KR20220053062A - Hydrogen-floating production and treatment system - Google Patents

Hydrogen-floating production and treatment system Download PDF

Info

Publication number
KR20220053062A
KR20220053062A KR1020200136225A KR20200136225A KR20220053062A KR 20220053062 A KR20220053062 A KR 20220053062A KR 1020200136225 A KR1020200136225 A KR 1020200136225A KR 20200136225 A KR20200136225 A KR 20200136225A KR 20220053062 A KR20220053062 A KR 20220053062A
Authority
KR
South Korea
Prior art keywords
hydrogen
gas
heat exchanger
floating
management system
Prior art date
Application number
KR1020200136225A
Other languages
Korean (ko)
Inventor
최병윤
류시진
박아민
정승재
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to KR1020200136225A priority Critical patent/KR20220053062A/en
Publication of KR20220053062A publication Critical patent/KR20220053062A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4473Floating structures supporting industrial plants, such as factories, refineries, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J1/00Arrangements of installations for producing fresh water, e.g. by evaporation and condensation of sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J2003/001Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam
    • B63J2003/002Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam by using electric power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/86Processes or apparatus using other separation and/or other processing means using electrical phenomena, e.g. Corona discharge, electrolysis or magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/30Integration in an installation using renewable energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport

Abstract

A floating hydrogen production and management system is disclosed. The floating hydrogen production and management system according to an embodiment of the present invention comprises: a water electrolysis device that receives power produced by a wind power generator and electrolyzes water to produce hydrogen gas; a distribution device for distributing power delivered from the wind power generator to the water electrolysis device; and a hydrogen liquefaction line for receiving and liquefying some of the hydrogen gas produced by the water electrolysis device, wherein the hydrogen liquefaction line comprises: a compression unit for pressurizing the introduced hydrogen gas; a cooling unit for cooling the hydrogen gas pressurized by the compression unit; and an expansion unit for depressurizing the hydrogen gas cooled by the cooling unit, thereby capable of producing hydrogen stably and efficiently liquefying and managing hydrogen gas.

Description

부유식 수소 생산 및 관리시스템{HYDROGEN-FLOATING PRODUCTION AND TREATMENT SYSTEM}Floating hydrogen production and management system {HYDROGEN-FLOATING PRODUCTION AND TREATMENT SYSTEM}

본 발명은 부유식 수소 생산 및 관리시스템에 관한 것으로서, 더욱 상세하게는 수소를 안정적으로 생산 및 공급할 수 있는 부유식 수소 생산 및 관리시스템에 관한 것이다.The present invention relates to a floating hydrogen production and management system, and more particularly, to a floating hydrogen production and management system capable of stably producing and supplying hydrogen.

오늘날 환경문제가 인류의 주요한 이슈로 대두됨에 따라, 전 세계적으로 지구 온난화 문제 해결 및 대기환경 개선을 위해 노력하고 있다. 이러한 문제 해결을 위해 환경문제의 근원이 되는 화석에너지를 대신하여 태양광, 풍력, 조력 및 수력과 같은 재생에너지에 대한 관심이 높아지고 있다.As environmental problems are emerging as a major issue for mankind today, efforts are being made to solve global warming problems and improve the atmospheric environment around the world. In order to solve this problem, interest in renewable energy such as solar power, wind power, tidal power and hydro power is increasing instead of fossil energy, which is the source of environmental problems.

그러나 재생에너지는 지역별, 계절별 수급 불균형의 문제가 있는 바, 재생에너지로 생산된 에너지를 효과적으로 저장할 수 있는 에너지 저장매체, 다시 말해 에너지 캐리어(Energy-carrier)가 필요하다. 다양한 에너지 저장매체 중에서 대용량, 장기간 안정적으로 저장할 수 있으면서도, 타 에너지원으로의 변환이 용이한 수소가 최적의 에너지 캐리어 각광받고 있다. However, since renewable energy has a problem of regional and seasonal imbalance in supply and demand, an energy storage medium that can effectively store energy produced by renewable energy, that is, an energy-carrier is required. Among various energy storage media, hydrogen, which can be stored stably in a large capacity and for a long period of time, and is easy to convert into other energy sources, is in the spotlight as an optimal energy carrier.

수소가 미래의 주요한 에너지원으로 주목받음에 따라, 수소의 저장 및 운송 기술에 관련된 과제들이 제시되고 있다. 수소의 저장방법으로는 기체나 액체 등 다양한 형태로 구현할 수 있겠으나, 에너지 밀도, 저장량 및 수송 효율 등을 고려할 때 액화수소의 형태로 저장하는 것이 유리한 것으로 인식되고 있다. 그러나 액화수소는 끓는 점이 약 -253 ℃인 초저온의 유체이고, 비중은 액화천연가스(LNG, Liquefied Natural Gas)의 약 1/6 수준으로 작아 체적당 증발률(BOR, Boil-Off Rate)이 액화천연가스의 약 10배에 달할 정도로 높다. 따라서 수소의 생산, 저장 및 취급을 안정적이고 효율적으로 수행할 수 있는 방안이 요구된다.As hydrogen draws attention as a major energy source in the future, challenges related to hydrogen storage and transportation technology are presented. As a storage method of hydrogen, it can be implemented in various forms such as gas or liquid, but it is recognized that storage in the form of liquid hydrogen is advantageous in consideration of energy density, storage amount, and transport efficiency. However, liquefied hydrogen is an ultra-low temperature fluid with a boiling point of about -253 ℃, and its specific gravity is about 1/6 of that of liquefied natural gas (LNG), so the evaporation rate per volume (BOR, Boil-Off Rate) is liquefied. It is about ten times higher than that of natural gas. Therefore, there is a need for a method capable of stably and efficiently performing hydrogen production, storage and handling.

한편, 수소는 석유화학이나 제철 등 화학공정의 부산물로 발생되는 부생가스에서 수소를 추출하거나, 천연가스 또는 갈탄 등 1차 에너지로부터 개질하여 생산할 수도 있으며, 물을 전기분해하여 수소를 생산하는 등 다양한 방법에 의해 생산이 가능하다는 이점이 있다. 다만, 개질을 통해 수소를 생산하는 경우 대기 환경에 중대한 영향을 미치는 이산화탄소가 부산물로 발생된다는 단점이 있다. On the other hand, hydrogen can be produced by extracting hydrogen from by-product gas generated as a by-product of chemical processes such as petrochemical or steelmaking, or by reforming from primary energy such as natural gas or lignite, and can be produced by electrolysis of water to produce hydrogen. There is an advantage that production is possible by the method. However, when hydrogen is produced through reforming, there is a disadvantage in that carbon dioxide, which has a significant effect on the atmospheric environment, is generated as a by-product.

대한민국 공개특허공보 제10-2012-0049731호(2012. 05. 17. 공개)Republic of Korea Patent Publication No. 10-2012-0049731 (published on May 17, 2012)

본 실시 예는 수소를 안정적으로 생산함과 동시에, 수소가스를 효율적으로 액화 및 관리할 수 있는 부유식 수소 생산 및 관리시스템을 제공하고자 한다.This embodiment is intended to provide a floating hydrogen production and management system that can stably produce hydrogen and efficiently liquefy and manage hydrogen gas.

본 실시 예는 해수를 활용하여 수소를 안정적으로 생산할 수 있는 부유식 수소 생산 및 관리시스템을 제공하고자 한다.This embodiment is intended to provide a floating hydrogen production and management system that can stably produce hydrogen using seawater.

본 실시 예는 본 실시 예는 단순한 구조로서 효율적인 설비 운용을 도모할 수 있는 부유식 수소 생산 및 관리시스템을 제공하고자 한다.This embodiment is intended to provide a floating hydrogen production and management system that can promote efficient facility operation with a simple structure.

본 실시 예는 친환경적으로 수소를 생산할 수 있는 부유식 수소 생산 및 관리시스템을 제공하고자 한다.This embodiment is intended to provide a floating hydrogen production and management system that can produce hydrogen in an environmentally friendly way.

본 실시 예는 설비의 구조 안정성을 도모할 수 있는 부유식 수소 생산 및 관리시스템을 제공하고자 한다.This embodiment is intended to provide a floating hydrogen production and management system that can promote the structural stability of the facility.

본 실시 예는 에너지 효율을 향상시킬 수 있는 부유식 수소 생산 및 관리시스템을 제공하고자 한다.This embodiment is intended to provide a floating hydrogen production and management system that can improve energy efficiency.

본 실시 예는 수소가스의 액화 공정을 효율적으로 수행할 수 있는 부유식 수소 생산 및 관리시스템을 제공하고자 한다.This embodiment is intended to provide a floating hydrogen production and management system that can efficiently perform the liquefaction process of hydrogen gas.

