KR20220060944A - Combined system of power generation, desalination and water electrolysis using ocean thermal energy conversion - Google Patents

Combined system of power generation, desalination and water electrolysis using ocean thermal energy conversion Download PDF

Info

Publication number
KR20220060944A
KR20220060944A KR1020200147184A KR20200147184A KR20220060944A KR 20220060944 A KR20220060944 A KR 20220060944A KR 1020200147184 A KR1020200147184 A KR 1020200147184A KR 20200147184 A KR20200147184 A KR 20200147184A KR 20220060944 A KR20220060944 A KR 20220060944A
Authority
KR
South Korea
Prior art keywords
low
seawater
pressure
hydrogen
water electrolysis
Prior art date
Application number
KR1020200147184A
Other languages
Korean (ko)
Inventor
이호생
임승택
지호
김영석
김현주
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to KR1020200147184A priority Critical patent/KR20220060944A/en
Publication of KR20220060944A publication Critical patent/KR20220060944A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oceanography (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Development (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a seawater power generation freshwater-hydrogen complex system which produces low-pressure steam through open temperature differential power generation using a temperature difference between surface seawater and deep seawater, generate electricity by passing the produced steam through a turbine, produces fresh water by condensation through heat exchange between the deep seawater and the steam in a condenser, produces hydrogen through water electrolysis supply of the fresh water, maximizes power generation, desalination and the production hydrogen resources, and enables separation into hydrogen and oxygen without desalination of the steam using water electrolysis technology.

Description

해수발전 담수-수소 복합시스템{COMBINED SYSTEM OF POWER GENERATION, DESALINATION AND WATER ELECTROLYSIS USING OCEAN THERMAL ENERGY CONVERSION}Seawater power generation desalination-hydrogen complex system

본 발명은 해수발전 담수-수소 복합시스템에 관한 것으로서, 보다 구체적으로는, 표층 해수와 심층 해수의 온도차를 이용한 개방형 온도차발전을 통해 저압 증기를 생산하고 생산된 증기가 터빈을 통과하여 전력을 생산하고, 응축기에서 심층수와 증기와의 열교환을 통해 응축되어 담수를 생산하며 담수의 수전해 공급을 통해 수소를 생산함은 물론, 발전과 담수, 수소 각 자원의 생산을 극대화 하며, 수전해 기술을 이용하여 증기를 담수화 하지 않고 수소와 산소로 분리가 가능하도록 하는 해수발전 담수-수소 복합시스템에 관한 것이다.The present invention relates to a seawater power generation desalination-hydrogen complex system, and more specifically, produces low-pressure steam through open temperature differential power generation using the temperature difference between surface seawater and deep seawater, and the produced steam passes through a turbine to produce electricity, , it produces fresh water by condensing through heat exchange with deep water and steam in the condenser, and produces hydrogen through water electrolysis supply of fresh water, as well as maximizing power generation, fresh water, and hydrogen production of each resource, and using water electrolysis technology to It relates to a seawater power generation desalination-hydrogen complex system that enables separation into hydrogen and oxygen without desalination of steam.

미래 주요 자원인 에너지와 물을 안정적으로 확보하는 방안으로서 기존 해수온도차발전은 랭킨사이클을 이용하여 발전 출력은 높으나 담수의 확보와 이를 활용한 수소 및 산소 생산이 제한된다. 반면 기존 증발식, RO 분리막 등 해수담수화 설비는 대규모의 개발이 요하며, 상당한 화석 에너지가 소요된다.As a method to stably secure energy and water, which are major future resources, the existing seawater temperature differential power generation uses the Rankine cycle to generate high power output, but the securing of fresh water and the production of hydrogen and oxygen using it are limited. On the other hand, existing seawater desalination facilities such as evaporative and RO separation membranes require large-scale development and require significant fossil energy.

특히, 남태평양 도서국에서는 전력뿐만 아니라 식수 부족 문제가 발생하고 있기 때문에, 개방형 온도차발전을 통하여 발전된 전력의 공급이 가능하며, 응축된 담수는 식수 및 생활용수로 활용이 가능하고, 저장된 담수는 수전해 장치로 공급되어 수소와 산소로 분리시켜 저장할 수 있는 기술의 개발이 필요한 실정이다.In particular, in the South Pacific island countries, not only electricity but also drinking water is scarce, so it is possible to supply power generated through open temperature differential power generation, and the condensed fresh water can be used for drinking and living water, and the stored fresh water is electrolyzed. There is a need to develop a technology that can be supplied to hydrogen and oxygen and stored after being separated into hydrogen and oxygen.

한국등록특허 10-2048192호Korean Patent Registration No. 10-2048192

본 발명의 해결하고자 하는 과제는 표층 해수와 심층 해수의 온도차를 이용한 개방형 온도차발전을 통해 저압 증기를 생산하고 생산된 증기가 터빈을 통과하여 전력을 생산하고, 응축기에서 심층수와 증기와의 열교환을 통해 응축되어 담수를 생산하며 담수의 수전해 공급을 통해 수소를 생산함은 물론, 발전과 담수, 수소 각 자원의 생산을 극대화 하며, 수전해 기술을 이용하여 증기를 담수화 하지 않고 수소와 산소로 분리가 가능하도록 하는 해수발전 담수-수소 복합시스템을 제공하고자 한다.The problem to be solved by the present invention is to produce low-pressure steam through open temperature differential power generation using the temperature difference between surface seawater and deep seawater, and the produced steam passes through a turbine to produce electricity, and through heat exchange with deep water and steam in a condenser It is condensed to produce fresh water and produces hydrogen by supplying fresh water through water electrolysis, as well as maximizing the production of power generation, fresh water, and hydrogen resources. We want to provide a seawater power generation desalination-hydrogen complex system.

