치를 검출하여 풍향을 측정하도록 되어 있어 구조가 복잡한 단점이 있다.In addition, the windmill type wind direction anemometer is configured to measure the wind direction by detecting the rotational position of the wind direction anemometer according to the wind direction, so that the structure is complicated.

한편, 풍차를 이용하는 방식과 다르게 탄성플레이트가 바람의 세기 및 방향에 따라 변형될 때 연동되는 전기적 저항값을 검출하는 스트레인 게이지 방식의 풍향 및 풍속 측정장치가 대한민국특허청 등록특허 제10-1168568호에 게시되어 있다.Meanwhile, unlike the method using a windmill, a strain gauge type wind direction and wind speed measuring device that detects an electrical resistance value linked when an elastic plate is deformed according to the strength and direction of wind is published in Korean Patent Office Registration No. 10-1168568 has been

그런데, 이러한 풍향 및 풍속 측정방식은 모두 전기적 신호를 검출하는 방식으로서 외부에 노출되게 설치되어야 하는 특성상 외부에서 발생되는 전기적 노이즈의 영향을 받아 측정정밀도가 떨어질 수 있고, 특히 낙뢰 또는 빗물 등에 의해 전기적인 부품의 손상 또는 파손이 발생할 수 있는 단점이 있다.However, these wind direction and wind speed measurement methods are all methods of detecting electrical signals, and due to the nature of the method to be installed to be exposed to the outside, the measurement accuracy may be deteriorated due to the influence of electrical noise generated from the outside. There is a disadvantage that damage or breakage of parts may occur.

문헌 1. 대한민국특허청 등록특허공보 제10-1168568호, "풍향 및 풍속 측정장치"Document 1. Korean Intellectual Property Office Registration Patent Publication No. 10-1168568, "Wind direction and wind speed measuring device" 문헌 2. 대한민국특허청 공개특허공보 제10-2018-0052962호, "광섬유 격자 센서를 이용한 측정장치"Document 2. Korean Patent Office Laid-Open Patent Publication No. 10-2018-0052962, "Measuring device using optical fiber grating sensor" 문헌 3. 대한민국특허청 공개특허공보 제10-2017-0021583호, "광섬유격자를 이용한 풍속 및 풍향 센서"Document 3. Korean Patent Office Laid-Open Patent Publication No. 10-2017-0021583, “Wind speed and wind direction sensor using optical fiber grid” 문헌 4. 대한민국특허청 등록특허공보 제10-1600573호, "광섬유 브래그 격자 기반 센서 및 이를 이용하는 관측 시스템"Document 4. Korean Intellectual Property Office Registration Patent Publication No. 10-1600573, "Fiber-optic Bragg grating-based sensor and observation system using the same"

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로서, 광신호를 이용하여 풍향 및 풍속을 측정할 수 있으면서 구조가 단순한 FBG 센서를 이용하여 풍향과 풍속 정확하게 측정할 수 있는 측정장치를 제공하는 것이 본 발명의 목적이다.The present invention has been devised to solve the above problems, and it is to provide a measuring device that can measure the wind direction and wind speed using an optical signal and accurately measure the wind direction and wind speed using an FBG sensor with a simple structure. It is an object of the present invention.

상기의 목적을 달성하기 위하여 본 발명에 의한 풍향 및 풍속 측정장치는 단면이 사각 파이프 형태의 프레임(101); 상기 프레임(101)의 홀(104)에 설치되어 수평 방향으로 변위하는 감지구(111)와, 일측이 상기 각각의 감지구(111)에 체결되고 타측은 변위하지 않는 구조물에 체결되는 감지구(111)의 변위에 따라 인장력을 받는 FBG 센서(113)로 구성되어 상기 프레임(101)의 네 면에 각각 설치되는 측정부(110); 및 상기 FBG 센서(113)에 연결되어 입사빔 및 반사빔을 통신하는 광섬유;로 구성된다.In order to achieve the above object, the wind direction and wind speed measuring apparatus according to the present invention includes a frame 101 having a cross section of a square pipe shape; A sensing sphere 111 installed in the hole 104 of the frame 101 and displaced in the horizontal direction, one side is fastened to each of the sensing spheres 111 and the other side is a sensing sphere fastened to a non-displaced structure ( 111) is composed of an FBG sensor 113 that receives a tensile force according to the displacement of the measuring unit 110, which is installed on each of the four sides of the frame 101; and an optical fiber connected to the FBG sensor 113 to communicate the incident beam and the reflected beam.

이때, 상기 FBG 센서(113)는 변위하지 않는 구조물에 체결된 스프링(112)과 체결됨으로써, 감지구(111)의 변위에 따라 스프링(112) 탄력의 인장력을 받도록 구성된 것을 특징으로 한다.At this time, the FBG sensor 113 is fastened with the spring 112 fastened to the non-displaceable structure, so that it is configured to receive the tensile force of the spring 112 elasticity according to the displacement of the sensing device 111 .

또한, 상기 스프링(112)은 탄력 조절이 가능하도록 구성된 것을 특징으로 한다.In addition, the spring 112 is characterized in that it is configured to be able to adjust the elasticity.