본 발명의 일 측면에 의하면, 풍력발전기에 의해 생산되는 전원을 공급받아, 물을 전기분해하여 수소가스를 생산하는 수전해장치, 상기 풍력발전기로부터 전달되는 전원을 상기 수전해장치로 분배시키는 분배장치, 상기 수전해장치에 의해 생산된 수소가스 중 일부를 공급받아 액화시키는 수소 액화라인을 포함하고, 상기 수소 액화라인은 유입된 수소가스를 가압하는 압축부와, 상기 압축부에 의해 가압된 수소가스를 냉각시키는 냉각부와, 상기 냉각부에 의해 냉각된 수소가스를 감압시키는 팽창부를 포함하여 제공될 수 있다.According to one aspect of the present invention, a water electrolysis device that receives power produced by a wind power generator and electrolyzes water to produce hydrogen gas, and a distribution device that distributes power transmitted from the wind power generator to the water electrolysis device , a hydrogen liquefaction line for receiving and liquefying a portion of the hydrogen gas produced by the water electrolyzer, wherein the hydrogen liquefaction line includes a compression unit for pressurizing the introduced hydrogen gas, and the hydrogen gas pressurized by the compression unit It may be provided including a cooling unit for cooling the cooling unit, and an expansion unit for decompressing the hydrogen gas cooled by the cooling unit.

해수를 담수화하여 상기 수전해장치로 공급하는 담수화장치를 더 포함하여 제공될 수 있다.It may be provided by further comprising a desalination device that desalinates seawater and supplies it to the water electrolyzer.

상기 분배장치에 의해 분배된 전원을 공급받아 상기 수전해장치 측으로 공급하는 변압기 및 상기 변압기로부터 공급되는 전원을 변환하는 직류-교류 변환기를 더 포함하여 제공될 수 있다.A transformer that receives the power distributed by the distribution device and supplies it to the water electrolyzer, and a DC-AC converter for converting power supplied from the transformer may be provided.

상기 냉각부는 상기 압축부에 의해 가압된 수소가스를 상대적으로 고온의 냉매와 1차적으로 열교환하는 제1 열교환기와, 상기 제1 열교환기를 거쳐 1차적으로 냉각된 수소가스를 상대적으로 저온의 냉매와 2차적으로 열교환하는 제2 열교환기를 포함하여 제공될 수 있다.The cooling unit includes a first heat exchanger that primarily exchanges heat between the hydrogen gas pressurized by the compression unit with a relatively high temperature refrigerant, and converts the hydrogen gas primarily cooled through the first heat exchanger to a relatively low temperature refrigerant and 2 It may be provided by including a second heat exchanger that exchanges heat differentially.

상기 수소 액화라인에 의해 발생되는 액화수소 및 이로부터 발생하는 수소 증발가스를 수용하는 저장탱크를 더 포함하고, 상기 수소 액화라인은 상기 팽창부에 의해 감압된 수소가스를 액화수소 및 미액화수소로 분리하는 기액분리기와, 상기 기액분리기의 액화수소를 상기 저장탱크로 공급하는 액화수소 처리라인과, 상기 기액분리기의 미액화수소를 상기 압축부 전단으로 공급하는 재순환라인을 더 포함하여 제공될 수 있다.Further comprising a storage tank for accommodating the liquefied hydrogen generated by the hydrogen liquefaction line and the hydrogen boil-off gas generated therefrom, wherein the hydrogen liquefaction line converts the hydrogen gas depressurized by the expansion unit into liquefied hydrogen and non-liquefied hydrogen A gas-liquid separator to separate, a liquefied hydrogen treatment line for supplying the liquefied hydrogen of the gas-liquid separator to the storage tank, and a recirculation line for supplying the unliquefied hydrogen of the gas-liquid separator to the front end of the compression unit may be provided. .

상기 제1 열교환기 및 제2 열교환기로 냉열을 제공하는 냉매순환라인;을 더 포함하고, 상기 냉매순환라인은 냉매를 가압하는 압축기와, 상기 압축기에 의해 가압된 냉매를 냉각시키는 냉각기와, 상기 냉각기에 의해 냉각된 냉매를 감압하는 팽창기를 포함하고, 상기 팽창기에 의해 감압된 상대적으로 저온의 냉매는 상기 제2 열교환기에 선차적으로 공급되어 상기 1차적으로 냉각된 수소가스와 열교환하고, 상기 제2 열교환기를 거치면서 온도가 상승된 상대적으로 고온의 냉매는 상기 제1 열교환기에 후속적으로 전달되어 상기 가압된 수소가스와 열교환하며, 상기 제1 열교환기를 거친 냉매는 상기 압축기로 순환될 수 있다.and a refrigerant circulation line providing cooling heat to the first heat exchanger and the second heat exchanger, wherein the refrigerant circulation line includes a compressor pressurizing the refrigerant, a cooler cooling the refrigerant pressurized by the compressor, and the cooler and an expander for decompressing the refrigerant cooled by The relatively high-temperature refrigerant having a temperature increased through the heat exchanger may be subsequently transferred to the first heat exchanger to exchange heat with the pressurized hydrogen gas, and the refrigerant passing through the first heat exchanger may be circulated to the compressor.

상기 제2 열교환기는 상기 재순환라인을 따라 이송되는 미액화수소로부터 냉열을 추가적으로 공급받을 수 있다.The second heat exchanger may additionally receive cooling heat from unliquefied hydrogen transferred along the recirculation line.

상기 저장탱크의 수소 증발가스를 공급받아 상기 수소 액화라인으로 합류시키는 증발가스 공급라인을 더 포함하여 제공될 수 있다.It may be provided by further comprising a boil-off gas supply line that receives the hydrogen boil-off gas of the storage tank and joins it into the hydrogen liquefaction line.

상기 증발가스 공급라인은 상기 재순환라인 상의 상기 제2 열교환기 전단으로 합류하도록 마련되며, 상기 제2 열교환기는 상기 미액화수소 및 상기 수소 증발가스 중 적어도 어느 하나를 포함하는 혼합된 가스흐름으로부터 냉열을 추가적으로 공급받을 수 있다.The boil-off gas supply line is provided to join the front end of the second heat exchanger on the recirculation line, and the second heat exchanger receives cooling heat from a mixed gas stream containing at least one of the unliquefied hydrogen and the hydrogen boil-off gas. Additional supplies may be provided.

상기 저장탱크에 수용된 액화수소를 수소 운반선 또는 액화수소 수요처로 공급하는 액화수소 공급라인을 더 포함하여 제공될 수 있다.It may be provided by further comprising a liquid hydrogen supply line for supplying the liquid hydrogen accommodated in the storage tank to a hydrogen carrier or liquid hydrogen demand.

상기 저장탱크에 수용된 액화수소를 수소 운반선으로 공급하는 액화수소 공급라인 및 상기 수소 운반선에 존재 또는 발생되는 수소 증발가스를 상기 저장탱크로 회수하는 증발가스 회수라인을 더 포함하여 제공될 수 있다.A liquid hydrogen supply line for supplying the liquid hydrogen accommodated in the storage tank to the hydrogen carrier and a boil-off gas recovery line for recovering the hydrogen boil-off gas present or generated in the hydrogen carrier to the storage tank may be provided.

상기 수소가스 공급라인은 유입된 수소가스를 가압 및 송출하는 컴프레서를 포함하여 제공될 수 있다.The hydrogen gas supply line may be provided including a compressor for pressurizing and discharging the introduced hydrogen gas.

상기 수전해장치에 의해 생산된 수소가스의 나머지 일부를 육상의 수소가스 수요처로 공급하는 수소가스 공급라인을 더 포함하여 제공될 수 있다.A hydrogen gas supply line for supplying the remaining part of the hydrogen gas produced by the water electrolyzer to a hydrogen gas demander on land may be provided.

상기 분배장치는 상기 풍력발전기로부터 전달되는 전원을 육상의 전력 수요처에 분배할 수 있다. The distribution device may distribute the power transmitted from the wind power generator to a power demander on land.

본 실시 예에 의한 부유식 수소 생산 및 관리시스템은 수소를 안정적으로 생산함과 동시에, 수소가스를 효율적으로 액화 및 관리할 수 있는 효과를 가진다.The floating hydrogen production and management system according to this embodiment has the effect of efficiently liquefying and managing hydrogen gas while stably producing hydrogen.

본 실시 예에 의한 부유식 수소 생산 및 관리시스템은 해수를 활용하여 수소를 안정적으로 생산할 수 있는 효과를 가진다.The floating hydrogen production and management system according to this embodiment has the effect of stably producing hydrogen using seawater.

