KR20220060285A - 외부광원 차단 및 최적 공기 흐름 유로 장치 - Google Patents

외부광원 차단 및 최적 공기 흐름 유로 장치 Download PDF

Info

Publication number
KR20220060285A
KR20220060285A KR1020200146114A KR20200146114A KR20220060285A KR 20220060285 A KR20220060285 A KR 20220060285A KR 1020200146114 A KR1020200146114 A KR 1020200146114A KR 20200146114 A KR20200146114 A KR 20200146114A KR 20220060285 A KR20220060285 A KR 20220060285A
Authority
KR
South Korea
Prior art keywords
air
light source
unit
blocking
flow
Prior art date
Application number
KR1020200146114A
Other languages
English (en)
Other versions
KR102437656B1 (ko
Inventor
오은순
전완기
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020200146114A priority Critical patent/KR102437656B1/ko
Publication of KR20220060285A publication Critical patent/KR20220060285A/ko
Application granted granted Critical
Publication of KR102437656B1 publication Critical patent/KR102437656B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0039Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • B64C2201/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

본 발명은 대기 중의 오염물질을 탐지하는 탐지장치의 광학적 측정에 영향을 주지 않도록 외부의 오염광원을 차단하고, 탐지장치가 탑재된 비행체에 가해지는 공기저항의 변화를 최소화하는 외부광원 차단 및 최적 공기 흐름 유로 장치에 관한 것이다. 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기흐름 유로 장치는 대기 중의 오염물질을 탐지하기 위해 비행체의 주변으로 흐르는 공기가 유입되는 공기흡입부와, 공기 흐름의 진행 방향에 따라 점차 단면적이 축소되도록 구성되어 상기 공기흡입부를 통해 유입된 공기가 탐지부로 신속하고 다량으로 지나갈 수 있도록 공기를 압축하고 공기의 유속을 증가하는 공기압축부를 포함한다. 또한, 상기 공기흡입부 또는 공기배출부로 유입되는 외부의 오염광원이 탐지부의 광학적 측정에 영향을 주지 않도록 외부 오염광원이 공기의 이동 경로를 따라 탐지부에 직선상으로 도달하는 것을 차단하는 광원차단부와, 공기 흐름의 진행 방향에 따라 점차 단면적이 증가하도록 구성되어 상기 탐지부를 통과한 고속의 공기가 팽창되어 속도가 감소하고, 공기의 압력이 비행체 외부의 압력과 동일하게 되도록 압력을 증가하는 공기팽창부 및 상기 공기팽창부를 통해 팽창된 공기가 유로 장치의 외부로 배출되는 공기배출부를 포함한다.