또한, 상기 감지구(111)의 수평 방향 슬라이드 이동을 안내하는 가이드(105);를 더 포함하여 구성된 것을 특징으로 한다.In addition, the guide (105) for guiding the horizontal slide movement of the detection tool (111); characterized in that it is configured to further include.

또한, 상기 프레임(101)의 네 면에 설치되는 감지구(111)는 각각 북측, 동측, 남측, 서측을 향하도록 설치된 것을 특징으로 한다.In addition, the sensing devices 111 installed on the four sides of the frame 101 are installed to face the north, the east, the south, and the west, respectively.

또한, 상기 각 측정부(110)에서 송신되는 반사빔을 수신하는 광검출부; 및 상기 광검출부에서 검출된 각 측정부(110)에서의 파장변화로 풍속 및 풍향을 연산처리하는 산출부;를 더 포함하여 구성된 것을 특징으로 한다.In addition, the photodetector for receiving the reflected beam transmitted from each of the measuring unit (110); and a calculation unit that calculates and processes wind speed and wind direction based on the wavelength change in each measurement unit 110 detected by the photodetector.

상기와 같이 구성된 본 발명은 FBG 센서를 이용한 광신호로 풍향과 풍속을 측정함으로써 외부의 전기적 영향을 받지 않아 설치 환경에 대한 제약이 대폭 완화되고, 정확한 측정값을 얻을 수 있다.In the present invention configured as described above, by measuring the wind direction and wind speed with an optical signal using the FBG sensor, the restrictions on the installation environment are greatly alleviated and accurate measurement values can be obtained because there is no external electrical influence.

또한, 구조가 간단하여 생산과 유지 및 보수가 매우 용이한 장점이 있다.In addition, since the structure is simple, there is an advantage that production, maintenance and repair are very easy.

도 1 및 도 2는 FBG 센서를 이용한 파장변화 측정원리를 설명한 도면.
도 3은 본 발명에 의한 풍향 및 풍속 측정장치를 도시한 사시도.
도 4는 본 발명에 의한 풍향 및 풍속 측정장치의 내부 구조를 도시한 도면.
도 5는 측정장치의 측정부를 확대 도시한 도면.
도 6은 어느 한 측정부에서 풍속을 측정하는 상태를 도시한 도면.
도 7 및 도 8은 측정장치에서 풍향과 풍속을 측정하는 상태를 도시한 도면.
도 9는 측정장치의 각 측정부에서 검출된 파장을 도시한 도면.
1 and 2 are views for explaining the wavelength change measurement principle using the FBG sensor.
Figure 3 is a perspective view showing a wind direction and wind speed measuring device according to the present invention.
Figure 4 is a view showing the internal structure of the wind direction and wind speed measuring apparatus according to the present invention.
5 is an enlarged view of a measuring unit of the measuring device;
6 is a view illustrating a state in which wind speed is measured by any one measuring unit.
7 and 8 are views illustrating a state in which the wind direction and wind speed are measured by the measuring device.
9 is a view showing wavelengths detected by each measuring unit of the measuring device.

이하에서는 본 발명의 바람직한 실시 예 및 첨부하는 도면을 참조하여 본 발명을 상세하게 설명하되, 도면의 동일한 참조부호는 동일한 구성요소를 지칭함을 전제하여 설명하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to preferred embodiments of the present invention and the accompanying drawings.

발명의 상세한 설명 또는 특허청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소들을 더 포함할 수 있는 것으로 이해되어야 한다.When it is said that any one component "includes" another component in the detailed description or claims of the invention, it is not construed as being limited to only the component, unless otherwise stated, and other components are not It should be understood that more may be included.

본 명세서에서 사용되는 "상부", "하부", "저부", "전방", "후방", "아래" 등의 용어는 단지 설명을 용이하게 하기 위한 것으로 도면에 도시되어 있는 바와 같은 구성요소의 배향을 지칭한다.As used herein, terms such as "upper", "lower", "bottom", "front", "rear", "below", etc. are merely for facilitating description of the components as shown in the drawings. refers to orientation.

FBG(Fiber Bragg Gratings)는 싱글모드 광섬유 코어 부분을 자외선에 노출시켜 주기적인 패턴으로 제작하며, 빔이 진행하는 횡방향으로 만든다. 자외선에 노출된 부분은 광섬유 코어의 굴절률을 증가시키게 되는데, 이 부분을 격자(grating)이라 부른다.FBG (Fiber Bragg Gratings) is made in a periodic pattern by exposing a single-mode optical fiber core to ultraviolet light, and is made in the transverse direction of the beam. The portion exposed to ultraviolet light increases the refractive index of the optical fiber core, and this portion is called a grating.

광섬유 격자는 온도나 변형률(strain)의 변화에 따라서 입사된 광신호가 광섬유 격자로부터 반사되는 광신호의 파장 변화로부터 어떤 크기의 외부 온도, 변형, 압력 등의 물리량이 가해졌는가를 측정하는데 이용된다.The optical fiber grating is used to measure the size of the external temperature, strain, pressure, and other physical quantities applied from the wavelength change of the optical signal reflected from the optical fiber grating to the incident optical signal according to the change in temperature or strain.