본 실시 예에 의한 부유식 수소 생산 및 관리시스템은 친환경적으로 수소를 생산할 수 있는 효과를 가진다.The floating hydrogen production and management system according to this embodiment has the effect of environmentally friendly hydrogen production.

본 실시 예에 의한 부유식 수소 생산 및 관리시스템은 설비의 구조 안정성을 도모하는 효과를 가진다.Floating hydrogen production and management system according to this embodiment has the effect of promoting the structural stability of the facility.

본 실시 예에 의한 부유식 수소 생산 및 관리시스템은 단순한 구조로서 효율적인 설비 운용이 가능해지는 효과를 가진다. The floating hydrogen production and management system according to this embodiment has the effect of enabling efficient facility operation with a simple structure.

본 실시 예에 의한 부유식 수소 생산 및 관리시스템은 에너지 효율이 향상되는 효과를 가진다.The floating hydrogen production and management system according to this embodiment has the effect of improving energy efficiency.

본 실시 예에 의한 부유식 수소 생산 및 관리시스템은 수소가스의 액화 공정을 안정적으로 수행할 수 있는 효과를 가진다.The floating hydrogen production and management system according to this embodiment has the effect of stably performing the liquefaction process of hydrogen gas.

도 1은 본 실시 예에 의한 부유식 수소 생산 및 관리시스템을 나타내는 개념도이다.1 is a conceptual diagram showing a floating hydrogen production and management system according to this embodiment.

이하에서는 본 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, this embodiment will be described in detail with reference to the accompanying drawings. The following examples are presented to sufficiently convey the spirit of the present invention to those of ordinary skill in the art to which the present invention pertains. The present invention is not limited to the embodiments presented herein, and may be embodied in other forms. The drawings may omit the illustration of parts not related to the description in order to clarify the present invention, and slightly exaggerate the size of the components to help understanding.

도 1은 본 발명의 실시 예에 의한 부유식 수소 생산 및 관리시스템(100)을 나타내는 개념도이다.1 is a conceptual diagram illustrating a floating hydrogen production and management system 100 according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 실시 예에 의한 부유식 수소 생산 및 관리시스템(100)은 물을 전기분해하여 수소가스를 생산하는 수전해장치(110), 풍력발전기(1)에 의해 생산되는 전원을 수전해장치(110) 및 육상의 전력 수요처(10)에 분배시키는 분배장치(120), 수전해장치(110)에 의해 생산된 수소가스 중 일부를 액화시키는 수소 액화라인(130), 수전해장치(110)에 의해 생산된 수소가스 중 나머지 일부를 육상의 수소가스 수요처(20)로 공급하는 수소가스 공급라인(140), 해수를 공급받아 담수화 처리하여 수전해장치(110)로 공급하는 담수화장치(150), 분배장치(120)에 의해 분배된 전원을 공급받아 수전해장치(110) 측으로 공급하는 변압기(160), 변압기(160)로부터 공급되는 전원을 변환하는 직류-교류 변환기(170), 수소 액화라인(130)으로 냉열을 제공하는 냉매순환라인(180), 수소 액화라인(130)에 의해 발생되는 액화수소를 저장하는 저장탱크(190), 저장탱크(190)에 수용된 액화수소를 수소 운반선(30) 또는 액화수소 수요처로 공급하는 액화수소 공급라인(192)을 포함하여 마련될 수 있다. Referring to FIG. 1 , the floating hydrogen production and management system 100 according to an embodiment of the present invention is produced by a water electrolysis device 110 for producing hydrogen gas by electrolyzing water and a wind power generator 1 . A distribution device 120 for distributing power to the water electrolysis device 110 and the power demanders 10 on land, a hydrogen liquefaction line 130 for liquefying some of the hydrogen gas produced by the water electrolysis device 110, water Hydrogen gas supply line 140 for supplying the rest of the hydrogen gas produced by the electrolysis device 110 to the hydrogen gas demander 20 on land, receiving seawater desalination treatment and supplying it to the water electrolysis device 110 The desalination device 150, the transformer 160 that receives the power distributed by the distribution device 120 and supplies it to the water electrolyzer 110 side, and the DC-AC converter 170 that converts the power supplied from the transformer 160 ), a refrigerant circulation line 180 for providing cooling heat to the hydrogen liquefaction line 130 , a storage tank 190 for storing liquid hydrogen generated by the hydrogen liquefaction line 130 , and liquid hydrogen accommodated in the storage tank 190 ) may be provided including a hydrogen carrier 30 or a liquid hydrogen supply line 192 for supplying liquid hydrogen to a demanding place.

본 실시 예에 의한 수소 생산 및 관리시스템은 해상에서 운용되는 부유식 해상구조물에 적용될 수 있다. 이로써 수소 생산 및 관리시스템을 탑재한 해상구조물이 해상에 부유된 상태에서 운용됨에 따라, 해상에 설치된 풍력발전기(1)로부터 전원을 공급받아 수소를 생산 및 액화시켜 저장하고, 생산된 액화수소를 운송하는 수소 운반선(30)이 부유식 해상구조물에 접근하여 액화수소를 공급받아 육상의 수요처로 운항 및 전달할 수 있다. The hydrogen production and management system according to this embodiment can be applied to floating offshore structures operated in the sea. As a result, as an offshore structure equipped with a hydrogen production and management system is operated in a floating state on the sea, it receives power from the wind power generator 1 installed on the sea to produce, liquefy, and store hydrogen, and transport the produced liquefied hydrogen. The hydrogen carrier 30 can access the floating offshore structure, receive liquid hydrogen, and operate and deliver it to the demand on land.

풍력발전기(1)는 풍력에 의해 발전전력을 생성할 수 있다. 풍력발전기(1)는 부유식 해상구조물 인근의 해상 설치되어 운용되는 풍력발전장치 또는 풍력발전단지의 일부일 수 있다. 그러나 이에 한정되는 것은 아니며, 후술하는 수전해장치(110)로 전원을 제공 및 공급할 수 있다면 지상에 설치되거나 지상과 유선 상으로 연결되는 부유식 터빈 등 다양한 형태 및 구조의 풍력발전기를 포함할 수 있다.The wind power generator 1 may generate power generated by wind power. The wind power generator 1 may be a part of a wind power generator installed and operated in the sea near a floating offshore structure or a wind power farm. However, the present invention is not limited thereto, and as long as it can provide and supply power to the water electrolyzer 110 to be described later, it may include wind power generators of various shapes and structures, such as floating turbines installed on the ground or connected to the ground by wire. .

분배장치(120)는 풍력발전기(1)로부터 전달되는 전원을 전송받아, 수전해장치(110) 및 육상의 전력 수요처(10)에 분배하여 제공할 수 있다. 분배장치(120)는 수전해장치(110)의 작동을 위해 필요로 하는 전력을 수전해장치(110) 측으로 인가하되, 나머지 전력은 육상의 전력 수요처(10)로 공급함으로써, 풍력발전기(1)에서 생산되는 전원을 효율적으로 활용할 수 있다. 분배장치(120)는 복수의 스위치로 구현되거나, 전력 분배기를 구비하여 전력을 분배할 수도 있다.The distribution device 120 may receive power transmitted from the wind power generator 1 , and distribute it to the water electrolysis device 110 and the onshore power demander 10 . The distribution device 120 applies the power required for the operation of the water electrolyzer 110 to the water electrolyzer 110 side, and the remaining power is supplied to the power demander 10 on land, so that the wind power generator (1) It is possible to efficiently utilize the power produced by The distribution device 120 may be implemented as a plurality of switches or may be provided with a power distributor to distribute power.

변압기(160)는 분배장치(120)와 수전해장치(110)에 각각 전기적으로 연결되어 분배장치(120)에 의해 분배되어 전달되는 전원 또는 전력을 공급받아 수전해장치(110)의 작동에 적합하도록 전압을 조정될 수 있다. 변압기(160)에 의해 전압이 조정된 전원은 직류-교류 변환기(170)로 출력될 수 있으며, 직류-교류 변환기(170)는 풍력발전기(1)로부터 제공되는 직류 발전전원을 입력받아, 전압 또는 전력을 필요로 하는 수전해장치(110)의 요구 조건을 고려하여 교류 발전전원으로 변환하여 전달함으로써 후술하는 수전해장치(110)의 안정적인 작동을 도모할 수 있다.The transformer 160 is electrically connected to the distribution device 120 and the water electrolysis device 110 , respectively, and receives power or power distributed and transmitted by the distribution device 120 , and is suitable for the operation of the water electrolysis device 110 . The voltage can be adjusted to The power whose voltage is adjusted by the transformer 160 may be output to the DC-AC converter 170 , and the DC-AC converter 170 receives the DC power generated from the wind power generator 1 and receives a voltage or The stable operation of the water electrolyzer 110, which will be described later, can be achieved by converting the power to AC power generation in consideration of the requirements of the water electrolyzer 110 requiring power.