본 발명의 일 실시예에 따른 해수발전 담수-수소 복합시스템은 표층해수를 끌어오는 표층해수 펌프, 상기 표층해수 펌프를 통해 끌어온 표층해수를 절대압 이하의 저압 증기로 전환시키는 저압 증발기, 상기 저압 증발기를 통과한 상기 저압 증기를 건증기 상태로 전환시키는 미스트 리무버, 상기 미스트 리무버를 통과한 상기 저압 증기를 통해 회전하는 터빈, 상기 터빈의 회전력을 통해 전력을 생산하는 발전기, 심층해수를 끌어오는 심층해수 펌프, 상기 터빈을 통과한 상기 저압 증기를 모으며, 상기 심층해수 펌프를 통해 끌어온 심층해수와 상기 저압 증기를 서로 열교환시켜 담수로 응축시키는 응축기, 응축되는 상기 담수를 저장하는 담수탱크 및 상기 응축기의 내부 압력을 저압 진공상태로 유지시키며, 상기 터빈에서 발생되는 불응축 가스를 외부로 배출시키는 진공펌프를 포함하는 것을 특징으로 할 수 있다.The seawater power generation desalination-hydrogen complex system according to an embodiment of the present invention comprises a surface seawater pump for drawing surface seawater, a low-pressure evaporator for converting surface seawater drawn through the surface seawater pump into low-pressure steam below absolute pressure, and the low-pressure evaporator. A mist remover that converts the low-pressure steam that has passed through to dry steam, a turbine that rotates through the low-pressure steam that has passed through the mist remover, a generator that generates power through the rotational force of the turbine, and a deep seawater pump that draws deep seawater , a condenser that collects the low-pressure steam that has passed through the turbine and heat-exchanges the low-pressure steam with the deep seawater drawn through the deep seawater pump with each other to condense it into fresh water, a freshwater tank for storing the condensed fresh water, and the internal pressure of the condenser to maintain a low pressure vacuum state, and may include a vacuum pump for discharging non-condensing gas generated in the turbine to the outside.

일 실시예에서, 상기 응축기에서 응축 후 남은 물은 가온되어 해상으로 배출되는 것을 특징으로 할 수 있다.In an embodiment, the water remaining after condensation in the condenser may be heated and discharged to the sea.

일 실시예에서, 본 발명은 상기 담수탱크에 저장된 담수를 산소 및 수소로 분리시키는 수전해 장치를 더 포함하는 것을 특징으로 할 수 있다.In one embodiment, the present invention may further include a water electrolysis device for separating the fresh water stored in the fresh water tank into oxygen and hydrogen.

일 실시예에서, 상기 발전기에 의해 생산되는 전력은 상기 표층해수 펌프, 상기 심층해수 펌프, 상기 진공펌프 및 상기 수전해 장치에 공급되며, 공급 후 남는 여분의 전력은 외부 전원에 공급되는 것을 특징으로 할 수 있다.In one embodiment, the power produced by the generator is supplied to the surface seawater pump, the deep seawater pump, the vacuum pump and the water electrolyzer, and the excess power remaining after supply is supplied to an external power source, characterized in that can do.

본 발명의 다른 실시예에 따른 해수발전 담수-수소 복합시스템은 표층해수를 끌어오는 표층해수 펌프, 상기 표층해수 펌프를 통해 끌어온 표층해수를 절대압 이하의 저압 증기로 전환시키는 저압 증발기, 상기 저압 증발기를 통과한 상기 저압 증기를 건증기 상태로 전환시키는 미스트 리무버, 상기 미스트 리무버를 통과한 상기 저압 증기를 통해 회전하는 터빈, 상기 터빈의 회전력을 통해 전력을 생산하는 발전기, 상기 터빈을 통과한 상기 저압 증기를 산소 및 수소로 분리시키는 수전해 장치 및 상기 수전해 장치와 연결되어, 상기 수전해 장치의 압력을 저압 진공상태로 유지시키며, 상기 수전해 장치에서 발생되는 불응축 가스를 외부로 배출시키는 진공펌프를 포함하는 것을 특징으로 할 수 있다.The seawater power generation desalination-hydrogen complex system according to another embodiment of the present invention comprises a surface seawater pump for drawing surface seawater, a low-pressure evaporator for converting surface seawater drawn through the surface seawater pump into low-pressure steam below absolute pressure, and the low-pressure evaporator. A mist remover that converts the low-pressure steam that has passed through to dry steam, a turbine that rotates through the low-pressure steam that has passed through the mist remover, a generator that generates power through rotational force of the turbine, and the low-pressure steam that has passed through the turbine A water electrolysis device that separates hydrogen into oxygen and hydrogen and a vacuum pump connected to the water electrolysis device to maintain the pressure of the water electrolysis device in a low-pressure vacuum state, and to discharge non-condensable gas generated from the water electrolysis device to the outside It may be characterized in that it includes.