Description

외부광원 차단 및 최적 공기 흐름 유로 장치{Flow path device for external light blocking and airflow optimizing}
본 발명은 외부광원 차단 및 최적 공기 흐름 유로 장치에 관한 것으로서, 더욱 상세하게는 대기 중의 오염물질을 탐지하는 탐지장치의 광학적 측정에 영향을 주지 않도록 외부의 오염광원을 차단하고, 탐지장치가 탑재된 비행체에 가해지는 공기저항의 변화를 최소화하는 외부광원 차단 및 최적 공기 흐름 유로 장치에 관한 것이다.
공장 등에서 발생하는 질소산화물, 황산화물 또는 암모니아 등의 유해 오염물질을 드론과 같은 비행체를 사용하여 공중에서 비접촉 방식으로 탐지하는 기술이 제공되고 있다. 특히 전쟁지역이나 비무장지역에는 엄청난 양의 지뢰나 불발폭탄 등이 땅속이나 지표면에 돌출되어 있어 상존하는 커다란 위협이 되고 있으며, 이의 효율적인 탐지 및 제거가 국제적으로 커다란 관심을 받고 있다.
이에 따라 비행체를 사용하여 공중에서 대상지역의 폭발물질 존재 여부를 비접촉식으로 탐지하는 방식이 활발히 거론되고 있다. 이러한 방식 중에는 유입된 공기 중에 포함된 탐지 표적물질이 탐지기능 물질과 반응하면서 광학적 특성이 변화하는 물리적 현상을 활용하는 방식이 제시된다.
따라서 이러한 방식을 활용하여 탐지시스템을 소형화 및 경량화하고, 드론 등의 비행체에 탑재하는 방식이 개발되고 있다. 이러한 광학적 특성을 활용한 탐지 장치의 경우 광학적 특성에 영향을 줄 수 있는 외부 광원이 도달할 수 없도록 외부로부터의 빛이 차단된 완벽한 암실 상태의 탐지장치를 구성하는 것이 중요하다.
특히, 주어진 시간에 외부로부터 유입된 공기가 빠른 속도로 탐지센서 부위를 통과할 수 있도록 하는 것이 탐지능력을 배가시킬 수 있는 중요한 요소이다. 이를 위해 비행체의 공기저항이 증가하지 않으면서 고속의 유량이 탐지장치를 통과할 수 있도록 하는 유로 장치의 설계가 요구되고 있다.
대한민국 등록특허 제10-1810216호(2017년 12월 19일 공고)
따라서, 본 발명이 이루고자 하는 기술적 과제는 종래의 단점을 해결한 것으로서, 탐지장치로 유입되는 공기의 속도를 최적화하고, 비행체의 공기역학적 저항을 최소화하고자 하는데 그 목적이 있다. 또한, 유로 내부에 장착되는 탐지장치에 외부의 오염광원이 도달하지 않도록 하는데 그 목적이 있다. 또한, 비행체에 탑재할 수 있도록 경량화된 유로 장치를 제공하고자 하는데 그 목적이 있다.
이러한 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 외부광원 차단 및 최적 공기흐름 유로 장치는 공기흡입부, 공기압축부, 광원차단부, 광원차단 및 층류제어부, 탐지부, 공기팽창부 및 공기배출부를 포함한다.
상기 공기흡입부는 대기 중의 오염물질을 탐지하기 위해 비행체의 주변으로 흐르는 공기가 유입된다. 이때, 상기 공기흡입부에는 비행체 주변으로 흘러가는 공기가 비행체의 표면 유층 효과로 인해 유입되지 않고 유실되는 것을 방지하기 위해 공기가 유입되는 흡입구가 비행체의 진행 방향 또는 공기 흐름의 진행 방향과 일정각도의 기울기를 가지고 형성되는 공기흡입 유도각과, 유로 장치로 유입되는 공기 중의 이물질 또는 불순물을 여과하는 불순물 여과망을 포함할 수 있다.
또한, 상기 공기압축부는 공기 흐름의 진행 방향에 따라 점차 단면적이 축소되도록 구성되어 상기 공기흡입부를 통해 유입된 공기가 탐지부로 신속하고 다량으로 지나갈 수 있도록 공기를 압축하고 공기의 유속을 증가한다.
또한, 상기 광원차단부는 공기흡입부 또는 공기배출부로 유입되는 외부의 오염광원이 탐지부의 광학적 측정에 영향을 주지 않도록 외부 오염광원이 공기의 이동 경로를 따라 탐지부에 직선상으로 도달하는 것을 차단한다.
이때, 상기 광원차단부는 외부의 오염광원이 직선상으로 탐지부에 도달하는 것을 방지하기 위해 비행체의 진행 방향 또는 공기 흐름의 진행 방향과 일정각도의 기울기를 가지고 구성된다. 또한, 상기 광원차단부는 외부의 오염광원이 직선상으로 탐지부에 도달하는 도달거리를 감소하고, 공기의 흐름이 균일하도록 하기 위해 파티션(partition) 되는 격자 구조의 다중관으로 구성될 수 있다.
또한, 상기 광원차단 및 층류제어부는 비행체의 진행 방향 또는 공기 흐름의 진행 방향과 동일한 각도의 다중관 구조로 이루어져 유입된 공기로부터 산란 오염광원을 차단하고, 공기의 흐름이 균일하도록 조절한다.
또한, 상기 공기팽창부는 공기 흐름의 진행 방향에 따라 점차 단면적이 증가하도록 구성되어 상기 탐지부를 통과한 고속의 공기가 팽창되어 속도가 감소하고, 공기의 압력이 비행체 외부의 압력과 동일하게 되도록 압력을 증가한다. 또한, 상기 공기배출부는 공기팽창부를 통해 팽창된 공기가 유로 장치의 외부로 배출된다.