수전해장치(110)는 부유식 해상 구조물에 탑재되어 후술하는 담수화장치(150)로부터 제공되는 물을 공급받음과 동시에, 풍력발전기(1)가 생산한 전원 또는 전기를 공급받아 작동할 수 있다. 수전해장치(110)는 전력이 인가되면, 공급받은 물을 전기분해하여 산소와 수소를 분리함으로써, 수소가스를 생산할 수 있다. 수전해장치(110)는 알칼리 전해조 방식이나 고분자 이온 교환막 방식 또는 고체 산화물 방식으로 마련될 수 있으나, 어느 하나에 한정되는 것은 아니다. 수전해장치(110)의 작동원리 및 작동방식은 이미 공지된 기술에 해당하므로 자세한 설명은 생략한다.The water electrolyzer 110 is mounted on a floating offshore structure and is supplied with water provided from a desalination device 150 to be described later, and can be operated by receiving power or electricity produced by the wind power generator 1 . When electric power is applied, the water electrolyzer 110 may produce hydrogen gas by electrolyzing the supplied water to separate oxygen and hydrogen. The water electrolyzer 110 may be provided in an alkaline electrolytic cell method, a polymer ion exchange membrane method, or a solid oxide method, but is not limited thereto. Since the operating principle and operating method of the water electrolyzer 110 correspond to known techniques, a detailed description thereof will be omitted.

담수화장치(150)는 해수를 공급받아 담수로 전환 및 처리하도록 마련된다. 수전해장치(110)가 해수를 직접 전기분해하여 수소가스를 생산하고자 할 경우, 해수에는 나트륨 등의 불순물이 다량 함유되어 있으므로, 수전해 반응을 통한 수소가스의 생산효율이 매우 낮다. 따라서 담수화장치(150)는 수전해장치(110)의 수소가스 생산효율을 증대시킬 수 있도록 해수를 담수화하여 수전해장치(110)로 공급할 수 있다. 담수화장치(150)는 해수펌프로부터 해수를 공급받을 수 있으며, 도면에는 도시하지 않았으나 해수를 가열하는 가열장치, 가열에 의해 발생되는 수증기를 응축시키는 응축기 등을 포함할 수 있으며, 응축기에 수용된 수증기를 냉각시켜 담수를 획득하고 이를 수전해장치(110)로 제공할 수 있다.The desalination device 150 is provided to receive seawater, convert it to fresh water, and treat it. When the water electrolyzer 110 directly electrolyzes seawater to produce hydrogen gas, the seawater contains a large amount of impurities such as sodium, so the production efficiency of hydrogen gas through the water electrolysis reaction is very low. Accordingly, the desalination device 150 may desalinate seawater to increase the hydrogen gas production efficiency of the water electrolyzer 110 and supply it to the water electrolysis device 110 . The desalination device 150 may receive seawater from a seawater pump, and although not shown in the drawing, may include a heating device for heating seawater, a condenser for condensing water vapor generated by heating, etc. Fresh water may be obtained by cooling, and this may be provided to the water electrolyzer 110 .

수전해장치(110)에 의해 생산된 수소가스는 저장 및 취급의 용이함을 위해 수소 액화라인(130)에 의해 액화될 수 있다. Hydrogen gas produced by the water electrolyzer 110 may be liquefied by the hydrogen liquefaction line 130 for ease of storage and handling.

수소 액화라인(130)은 유입된 수소가스를 가압하는 압축부(131)와, 압축부(131)를 통과하면서 가압된 수소가스를 냉각시키는 냉각부와, 냉각부를 통과하여 냉각된 수소가스를 공급받아 감압시키는 팽창부(134)와, 팽창부(134)를 통과하면서 기액 혼합상태의 수소가스를 액화성분 및 미액화성분으로 분리하는 기액분리기(135)와, 기액분리기(135)에서 분리된 액화성분을 저장탱크(190)로 공급하는 액화수소 처리라인(136)과, 기액분리기(135)에서 분리된 미액화성분을 압축부(131)로 재공급하는 재순환라인(137)을 포함하여 마련될 수 있다.The hydrogen liquefaction line 130 supplies the compressed unit 131 for pressurizing the introduced hydrogen gas, a cooling unit for cooling the pressurized hydrogen gas while passing through the compression unit 131, and the cooled hydrogen gas passing through the cooling unit. The gas-liquid separator 135 for separating hydrogen gas in a gas-liquid mixed state into a liquefied component and a non-liquefied component while passing through the expansion unit 134 for receiving and depressurizing the gas-liquid component, and the liquefaction separated from the gas-liquid separator 135 A liquid hydrogen treatment line 136 for supplying the components to the storage tank 190, and a recirculation line 137 for re-supplying the non-liquefied components separated in the gas-liquid separator 135 to the compression unit 131 to be provided. can

압축부(131)는 수소 액화라인(130)으로 유입되는 수소가스를 가압하도록 마련된다. 압축부(131)는 수소가스의 재액화효율을 향상시키기 위해 수소가스를 가압하여 후술하는 냉각부로 공급할 수 있다. 압축부(131)는 컴프레서를 포함할 수 있으며, 도 1에서는 컴프레서가 단일로 배치된 것으로 도시되어 있으나, 이는 일 예로서 수소가스의 가압 압력범위에 따라 다단 컴프레서로 이루어질 수도 있다. The compression unit 131 is provided to pressurize the hydrogen gas flowing into the hydrogen liquefaction line 130 . The compression unit 131 may pressurize hydrogen gas to improve the reliquefaction efficiency of hydrogen gas and supply it to a cooling unit to be described later. The compression unit 131 may include a compressor, and although the compressor is shown as a single arrangement in FIG. 1 , it may be formed of a multi-stage compressor depending on the pressurized pressure range of hydrogen gas as an example.

냉각부는 압축부(131)를 거쳐 가압된 수소가스를 공급받아 냉각시키도록 마련된다. 냉각부는 압축부(131)를 통과하여 가압된 수소가스를 냉매와 단계적으로 열교환하는 제1 열교환기(132)와 제2 열교환기(133)를 포함할 수 있다. The cooling unit is provided to receive and cool the hydrogen gas pressurized through the compression unit 131 . The cooling unit may include a first heat exchanger 132 and a second heat exchanger 133 for exchanging the hydrogen gas pressurized through the compression unit 131 with the refrigerant in stages.

제1 열교환기(132)는 수소 액화라인(130) 상의 압축부(131)를 거쳐 가압된 수소가스와, 냉매순환라인(180)을 따라 이송되되 제2 열교환기(133)를 선차적으로 통과하여 상대적으로 고온인 냉매를 1차적으로 열교환하여 수소가스를 냉각시킬 수 있다. 이를 위해, 제1 열교환기(132)는 수소 액화라인(130) 상의 압축부(131) 후단과 냉매순환라인(180) 상의 제2 열교환기(133) 후단 사이에 마련될 수 있다. The first heat exchanger 132 is conveyed along the hydrogen gas pressurized through the compression unit 131 on the hydrogen liquefaction line 130 and the refrigerant circulation line 180, and passes through the second heat exchanger 133 preferentially. Thus, the hydrogen gas can be cooled by primarily heat-exchanging the relatively high-temperature refrigerant. To this end, the first heat exchanger 132 may be provided between the rear end of the compression unit 131 on the hydrogen liquefaction line 130 and the rear end of the second heat exchanger 133 on the refrigerant circulation line 180 .