일 실시예에서, 상기 발전기에 의해 생산되는 전력은 상기 표층해수 펌프, 상기 수전해 장치 및 상기 진공펌프에 공급되며, 공급 후 남는 여분의 전력은 외부 전원에 공급되는 것을 특징으로 할 수 있다.In one embodiment, the electric power produced by the generator is supplied to the surface seawater pump, the water electrolyzer, and the vacuum pump, and the excess electric power remaining after supply is supplied to an external power source.

본 발명의 또 다른 실시예에 따른 해수발전 담수-수소 복합시스템은 표층해수를 끌어오는 표층해수 펌프, 상기 표층해수 펌프를 통해 끌어온 표층해수를 절대압 이하의 저압 증기로 전환시키는 저압 증발기, 상기 저압 증발기를 통과한 상기 저압 증기를 건증기 상태로 전환시키는 미스트 리무버, 상기 미스트 리부머를 통과한 상기 저압 증기를 산소 및 수소로 분리시키는 수전해 장치 및 상기 수전해 장치와 연결되어, 상기 수전해 장치의 압력을 저압 진공상태로 유지시키며, 상기 수전해 장치에서 발생되는 불응축 가스를 외부로 배출시키는 진공펌프를 포함하며, 상기 표층해수 펌프, 상기 수전해 장치 및 상기 진공펌프가 동작되기 위한 전력을 외부 전원으로부터 공급받는 것을 특징으로 할 수 있다.Seawater power generation desalination-hydrogen complex system according to another embodiment of the present invention is a surface seawater pump that draws surface seawater, a low pressure evaporator that converts surface seawater drawn through the surface seawater pump into low pressure steam below absolute pressure, the low pressure evaporator A mist remover that converts the low-pressure vapor that has passed through to dry steam, a water electrolysis device that separates the low-pressure steam that has passed through the mist remover into oxygen and hydrogen, and the water electrolysis device are connected to the water electrolysis device It maintains the pressure in a low-pressure vacuum state, and includes a vacuum pump for discharging non-condensable gas generated from the water electrolysis device to the outside, and external power for operating the surface seawater pump, the water electrolysis device, and the vacuum pump. It may be characterized in that it is supplied from a power source.

본 발명에 따르면, 담수의 수전해 공급을 통해 수소를 생산함은 물론, 발전과 담수, 수소 각 자원의 생산을 극대화 하며, 수전해 기술을 이용하여 증기를 담수화 하지 않고 수소와 산소로 분리가 가능하도록 하는 이점을 가진다.According to the present invention, it is possible to produce hydrogen through water electrolysis supply of fresh water, as well as maximize the production of power generation, fresh water, and hydrogen resources, and separate hydrogen and oxygen without desalination of steam using water electrolysis technology have the advantage of doing so.

또한 본 발명에 따르면, 전력 생산만이 가능한 폐쇄형 방식과 달리 사용방식에 따라서 생산자가 원하는 전력, 담수, 수소자원의 극대화가 가능하며, 표층 해수의 온도가 감소하여 발전을 할 수 없는 경우 증발기에서 증발된 증기를 수전해 방식을 적용하여 수소와 산소로 분리가 가능한 이점을 가진다.In addition, according to the present invention, unlike the closed method that can only produce electricity, it is possible to maximize the power, fresh water, and hydrogen resources desired by the producer according to the usage method, and when the temperature of the surface seawater cannot be generated due to a decrease in the temperature of the surface seawater, power generation is performed in the evaporator. It has the advantage of being able to separate the evaporated vapor into hydrogen and oxygen by applying a water electrolysis method.

또한 본 발명에 따르면, 증발기를 통해 생성된 증기는 일반 공급 상수와 달리 수전해 분해를 저해하는 미네랄 및 미생물의 함유가 전무하여 지속적인 수소 생산이 가능하며, 대량의 전력이 소요되는 수전해는 개방형 온도차발전에서 공급되는 신재생에너지 전력으로 인해 그린수소로 생산이 가능한 이점을 가진다.In addition, according to the present invention, the steam generated through the evaporator does not contain minerals and microorganisms that inhibit water electrolysis unlike normal supply constant, so continuous hydrogen production is possible. It has the advantage of being able to produce green hydrogen due to the renewable energy supplied from power generation.

또한 본 발명에 따르면, 담수 생산 모드에서는 수전해를 사용하지 않아 더 많은 전력의 생산이 가능하며, 발전을 하지 않는 경우에는 외부에서 전력을 공급받아 증기를 통한 수전해가 가능한 이점을 가진다.In addition, according to the present invention, in the freshwater production mode, since water electrolysis is not used, more electric power can be produced, and when electricity is not generated, electric power is supplied from the outside and water electrolysis through steam is possible.

도 1은 본 발명의 일 실시예에 따른 해수발전 담수-수소 복합시스템(100)의 시스템 구성을 도시한 도면이다.
도 2는 본 발명의 다른 실시예에 따른 해수발전 담수-수소 복합시스템(200)의 시스템 구성을 도시한 도면이다.
도 3은 본 발명의 또 다른 실시예에 따른 해수발전 담수-수소 복합시스템(300)의 시스템 구성을 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 수전해 장치를 통해 증기가 수소 및 산소로 분리되는 과정을 도시한 도면이다.
1 is a diagram illustrating a system configuration of a seawater power generation desalination-hydrogen complex system 100 according to an embodiment of the present invention.
2 is a view showing the system configuration of the seawater power generation desalination-hydrogen complex system 200 according to another embodiment of the present invention.
3 is a diagram illustrating a system configuration of a seawater power generation desalination-hydrogen complex system 300 according to another embodiment of the present invention.
4 is a diagram illustrating a process in which steam is separated into hydrogen and oxygen through a water electrolysis device according to an embodiment of the present invention.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the content of the present invention is not limited by the examples.

도 1은 본 발명의 일 실시예에 따른 해수발전 담수-수소 복합시스템(100)의 시스템 구성을 도시한 도면이다.1 is a diagram illustrating a system configuration of a seawater power generation desalination-hydrogen complex system 100 according to an embodiment of the present invention.

도 1을 살펴보면, 본 발명의 일 실시예에 따른 해수발전 담수-수소 복합시스템(100)은 크게 표층해수를 끌어오는 표층해수 펌프(101), 표층해수 펌프(101)를 통해 끌어온 표층해수를 절대압 이하의 저압 증기로 전환시키는 저압 증발기(102), 저압 증발기(102)를 통과한 저압 증기를 건증기 상태로 전환시키는 미스트 리무버(103), 미스트 리무버(103)를 통과한 저압 증기를 통해 회전하는 터빈(104), 터빈(104)의 회전력을 통해 전력을 생산하는 발전기(105), 심층해수를 끌어오는 심층해수 펌프(106), 터빈(104)을 통과한 저압 증기를 모으며, 심층해수 펌프(106)를 통해 끌어온 심층해수와 저압 증기를 서로 열교환시켜 담수로 응축시키는 응축기(107), 응축되는 담수를 저장하는 담수탱크(108), 응축기(107)의 내부 압력을 저압 진공상태로 유지시키며, 터빈(104)에서 발생되는 불응축 가스를 외부로 배출시키는 진공펌프(109)를 포함하여 구성된다.1, the seawater power generation desalination-hydrogen complex system 100 according to an embodiment of the present invention is a surface seawater pump 101 that draws surface seawater, and an absolute pressure Low-pressure evaporator 102 that converts to the following low-pressure steam, mist remover 103 that converts low-pressure steam that has passed through low-pressure evaporator 102 to dry steam, and low-pressure steam that has passed through mist remover 103. The turbine 104, the generator 105 that generates power through the rotational force of the turbine 104, the deep seawater pump 106 that draws deep seawater, collects the low-pressure steam that has passed through the turbine 104, and the deep seawater pump ( The condenser 107 for condensing the deep seawater and low-pressure steam drawn through 106) into fresh water by exchanging heat with each other, the fresh water tank 108 for storing the condensed fresh water, and maintaining the internal pressure of the condenser 107 in a low-pressure vacuum state, It is configured to include a vacuum pump 109 for discharging the non-condensed gas generated from the turbine 104 to the outside.

보다 구체적으로, 먼저 표층해수 펌프(101)를 통해 표층에 존재하는 비교적 온도가 높은 표층해수를 끌어온 후, 플래쉬 또는 VMD(Vacuum Membrane Distillation), AD를 활용한 저압 증발기(102)에서는 표층해수를 절대압(예컨대, 3kPa) 이하의 저압 증기로 전환한다.More specifically, first, surface seawater with a relatively high temperature existing in the surface layer is drawn through the surface seawater pump 101, and then, in the low pressure evaporator 102 using flash or VMD (Vacuum Membrane Distillation), AD, the surface seawater is converted to absolute pressure. Convert to low pressure steam (eg 3 kPa) or less.

다음으로 미스트 리무버(Mist remover)(103)에서는 저압 증발기(102)를 통과한 저압 증기를 건증기 상태로 만든 후 터빈(104)으로 유입시킨다.Next, in the mist remover (Mist remover) 103, the low-pressure steam that has passed through the low-pressure evaporator 102 is made into a dry steam state and then introduced into the turbine 104.

터빈(104)에서는 터빈(104)을 통과하는 저압 증기를 이용하여 회전함으로써 회전력이 발생하게 되고, 터빈(104)과 연결된 발전기(105)에서는 터빈(104)의 회전력을 이용하여 전력을 생산하게 된다. 또한, 터빈(104)을 통과한 저압 증기는 발전 후에 응축기(107)에 모여 응축된다.In the turbine 104, rotational force is generated by rotating using low-pressure steam passing through the turbine 104, and the generator 105 connected to the turbine 104 generates electric power using the rotational force of the turbine 104. . In addition, the low-pressure steam passing through the turbine 104 is collected in the condenser 107 after power generation and condensed.

이 과정에서, 심층해수 펌프(106)에서는 비교적 저온의 심층해수를 끌어오게 되는데, 응축기(107)에서는 이러한 터빈(104)을 통과한 저압 증기와 심층해수 펌프(106)를 통해 끌어온 심층해수 간의 열교환 과정을 통해 담수를 응축하게 된다. 이렇게 응축된 담수는 담수탱크(108)에 저장되고, 식수 혹은 생활용수로 활용될 수 있다. 또한, 응축기(107)의 응축 후 남은 물은 가온되어 다시 해상으로 배출된다.In this process, the deep seawater pump 106 draws relatively low-temperature deep seawater, and in the condenser 107, heat exchange between the low-pressure steam that has passed through the turbine 104 and the deep seawater drawn through the deep seawater pump 106 is The process condenses the fresh water. The condensed fresh water may be stored in the fresh water tank 108 and used as drinking water or living water. In addition, the water remaining after condensation of the condenser 107 is heated and discharged to the sea again.