본 발명에 의한 측정장치의 기본 개념은 도 1과 같이 FBG 센서(10)를 외부의 영향에 변함 없는 고정구(12)에 고정시키고 FBG 센서(10)의 단부에 스프링(13)을 체결하며, 상기 스프링(13)은 외부의 영향에 의해 물리적으로 반응하는 위치 가변구(14)에 체결한다.The basic concept of the measuring device according to the present invention is to fix the FBG sensor 10 to the fixture 12 that is not affected by external influences, as shown in FIG. 1, and fasten the spring 13 to the end of the FBG sensor 10, The spring 13 is fastened to the position variable sphere 14 that physically responds to external influences.

스프링(13)은 FBG 센서(10)에 일정한 탄력을 가하고 있는 상태에서 위치 가변구(14)가 변위(예를 들면, 위치 가변구(14)가 ②위치에서 ①위치로 변화)하면 FBG 센서(10)에 작용하는 스프링(13)의 탄력이 변화하게 된다.The spring 13 applies a certain elasticity to the FBG sensor 10 and when the position variable ball 14 is displaced (for example, the position variable ball 14 changes from position ② to position ①), the FBG sensor ( The elasticity of the spring 13 acting on 10) is changed.

FBG 센서(10)에 작용하는 스프링(13)의 탄력 변화에 의해 FBG 센서(10)에 인장 또는 압축이 일어나 격자의 주기가 변하게 되므로 FBG 센서(10)의 격자에서 반사되는 광신호의 파장이 도 2와 같이 변화하게 되고, 도시하지 않은 측정장치의 광검출부 및 산출부는 이를 분석하여 위치 가변구(14)를 변위시킨 외력(풍속)을 측정한다.Due to the change in elasticity of the spring 13 acting on the FBG sensor 10, tension or compression occurs in the FBG sensor 10 and the period of the grating changes, so the wavelength of the light signal reflected from the grating of the FBG sensor 10 is also 2, and the photodetector and calculation unit of the measuring device (not shown) analyzes this and measures the external force (wind speed) that displaces the variable position sphere 14 .

본 발명에 의한 FBG 센서를 이용한 풍향 및 풍속 측정장치는 상기와 같은 원리를 이용한 것으로서 도 3에 도시한 바와 같이, 육면체 형태로 프레임(101)이 형성되고 상, 하부 면을 제외한 전, 후, 좌, 우 네 면에 각각 풍속을 측정할 수 있는 측정부(110)를 구성한다.The wind direction and wind speed measuring apparatus using the FBG sensor according to the present invention uses the same principle as described above, and as shown in FIG. 3 , the frame 101 is formed in a hexahedral shape, and the front, rear, and left sides are excluded except for the upper and lower surfaces. , and the right four sides constitute a measuring unit 110 that can measure the wind speed, respectively.

프레임(101)의 네 면에 형성된 측정부(110)는 각각 동측 측정부(110_E), 서측 측정부(110_W), 남측 측정부(110_S), 북측 측정부(110_N)로 작동한다.The measurement units 110 formed on four surfaces of the frame 101 operate as an ipsilateral measurement unit 110_E, a west measurement unit 110_W, a southern measurement unit 110_S, and a north side measurement unit 110_N, respectively.

이를 위해 측정장치(110)를 설치할 때 동측 측정부(110_E)는 동측을 향하고, 서측 측정부(110_W)는 서측을 향하며, 남측 측정부(110_S)는 남측을 향하고, 북측 측정부(110_N)는 북측을 향하도록 설치한다.To this end, when the measuring device 110 is installed, the ipsilateral measuring unit 110_E faces the ipsilateral side, the west measuring unit 110_W faces the west side, the south measuring unit 110_S faces the south side, and the north measuring unit 110_N faces the south side. Install to face north.

상기 각 동측 측정부(110_E), 서측 측정부(110_W), 남측 측정부(110_S) 및 북측 측정부(110_N)를 구성하는 측정부(110)는 도 5에 도시한 바와 같이 구성된다. The measuring unit 110 constituting each of the ipsilateral measuring unit 110_E, the west measuring unit 110_W, the south measuring unit 110_S, and the north measuring unit 110_N is configured as shown in FIG. 5 .

프레임(101)에 형성된 홀(104)에 감지구(111)가 삽입된다.The detection tool 111 is inserted into the hole 104 formed in the frame 101 .

상기 감지구(111)는 외력인 바람에 의해 수평 방향으로 쉽게 움직이는데, 이를 위해 감지구(111)는 쉽게 변위할 수 있도록 무게가 매우 가벼운 소재로 성형하는 것이 바람직하다.The sensing sphere 111 is easily moved in the horizontal direction by the wind, which is an external force. For this purpose, the sensing sphere 111 is preferably formed of a material having a very light weight so that it can be easily displaced.