냉매순환라인(180)을 따라 이송 및 순환하는 냉매는 헬륨(He), 질소(N2) 등을 포함할 수 있으며, 냉매순환라인(180)은 냉매를 가압하는 압축기(181)와, 압축기(181)를 거쳐 가압된 냉매를 냉각시키는 냉각기(182)와, 냉각기(182)에 의해 냉각된 냉매를 감압하는 팽창기(183)를 포함할 수 있다. 압축기(181)와 냉각기(182) 및 팽창기(183)를 순차적으로 통과한 냉매는 극저온으로 냉각되며, 제2 열교환기(133)를 선차적으로 통과하면서 수소 액화라인(130) 상의 제2 열교환기(133)를 통과하는 수소가스로 냉열을 제공할 수 있다. 냉매는 제2 열교환기(133)를 통과하면서 수소가스로 냉열을 전달함에 따라 온도가 상승하게 되고, 상대적으로 고온의 상태로 제1 열교환기(132)를 후속적으로 통과하면서 수소 액화라인(130) 상의 제1 열교환기(132)를 통과하는 가압된 수소가스로 냉열을 제공할 수 있다. The refrigerant transported and circulated along the refrigerant circulation line 180 may include helium (He), nitrogen (N2), etc., and the refrigerant circulation line 180 includes a compressor 181 that pressurizes the refrigerant, and a compressor 181 ) may include a cooler 182 for cooling the refrigerant pressurized through, and an expander 183 for decompressing the refrigerant cooled by the cooler 182 . The refrigerant that has sequentially passed through the compressor 181 , the cooler 182 , and the expander 183 is cooled to a cryogenic temperature, and a second heat exchanger on the hydrogen liquefaction line 130 while passing through the second heat exchanger 133 in advance. Hydrogen gas passing through (133) can provide cooling heat. As the refrigerant passes through the second heat exchanger 133 and transfers cooling heat to hydrogen gas, the temperature rises, and as the refrigerant subsequently passes through the first heat exchanger 132 in a relatively high temperature state, the hydrogen liquefaction line 130 ) It is possible to provide cooling heat with the pressurized hydrogen gas passing through the first heat exchanger 132 on the.

수소 액화라인(130) 상의 제1 열교환기(132)로 진입하는 가압된 수소가스는 압축부(131)에 의해 가압되면서 온도 역시 상승한 상태이므로 수소 액화라인(130) 상의 제2 열교환기(133)로 진입하는 수소가스보다 상대적으로 온도가 높다. 또한, 냉매순환라인(180) 상의 제1 열교환기(132)로 진입하는 냉매는 전단에서 제2 열교환기(133)를 거치면서 냉열을 제공한 상태이므로 상대적으로 온도가 높으나, 압축부(131)를 통과한 고온의 수소 증발가스 보다는 온도가 훨씬 낮으므로 냉열을 제공하기에 충분하다. 따라서, 제1 열교환기(132)에서는 제2 열교환기(133) 대비 상대적으로 높은 온도범위에서 열교환이 이루어지되, 수소 액화라인(130) 상의 가압된 수소가스와 냉매순환라인(180) 상의 가열된 냉매가 서로 열교환함으로써, 수소 액화라인(130) 상의 수소가스가 1차적으로 냉각될 수 있다. Since the pressurized hydrogen gas entering the first heat exchanger 132 on the hydrogen liquefaction line 130 is pressurized by the compression unit 131 and the temperature is also increased, the second heat exchanger 133 on the hydrogen liquefaction line 130 . The temperature is relatively higher than the hydrogen gas entering the furnace. In addition, the refrigerant entering the first heat exchanger 132 on the refrigerant circulation line 180 is in a state in which cooling heat is provided while passing through the second heat exchanger 133 at the front end, so the temperature is relatively high, but the compression unit 131 The temperature is much lower than the high-temperature hydrogen boil-off gas that has passed through, so it is sufficient to provide cooling heat. Accordingly, in the first heat exchanger 132 , heat exchange is performed in a relatively high temperature range compared to the second heat exchanger 133 , the pressurized hydrogen gas on the hydrogen liquefaction line 130 and the heated on the refrigerant circulation line 180 . As the refrigerants exchange heat with each other, the hydrogen gas on the hydrogen liquefaction line 130 may be primarily cooled.

제2 열교환기(133)는 수소 액화라인(130) 상의 제1 열교환기(132)를 거쳐 1차적으로 냉각된 수소가스와, 냉매순환라인(180)을 따라 이송되되 팽창기(183)를 거치면서 극저온으로 냉각된 냉매와 2차적으로 열교환함으로써, 수소가스의 재액화를 구현할 수 있다. 이를 위해 제2 열교환기(133)는 수소 액화라인(130) 상의 제1 열교환기(132) 후단과 냉매순환라인(180) 상의 팽창기(183) 후단 사이에 마련될 수 있다. The second heat exchanger 133 is transported along the first heat exchanger 132 on the hydrogen liquefaction line 130 with the primarily cooled hydrogen gas and the refrigerant circulation line 180 while passing through the expander 183 . By secondary heat exchange with the cryogenically cooled refrigerant, re-liquefaction of hydrogen gas can be realized. To this end, the second heat exchanger 133 may be provided between the rear end of the first heat exchanger 132 on the hydrogen liquefaction line 130 and the rear end of the expander 183 on the refrigerant circulation line 180 .

아울러, 후술하는 기액분리기(135)에서 분리된 미액화수소는 팽창부(134)를 거치면서 수소의 액화점에 근접하게 냉각된 상태이므로, 제2 열교환기(133)에서는 극저온의 냉매와 더불어, 미액화수소의 냉열을 수소가스로 추가적으로 전달함으로써, 수소가스의 액화효율을 증대시킬 수 있다. 또한, 후술하는 저장탱크(190)에서 발생되는 수소 증발가스 역시 수소 액화라인(130) 상의 제1 열교환기(132)를 거쳐 1차적으로 냉각된 수소가스보다 온도가 낮으므로, 후술하는 증발가스 공급라인(191)이 저장탱크(190)의 수소 증발가스를 미액화수소로 합류시켜 제2 열교환기(133)로 공급함으로써, 제2 열교환기(133)의 냉각 효율 및 수소가스의 액화효율을 최대화할 수 있다.In addition, since the unliquefied hydrogen separated in the gas-liquid separator 135 to be described later is cooled close to the liquefaction point of hydrogen while passing through the expansion unit 134, in the second heat exchanger 133, together with the cryogenic refrigerant, By additionally transferring the cooling heat of unliquefied hydrogen to hydrogen gas, it is possible to increase the liquefaction efficiency of hydrogen gas. In addition, since the hydrogen boil-off gas generated in the storage tank 190 to be described later also has a lower temperature than the hydrogen gas primarily cooled through the first heat exchanger 132 on the hydrogen liquefaction line 130, the boil-off gas supply to be described later Line 191 merges the hydrogen boil-off gas of the storage tank 190 into non-liquefied hydrogen and supplies it to the second heat exchanger 133, thereby maximizing the cooling efficiency of the second heat exchanger 133 and the liquefaction efficiency of hydrogen gas can do.

팽창부(134)는 제1 및 제2 열교환기(133)를 순차적으로 통과하여 냉각 및 재액화된 수소가스를 공급받아 감압 또는 팽창시키도록 마련된다. 수소 액화라인(130)을 따라 이송되는 수소가스는 압축부(131)에 의해 가압된 상태인 바, 팽창부(134)가 가압된 수소가스를 감압시킴으로써, 추가적인 냉각 및 팽창을 통해 수소가스의 안정적인 재액화를 구현할 수 있다. 팽창부(134)는 익스팬더(Expander) 또는 감압밸브로 마련될 수 있으며, 저장탱크(190)의 내부압력에 상응하는 압력수준으로 수소가스를 감압할 수 있다.The expansion unit 134 is provided to receive the hydrogen gas cooled and reliquefied by sequentially passing through the first and second heat exchangers 133 to reduce the pressure or expand it. Hydrogen gas transported along the hydrogen liquefaction line 130 is in a pressurized state by the compression unit 131 , and the expansion unit 134 depressurizes the pressurized hydrogen gas, thereby stabilizing the hydrogen gas through additional cooling and expansion. Reliquefaction can be implemented. The expansion unit 134 may be provided as an expander or a pressure reducing valve, and may reduce hydrogen gas to a pressure level corresponding to the internal pressure of the storage tank 190 .

기액분리기(135)는 팽창부(134)를 통과한 기액 혼합상태의 수소가스를 액체상태의 액화수소와와 기체상태의 미액화수소로 분리하도록 마련된다. 수소가스는 제1 및 제2 열교환기(133)를 통과하면서 냉각됨에 따라 대부분 재액화가 이루어지기는 하나, 팽창부(134)를 거쳐 감압되는 과정에서 일부의 미액화성분이 발생될 수 있다. 이에 기액분리기(135)가 팽창부(134)를 거쳐 감압된 수소가스를 수용하되, 액화수소와 미액화수소로 분리하여 각 성분의 용이한 취급 및 관리를 도모할 수 있다.The gas-liquid separator 135 is provided to separate the gas-liquid mixed hydrogen gas that has passed through the expansion unit 134 into liquid hydrogen and non-liquefied hydrogen in a gaseous state. Although most of the hydrogen gas is reliquefied as it cools while passing through the first and second heat exchangers 133 , some unliquefied components may be generated in the process of being decompressed through the expansion unit 134 . Accordingly, the gas-liquid separator 135 receives the depressurized hydrogen gas through the expansion unit 134 , but separates the hydrogen gas into liquid hydrogen and non-liquefied hydrogen to facilitate easy handling and management of each component.

액화수소 처리라인(136)은 기액분리기(135)에 의해 분리된 액체성분, 다시 말해 액화수소를 저장탱크(190)로 공급하도록 마련된다. 저장탱크(190)는 수소 액화라인(130)을 거쳐 발생되는 액화수소를 공급받아 저장 및 수용하고, 필요에 따라 수소 운반선(30, H2 Carrier) 또는 액화수소 수요처로 공급할 수 있다. 액화수소 처리라인(136)은 기액분리기(135)와 저장탱크(190)를 연결하도록 입구 측 단부가 기액분리기(135)의 내부 하측에 연결되고, 출구 측 단부가 저장탱크(190)의 내부로 연결될 수 있다. 액화수소 처리라인(136)에는 저장탱크(190)로 공급되는 액화수소의 공급량을 조절하는 개폐밸브(미도시)가 마련될 수 있으며, 개폐밸브는 기액분리기(135)의 액화수소 수위 또는 수요처의 요구 유량에 따라 개방 및 폐쇄정도가 제어될 수 있다.The liquid hydrogen treatment line 136 is provided to supply the liquid component separated by the gas-liquid separator 135 , that is, liquid hydrogen to the storage tank 190 . The storage tank 190 may receive and store and accommodate the liquefied hydrogen generated through the hydrogen liquefaction line 130 , and may supply it to a hydrogen carrier (30, H2 Carrier) or a liquefied hydrogen demander as necessary. The liquid hydrogen treatment line 136 has an inlet end connected to the lower inner side of the gas-liquid separator 135 to connect the gas-liquid separator 135 and the storage tank 190, and an outlet end to the inside of the storage tank 190. can be connected An on-off valve (not shown) for controlling the supply amount of liquid hydrogen supplied to the storage tank 190 may be provided in the liquid hydrogen treatment line 136 , and the on-off valve is the liquid hydrogen level of the gas-liquid separator 135 or the level of demand. Depending on the required flow rate, the degree of opening and closing can be controlled.

재순환라인(137)은 기액분리기(135)에 의해 분리된 기체성분, 다시 말해 미액화수소를 수소 액화라인(130)의 압축부(131)로 재공급하도록 마련된다. 재순환라인(137)은 입구 측 단부가 기액분리기(135)의 내부 상측에 연결되고, 출구 측 단부가 압축부(131) 전단으로 연결되되, 중단부가 제2 열교환기(133)를 경유하도록 마련될 수 있다. 또한, 재순환라인(137)의 중단부에는 증발가스 공급라인(191)이 합류하도록 마련되어 저장탱크(190)의 내부에서 발생되는 수소 증발가스와 기액분리기(135)의 미액화성분이 혼합된 가스흐름을 이루어 제2 열교환기(133)를 경유하면서 냉열을 제공한 후 압축부(131)로 재공급될 수 있다. 재순환라인(137)에는 압축부(131) 전단으로 공급되는 미액화수소의 유량을 조절하는 개폐밸브(미도시)가 마련될 수 있으며, 개폐밸브는 기액분리기(135)의 내부압력 수치에 따라 개방 및 폐쇄정도가 제어될 수 있다. The recirculation line 137 is provided to re-supply the gas component separated by the gas-liquid separator 135 , that is, unliquefied hydrogen to the compression unit 131 of the hydrogen liquefaction line 130 . The recirculation line 137 has an inlet end connected to the inner upper side of the gas-liquid separator 135 , and an outlet end connected to the front end of the compression unit 131 . can In addition, a gas flow in which the boil-off gas supply line 191 is provided to join the stop of the recirculation line 137 and the hydrogen boil-off gas generated inside the storage tank 190 and the unliquefied component of the gas-liquid separator 135 are mixed. to provide cooling heat while passing through the second heat exchanger 133 may be re-supplied to the compression unit 131 . An on/off valve (not shown) for controlling the flow rate of unliquefied hydrogen supplied to the front end of the compression unit 131 may be provided in the recirculation line 137 , and the on/off valve is opened according to the internal pressure value of the gas-liquid separator 135 . and the degree of closure can be controlled.

저장탱크(190)는 수소 액화라인(130)에 의해 발생되는 액화수소를 수용 및 저장하도록 마련된다. 저장탱크(190)는 외부의 열 침입에 의한 액화수소의 기화를 최소화할 수 있도록 단열 처리된 멤브레인 타입의 화물창으로 마련될 수 있으며, 부유식 해상구조물 상에 복수개 설치될 수 있다. 저장탱크(190)에 수용 및 저장된 액화수소는 액화수소 공급라인(192)을 통해 수소 운반선(30, H2 Carrier) 또는 액화수소 수요처로 공급할 수 있다. 이를 위해, 액화수소 공급라인(192)의 입구 측 단부는 저장탱크(190)의 내부 하측에 배치될 수 있으며, 여기에는 액화수소를 수소 운반선(30) 또는 액화수소 수요처로 공급하는 송출펌프(192a)가 마련될 수 있다. The storage tank 190 is provided to receive and store liquid hydrogen generated by the hydrogen liquefaction line 130 . The storage tank 190 may be provided as a membrane-type cargo hold insulated to minimize vaporization of liquid hydrogen due to external heat intrusion, and may be installed in plurality on a floating offshore structure. The liquid hydrogen accommodated and stored in the storage tank 190 may be supplied to a hydrogen carrier 30 (H2 Carrier) or a liquid hydrogen demander through the liquid hydrogen supply line 192 . To this end, the inlet side end of the liquid hydrogen supply line 192 may be disposed below the inner side of the storage tank 190, and there is a delivery pump 192a for supplying liquid hydrogen to the hydrogen carrier 30 or a liquid hydrogen demander. ) can be provided.

한편, 액화수소 공급라인(192)이 저장탱크(190)에 수용 및 저장된 액화수소를 수소 운반선(30)으로 공급 시, 수소 운반선(30)에 설치된 저장탱크(미도시)의 내부에서도 수소 증발가스가 다량 발생하게 된다. 이러한 수소 증발가스는 수소 운반선(30)의 저장탱크의 내부압력을 상승시켜 구조 및 운용의 안정성에 위협이 되므로 이를 제거할 필요가 있다. 이에 증발가스 회수라인(193)이 수소 운반선(30) 측에서 존재하거나 또는 액화수소를 공급받는 과정에서 발생하는 수소 증발가스를 부유식 해상구조물의 저장탱크(190)로 회수하여 처리할 수 있다. 이를 위해 증발가스 회수라인(193)의 입구 측 단부는 수소 운반선(30)에 설치되는 저장탱크의 내부에 연결되고, 출구 측 단부는 본 실시 예에 의한 수소 생산 및 관리시스템에 구비되는 저장탱크(190)에 연결될 수 있다. 저장탱크(190)로 회수된 수소 운반선(30)의 수소 증발가스는 후술하는 증발가스 공급라인(191)을 통해 수소 액화라인(130)으로 공급되어 액화 및 처리될 수 있다.On the other hand, when the liquid hydrogen supply line 192 supplies the liquid hydrogen accommodated and stored in the storage tank 190 to the hydrogen carrier 30 , hydrogen boil-off gas is also provided in the storage tank (not shown) installed in the hydrogen carrier 30 . will occur in large numbers. This hydrogen boil-off gas increases the internal pressure of the storage tank of the hydrogen carrier 30 and threatens the stability of the structure and operation, so it is necessary to remove it. Accordingly, the boil-off gas recovery line 193 is present on the hydrogen carrier 30 side or the hydrogen boil-off gas generated in the process of receiving liquid hydrogen can be recovered and treated with the storage tank 190 of the floating offshore structure. To this end, the inlet end of the boil-off gas recovery line 193 is connected to the inside of a storage tank installed in the hydrogen carrier 30, and the outlet end is a storage tank ( 190) can be connected. The hydrogen boil-off gas of the hydrogen carrier 30 recovered to the storage tank 190 may be supplied to the hydrogen liquefaction line 130 through a boil-off gas supply line 191 to be described later to be liquefied and treated.

저장탱크(190)는 일반적으로 단열 처리되어 설치되나, 외부의 열 침입을 완전히 차단하는 것은 실질적으로 어려우므로, 저장탱크(190) 내부에는 액화수소가 자연적으로 기화하여 발생하는 수소 증발가스가 존재하게 된다. 아울러, 증발가스 회수라인(193)에 의해 수소 운반선(30)으로부터 회수된 수소 증발가스도 함께 존재하게 되고, 이러한 수소 증발가스는 저장탱크(190)의 내부압력을 상승시켜 변형 및 폭발 등의 위험을 잠재하고 있으므로 수소 증발가스를 저장탱크(190)로부터 제거 또는 처리할 필요성이 있다. 이에 증발가스 공급라인(191)이 저장탱크(190)의 내부에 존재하는 수소 증발가스를 수소 액화라인(130)으로 합류시킬 수 있다. 이를 위해 증발가스 공급라인(191)은 입구 측 단부가 저장탱크(190)의 내부 상측에 연결될 수 있으며, 수소 증발가스의 냉열을 수소가스의 액화에 활용할 수 있도록 출구 측 단부는 재순환라인(137) 상의 제2 열교환기(133) 전단으로 합류하도록 마련될 수 있다.The storage tank 190 is generally installed with a thermal insulation treatment, but since it is practically difficult to completely block external heat intrusion, there is hydrogen boil-off gas generated by the natural vaporization of liquid hydrogen inside the storage tank 190. do. In addition, the hydrogen boil-off gas recovered from the hydrogen carrier 30 by the boil-off gas recovery line 193 is also present, and the hydrogen boil-off gas increases the internal pressure of the storage tank 190 to cause deformation and explosion. There is a need to remove or process the hydrogen boil-off gas from the storage tank 190 . Accordingly, the boil-off gas supply line 191 may join the hydrogen boil-off gas existing in the storage tank 190 into the hydrogen liquefaction line 130 . To this end, the boil-off gas supply line 191 may have an inlet end connected to the inner upper side of the storage tank 190, and the outlet end of the boil-off gas supply line 191 may be connected to the inner upper side of the storage tank 190 to utilize the cold heat of hydrogen boil-off gas for liquefaction of hydrogen gas. It may be provided to join the front end of the second heat exchanger 133 of the upper phase.

수소가스 공급라인(140)은 수전해장치(110)에 의해 생산된 수소가스 중 수소 액화라인(130)으로 공급되지 않은 나머지 일부를 육상의 수소가스 수요처(20)로 공급하도록 마련된다. 이를 위해 수소가스 공급라인(140)은 입구 측 단부가 수전해장치(110)의 출구로부터 수소 액화라인(130)과 함께 분기되도록 마련되고, 출구 측 단부가 육상의 저장소 등 수소가스 수요처(20)에 연결될 수 있으며, 수소가스 공급라인(140)에는 유입된 수소가스를 가압 및 송출하는 컴프레서(141)가 마련될 수 있다. The hydrogen gas supply line 140 is provided to supply the remaining part of the hydrogen gas produced by the water electrolyzer 110 that is not supplied to the hydrogen liquefaction line 130 to the hydrogen gas demander 20 on land. To this end, the hydrogen gas supply line 140 is provided so that the inlet end is branched from the outlet of the water electrolyzer 110 together with the hydrogen liquefaction line 130, and the outlet end is the hydrogen gas demander 20 such as a storage on land. may be connected to, and the hydrogen gas supply line 140 may be provided with a compressor 141 for pressurizing and discharging the introduced hydrogen gas.

이와 같은 본 실시 예에 의한 부유식 수소 생산 및 관리시스템(100)은 풍력발전기(1)로부터 전원을 공급받고, 담수화장치(150)에 의해 제공되는 담수를 전기분해하여 수소를 안정적으로 생산할 수 있으므로, 친환경적인 수소 생산을 구현할 수 있다. The floating hydrogen production and management system 100 according to this embodiment as described above can receive power from the wind power generator 1 and electrolyze the fresh water provided by the desalination device 150 to stably produce hydrogen. , it is possible to realize environmentally friendly hydrogen production.

100: 부유식 수소 생산 및 관리시스템
110: 수전해장치 120: 분배장치
130: 수소 액화라인 131: 압축부
132: 제1 열교환기 133: 제2 열교환기
134: 팽창부 135: 기액분리기
136: 액화수소 처리라인 137: 재순환라인
140: 수소가스 공급라인 150: 담수화장치
160: 변압기 170: 직류-교류 변환기
180: 냉매순환라인 190: 저장탱크
191: 증발가스 공급라인 192: 액화수소 공급라인
193: 증발가스 회수라인
100: Floating hydrogen production and management system
110: water electrolyzer 120: distribution device
130: hydrogen liquefaction line 131: compression unit
132: first heat exchanger 133: second heat exchanger
134: expander 135: gas-liquid separator
136: liquid hydrogen treatment line 137: recirculation line
140: hydrogen gas supply line 150: desalination device
160: transformer 170: DC-AC converter
180: refrigerant circulation line 190: storage tank
191: boil-off gas supply line 192: liquid hydrogen supply line
193: boil-off gas recovery line

Claims (13)