이때, 응축기(107)에는 진공펌프(109)가 연결되는데, 진공펌프(109)에 의해 응축기(107)는 항시 저압 진공상태가 유지될 수 있으며, 진공펌프(109)는 또한 터빈(104)에서 발생되는 불응축 가스를 외부로 배출시키는 역할을 한다.At this time, the vacuum pump 109 is connected to the condenser 107 , and the condenser 107 can always maintain a low-pressure vacuum state by the vacuum pump 109 , and the vacuum pump 109 is also in the turbine 104 . It plays a role in discharging the generated non-condensable gas to the outside.

담수탱크(108)에 저장된 담수는 수전해 장치(110)로 공급되며, 수전해 장치(110)(알카라인, PEM 등)에서는 담수를 산소 및 수소로 분리시키게 된다.The fresh water stored in the fresh water tank 108 is supplied to the water electrolysis device 110, and the water electrolysis device 110 (alkaline, PEM, etc.) separates the fresh water into oxygen and hydrogen.

한편, 이러한 과정에서 발전기(105)에 의해 생산되는 전력이 표층해수 펌프(101), 심층해수 펌프(106), 진공펌프(109) 및 수전해 장치(110)에 공급되고, 소요 전력 외에 남는 여분의 전력은 외부 전원(미도시)에 공급되게 된다.On the other hand, in this process, the electric power produced by the generator 105 is supplied to the surface seawater pump 101, the deep seawater pump 106, the vacuum pump 109, and the water electrolysis device 110, and the excess remaining in addition to the required electric power. power is supplied to an external power source (not shown).

다음으로는, 터빈으로 유입된 저압 증기가 응축기가 아닌 수전해 장치로 바로 공급되는 시스템을 살펴보기로 한다.Next, a system in which the low-pressure steam introduced into the turbine is directly supplied to the water electrolyzer rather than the condenser will be examined.

도 2는 본 발명의 다른 실시예에 따른 해수발전 담수-수소 복합시스템(200)의 시스템 구성을 도시한 도면이다.2 is a view showing the system configuration of the seawater power generation desalination-hydrogen complex system 200 according to another embodiment of the present invention.

도 2를 살펴보면, 본 발명의 다른 실시예에 따른 해수발전 담수-수소 복합시스템(200)은 도 1의 해수발전 담수-수소 복합시스템(100)과 유사하지만, 도 1에서의 심층해수 펌프(106) 및 응축기(107)가 존재하지 않는다.Referring to FIG. 2 , the seawater power generation freshwater-hydrogen complex system 200 according to another embodiment of the present invention is similar to the seawater power generation freshwater-hydrogen complex system 100 of FIG. 1 , but the deep seawater pump 106 in FIG. ) and condenser 107 are not present.

이때, 표층해수 펌프(201), 저압 증발기(202), 미스트 리무버(203) 및 터빈(204) 및 발전기(205)의 과정까지는 동일하다.At this time, the processes of the surface seawater pump 201, the low pressure evaporator 202, the mist remover 203, and the turbine 204 and the generator 205 are the same.

터빈(204)을 통과한 저압 증기는 곧바로 수전해 장치(206)로 공급되며, 수전해 장치(206)에서는 저압 증기를 산소 및 수소로 분리시키게 된다. 또한, 수전해 장치(206)에는 진공펌프(207)가 연결되며, 진공펌프(209)에 의해 수전해 장치(206)의 저압 진공상태가 유지됨은 물론, 공정에서 발생하는 불응축 가스가 외부로 배출된다.The low-pressure steam that has passed through the turbine 204 is directly supplied to the water electrolyzer 206, which separates the low-pressure steam into oxygen and hydrogen. In addition, a vacuum pump 207 is connected to the water electrolysis device 206 , and the low pressure vacuum state of the water electrolysis device 206 is maintained by the vacuum pump 209 , and non-condensable gas generated in the process is discharged to the outside. is emitted

한편, 이러한 과정에서 발전기(205)에 의해 생산되는 전력이 표층해수 펌프(201), 수전해 장치(206) 및 진공펌프(207)에 공급되고, 소요 전력 외에 남는 여분의 전력은 외부 전원(미도시)에 공급되게 된다.Meanwhile, in this process, the electric power produced by the generator 205 is supplied to the surface seawater pump 201, the water electrolyzer 206, and the vacuum pump 207, and the excess electric power remaining in addition to the required electric power is an external power source (not shown). city) will be supplied.

다음으로는, 표층해수가 낮은 지역에서 저압 증발기를 통해 증발되는 저압 증기를 이용하여 터빈을 돌릴 수 있을 상황이 아닐 경우에 적용할 수 있는 시스템을 살펴보기로 한다.Next, we will look at a system that can be applied when it is not possible to run a turbine using low-pressure steam evaporated through a low-pressure evaporator in an area with low surface seawater.

도 3은 본 발명의 또 다른 실시예에 따른 해수발전 담수-수소 복합시스템(300)의 시스템 구성을 도시한 도면이다.3 is a diagram illustrating a system configuration of a seawater power generation desalination-hydrogen complex system 300 according to another embodiment of the present invention.

도 3을 살펴보면, 표층해수가 낮아 저압 증발기를 통해 증발되는 저압 증기의 양이 적어 터빈을 용이하게 돌릴 수 없는 상황일 경우, 표층해수 펌프(301), 저압 증발기(302)를 거친 저압 증기는 곧바로 수전해 장치(303)로 공급되며, 수전해 장치(303)에서는 저압 증기를 산소 및 수소로 분리시키게 된다. 상황에 따라서 수전해장치(303) 앞에 미스트 리무버를 배치할 수도 있다. 또한, 수전해 장치(303)에는 진공펌프(304)가 연결되며, 진공펌프(304)에 의해 수전해 장치(303)의 저압 진공상태가 유지된다.Referring to FIG. 3 , when the surface seawater is low and the amount of low-pressure steam evaporated through the low-pressure evaporator is small, and the turbine cannot be easily turned, the low-pressure steam passing through the surface seawater pump 301 and the low-pressure evaporator 302 is immediately discharged. It is supplied to the water electrolysis device 303, and the water electrolysis device 303 separates the low-pressure vapor into oxygen and hydrogen. Depending on the situation, a mist remover may be disposed in front of the water electrolyzer 303 . In addition, a vacuum pump 304 is connected to the water electrolysis device 303 , and a low-pressure vacuum state of the water electrolysis device 303 is maintained by the vacuum pump 304 .

이 과정에서 표층해수 펌프(301), 수전해 장치(303) 및 진공펌프(304)에 필요한 전력은 외부 전원으로부터 공급받게 된다.In this process, the electric power required for the surface seawater pump 301, the water electrolyzer 303, and the vacuum pump 304 is supplied from an external power source.

다음으로는, 앞서 살펴본 도 1 내지 도 3에서의 수전해 장치를 이용하여 저압 증기로부터 산소와 수소를 분리시키는 과정을 살펴보기로 한다.Next, a process of separating oxygen and hydrogen from low-pressure steam using the water electrolyzer shown in FIGS. 1 to 3 will be described.

도 4는 본 발명의 일 실시예에 따른 수전해 장치를 통해 증기가 수소 및 산소로 분리되는 과정을 도시한 도면이다.4 is a diagram illustrating a process in which steam is separated into hydrogen and oxygen through a water electrolysis device according to an embodiment of the present invention.

도 4를 살펴보면, 도 4는 수전해 장치를 나타낸 도면이며, 저압 증발기를 통해 증발된 수증기는 미스트 리무버를 통해 수전해 장치로 공급되며, 이때 수증기는 스택에서 산소 및 수소로 분리되고, 분리된 산소 및 수소는 상부로 배출되지만 증기는 수전해 장치에 의해 정체되어 지속적인 수소분리가 진행된다. 이때 소수성 고분자 분리막을 통해 수증기와 산소를 분리하게 된다.Referring to FIG. 4 , FIG. 4 is a view showing a water electrolysis device, and water vapor evaporated through the low pressure evaporator is supplied to the water electrolysis device through a mist remover, wherein the water vapor is separated into oxygen and hydrogen in the stack, and separated oxygen And hydrogen is discharged to the upper part, but the vapor is stagnated by the water electrolysis device, so that hydrogen separation proceeds continuously. At this time, water vapor and oxygen are separated through a hydrophobic polymer membrane.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiment of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can.

100: 해수발전 담수-수소 복합시스템
101: 표층해수 펌프
102: 저압 증발기
103: 미스트 리무버
104: 터빈
105: 발전기
106: 심층해수 펌프
107: 응축기
108: 담수탱크
109: 진공펌프
110: 수전해 장치
200: 해수발전 담수-수소 복합시스템
201: 표층해수 펌프
202: 저압 증발기
203: 미스트 리무버
204: 터빈
205: 발전기
206: 수전해 장치
207: 진공펌프
300: 해수발전 담수-수소 복합시스템
301: 표층해수 펌프
302: 저압 증발기
303: 수전해 장치
304: 진공펌프
100: seawater power generation desalination-hydrogen complex system
101: surface seawater pump
102: low pressure evaporator
103: mist remover
104: turbine
105: generator
106: deep seawater pump
107: condenser
108: fresh water tank
109: vacuum pump
110: water electrolysis device
200: seawater power generation desalination-hydrogen complex system
201: surface seawater pump
202: low pressure evaporator
203: Mist Remover
204: turbine
205: generator
206: water electrolysis device
207: vacuum pump
300: seawater power generation desalination-hydrogen complex system
301: surface seawater pump
302: low pressure evaporator
303: water electrolysis device
304: vacuum pump

Claims (7)

표층해수를 끌어오는 표층해수 펌프;
상기 표층해수 펌프를 통해 끌어온 표층해수를 절대압 이하의 저압 증기로 전환시키는 저압 증발기;
상기 저압 증발기를 통과한 상기 저압 증기를 건증기 상태로 전환시키는 미스트 리무버;
상기 미스트 리무버를 통과한 상기 저압 증기를 통해 회전하는 터빈;
상기 터빈의 회전력을 통해 전력을 생산하는 발전기;
심층해수를 끌어오는 심층해수 펌프;
상기 터빈을 통과한 상기 저압 증기를 모으며, 상기 심층해수 펌프를 통해 끌어온 심층해수와 상기 저압 증기를 서로 열교환시켜 담수로 응축시키는 응축기;
응축되는 상기 담수를 저장하는 담수탱크; 및
상기 응축기의 내부 압력을 저압 진공상태로 유지시키며, 상기 터빈에서 발생되는 불응축 가스를 외부로 배출시키는 진공펌프;를 포함하는 것을 특징으로 하는, 해수발전 담수-수소 복합시스템.
surface seawater pumps that draw surface seawater;
a low-pressure evaporator for converting the surface seawater drawn through the surface seawater pump into low-pressure steam below absolute pressure;
a mist remover that converts the low-pressure steam that has passed through the low-pressure evaporator into a dry steam state;
a turbine rotating through the low pressure steam passing through the mist remover;
a generator for generating electric power through the rotational force of the turbine;
deep seawater pumps that draw deep seawater;
a condenser for collecting the low-pressure steam that has passed through the turbine, and condensing the low-pressure steam with the deep seawater drawn through the deep seawater pump into fresh water by exchanging heat with each other;
a fresh water tank for storing the condensed fresh water; and
Maintaining the internal pressure of the condenser in a low-pressure vacuum state, and a vacuum pump for discharging the non-condensed gas generated in the turbine to the outside; Seawater power generation desalination-hydrogen composite system comprising a.
제1항에 있어서,
상기 응축기에서 응축 후 남은 물은 가온되어 해상으로 배출되는 것을 특징으로 하는, 해수발전 담수-수소 복합시스템.
According to claim 1,
The water remaining after condensing in the condenser is heated and discharged to the sea, seawater power generation desalination-hydrogen complex system.
제1항에 있어서,
상기 담수탱크에 저장된 담수를 산소 및 수소로 분리시키는 수전해 장치;를 더 포함하는 것을 특징으로 하는, 해수발전 담수-수소 복합시스템.
According to claim 1,
Seawater power generation desalination-hydrogen complex system, characterized in that it further comprises; a water electrolysis device for separating the fresh water stored in the fresh water tank into oxygen and hydrogen.
제3항에 있어서,
상기 발전기에 의해 생산되는 전력은,
상기 표층해수 펌프, 상기 심층해수 펌프, 상기 진공펌프 및 상기 수전해 장치에 공급되며, 공급 후 남는 여분의 전력은 외부 전원에 공급되는 것을 특징으로 하는, 해수발전 담수-수소 복합시스템.
4. The method of claim 3,
The power produced by the generator is
It is supplied to the surface seawater pump, the deep seawater pump, the vacuum pump and the water electrolyzer, and the excess power remaining after supply is characterized in that supplied to an external power source, seawater power generation freshwater-hydrogen complex system.
표층해수를 끌어오는 표층해수 펌프;
상기 표층해수 펌프를 통해 끌어온 표층해수를 절대압 이하의 저압 증기로 전환시키는 저압 증발기;
상기 저압 증발기를 통과한 상기 저압 증기를 건증기 상태로 전환시키는 미스트 리무버;
상기 미스트 리무버를 통과한 상기 저압 증기를 통해 회전하는 터빈;
상기 터빈의 회전력을 통해 전력을 생산하는 발전기;
상기 터빈을 통과한 상기 저압 증기를 산소 및 수소로 분리시키는 수전해 장치; 및
상기 수전해 장치와 연결되어, 상기 수전해 장치의 압력을 저압 진공상태로 유지시키며, 상기 수전해 장치에서 발생되는 불응축 가스를 외부로 배출시키는 진공펌프;를 포함하는 것을 특징으로 하는, 해수발전 담수-수소 복합시스템.
surface seawater pumps that draw surface seawater;
a low-pressure evaporator for converting the surface seawater drawn through the surface seawater pump into low-pressure steam below absolute pressure;
a mist remover that converts the low-pressure steam that has passed through the low-pressure evaporator into a dry steam state;
a turbine rotating through the low pressure steam passing through the mist remover;
a generator for generating electric power through the rotational force of the turbine;
a water electrolysis device for separating the low-pressure steam passing through the turbine into oxygen and hydrogen; and
Seawater power generation comprising a; a vacuum pump connected to the water electrolysis device to maintain the pressure of the water electrolysis device in a low-pressure vacuum state and to discharge non-condensable gas generated from the water electrolysis device to the outside Freshwater-hydrogen complex system.
제5항에 있어서,
상기 발전기에 의해 생산되는 전력은,
상기 표층해수 펌프, 상기 수전해 장치 및 상기 진공펌프에 공급되며, 공급 후 남는 여분의 전력은 외부 전원에 공급되는 것을 특징으로 하는, 해수발전 담수-수소 복합시스템.
6. The method of claim 5,
The power produced by the generator is
It is supplied to the surface seawater pump, the water electrolyzer and the vacuum pump, and the excess power remaining after supply is supplied to an external power source, seawater power generation desalination-hydrogen complex system.
표층해수를 끌어오는 표층해수 펌프;
상기 표층해수 펌프를 통해 끌어온 표층해수를 절대압 이하의 저압 증기로 전환시키는 저압 증발기;
상기 저압 증발기를 통과한 상기 저압 증기를 산소 및 수소로 분리시키는 수전해 장치; 및
상기 수전해 장치와 연결되어, 상기 수전해 장치의 압력을 저압 진공상태로 유지시키며, 상기 수전해 장치에서 발생되는 불응축 가스를 외부로 배출시키는 진공펌프;를 포함하며,
상기 표층해수 펌프, 상기 수전해 장치 및 상기 진공펌프가 동작되기 위한 전력을 외부 전원으로부터 공급받는 것을 특징으로 하는, 해수발전 담수-수소 복합시스템.
surface seawater pumps that draw surface seawater;
a low-pressure evaporator for converting the surface seawater drawn through the surface seawater pump into low-pressure steam below absolute pressure;
a water electrolysis device for separating the low-pressure vapor that has passed through the low-pressure evaporator into oxygen and hydrogen; and
a vacuum pump connected to the water electrolysis device, maintaining the pressure of the water electrolysis device in a low-pressure vacuum state, and discharging non-condensable gas generated from the water electrolysis device to the outside;
The seawater power generation desalination-hydrogen complex system, characterized in that receiving power for operating the surface seawater pump, the water electrolysis device, and the vacuum pump from an external power source.
KR1020200147184A 2020-11-05 2020-11-05 Combined system of power generation, desalination and water electrolysis using ocean thermal energy conversion KR20220060944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200147184A KR20220060944A (en) 2020-11-05 2020-11-05 Combined system of power generation, desalination and water electrolysis using ocean thermal energy conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200147184A KR20220060944A (en) 2020-11-05 2020-11-05 Combined system of power generation, desalination and water electrolysis using ocean thermal energy conversion