이상에서 설명한 바와 같이, 본 발명에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치는 비행체 주변에 흐르는 공기를 다량으로 흡입하고, 흡입된 공기의 압축을 통해 탐지장치로 유입되는 공기의 양과 속도를 최적화할 수 있는 효과가 있다. 또한, 탐지장치에서 탐지된 공기의 팽창을 통해 공기의 외부 배출시 비행체 외부의 공기와 압력 차이를 최소화함으로써 비행체의 공기역학적 저항을 최소화할 수 있는 효과가 있다.
또한, 탐지에 필요한 광학적 특성에 영향을 주지 않기 위해 유로 내부에 장착되는 탐지장치에 외부의 오염광원이 도달하지 않도록 차단함으로써 대기에 존재하는 오염물질을 비접촉식으로 센싱하는 탐지장치의 성능을 향상시킬 수 있는 효과가 있다.
또한, 다양한 비행체에 장착할 수 있도록 비행체의 내부나 외부의 형상을 변경하지 않고 비행체의 외부 또는 내부에 용이하게 장착할 수 있는 효과가 있다. 또한, 비행체의 무게 부담을 줄이기 위해 경량화된 유로 장치를 제공할 수 있는 효과가 있다.
도 1은 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치를 개략적으로 나타내는 도면이다.
도 2는 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치를 나타내는 구성도이다.
도 3은 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치를 나타내는 단면도이다.
도 4는 본 발명의 실시 예에 따른 공기압축부 및 광원차단부를 세부적으로 나타내는 구성도이다.
도 5는 본 발명의 실시 예에 따른 광원차단부를 세부적으로 나타내는 도면이다.
도 6은 본 발명의 실시 예에 따른 공기압축부와 광원차단부의 구조를 나타내는 도면이다.
도 7은 본 발명의 실시 예에 따른 공기흡입부 및 공기배출부를 세부적으로 나타내는 도면이다.
도 8은 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치를 실물로 구현하여 나타낸 도면이다.
도 9a 및 도 9b는 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치의 시뮬레이션 결과를 나타내는 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 또는 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다.
각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)를 개략적으로 나타내는 도면이고, 도 2는 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)를 나타내는 구성도이며, 도 3은 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)를 나타내는 단면도이다.
본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)는 드론과 같은 비행체(20)의 내부 또는 외부에 일체형으로 장착될 수 있다. 또한, 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)는 탐지부(500)로 유입되는 공기의 속도를 최적화하여 공기역학적 저항을 최소화하고, 유로 내부에 장착되는 탐지부(500)에 외부의 오염광원(30)이 도달하지 않도록 차단하는 유로 구조를 제공한다.
이때, 탐지부(500)는 비행체(20)에 장착되어 대기 중의 미세 화학물질을 광학적 방식으로 탐지하는 탐지 장치일 수 있다.
도 2 및 도 3에서 도시된 바와 같이 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)는 공기흡입부(100), 공기압축부(200), 광원차단부(300), 광원차단 및 층류제어부(400), 탐지부(500), 공기팽창부(600) 및 공기배출부(700)를 포함한다.
이때, 유로 장치(10)를 구성하는 공기흡입부(100), 공기압축부(200), 광원차단부(300), 광원차단 및 층류제어부(400), 탐지부(500), 공기팽창부(600) 및 공기배출부(700)는 비행체(20)의 직진 비행시 좌우 공기 저항값 차이에 따른 영향을 최소화하기 위해 좌우 대칭구조로 이루어지는 것이 바람직하다.
즉, 본 발명의 유로 장치(10)는 좌우 대칭 구조를 통해 비행시 비행체(20)에 토크(torque)가 가해지지 않도록 함으로써 안정적인 비행과, 이를 통한 광학적 측정의 정확성을 증대할 수 있다.
또한, 유로 장치(10)는 비행체(20) 주위를 흐르는 공기류와의 영향을 최소화하기 위해 공기역학적 요소를 반영하여 공기가 유입되는 유로 장치(10) 전방동체 부위의 흡입구(110)와, 공기가 배출되는 유로 장치(10) 후방동체 부위의 배출구(710)와의 압력차가 최소화되도록 좌우 및 전후 대칭구조로 이루어질 수 있다.