그리고 상기 감지구(111)는 FBG 센서(113)의 일측단과 고정구(114)로 체결도고, 상기 FBG 센서(113)의 타측단은 스프링(112)을 통해 고정된 구조물(예를 들면, 본 발명의 프레임(111))에 체결한다.And the detection unit 111 is fastened with one end of the FBG sensor 113 and a fixture 114 , and the other end of the FBG sensor 113 is fixed to a structure (eg, the present invention) through a spring 112 . of the frame 111).

스프링(112)을 통해 FBG 센서(113)를 체결, 고정하는 구조물은 프레임(101) 또는 지면과 같이 바람이 불 때 즉, 외력이 작용하였을 때 움직이지 않는 부분을 의미한다.The structure for fastening and fixing the FBG sensor 113 through the spring 112 means a part that does not move when the wind blows, that is, when an external force is applied, such as the frame 101 or the ground.

이와 같이 구성된 측정부(110)는 다음과 같이 작동한다.The measuring unit 110 configured as described above operates as follows.

바람이 불면 풍압에 의해 감지구(111)가 프레임(101) 내측으로 슬라이드 이동하고, 감지구(111)에 고정구(114)로 체결된 FBG 센서(113)는 감지구(111)와 함께 연동하여 프레임(101) 내측으로 슬라이드 이동한다.When the wind blows, the detection tool 111 slides inside the frame 101 by wind pressure, and the FBG sensor 113 coupled to the detection tool 111 with the fixture 114 interlocks with the detection tool 111 to It slides inside the frame 101 .

이때, 풍압에 의해 감지구(111)가 수평 방향의 성분으로만 정확하게 슬라이드 이동할 수 있도록 가이드(105)를 설치함으로써, 풍압에 의해 감지구(111)가 수평 방향으로만 이동하도록 하여 정확하게 측정값을 구할 수 있도록 구성하는 것이 바람직하다.At this time, by installing the guide 105 so that the sensing sphere 111 can slide accurately only in the horizontal direction by the wind pressure, the sensing sphere 111 moves only in the horizontal direction by the wind pressure to accurately measure the measured value. It is preferable to configure it so that it can be obtained.

상기 가이드는 슬라이드 이동의 안내하는 종래의 여러 가이드(예를 들면, LM가이드 등)를 사용하므로 이에 대한 상세한 설명은 생략한다.Since the guide uses several conventional guides (eg, LM guides, etc.) for guiding the slide movement, a detailed description thereof will be omitted.

FBG 센서(113)가 프레임(101) 내측으로 슬라이드 이동하여 변위하면, 스프링(112)에 의해 FBG 센서(113)에 인장력이 가해지고, 인장력이 가해진 FBG 센서(113)의 격자의 주기 변화에 의해 광섬유(115)에서 입사되는 빔의 파장이 변화하고, FBG 센서(113)에서 반사되는 빔의 파장의 변화를 도시하지 않은 광검출부가 측정하여 산출부에서 이를 연산하여 감지구(111)를 슬라이드 이동시킨 바람의 풍속을 계산한다.When the FBG sensor 113 slides inside the frame 101 and is displaced, a tensile force is applied to the FBG sensor 113 by the spring 112, and by the change of the period of the grid of the FBG sensor 113 to which the tensile force is applied The wavelength of the beam incident from the optical fiber 115 changes, and the photodetector (not shown) measures the change in the wavelength of the beam reflected from the FBG sensor 113, calculates it in the calculator, and slides the detection tool 111 Calculate the wind speed of the

도 6의 (a)와 같이 측정부(110)의 감지구(111)에 대해 수직 방향으로 바람이 불 때는 측정된 풍압이 전부 풍속으로 측정되는데, 도 6의 (b)와 같이 감지구(111)에 θ각도 만큼 기울어진 방향으로 바람이 불면 이 측정부에서는 " 풍속×sinθ " 값으로 측정된다.When the wind blows in the vertical direction with respect to the sensing sphere 111 of the measuring unit 110 as shown in (a) of FIG. 6 , the measured wind pressure is all measured as the wind speed. ), if the wind blows in the direction inclined by the angle θ, it is measured as “wind speed × sinθ” in this measurement unit.

도 6에서 (b)와 같이 감지구(111)와 소정 각도로 경사진 각도로 부는 바람의 풍속과 풍향은 어느 한 측정부(110)와 이웃하는 다른 측정부(110)와 함께 측정, 연산되어 풍속과 풍향을 측정할 수 있다. 이에 대한 설명은 이후에서 상세하게 설명한다.As shown in FIG. 6(b), the wind speed and wind direction of the wind blowing at an angle inclined at a predetermined angle with the sensing device 111 are measured and calculated together with one measuring unit 110 and another neighboring measuring unit 110. Wind speed and direction can be measured. This will be described in detail later.

본 발명에 의한 측정장치(100)는 도 4와 같이 단면이 사각 형태인 프레임(101)의 네 면에 각각 홀(104)을 형성하고, 네 개의 홀에 각각 측정부(110)를 설치한다.In the measuring device 100 according to the present invention, as shown in FIG. 4 , the holes 104 are formed on each of the four sides of the frame 101 having a rectangular cross section, and the measuring units 110 are installed in each of the four holes.