Publications (1)

Publication Number Publication Date
KR20220060944A true KR20220060944A (en) 2022-05-12

Family

ID=81590625

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200147184A KR20220060944A (en) 2020-11-05 2020-11-05 Combined system of power generation, desalination and water electrolysis using ocean thermal energy conversion

Country Status (1)

Country Link
KR (1) KR20220060944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024153322A1 (en) * 2023-01-17 2024-07-25 Green Hydrogen Systems A/S Hydrogen plant
WO2024183248A1 (en) * 2023-03-09 2024-09-12 中国科学院大连化学物理研究所 System and method for coupling water electrolysis for hydrogen production with seawater desalination

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048192B1 (en) 2017-11-29 2019-11-25 한국해양과학기술원 A Seawater Desalination Load Bank System and Its Control Method for Ocean Thermal Energy Conversion System Test and Surplus Power Utilization for Grid Stabilization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048192B1 (en) 2017-11-29 2019-11-25 한국해양과학기술원 A Seawater Desalination Load Bank System and Its Control Method for Ocean Thermal Energy Conversion System Test and Surplus Power Utilization for Grid Stabilization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024153322A1 (en) * 2023-01-17 2024-07-25 Green Hydrogen Systems A/S Hydrogen plant
WO2024183248A1 (en) * 2023-03-09 2024-09-12 中国科学院大连化学物理研究所 System and method for coupling water electrolysis for hydrogen production with seawater desalination

Similar Documents

Publication Publication Date Title
KR20220060944A (en) Combined system of power generation, desalination and water electrolysis using ocean thermal energy conversion
CN103708665B (en) Renewable energy source associating hotting mask coupling sea water desaltination and salt making system
AU2013203429B2 (en) Apparatus and method for vapour driven absorption heat pumps and absorption heat transformer with applications
CN110904464A (en) Seawater electrolysis hydrogen production system based on offshore wind power
CN211848150U (en) Seawater electrolysis hydrogen production system based on offshore wind power
US20170275182A1 (en) Coupling photovoltaic and concentrated solar power technologies for desalination
CN110923738B (en) Device and method for preparing hydrogen by electrolyzing seawater at high temperature
CN104261498B (en) A kind of thermal gradient energy of sea water sea water desalinating plant of powered by wave energy and method
CN109336206B (en) Support fuel cell waste water recovery and sea water desalination's hydrothermal electricity cogeneration system
CN104671314A (en) Lens type solar seawater desalting device
CN101830531A (en) Low-temperature residual heat seawater desalinizing system
CN104405600A (en) Solar energy and ocean temperature difference energy cascading type power generation device and utilization method thereof
CN113060883B (en) Wind, light, heat and hydrogen storage integrated renewable energy seawater desalination system
KR20110015306A (en) System making fresh water from sea water using solar energy and small hydroelectric power
US8893496B2 (en) Sea water desalination and thermal energy conversion
CN104709955B (en) A kind of disc type solar energy sea water desalinating unit
CN204661346U (en) Solar cogeneration seawater desalination system
CN204022609U (en) Renewable energy source associating hotting mask coupling sea water desaltination and salt making system
US11655547B2 (en) Method for generating clean water, hydrogen, and oxygen from contaminated effluent
CN108275738A (en) MVR seawater desalination systems based on generation of electricity by new energy
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
KR20210073627A (en) Combined system of power generation, desalination using unused heat
JP2013221508A (en) Combined power and water production system and method
WO2012066579A2 (en) Process for utilization of low pressure, low temperature steam from steam turbine for desalination of sea water
WO2006121335A1 (en) A method and a system for generating steam

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
E601 Decision to refuse application
E801 Decision on dismissal of amendment