공기흡입부(100)는 비행체(20)의 상부 또는 하부 기체면 또는 비행체(20)의 내부에 장착되고, 공기 중의 오염물질을 탐지하기 위해 비행체(20)의 주변으로 흐르는 공기가 유입된다. 또한, 공기흡입부(100)는 유로 장치(10)의 일단에 구비되어 비행체(20) 주변의 공기가 유입되는 흡입구(110)와, 공기 중의 이물질 또는 불순물을 여과하는 불순물 여과망(120)을 포함할 수 있다.
또한, 흡입구(110)에는 비행체(20) 주변으로 흘러가는 공기가 비행체(20)의 표면 유층 효과로 인해 흡입구(110)로 유입되지 않고 유실되는 것을 방지하는 공기흡입 유도각(111)이 구비된다.
즉, 공기흡입 유도각(111)은 유로 장치(10)에 흡입되는 공기량을 극대화하기 위해 흡입관의 입구가 비행체(20)의 동체부와 일정각도의 기울기를 가지고 형성된다. 이때 각도는 비행체(20)의 비행 방향 또는 공기 흐름의 진행 방향과 평행이 되도록 설치되는 유로 장치(10)의 길이 방향을 기준 각도로 하여 일정각도 기울어지도록 설정된다.
도 4는 본 발명의 실시 예에 따른 공기압축부(200) 및 광원차단부(300)를 세부적으로 나타내는 구성도이고, 도 5는 본 발명의 실시 예에 따른 광원차단부(300)를 세부적으로 나타내는 도면이다.
공기압축부(200)는 공기흡입부(100)를 통해 유입된 공기가 탐지부(500)로 신속하고 다량으로 지나갈 수 있도록 압축한다. 즉, 공기압축부(200)는 단면적 축소를 통한 공기압축과 공기의 유속이 증가되도록 공기 흐름의 진행 방향에 따라 단면적이 축소되게 형성된다.
또한, 공기압축부(200)는 제1 공기압축부(210), 압축가이드부(220) 및 제2 공기압축부(230)를 포함할 수 있다. 제1 공기압축부(210)는 공기흡입부(100)를 통해 흡입된 공기가 압축가이드부(220)에 의해 분할되고 점진적인 단면적 축소를 통해 공기의 압축이 발생한다. 이때, 압축가이드부(220)는 공기압축부(200)의 단면적이 순차적으로 축소되도록 공기의 진행 방향에 대해 일정각도의 기울기를 가지고 형성된다.
즉, 압축가이드부(220)는 쐐기 형상으로 구성될 수 있다. 또한, 제2 공기압축부(230)는 광원차단부(300)에서 분할된 공기의 흐름이 한곳으로 모이며 단면적 축소를 통한 공기압축으로 공기의 유속이 2차로 한번 더 증가하도록 구성된다.
따라서, 공기흡입부(100)를 통해 유입된 공기가 공기압축부(200)에서 단면적 축소를 통한 공기압축이 일어나 공기의 속도가 증가함으로써 탐지부(500)를 통과하는 공기의 양과 속도를 최적화할 수 있다.
광원차단부(300)는 유로 장치(10)의 흡입구(110) 또는 배출구(710)로부터 유입되는 외부의 오염광원(30)이 탐지부(500)의 광학적 측정에 영향을 주지 않도록 외부 오염광원(30)이 공기의 이동 경로를 따라 탐지부(500)에 직선상으로 도달하는 것을 차단한다.
즉, 광원차단부(300)는 외부의 오염광원(30)이 직선상으로 탐지부(500)에 도달하는 것을 방지하기 위해 일정각도의 기울기로 구성될 수 있다. 또한, 광원차단부(300)는 외부의 오염광원(30)이 직선상으로 탐지부(500)에 도달하는 도달거리를 감소하여 외부 오염광원(30)의 차단 효과를 증대하고, 공기의 흐름이 균일하도록 하기 위해 파티션(partition) 되는 격자 구조의 다중관으로 이루어질 수 있다.
예를 들어, 광원차단부(300)는 도 5의 도면 (a)와 같이 사각튜브의 다중관이나, 도면 (b)와 같은 원형관 적층형의 다중관 또는 도면 (c)와 같은 벌집 구조형의 다중관으로 구성될 수 있다.
또한, 광원차단부(300)는 공기흡입부(100)를 통한 외부광원이 들어오지 못하도록 탐지부(500)의 전단에 구성되는 흡입구광원차단부(310)와, 공기배출부(700)를 통한 외부광원이 들어오지 못하도록 탐지부(500)의 후단에 구성되는 배출구광원차단부(320)를 포함할 수 있다. 예를 들어, 흡입구광원차단부(310)는 공기압축부(200)와 탐지부(500) 사이에 구비될 수 있다. 또한, 배출구광원차단부(320)는 탐지부(500)와 공기팽창부(600) 사이에 구비될 수 있다.
도 6은 본 발명의 실시 예에 따른 공기압축부(200)와 광원차단부(300)의 구조를 나타내는 도면이다. 즉, 탐지부(500)에 외부의 오염광원(30)이 직선으로 도달하지 않도록 하기 위한 공기압축부(200)와 광원차단부(300)의 관계 구조를 나타내는 도면이다.
도 6과 같이 광원차단부(300)가 2X2의 사각 격자 구조로 이루어진 경우를 가정하여 설명한다. 이때, 광원차단부(300)의 구조에 따른 공기압축부(200)의 길이(C)는 아래와 같이 산출할 수 있다.
먼저, 도 6에서 도시된 바와 같이 광원차단부(300)의 기울어진 각도(
Figure pat00001
)는 아래의 [수학식 1]과 같이 나타낼 수 있다.