풍력발전기에 의해 생산되는 전원을 공급받아, 물을 전기분해하여 수소가스를 생산하는 수전해장치;
상기 풍력발전기로부터 전달되는 전원을 상기 수전해장치로 분배시키는 분배장치; 및
상기 수전해장치에 의해 생산된 수소가스 중 일부를 공급받아 액화시키는 수소 액화라인을 포함하고,
상기 수소 액화라인은
유입된 수소가스를 가압하는 압축부와, 상기 압축부에 의해 가압된 수소가스를 냉각시키는 냉각부와, 상기 냉각부에 의해 냉각된 수소가스를 감압시키는 팽창부를 포함하는 부유식 수소 생산 및 관리시스템.
a water electrolyzer for receiving power produced by a wind power generator and electrolyzing water to produce hydrogen gas;
a distribution device for distributing the power transmitted from the wind power generator to the water electrolyzer; and
and a hydrogen liquefaction line for receiving and liquefying some of the hydrogen gas produced by the water electrolysis device,
The hydrogen liquefaction line is
Floating hydrogen production and management system including a compression unit for pressurizing the introduced hydrogen gas, a cooling unit for cooling the hydrogen gas pressurized by the compression unit, and an expansion unit for decompressing the hydrogen gas cooled by the cooling unit .
제1항에 있어서,
해수를 담수화하여 상기 수전해장치로 공급하는 담수화장치를 더 포함하는 부유식 수소 생산 및 관리시스템.
According to claim 1,
Floating hydrogen production and management system further comprising a desalination device that desalinates seawater and supplies it to the water electrolyzer.
제1항에 있어서,
상기 분배장치에 의해 분배된 전원을 공급받아 상기 수전해장치 측으로 공급하는 변압기; 및
상기 변압기로부터 공급되는 전원을 변환하는 직류-교류 변환기를 더 포함하는 부유식 수소 생산 및 관리시스템.
The method of claim 1,
a transformer receiving the power distributed by the distribution device and supplying it to the water electrolyzer; and
Floating hydrogen production and management system further comprising a DC-AC converter for converting the power supplied from the transformer.
제3항에 있어서,
상기 냉각부는
상기 압축부에 의해 가압된 수소가스를 상대적으로 고온의 냉매와 1차적으로 열교환하는 제1 열교환기와, 상기 제1 열교환기를 거쳐 1차적으로 냉각된 수소가스를 상대적으로 저온의 냉매와 2차적으로 열교환하는 제2 열교환기를 포함하는 부유식 수소 생산 및 관리시스템.
4. The method of claim 3,
the cooling unit
A first heat exchanger that primarily exchanges the hydrogen gas pressurized by the compression unit with a relatively high temperature refrigerant, and secondarily heats up the hydrogen gas firstly cooled through the first heat exchanger with a relatively low temperature refrigerant Floating hydrogen production and management system comprising a second heat exchanger that
제4항에 있어서,
상기 수소 액화라인에 의해 발생되는 액화수소 및 이로부터 발생하는 수소 증발가스를 수용하는 저장탱크를 더 포함하고,
상기 수소 액화라인은
상기 팽창부에 의해 감압된 수소가스를 액화수소 및 미액화수소로 분리하는 기액분리기와, 상기 기액분리기의 액화수소를 상기 저장탱크로 공급하는 액화수소 처리라인과, 상기 기액분리기의 미액화수소를 상기 압축부 전단으로 공급하는 재순환라인을 더 포함하는 부유식 수소 생산 및 관리시스템.
5. The method of claim 4,
Further comprising a storage tank for accommodating the liquefied hydrogen generated by the hydrogen liquefaction line and the hydrogen boil-off gas generated therefrom,
The hydrogen liquefaction line is
A gas-liquid separator for separating the hydrogen gas pressure-reduced by the expansion unit into liquid hydrogen and non-liquefied hydrogen, a liquid hydrogen treatment line for supplying the liquid hydrogen of the gas-liquid separator to the storage tank, and the non-liquefied hydrogen of the gas-liquid separator Floating hydrogen production and management system further comprising a recirculation line for supplying to the front end of the compression unit.
제5항에 있어서,
상기 제1 열교환기 및 제2 열교환기로 냉열을 제공하는 냉매순환라인을 더 포함하고,
상기 냉매순환라인은
냉매를 가압하는 압축기와, 상기 압축기에 의해 가압된 냉매를 냉각시키는 냉각기와, 상기 냉각기에 의해 냉각된 냉매를 감압하는 팽창기를 포함하고,
상기 팽창기에 의해 감압된 상대적으로 저온의 냉매는 상기 제2 열교환기에 선차적으로 공급되어 상기 1차적으로 냉각된 수소가스와 열교환하고, 상기 제2 열교환기를 거치면서 온도가 상승된 상대적으로 고온의 냉매는 상기 제1 열교환기에 후속적으로 전달되어 상기 가압된 수소가스와 열교환하며, 상기 제1 열교환기를 거친 냉매는 상기 압축기로 순환되는 부유식 수소 생산 및 관리시스템.
6. The method of claim 5,
Further comprising a refrigerant circulation line for providing cooling heat to the first heat exchanger and the second heat exchanger,
The refrigerant circulation line is
A compressor for pressurizing the refrigerant, a cooler for cooling the refrigerant pressurized by the compressor, and an expander for decompressing the refrigerant cooled by the cooler,
The relatively low-temperature refrigerant decompressed by the expander is supplied to the second heat exchanger in advance to exchange heat with the firstly cooled hydrogen gas, and the relatively high-temperature refrigerant whose temperature is increased while passing through the second heat exchanger. is subsequently transferred to the first heat exchanger to exchange heat with the pressurized hydrogen gas, and the refrigerant passing through the first heat exchanger is circulated to the compressor.
제6항에 있어서,
상기 제2 열교환기는
상기 재순환라인을 따라 이송되는 미액화수소로부터 냉열을 추가적으로 공급받는 부유식 수소 생산 및 관리시스템.
7. The method of claim 6,
the second heat exchanger
A floating hydrogen production and management system that additionally receives cooling heat from liquefied hydrogen transferred along the recirculation line.
제7항에 있어서,
상기 저장탱크의 수소 증발가스를 공급받아 상기 수소 액화라인으로 합류시키는 증발가스 공급라인을 더 포함하는 부유식 수소 생산 및 관리시스템.
8. The method of claim 7,
Floating hydrogen production and management system further comprising a boil-off gas supply line for receiving the hydrogen boil-off gas of the storage tank and joining the hydrogen boil-off gas into the hydrogen liquefaction line.
제8항에 있어서,
상기 증발가스 공급라인은 상기 재순환라인 상의 상기 제2 열교환기 전단으로 합류하도록 마련되며,
상기 제2 열교환기는
상기 미액화수소 및 상기 수소 증발가스 중 적어도 어느 하나를 포함하는 혼합된 가스흐름으로부터 냉열을 추가적으로 공급받는 부유식 수소 생산 및 관리시스템.
9. The method of claim 8,
The boil-off gas supply line is provided to join the front end of the second heat exchanger on the recirculation line,
the second heat exchanger
Floating hydrogen production and management system that is additionally supplied with cooling heat from a mixed gas stream comprising at least one of the liquefied hydrogen and the hydrogen boil-off gas.
제7항에 있어서,
상기 저장탱크에 수용된 액화수소를 수소 운반선 또는 액화수소 수요처로 공급하는 액화수소 공급라인을 더 포함하는 부유식 수소 생산 및 관리시스템.
8. The method of claim 7,
Floating hydrogen production and management system further comprising a liquid hydrogen supply line for supplying the liquid hydrogen accommodated in the storage tank to a hydrogen carrier or liquid hydrogen demand.
제7항에 있어서,
상기 저장탱크에 수용된 액화수소를 수소 운반선으로 공급하는 액화수소 공급라인; 및
상기 수소 운반선에 존재 또는 발생되는 수소 증발가스를 상기 저장탱크로 회수하는 증발가스 회수라인을 더 포함하는 부유식 수소 생산 및 관리시스템.
8. The method of claim 7,
a liquid hydrogen supply line for supplying the liquid hydrogen accommodated in the storage tank to a hydrogen carrier; and
Floating hydrogen production and management system further comprising a boil-off gas recovery line for recovering hydrogen boil-off gas existing or generated in the hydrogen carrier to the storage tank.
제1항에 있어서,
상기 수전해장치에 의해 생산된 수소가스의 나머지 일부를 육상의 수소가스 수요처로 공급하는 수소가스 공급라인을 더 포함하는 부유식 수소 생산 및 관리시스템.
According to claim 1,
Floating hydrogen production and management system further comprising a hydrogen gas supply line for supplying the remaining part of the hydrogen gas produced by the water electrolyzer to a hydrogen gas demand on land.
제1항에 있어서,
상기 분배장치는
상기 풍력발전기로부터 전달되는 전원을 육상의 전력 수요처에 분배하는 부유식 수소 생산 및 관리시스템.


According to claim 1,
The distribution device is
Floating hydrogen production and management system for distributing the power delivered from the wind generator to power demanders on land.


KR1020200136225A 2020-10-20 2020-10-20 Hydrogen-floating production and treatment system KR20220053062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200136225A KR20220053062A (en) 2020-10-20 2020-10-20 Hydrogen-floating production and treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200136225A KR20220053062A (en) 2020-10-20 2020-10-20 Hydrogen-floating production and treatment system

Publications (1)

Publication Number Publication Date
KR20220053062A true KR20220053062A (en) 2022-04-29

Family

ID=81428909

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200136225A KR20220053062A (en) 2020-10-20 2020-10-20 Hydrogen-floating production and treatment system

Country Status (1)

Country Link
KR (1) KR20220053062A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517199B1 (en) * 2022-10-05 2023-04-04 한국해양과학기술원 Maritime floating platform for production, storage and offloading of marine green hydrogen
WO2023244124A1 (en) * 2022-06-15 2023-12-21 Stena Power & Lng Solutions As System for offshore production of fuel
US11958575B2 (en) 2022-06-15 2024-04-16 Stena Power & Lng Solutions As System for offshore production of fuel
US11970404B2 (en) 2023-06-14 2024-04-30 Stena Power & Lng Solutions As System for offshore production of fuel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049731A (en) 2010-11-09 2012-05-17 삼성중공업 주식회사 Apparatus and method for fuel gas supply

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049731A (en) 2010-11-09 2012-05-17 삼성중공업 주식회사 Apparatus and method for fuel gas supply

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023244124A1 (en) * 2022-06-15 2023-12-21 Stena Power & Lng Solutions As System for offshore production of fuel
US11958575B2 (en) 2022-06-15 2024-04-16 Stena Power & Lng Solutions As System for offshore production of fuel
KR102517199B1 (en) * 2022-10-05 2023-04-04 한국해양과학기술원 Maritime floating platform for production, storage and offloading of marine green hydrogen
US11970404B2 (en) 2023-06-14 2024-04-30 Stena Power & Lng Solutions As System for offshore production of fuel

Similar Documents

Publication Publication Date Title
KR20220053062A (en) Hydrogen-floating production and treatment system
KR102141970B1 (en) LNG carrier with hydrogen production facitlies
KR102392769B1 (en) Gas treatment system of liquid hydrogen carrier
MX2008015857A (en) Process and plant for the vaporization of liquefied natural gas and storage thereof.
KR20220021954A (en) Liquid hydrogen station
KR20190083730A (en) Air Liquefaction System and Method
KR102388256B1 (en) Liquid hydrogen plant
KR20220053060A (en) Hydrogen-floating production and treatment system
JP7439368B2 (en) Green energy transportation system and energy transportation method
KR20190072948A (en) Hybrid propulsion lng carrier using fuel cell
KR20210117010A (en) Ammonia production facility
CN117167650A (en) LNG cold energy recycling system and method
KR20100002826A (en) Lng regasification facilty using fresh water heating
CN114909871B (en) Method and device for preparing liquid hydrogen by offshore off-grid superconducting wind power
KR20220052382A (en) Hydrogen-floating production and treatment system
US20230243271A1 (en) System having a liquid air energy storage and power plant apparatus
CN117377612A (en) Ship
KR20220047450A (en) Floating hydrogen-production system
KR102379475B1 (en) Gas treatment system of liquid hydrogen carrier
KR102538533B1 (en) Gas treatment system of hydrogen carrier
KR102404665B1 (en) Gas treatment system of hydrogen carrier
KR20220047452A (en) Floating hydrogen-production system
KR20220048528A (en) Floating hydrogen-production system
KR20220052383A (en) Hydrogen-floating production and treatment system
KR20220051892A (en) Hydrogen-floating production and treatment system