이때, 각 측정부(110)의 감지구(111)은 각각 동, 서, 남, 북 방향을 향햐도록 설치하여야 한다.At this time, the sensing devices 111 of each measuring unit 110 should be installed to face the east, west, south, and north directions, respectively.

상기와 같이 동, 서, 남, 북 방향으로 설치된 측정부(110)는 각각 동측 측정부(110_E), 서측 측정부(110_W), 남측 측정부(110_S), 북측 측정부(110_N)로 구성된다.As described above, the measuring unit 110 installed in the east, west, south, and north directions includes an ipsilateral measuring unit 110_E, a west measuring unit 110_W, a southern measuring unit 110_S, and a north measuring unit 110_N, respectively. .

그리고 동측 측정부(110_E), 서측 측정부(110_W), 남측 측정부(110_S), 북측 측정부(110_N)의 FBG 센서(113)와 연결되는 각각의 광섬유(115)는 커플러(102)를 통해 광 검출부(미도시)로 연결되는 광섬유(103)와 연결된다.And each optical fiber 115 connected to the FBG sensor 113 of the ipsilateral measuring unit 110_E, the west measuring unit 110_W, the south measuring unit 110_S, and the north measuring unit 110_N is connected to the coupler 102 through the coupler 102. It is connected to the optical fiber 103 that is connected to a light detection unit (not shown).

광섬유(103)를 통해 입사되는 빔은 커플러(102)를 통해 동측 측정부(110_E), 서측 측정부(110_W), 남측 측정부(110_S), 북측 측정부(110_N)의 광섬유(115)로 입사되고, FBG 센서(113)에서 격자에서 반사되는 빔(이 반사빔은 도 9와 같이 파장이 변하여 반사됨)이 광섬유(103)를 통해 광검출부(미도시) 및 산출부(미도시)를 통해 측정, 연산되어 풍속과 풍향이 측정된다.The beam incident through the optical fiber 103 is incident on the optical fiber 115 of the ipsilateral measuring unit 110_E, the west measuring unit 110_W, the south measuring unit 110_S, and the north measuring unit 110_N through the coupler 102 . The beam reflected from the grating from the FBG sensor 113 (the reflected beam is reflected by changing the wavelength as shown in FIG. 9) is transmitted through the optical fiber 103 through a photodetector (not shown) and a calculator (not shown). The wind speed and direction are measured and calculated.

도 7은 본 발명에 의한 측정장치(100)를 향해 북풍이 불고 있는 상태이다.7 is a state in which the north wind is blowing toward the measuring device 100 according to the present invention.

이 때에는, 동측 측정부(110_E), 서측 측정부(110_W), 남측 측정부(110_S)의 감지구(111)는 수평 방향으로 슬라이드 이동하지 않고, 북측 측정부(110_N)의 감지구(111)만 프레임(101) 내측으로 슬라이드 이동한다.At this time, the detection sphere 111 of the ipsilateral measurement unit 110_E, the western measurement unit 110_W, and the southern measurement unit 110_S does not slide in the horizontal direction, but the detection sphere 111 of the northern measurement unit 110_N. Only the frame 101 slides inside.

따라서, 동측 측정부(110_E), 서측 측정부(110_W), 남측 측정부(110_S)의 감지구(111)는 슬라이드 이동하지 않으므로 이들의 입사 광신호는 파장의 변화가 없이 광검출부로 수신된다.Accordingly, since the sensing spheres 111 of the ipsilateral measuring unit 110_E, the west measuring unit 110_W, and the south measuring unit 110_S do not slide, their incident optical signals are received by the photodetector without a change in wavelength.

그리고 북측 측정부(110_N)의 감지구(111)만 슬라이드 이동하면서 북측 측정부(110_N)로 입사된 광신호는 파장이 변화하여 광검출부에서 검출된다.In addition, the optical signal incident to the northern measuring part 110_N while only the detection sphere 111 of the northern measuring part 110_N slides and moves, the wavelength is changed and detected by the optical detecting part.

다른 측정부에서는 입사빔의 파장 변화가 없고, 북측 측정부(110_N)에만 입사빔의 파장 변화를 감지하여 산출부에서는 현재 바람이 부는 방향이 북풍으로 판단하고, 이때의 풍속은 다음과 같다.There is no change in the wavelength of the incident beam in the other measuring units, and only the northern measuring unit 110_N detects the change in the wavelength of the incident beam, and the calculating unit determines that the current wind direction is the north wind, and the wind speed at this time is as follows.

풍속 = k × Δλ_NWind speed = k × Δλ_N

상기, Δλ_N는 북측 측정부(110_N)에서의 파장 변화이고, k는 비례상수이며, 스프링(112)의 특성, 감지면(111)의 위치변화시 마찰 등을 반영하는 비례상수이다.The Δλ_N is a change in wavelength in the northern measuring unit 110_N, k is a proportional constant, and is a proportional constant that reflects the characteristics of the spring 112 and friction when the position of the sensing surface 111 changes.