[수학식 1]
Figure pat00002
여기에서,
Figure pat00003
는 비행체(20)의 비행 방향 또는 공기 흐름의 진행 방향(0도로 가정)에 대한 광원차단부(300)의 기울어진 각도이고,
Figure pat00004
는 외부 오염광원(30)의 입사 각도이다.
상기 [수학식 1]의
Figure pat00005
를 삼각 함수 방정식에 따라 정리하면 아래의 [수학식 2]로 나타낼 수 있다.
[수학식 2]
Figure pat00006
Figure pat00007
여기에서, L은 광원차단부(300)의 길이이고, D는 광원차단부(300)의 폭을 나타낸다. 본 발명의 실시 예에 따라 광원차단부(300)의 격자 구조가 2X2인 경우를 가정하였으므로 격자 하나의 폭은 (1/2)D가 된다.
상기 [수학식 2]를 [수학식 1]에 대입하여 정리하면 아래의 [수학식 3]과 같이 나타낼 수 있다.
[수학식 3]
Figure pat00008
상기 [수학식 3]을 이용하여 외부의 오염광원(30)이 탐지부(500)에 직선으로 도달하는 것을 차단하기 위한 공기압축부(200)의 길이(C)를 산출할 수 있다. 이때, 외부 오염광원(30)의 입사 각도(
Figure pat00009
)에 따른 공기압축부(200)의 길이(C)를 삼각 함수 방정식에 따라 아래와 같이 가정할 수 있다.
Figure pat00010
여기에 [수학식 3]을 대입하여 정리하면 아래의 [수학식 4]와 같이 나타낼 수 있다.
[수학식 4]
Figure pat00011
여기에서, C는 외부의 오염광원(30)이 탐지부(500)에 직선으로 도달하는 것을 차단하기 위한 공기압축부(200)의 길이 또는 공기흡입부(100)와 공기압축부(200)의 합산 길이가 될 수 있다.
이때, 만약 광원차단부(300)의 격자가 2x2가 아니라 nxn인 경우에는 아래의 [수학식 5]와 같이 나타낼 수 있다.
[수학식 5]
Figure pat00012
여기에서, n은 광원차단부(300)의 폭에 대한 격자의 수를 나타낸다.
또한, 광원차단 및 층류제어부(400)는 공기로부터 산란 오염광원을 차단하고, 공기의 흐름이 균일하도록 조절한다. 광원차단 및 층류제어부(400)는 공기의 층류 형성을 위해 비행체(20)의 진행 방향 또는 공기 흐름의 진행 방향과 동일한 각도로 구성되고, 공기의 흐름이 균일하도록 파티션(partition) 되는 다중관 구조로 이루어진다. 예를 들어, 광원차단 및 층류제어부(400)는 도 4 및 도 5에서 도시된 바와 같이 원형관 적층형의 다중관 또는 벌집 구조형의 다중관으로 구성될 수 있다.
따라서, 공기압축부(200)를 통해 공기의 속도가 증가하고 내부 기하학적 공간을 지나면서 난류화된 기류가 광원차단 및 층류제어부(400)의 원형관 적층형 또는 벌집 구조형의 다중관을 지나가면서 공기의 흐름이 일정하게 되는 층류 제어가 될 수 있다.
이때, 공기흡입부(100) 또는 공기배출부(700)를 통해 유입된 광원이 내부에서 반사되지 않도록 유로 장치(10)의 내부와, 광원차단부(300)와, 광원차단 및 층류제어부(400)는 무광 또는 비반사 처리를 하는 것이 바람직하다. 즉, 유로 장치(10)의 무광 또는 비반사 처리를 위해 유로 장치(10)의 재질을 금속으로 할 경우에는 아노다이징을 하거나, 플라스틱 또는 탄소섬유복합재 등을 재질로 사용할 경우에는 무광 흑색페인트를 사용할 수 있다.
또한, 광원차단 및 층류제어부(400)는 공기압축부(200)를 통해 압축되어 고속화된 공기로부터 산란 오염광원을 차단하고, 탐지부(500)에 도달하는 공기의 흐름이 균일하도록 조절하기 위해 탐지부(500)의 전단에 형성되는 제1 층류제어부(410)와, 탐지부(500)를 통과한 공기의 흐름이 균일하도록 조절하기 위해 탐지부(500)의 후단에 형성되는 제2 층류제어부(420)를 포함할 수 있다.
탐지부(500)는 압축되어 유속이 증가되고 오염광원(30)이 차단된 공기를 통해 광학적 측정을 수행하여 공기 중의 오염물질을 탐지한다. 또한, 공기팽창부(600)는 탐지부(500)를 통과한 고속의 공기가 팽창되어 속도가 감소하고 압력이 증가하여 다시 비행체(20) 외부의 압력과 동일하게 되도록 공기 흐름의 진행 방향에 따라 단면적이 증가되게 형성된다.
또한, 공기팽창부(600)는 제1 공기팽창부(610), 팽창가이드부(620) 및 제2 공기팽창부(630)를 포함할 수 있다.
제1 공기팽창부(610)는 탐지부(500) 또는 제2 층류제어부(420)를 통과한 공기의 흐름이 한곳으로 모이며 단면적 증가를 통한 공기팽창과 공기의 유속이 감소한다. 또한, 제2 공기팽창부(630)는 배출구광원차단부(320)에 의해 분할된 공기가 팽창가이드부(620)에 의해 합쳐지고 단면적 증가를 통한 공기의 팽창이 발생한다.
이때, 팽창가이드부(620)는 공기팽창부(600)의 단면적이 증가하도록 공기의 진행 방향에 대해 일정각도의 기울기를 가지고 형성된다. 즉, 팽창가이드부(620)는 쐐기 형상으로 구성될 수 있다.
도 7은 본 발명의 실시 예에 따른 공기흡입부(100) 및 공기배출부(700)를 세부적으로 나타내는 도면이다.
공기배출부(700)는 공기팽창부(600)를 통해 팽창된 공기가 유로 장치(10)의 외부로 배출되도록 구성된다. 이때, 공기배출부(700)는 비행체(20)에 가해지는 공기저항의 변화를 최소화하기 위해 공기흡입부(100)와 동일한 단면적으로 이루어진다.
또한, 공기배출부(700)는 공기가 유로 장치(10)의 외부로 배출되는 배출구(710)를 포함하고, 배출구(710)에는 공기의 배출이 원활하게 이루어지도록 배출관의 출구가 일정각도의 기울기를 가지고 형성되는 공기배출 유도각(711)이 구비된다.
이때, 배출구(710)를 통해 배출된 공기가 비행체(20) 주변을 흐르는 공기와 만나면서 난류가 형성되지 않도록 하기 위해 배출구(710)를 통해 배출되는 공기의 속도를 흡입구(110)에서 유입되는 공기의 속도와 유사하게 조절한다.
또한, 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)는 비행체(20)에 장착될 시 경량화를 위해 알루미늄 또는 경량플라스틱 재질을 사용하거나, 탄소섬유 프리프레그를 사용한 오토클레이브에서 경화 제작 등을 통해 무게를 줄이는 것이 바람직하다.
도 8은 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)를 실물로 구현하여 나타낸 도면이고, 도 9a 및 도 9b는 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)의 시뮬레이션 결과를 나타내는 도면이다.
즉, 도 9a는 광원차단부(300)에 파티션(partition)을 적용하지 않는 경우의 시뮬레이션 결과를 나타내는 도면이고, 도 9b는 광원차단부(300)에 파티션(partition)을 적용한 다중관 구조에서의 시뮬레이션 결과를 나타내는 도면이다. 이때, 비행체(20)의 속도(=유속)는 10m/sec에서 시뮬레이션을 진행하였다.
또한, 도 9a 및 도 9b에서 색상이 빨간색일수록 유속이 빠른 것을 나타내고, 다음으로 노란색, 초록색, 파란색의 순으로 유속이 감소 되는 것을 나타낸다. 또한, 파란색 실선은 외부의 오염광원(30)이 유로 장치(10)의 어느 부분까지 반사 없이 유입될 수 있는지를 나타낸다.
도 9a 및 도 9b에서 나타난 바와 같이 유로 장치(10)의 좌우 대칭 구조를 통해 유로 장치(10)의 좌우에 흐르는 공기 흐름이 균일하고, 탐지부(500)에 유입되는 공기의 유속이 균일한 것을 확인할 수 있다.
또한, 도 9a의 파티션(partition)을 적용하지 않은 광원차단부(300)에 비해 도 9b의 파티션(partition)을 적용한 다중관 구조의 광원차단부(300)에서 외부 오염광원(30)의 차단 효과가 증대되는 것을 확인할 수 있다.
도 9b에서 광원차단부(300)가 2x2의 격자 구조인 경우를 이용하여 시뮬레이션을 진행하였으나, 광원차단부(300)에 적용되는 격자 수를 증가할수록 외부 오염광원(30)의 차단 효과는 증대될 수 있다.
이와 같이 본 발명의 실시 예에 따른 외부광원 차단 및 최적 공기 흐름 유로 장치(10)는 공기흡입부(100)와 공기압축부(200)를 거쳐 탐지부(500)에 이르는 공기 이동 경로의 단면적 변화를 적용하여 공기역학상 연속방정식에 의해 탐지부(500)를 통과하는 공기 속도가 최대화될 수 있도록 구성된다.
또한, 탐지부(500)를 통과한 공기가 공기팽창부(600)와 공기배출부(700)를 거치면서 다시 팽창되어 공기가 배출될 때 비행체(20)의 전체적인 비행특성에 영향을 주지 않도록 기하학적 설계가 적용된다. 또한, 탐지부(500)의 광학적 측정에 영향을 주지 않도록 외부의 오염광원(30)을 차단할 수 있는 효과가 있다.
이상으로 본 발명에 관한 바람직한 실시 예를 설명하였으나, 본 발명은 상기 실시 예에 한정되지 아니하며, 본 발명의 실시 예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.
10 : 유로 장치 20 : 비행체
30 : 외부 오염광원 100 : 공기흡입부
110 : 흡입구 111 : 공기흡입 유도각
120 : 불순물 여과망 200 : 공기압축부
210 : 제1 공기압축부 220 : 압축가이드부
230 : 제2 공기압축부 300 : 광원차단부
310 : 흡입구광원차단부 320 : 배출구광원차단부
400 : 광원차단 및 층류제어부 410 : 제1 층류제어부
420 : 제2 층류제어부 500 : 탐지부
600 : 공기팽창부 610 : 제1 공기팽창부
620 : 팽창가이드부 630 : 제2 공기팽창부
700 : 공기배출부 710 : 배출구
711 : 공기배출 유도각