도 8은 본 발명에 의한 측정장치(100)를 향해 북동풍이 불고 있는 상태이다.8 is a state in which the northeast wind is blowing toward the measuring device 100 according to the present invention.

이 상태에서는 북측 측정부(110_N)와 동측 측정부(110_E)에서의 파장 변화가 측정된다. 북측 측정부(110_N)와 동측 측정부(110_E)에서 동시에 파장 변화가 있으므로 산출부에서는 북동풍으로 판단하고, 이때의 풍속은 다음과 같다.In this state, a change in wavelength is measured in the north measurement unit 110_N and the ipsilateral measurement unit 110_E. Since there is a change in wavelength at the north side measuring unit 110_N and the ipsilateral measuring unit 110_E at the same time, the calculating unit determines that it is a northeast wind, and the wind speed at this time is as follows.

풍속 = k × (Δλ_N + Δλ_E)Wind speed = k × (Δλ_N + Δλ_E)

상기, Δλ_N는 북측 측정부(110_N)에서의 파장 변화이고, Δλ_E는 동측 측정부(110_E)에서의 파장 변화이며, 비례상수 k는 비례상수로서 스프링(112)의 특성, 감지면(111)의 위치변화시 마찰 등을 반영하는 비례상수이다.Wherein, Δλ_N is a change in wavelength in the northern measuring unit 110_N, Δλ_E is a change in wavelength in the ipsilateral measuring unit 110_E, and the proportional constant k is a proportional constant. It is a proportional constant that reflects friction when the position changes.

그리고 북북동풍처럼 풍향을 정밀하게 측정할 때는 북측 측정부(110_N)와 동측 측정부(110_E)에서 각 파장변화량 크기를 비교함으로써 정밀한 풍향을 측정할 수 있다.In addition, when the wind direction is precisely measured like the north-northeast wind, the precise wind direction can be measured by comparing the magnitude of each wavelength change in the north measuring unit 110_N and the ipsilateral measuring unit 110_E.

또한, 바람이 멈추면 스프링(112)의 탄력으로 감지구(111)가 초기 위치로 복귀한다.In addition, when the wind stops, the sensor 111 returns to the initial position due to the elasticity of the spring 112 .

측정부(110)를 구성하는 스프링(112)은 탄력 조절이 가능한 스프링(112)으로 구성함으로써, 측정장치(100)가 설치되는 장소의 환경에 따라 스프링(112) 탄력을 조절하도록 구성할 수도 있다.The spring 112 constituting the measurement unit 110 may be configured to adjust the elasticity of the spring 112 according to the environment of the place where the measurement device 100 is installed by configuring the spring 112 with an adjustable elasticity. .

상기와 같이 구성된 본 발명은 FBG 센서를 이용한 광신호로 풍향과 풍속을 측정함으로써 외부의 전기적 영향을 받지 않아 설치 환경에 대한 제약이 대폭 완화되고, 정확한 측정값을 얻을 수 있다.In the present invention configured as described above, by measuring the wind direction and wind speed with an optical signal using the FBG sensor, the restrictions on the installation environment are greatly alleviated and accurate measurement values can be obtained because there is no external electrical influence.

한편, 일반적으로 온도에 의해 FBG의 격자 주기가 변하기 때문에 이에 대한 보정이 필요하지만, 본 발명에서는 4개의 센서를 사용하고 4개의 센서가 동일한 온도변화 조건하에 있으므로 온도 보정이 필요 없게 된다.On the other hand, since the grating period of the FBG is generally changed by temperature, correction is required. However, in the present invention, since four sensors are used and the four sensors are under the same temperature change condition, temperature correction is not necessary.

또한, 구조가 간단하여 생산과 유지 및 보수가 매우 용이한 장점이 있다.In addition, since the structure is simple, there is an advantage that production, maintenance and repair are very easy.

이상 상술한 실시 예를 통해 본 발명의 기술적 사상을 살펴보았다.The technical idea of the present invention has been reviewed through the above-described embodiments.

본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기재사항으로부터 상기 살펴본 실시 예를 다양하게 변형하거나 변경할 수 있음은 자명하다.It is apparent that those of ordinary skill in the art to which the present invention pertains can variously modify or change the above-described embodiments from the description of the present invention.

또한, 비록 명시적으로 도시되거나 설명되지 아니하였다 하여도 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기재사항으로부터 본 발명에 의한 기술적 사상을 포함하는 다양한 형태의 변형을 할 수 있음은 자명하며, 이는 여전히 본 발명의 권리범위에 속한다.In addition, even if not explicitly shown or described, a person of ordinary skill in the art to which the present invention pertains may make various modifications including the technical idea according to the present invention from the description of the present invention. is self-evident, which still falls within the scope of the present invention.

첨부하는 도면을 참조하여 설명된 상기의 실시 예는 본 발명을 설명하기 위한 목적으로 기술된 것이며 본 발명의 권리범위는 이러한 실시 예에 국한되지 아니한다.The above embodiments described with reference to the accompanying drawings have been described for the purpose of explaining the present invention, and the scope of the present invention is not limited to these embodiments.

100 : 측정장치
101 : 프레임
102 : 커플러
103 : 광섬유
104 : 홀
105 : 가이드
110 : 측정부
110_E : 동측 측정부
110_W : 서측 측정부
110_S : 남측 측정부
110_N : 북측 측정부
111 : 감지구
112 : 스프링
113 : FBG 센서
114 : 고정구
115 : 광섬유
100: measuring device
101: frame
102: coupler
103: optical fiber
104: Hall
105: guide
110: measurement unit
110_E: ipsilateral measurement part
110_W : West Measuring Unit
110_S : South measurement part
110_N: North measurement part
111: detection sphere
112: spring
113: FBG sensor
114: fixture
115: optical fiber

Claims (6)

단면이 사각 파이프 형태의 프레임(101);
상기 프레임(101)의 홀(104)에 설치되어 수평 방향으로 변위하는 감지구(111)와, 일측이 상기 각각의 감지구(111)에 체결되고 타측은 변위하지 않는 구조물에 체결되는 감지구(111)의 변위에 따라 인장력을 받는 FBG 센서(113)로 구성되어 상기 프레임(101)의 네 면에 각각 설치되는 측정부(110); 및
상기 FBG 센서(113)에 연결되어 입사빔 및 반사빔을 통신하는 광섬유;로 구성된 것을 특징으로 하는 FBG 센서를 이용한 풍향 및 풍속 측정장치.
Frame 101 in the form of a square pipe in cross section;
A sensing sphere 111 installed in the hole 104 of the frame 101 and displaced in the horizontal direction, one side is fastened to each of the sensing spheres 111, and the other side is fastened to a structure that does not displace ( 111) is composed of an FBG sensor 113 that receives a tensile force according to the displacement of the measuring unit 110, which is installed on each of the four sides of the frame 101; and
An optical fiber connected to the FBG sensor 113 to communicate the incident beam and the reflected beam;
제1항에 있어서,
상기 FBG 센서(113)는 변위하지 않는 구조물에 체결된 스프링(112)과 체결됨으로써, 감지구(111)의 변위에 따라 스프링(112) 탄력의 인장력을 받도록 구성된 것을 특징으로 하는 FBG 센서를 이용한 풍향 및 풍속 측정장치.
According to claim 1,
Wind direction using the FBG sensor, characterized in that the FBG sensor 113 is configured to receive the tensile force of the spring 112 elasticity according to the displacement of the sensing device 111 by being engaged with the spring 112 fastened to the non-displaceable structure. and wind speed measuring devices.
제2항에 있어서,
상기 스프링(112)은 탄력 조절이 가능하도록 구성된 것을 특징으로 하는 FBG 센서를 이용한 풍향 및 풍속 측정장치.
3. The method of claim 2,
The spring 112 is a wind direction and wind speed measuring device using an FBG sensor, characterized in that configured to be able to adjust the elasticity.
제1항에 있어서,
상기 감지구(111)의 수평 방향 슬라이드 이동을 안내하는 가이드(105);를 더 포함하여 구성된 것을 특징으로 하는 FBG 센서를 이용한 풍향 및 풍속 측정장치.
According to claim 1,
A wind direction and wind speed measuring apparatus using an FBG sensor, characterized in that it further comprises; a guide (105) for guiding the horizontal slide movement of the detection unit (111).
제1항에 있어서,
상기 프레임(101)의 네 면에 설치되는 감지구(111)는 각각 북측, 동측, 남측, 서측을 향하도록 설치된 것을 특징으로 하는 FBG 센서를 이용한 풍향 및 풍속 측정장치.
According to claim 1,
The wind direction and wind speed measuring apparatus using the FBG sensor, characterized in that the detection ports 111 installed on the four sides of the frame 101 are installed to face the north, the east, the south, and the west, respectively.
제1항에 있어서,
상기 각 측정부(110)에서 송신되는 반사빔을 수신하는 광검출부; 및
상기 광검출부에서 검출된 각 측정부(110)에서의 파장변화로 풍속 및 풍향을 연산처리하는 산출부;를 더 포함하여 구성된 것을 특징으로 하는 FBG 센서를 이용한 풍향 및 풍속 측정장치.
According to claim 1,
a photodetector for receiving the reflected beam transmitted from each of the measuring units 110; and
Wind direction and wind speed measuring apparatus using an FBG sensor, characterized in that it further comprises; a calculation unit for calculating and processing wind speed and wind direction based on the wavelength change in each measuring unit 110 detected by the photodetector.
KR1020200148442A 2020-11-09 2020-11-09 Apparatus for determining the wind speed and direction using FBG sensor KR102443507B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200148442A KR102443507B1 (en) 2020-11-09 2020-11-09 Apparatus for determining the wind speed and direction using FBG sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200148442A KR102443507B1 (en) 2020-11-09 2020-11-09 Apparatus for determining the wind speed and direction using FBG sensor

Publications (3)

Publication Number Publication Date
KR20220063779A true KR20220063779A (en) 2022-05-18
KR102443507B1 KR102443507B1 (en) 2022-09-16
KR102443507B9 KR102443507B9 (en) 2023-04-12

Family

ID=81800616

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200148442A KR102443507B1 (en) 2020-11-09 2020-11-09 Apparatus for determining the wind speed and direction using FBG sensor

Country Status (1)

Country Link
KR (1) KR102443507B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950464A (en) * 2023-01-05 2023-04-11 水利部交通运输部国家能源局南京水利科学研究院 Sensing device and sensing method for sensing optical fiber area of wall-mounted wading structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085487A (en) * 2009-10-15 2011-04-28 Nippon Steel & Sumikin Welding Co Ltd Sensor and seismometer using sensor
KR20110125504A (en) * 2010-05-13 2011-11-21 한양대학교 산학협력단 Anemovane
KR101168568B1 (en) 2010-03-22 2012-07-25 오철규 Apparatus for measuring the wind and wind velocity
CN103698555A (en) * 2013-12-24 2014-04-02 北京佳讯飞鸿电气股份有限公司 Disaster-prevention optical-fiber wind speed and direction monitoring system for railway
KR101600573B1 (en) 2014-09-30 2016-03-07 에스제이포토닉스 주식회사 Sensor based on fiber bragg gratings and observation system using the same
KR20170021583A (en) 2015-08-18 2017-02-28 호남대학교 산학협력단 apparatus for measuring speed and direction of wind
KR20180052962A (en) 2016-11-11 2018-05-21 에스제이포토닉스 주식회사 Measuring device using fiber bragg grating sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085487A (en) * 2009-10-15 2011-04-28 Nippon Steel & Sumikin Welding Co Ltd Sensor and seismometer using sensor
KR101168568B1 (en) 2010-03-22 2012-07-25 오철규 Apparatus for measuring the wind and wind velocity
KR20110125504A (en) * 2010-05-13 2011-11-21 한양대학교 산학협력단 Anemovane
CN103698555A (en) * 2013-12-24 2014-04-02 北京佳讯飞鸿电气股份有限公司 Disaster-prevention optical-fiber wind speed and direction monitoring system for railway
KR101600573B1 (en) 2014-09-30 2016-03-07 에스제이포토닉스 주식회사 Sensor based on fiber bragg gratings and observation system using the same
KR20170021583A (en) 2015-08-18 2017-02-28 호남대학교 산학협력단 apparatus for measuring speed and direction of wind
KR20180052962A (en) 2016-11-11 2018-05-21 에스제이포토닉스 주식회사 Measuring device using fiber bragg grating sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950464A (en) * 2023-01-05 2023-04-11 水利部交通运输部国家能源局南京水利科学研究院 Sensing device and sensing method for sensing optical fiber area of wall-mounted wading structure
CN115950464B (en) * 2023-01-05 2023-08-18 水利部交通运输部国家能源局南京水利科学研究院 Wall-attached wading structure sensing optical fiber area sensing device and sensing method

Also Published As

Publication number Publication date
KR102443507B1 (en) 2022-09-16
KR102443507B9 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
US7403294B2 (en) Optical measurement device and method
CN108519175B (en) Variable-range soil pressure measuring method based on Bragg fiber grating
EP2482040B1 (en) Optical Encoder with Misalignment Detection and Adjustment Method Associated Therewith
KR101496688B1 (en) Device for optically measuring the curvature of a rotor blade of a wind power plant
US8276462B2 (en) Fiber strain sensor and measurement system for repeated large deformation
US8120759B2 (en) Optical transmission strain sensor for wind turbines
CN108760109B (en) Variable-range soil pressure measuring device and method based on Bragg fiber grating
US7424832B1 (en) Cable tensiometer for aircraft
CN107002639A (en) For the rotor blade and the section bar of rotor blade of the method, the method for recognizing the ice on wind turbine, the acceleration transducer for rotor blade including the acceleration transducer that monitor wind turbine
CN107735569A (en) Method and wind turbine for the independent deflection control of the rotor blade of wind turbine
GB2465790A (en) System to measure load on a wind turbine blade
KR20170021583A (en) apparatus for measuring speed and direction of wind
CN108139284B (en) Optical fiber pressure sensor and method
CN108020167A (en) A kind of stationary slope level device based on fiber grating
KR102443507B1 (en) Apparatus for determining the wind speed and direction using FBG sensor
Woschitz et al. Design and calibration of a fiber-optic monitoring system for the determination of segment joint movements inside a hydro power dam
CN110892148B (en) Assembly and method for at least one selected from monitoring and controlling a wind turbine
CN108168467B (en) FP interferometric angular transducer
HU196259B (en) Optoelktromechanical measuring transducer
Marković et al. Application of fiber-optic curvature sensor in deformation measurement process
KR20070013734A (en) Acceleration and inclination measurement system based on fiber bragg gratings
CN110081839B (en) Fiber bragg grating wide-range inclination sensor with cam structure
Fujiwara et al. All-optical fiber anemometer based on the pitot-static tube
Fujiwara et al. Optical fiber anemometer based on a multi-FBG curvature sensor
CN110095250A (en) A kind of low-speed wind tunnel balance strut adjusting zero method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
G170 Re-publication after modification of scope of protection [patent]