Claims (9)

  1. 대기 중의 오염물질을 탐지하기 위해 비행체의 주변으로 흐르는 공기가 유입되는 공기흡입부;
    공기 흐름의 진행 방향에 따라 점차 단면적이 축소되도록 구성되어 상기 공기흡입부를 통해 유입된 공기가 탐지부로 신속하고 다량으로 지나갈 수 있도록 공기를 압축하고 공기의 유속을 증가하는 공기압축부;
    상기 공기흡입부 또는 공기배출부로 유입되는 외부의 오염광원이 탐지부의 광학적 측정에 영향을 주지 않도록 외부 오염광원이 공기의 이동 경로를 따라 탐지부에 직선상으로 도달하는 것을 차단하는 광원차단부;
    공기 흐름의 진행 방향에 따라 점차 단면적이 증가하도록 구성되어 상기 탐지부를 통과한 고속의 공기가 팽창되어 속도가 감소하고, 공기의 압력이 비행체 외부의 압력과 동일하게 되도록 압력을 증가하는 공기팽창부; 및
    상기 공기팽창부를 통해 팽창된 공기가 유로 장치의 외부로 배출되는 공기배출부를 포함하는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.
  2. 제1항에 있어서,
    상기 비행체의 진행 방향 또는 공기 흐름의 진행 방향과 동일한 각도의 다중관 구조로 이루어져 유입된 공기로부터 산란 오염광원을 차단하고, 공기의 흐름이 균일하도록 조절하는 광원차단 및 층류제어부를 더 포함하는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.
  3. 제1항에 있어서,
    비행체의 직진 비행시 비행체 좌우의 공기 저항값 차이에 따른 영향을 최소화하기 위해 유로 장치가 좌우 대칭구조로 이루어지는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.
  4. 제1항에 있어서,
    상기 공기흡입부에는
    비행체 주변으로 흘러가는 공기가 비행체의 표면 유층 효과로 인해 유입되지 않고 유실되는 것을 방지하기 위해 공기가 유입되는 흡입구가 비행체의 진행 방향 또는 공기 흐름의 진행 방향과 일정각도의 기울기를 가지고 형성되는 공기흡입 유도각이 구비되는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.
  5. 제1항에 있어서,
    상기 공기흡입부는 유로 장치로 유입되는 공기 중의 이물질 또는 불순물을 여과하는 불순물 여과망을 포함하는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.
  6. 제1항에 있어서,
    상기 광원차단부는 외부의 오염광원이 직선상으로 탐지부에 도달하는 것을 방지하기 위해 비행체의 진행 방향 또는 공기 흐름의 진행 방향과 일정각도의 기울기를 가지고 구성되는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.
  7. 제6항에 있어서,
    상기 광원차단부는 외부의 오염광원이 직선상으로 탐지부에 도달하는 도달거리를 감소하고, 공기의 흐름이 균일하도록 하기 위해 파티션(partition) 되는 격자 구조의 다중관으로 구성되는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.
  8. 제7항에 있어서,
    상기 광원차단부는 사각튜브의 다중관 또는 원형관 적층형의 다중관 또는 벌집 구조형의 다중관으로 구성되는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.
  9. 제1항에 있어서,
    상기 공기배출부는 유로 장치의 외부로 공기가 배출될 때 비행체에 가해지는 공기저항의 변화를 최소화하기 위해 공기흡입부와 동일한 단면적으로 이루어지는 것을 특징으로 하는 외부광원 차단 및 최적 공기 흐름 유로 장치.











KR1020200146114A 2020-11-04 2020-11-04 외부광원 차단 및 최적 공기 흐름 유로 장치 KR102437656B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200146114A KR102437656B1 (ko) 2020-11-04 2020-11-04 외부광원 차단 및 최적 공기 흐름 유로 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200146114A KR102437656B1 (ko) 2020-11-04 2020-11-04 외부광원 차단 및 최적 공기 흐름 유로 장치

Publications (2)

Publication Number Publication Date
KR20220060285A true KR20220060285A (ko) 2022-05-11
KR102437656B1 KR102437656B1 (ko) 2022-08-29

Family

ID=81607143

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200146114A KR102437656B1 (ko) 2020-11-04 2020-11-04 외부광원 차단 및 최적 공기 흐름 유로 장치

Country Status (1)

Country Link
KR (1) KR102437656B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140740A (ja) * 2003-11-10 2005-06-02 Shin Nippon Air Technol Co Ltd 可視化空間における壁面構造
KR101041531B1 (ko) * 2011-01-13 2011-06-17 주식회사 동일그린시스 이동식 대기오염 측정 장치 및 이를 이용한 대기오염 측정 시스템
KR101810216B1 (ko) 2015-09-22 2017-12-19 한양대학교 에리카산학협력단 미세먼지 측정 장치
KR102042829B1 (ko) * 2018-09-28 2019-11-08 아이센테크주식회사 노이즈 감소를 위한 광 센싱 장치 및 이를 포함하는 폭발물 탐지 시스템
KR20200088666A (ko) * 2019-01-15 2020-07-23 주식회사 우리항공 황사 및 특정 미세먼지를 측정하기 위한 드론

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140740A (ja) * 2003-11-10 2005-06-02 Shin Nippon Air Technol Co Ltd 可視化空間における壁面構造
KR101041531B1 (ko) * 2011-01-13 2011-06-17 주식회사 동일그린시스 이동식 대기오염 측정 장치 및 이를 이용한 대기오염 측정 시스템
KR101810216B1 (ko) 2015-09-22 2017-12-19 한양대학교 에리카산학협력단 미세먼지 측정 장치
KR102042829B1 (ko) * 2018-09-28 2019-11-08 아이센테크주식회사 노이즈 감소를 위한 광 센싱 장치 및 이를 포함하는 폭발물 탐지 시스템
KR20200088666A (ko) * 2019-01-15 2020-07-23 주식회사 우리항공 황사 및 특정 미세먼지를 측정하기 위한 드론

Also Published As

Publication number Publication date
KR102437656B1 (ko) 2022-08-29

Similar Documents

Publication Publication Date Title
US7854778B2 (en) Intake duct
US7615087B2 (en) Single/multiple guards(s)/cap(s) and/or screen(s) with engine attached apparatus and/or pole with rotational systems(s)—centrifuge chamber/manifold particle collector
CA1219226A (en) Particle separator scroll vanes
US10765980B2 (en) Inertial particle separator for engine inlet
Filippone et al. Turboshaft engine air particle separation
US7383685B2 (en) Passive exhaust suppressor and method
US7753311B2 (en) Propulsion system, aircraft comprising the propulsion system and an outlet device for a jet engine
CA2978155C (en) Anti-icing apparatus for a nose cone of a gas turbine engine
EP0406155B1 (en) Infrared suppressor for a gas turbine engine
US20140237954A1 (en) Particle separator
KR102518099B1 (ko) 흡입구 흐름 제한기
KR102437656B1 (ko) 외부광원 차단 및 최적 공기 흐름 유로 장치
EP3354879B1 (en) Inlet screen for aircraft engines
US20160177823A1 (en) System and method with inlet particle separator
CN108027143B (zh) 用于涡轮机的颗粒捕集装置以及具有该装置的涡轮机
US11472565B2 (en) Turbomachine nacelle having acoustically porous walls
US20170145954A1 (en) Coanda device for a round exhaust nozzle
US6263620B1 (en) Soundproof hangar for airplanes
RU2752445C1 (ru) Воздухозаборное устройство вертолетного газотурбинного двигателя, удаляющее из воздуха частицы песка и пыли
CN107023369B (zh) 排烟延长管
Kumar et al. Comparative aerodynamic investigations on the thrust enhancement system of the gas turbine engine using CFD
RU2051716C1 (ru) Искрогаситель
SE469943B (sv) Provhus för provning av flygplansmotorer, särskilt sådana av propellertyp
FR3122406B1 (fr) giravion muni d’un système de contrôle du mouvement en lacet ayant un rotor caréné et une protection contre le givrage
RU106664U1 (ru) Система воздухозабора и выхлопа турбовального двигателя с тянущим винтом

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant