KR20220050257A - Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity - Google Patents

Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity Download PDF

Info

Publication number
KR20220050257A
KR20220050257A KR1020200133154A KR20200133154A KR20220050257A KR 20220050257 A KR20220050257 A KR 20220050257A KR 1020200133154 A KR1020200133154 A KR 1020200133154A KR 20200133154 A KR20200133154 A KR 20200133154A KR 20220050257 A KR20220050257 A KR 20220050257A
Authority
KR
South Korea
Prior art keywords
efel6800
lactobacillus fermentum
kimchi
strain
fermentation
Prior art date
Application number
KR1020200133154A
Other languages
Korean (ko)
Other versions
KR102431335B1 (en
Inventor
한남수
서희
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020200133154A priority Critical patent/KR102431335B1/en
Publication of KR20220050257A publication Critical patent/KR20220050257A/en
Application granted granted Critical
Publication of KR102431335B1 publication Critical patent/KR102431335B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/10Preserving with acids; Acid fermentation
    • A23B7/105Leaf vegetables, e.g. sauerkraut
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/20Products from fruits or vegetables; Preparation or treatment thereof by pickling, e.g. sauerkraut or pickles
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/065Microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nutrition Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Rheumatology (AREA)
  • Biomedical Technology (AREA)
  • Pain & Pain Management (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to a novel Lactobacillus fermentum EFEL6800 fermentation starter with probiotics activity. The Lactobacillus fermentum EFEL6800 (KACC 81106BP), discovered in the present invention, showed suitability as a fermentation starter and excellent probiotics properties. The strain of the present invention can grow even at low temperature (15℃) and produce an appropriate amount of acid and abundant aroma components and metabolites, and thus is determined to be suitable as a fermentation starter. In addition, the strain has resistance against bile acid and probiotics properties with high antioxidant activity. In addition, the strain of the present invention does not contain a biogenic amine gene and is not haemolytic, thereby being safe for use in food fermentation. In conclusion, the Lactobacillus fermentum EFEL6800 is suitably used as a fermentation strain for vegetables, fruits, grains, and the like and can be used as a healthy functional probiotics starter with anti-inflammatory activity.

Description

프로바이오틱 기능이 있는 신규의 락토바실러스 퍼멘툼 EFEL6800 발효 종균 {Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity} Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity

본 발명은 신규의 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL6800 (KACC 81106BP)에 관한 것으로, 더욱 상세하게는 프로바이오틱 기능이 있는 신규의 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL6800 (KACC 81106BP)발효 종균에 관한 것이다. The present invention is a novel Lactobacillus fermentum ( Lactobacillus fermentum ) It relates to EFEL6800 (KACC 81106BP), and more particularly, to a novel Lactobacillus fermentum EFEL6800 (KACC 81106BP) fermenting seed having a probiotic function.

기능성 식품은 영양을 공급하는 기본 기능을 제공할 뿐만 아니라 건강상의 이점도 제공하는 식품 또는 식이 성분으로 정의된다. 많은 기능성 식품 중에서 프로바이오틱스를 함유한 식품 분야가 빠르게 성장하고 있다. Functional food is defined as a food or dietary ingredient that not only provides the basic function of providing nutrition, but also provides health benefits. Among the many functional foods, the field of foods containing probiotics is growing rapidly.

프로바이오틱스는 적절한 양으로 투여할 때 숙주에게 건강상의 이점을 제공하는 살아있는 미생물로 정의되며, 병원균 성장 방지, 면역 강화, 항암 효과, 설사 예방 및 과민성 대장 증후군 완화 등 다양한 건강상의 이점을 제공한다. Probiotics are defined as live microorganisms that, when administered in appropriate amounts, provide health benefits to the host, and provide a variety of health benefits, including prevention of pathogen growth, enhancing immunity, anticancer effects, prevention of diarrhea and alleviation of irritable bowel syndrome.

발효유 제품은 프로바이오틱스의 운반자로서 중요한 역할을 하지만, 유당 불내증과 고지방 및 고콜레스테롤 함량으로 인한 알레르기 유발 가능성은 발효 유제품과 관련된 주요 단점으로 간주된다. 또한, 채식주의가 증가하고 있으며 현대 소비자는 유익한 영양가로 인식되는 야채, 과일 및 곡물을 기반으로 한 기능성 식품 소비에 점점 더 관심을 보이고 있다. 따라서, 야채, 과일 및 곡물의 식품을 포함한 비유제품 프로바이오틱 제품은 오늘날 건강한 기능성 식품 소재로 평가되고 있다. Although fermented milk products play an important role as carriers of probiotics, lactose intolerance and the allergenic potential due to their high fat and cholesterol content are considered major disadvantages associated with fermented dairy products. In addition, vegetarianism is on the rise and modern consumers are increasingly interested in consuming functional foods based on vegetables, fruits and grains that are perceived as having beneficial nutritional value. Therefore, non-dairy probiotic products, including foods from vegetables, fruits and grains, are being evaluated as healthy functional food ingredients today.

발효유(fermented milk, yogurt)와 같은 발효식품에 사용하는 미생물은 그 역할을 기반으로 크게 두가지로 구분한다. 첫째는 젖산 발효를 진행하여 발효유의 독특한 향미를 제공하는 종균(스타터, starter)이고, 둘째는 인체의 장내에서 정착하여 각종 건강기능성을 제공하는 프로바이오틱스(probiotics)이다. 대부분의 유산균들은 종균이나 프로바이오틱스로 개발되어 각기 다른 목적으로 발효식품에 이용되고 있고, 향미를 위한 종균의 역할과 건강을 위한 프로바이오틱스의 역할 두가지를 한번에 보유한 '프로바이오틱 종균'은 그 개발 사례가 흔치 않다.Microorganisms used in fermented foods such as fermented milk and yogurt are largely divided into two types based on their roles. The first is a starter that provides the unique flavor of fermented milk through lactic acid fermentation, and the second is probiotics that settle in the intestines of the human body and provide various health functions. Most lactic acid bacteria have been developed as starters or probiotics and are used in fermented foods for different purposes, and the development of 'probiotic starters', which has both the role of a starter for flavor and a role of probiotics for health, is rare. not.

김치는 배추, 무를 고춧가루, 마늘, 생강 등 다양한 재료로 발효시켜 만든 한국의 전통 발효 채소이다. 멸균되지 않은 원료를 이용하여 자연 발효로 김치를 제조하면 다양한 미생물이 증식하여 품질이 균일하지 않고 이미 이취가 생성되어 향미도 부족한 문제가 있다. 반면, 김치 제조에 종균(스타터, starter)을 사용하면 균일한 품질, 관능 특성 향상, 유통 기한 연장, 김치 제품의 기능적 특성 향상과 같은 장점을 기대할 수 있다. Kimchi is a traditional Korean fermented vegetable made by fermenting cabbage and radish with various ingredients such as red pepper powder, garlic, and ginger. When kimchi is manufactured by natural fermentation using non-sterilized raw materials, various microorganisms proliferate, so the quality is not uniform, and there is a problem of lack of flavor because off-flavor is already generated. On the other hand, the use of a starter for kimchi manufacturing can expect advantages such as uniform quality, improvement of sensory characteristics, extension of shelf life, and improvement of functional characteristics of kimchi products.

최근 김치 발효에 건강 기능적 특성을 갖는 프로바이오틱스의 사용이 보고되었다. 김치의 기능성을 향상시키기 위해 CLA (conjugated linoleic acid)을 생성하는 Bifidobacterium spp. (Min SG, Kim JH, Kim SM, Shin HS, Hong GH, Oh DG, Kim KN. Manufactures of functional kimchi using Bifidobacterium strain producing conjugated linoleic acid (CLA) as starter. 2003. Korean J Food Sci Technol. 2003; 35(1): 111-114.) 또는 γaminobutyric acid(GABA)를 생성하는 Lactobacillus spp. (Seok JH, Park KB, Kim YH, Bae MO, Lee MK, Oh SH. Production and characterization of kimchi with enhanced levels of γ-aminobutyric acid. Food Sci Biotechnol. 2008; 17(5): 940-946.)을 개발한 사례가 있다. 또한, 김치의 항암 및 항산화 활성을 향상시킬 수 있는 혼합 프로바이오틱스를 개발한 사례도 있다 (Bong YJ, Jeong JK, Park KY. Fermentation properties and increased health functionality of kimchi by kimchi lactic acid bacteria starters. J Korean Soc Food Sci. 2013;42(11):1717-1726; doi: 10.3746/jkfn.2013.42.11.1717.). 이와 같이 건강 기능성 김치를 제조하기 위해 프로바이오틱스 유산균을 개발한 사례들이 여럿 있지만, 이들을 실제로 김치에 사용하여 상품화한 사례는 극히 드물다. Recently, the use of probiotics with health and functional properties in kimchi fermentation has been reported. It produces CLA (conjugated linoleic acid) to improve the functionality of kimchi.Bifidobacterium spp. (Min SG, Kim JH, Kim SM, Shin HS, Hong GH, Oh DG, Kim KN. Manufactures of functional kimchi usingBifidobacterium strain producing conjugated linoleic acid (CLA) as starter. 2003. Korean J Food Sci Technol. 2003; 35(1): 111-114.) or γaminobutyric acid (GABA)Lactobacillus spp. (Seok JH, Park KB, Kim YH, Bae MO, Lee MK, Oh SH. Production and characterization of kimchi with enhanced levels of γ-aminobutyric acid. Food Sci Biotechnol. 2008; 17(5): 940-946.) has been developed. In addition, there is a case of developing mixed probiotics that can improve the anticancer and antioxidant activity of kimchi (Bong YJ, Jeong JK, Park KY. Fermentation properties and increased health functionality of kimchi by kimchi lactic acid bacteria starters. J Korean Soc Food Sci. 2013;42(11):1717-1726; doi: 10.3746/jkfn.2013.42.11.1717.). As such, there are many cases of developing probiotic lactic acid bacteria to manufacture healthy functional kimchi, but there are very few cases where they are actually used in kimchi and commercialized.

이는 프로바이오틱스로 개발된 유산균들을 김치에 적용할 때 중요한 제한 사항이 있기 때문이다. 그 첫번째 문제점은, 식약처에서 고시한 19종 프로바이오틱스들은 대부분 우유를 기반으로 한 유가공 식품을 기반으로 개발한 경우가 대다수이고 이들 중 상당 수의 종은 채소를 기반으로 제조한 김치의 영양환경에서 잘 성장하지 못하는 경우가 많은 점이다. 두번째 문제점은 대부분의 프로바이오틱스들은 37℃ 이상에서 자라는 고온성 유산균들로 15℃ 이하의 저온에서 주로 발효하는 김치에 적절하지 않은 점이다. 세번째로 대두되는 문제점은, 프로바이오틱스가 김치에서 성장하는 경우에도 다량의 젖산을 생성하여 기호도와 유통기간을 낮추는 경우가 많고, 이미-이취(off-flavor)를 생성하여 김치의 향미를 저해하는 경우가 있는 점이다. This is because there are important limitations when applying lactic acid bacteria developed as probiotics to kimchi. The first problem is that most of the 19 types of probiotics announced by the Ministry of Food and Drug Safety are developed based on milk-based milk-processed foods, and many of these types do well in the nutritional environment of vegetable-based kimchi. Most of the time, they don't grow. The second problem is that most probiotics are thermophilic lactic acid bacteria that grow above 37℃ and are not suitable for kimchi that is mainly fermented at low temperatures below 15℃. The third problem that arises is that even when probiotics are grown in kimchi, they often produce a large amount of lactic acid to lower the taste and shelf life, and create off-flavors that impair the flavor of kimchi. that there is

이를 극복하기 위해 기존의 프로바이오틱스 유산균체를 배양하여 김치 발효 후에 첨가하는 방법도 제안되었지만 김치의 가격을 높혀 경제성이 떨어지는 것으로 판단된다. 또한, 현재 김치 종균으로 널리 사용되는 Leuconostoc 속은 산과 담즙에 대한 내성이 약하며, 사람의 대장 상피세포 부착 능력이 부족하여 종균으로는 사용되지만 건강을 제공하는 프로바이오틱스로 간주되지는 않는다. To overcome this, the existing method of culturing probiotic lactic acid bacteria and adding them after fermentation of kimchi has been proposed, but it is judged that the economic feasibility is lowered by increasing the price of kimchi. In addition, the genus Leuconostoc , which is currently widely used as a starter for kimchi, has weak resistance to acids and bile, and lacks the ability to adhere to human colon epithelial cells.

대한민국 특허공개번호 제1020180052032호 (공개일자 2018.05.17)에는, 김치유래 신규한 유산균 락토바실러스 플란타룸 DGK-17(KACC 81028BP) 및 이로부터 제조되는 발효 조성물을 포함하는 김치와 그의 제조방법에 대해 기재되어 있다.In Korean Patent Publication No. 1020180052032 (published on May 17, 2018), a novel lactic acid bacterium Lactobacillus plantarum DGK-17 (KACC 81028BP) derived from kimchi and kimchi comprising a fermented composition prepared therefrom and a method for manufacturing the same is described. 대한민국 특허공개번호 제1020170080837호 (공개일자 2017.07.11)에는, 신규 김치유산균 Weissella cibaria MFST 균주 및 이를 이용한 대추씨 조성물이 기재되어 있다.In Korean Patent Publication No. 1020170080837 (published on July 11, 2017), a novel kimchi lactic acid bacterium Weissella cibaria MFST strain and a jujube seed composition using the same are described.

본 발명에서는 김치로 대표되는 채소, 과일, 곡물 등의 발효에 사용될 수 있는 종균으로서, 발효물의 향미 증진과 프로바이오틱 건강기능성을 동시에 향상시킬 수 있는 신규의 '프로바이오틱 종균'을 발굴하여 제공하고자 한다. In the present invention, as a starter that can be used for fermentation of vegetables, fruits, grains, etc. represented by kimchi, a novel 'probiotic starter' that can enhance flavor and probiotic health functionality of the fermented product at the same time is discovered and provided want to

본 발명은 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 제공한다. The present invention provides Lactobacillus fermentum EFEL 6800 (KACC 81106BP).

본 발명의 상기 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)은, 바람직하게 항염 프로바이오틱 활성이 있는 것을 특징으로 한다. The Lactobacillus fermentum EFEL 6800 (KACC 81106BP) of the present invention is preferably characterized in that it has anti-inflammatory probiotic activity.

본 발명은 채소에 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 종균으로 접종하여 발효시킴으로써 제조되는 발효 채소를 제공한다. 이때, 상기 발효 채소는, 일 예로 김치일 수 있다. The present invention provides a fermented vegetable prepared by inoculating a vegetable with Lactobacillus fermentum EFEL 6800 (KACC 81106BP) as a seed and fermenting it. In this case, the fermented vegetable may be, for example, kimchi.

본 발명은 과일에 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 종균으로 접종하여 발효시킴으로써 제조되는 발효 과일을 제공한다. The present invention provides a fermented fruit prepared by inoculating a fruit with Lactobacillus fermentum EFEL 6800 (KACC 81106BP) as a seed and fermenting it.

본 발명은 곡물에 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 종균으로 접종하여 발효시킴으로써 제조되는 발효 곡물을 제공한다. The present invention provides a fermented grain produced by inoculating grains with Lactobacillus fermentum EFEL 6800 (KACC 81106BP) as a seed and fermenting it.

본 발명에서 발굴한 락토바실러스 퍼맨텀(Lactobacillus fermentum) EFEL6800 (KACC 81106BP)은 발효 종균으로서의 적합성과 우수한 프로바이오틱스 특성을 보였다. 본 발명의 균주는 저온 (15℃)에서도 성장가능하고, 적절한 양의 산을 생성하며 풍부한 향기성분과 대사산물을 생산하는 특징이 있어 발효 종균으로서 적합하였다. 또한, 산 담즙 내성과 항산화 활성이 높은 프로바이오틱 특징이 있다. 또한, 본 발명의 균주는 Biogenic amine 유전자를 보유하고 있지 않으며, 용혈성이 없기 때문에 식품 발효에 사용하기에 안전하다. 결론적으로 락토바실러스 퍼맨텀 (Lactobacillus fermentum) EFEL6800은 채소, 과일, 곡물 등의 발효 균주로서 적합하고, 항염증 활성의 건강 기능성 프로바이오틱 종균으로 사용될 수 있다. Lactobacillus fermentum EFEL6800 (KACC 81106BP) discovered in the present invention showed suitability as a fermentation seed and excellent probiotic properties. The strain of the present invention is suitable as a fermenting seed because it can grow even at a low temperature (15° C.), produces an appropriate amount of acid, and produces abundant aroma components and metabolites. In addition, it has probiotic properties with high acid bile tolerance and antioxidant activity. In addition, the strain of the present invention does not have a biogenic amine gene and is safe for use in food fermentation because it does not have hemolytic properties. In conclusion, Lactobacillus fermentum ( Lactobacillus fermentum ) EFEL6800 is suitable as a fermented strain of vegetables, fruits, grains, etc., and can be used as a healthy functional probiotic seed with anti-inflammatory activity.

도 1은 본 발명 Lactobacillus fermentum EFEL6800 안전성 테스트 결과이다.
도 2는 모의 위장 조건에서 Lactobacillus fermentum EFEL6800의 생존력을 보여준다.
도 3은 Lactobacillus fermentum EFEL6800의 항산화 활성을 나타낸다.
도 4는 LPS로 유도된 RAW 264.7 세포에서 산화 질소 (NO)의 발현에 대한 열 불활성화(사멸) 균주의 억제 효과를 보여준다
도 5는 열 불활성화(사멸) 균주가 LPS로 유도된 RAW 264.7 세포에서 iNOS 및 COX-2의 발현에 미치는 억제 효과를 보여준다.
도 6은 Lactobacillus fermentum EFEL6800의 사이토카인 분비 측정 결과이다.
도 7은 본 발명 Lactobacillus fermentum EFEL6800 및 대조군 Leuconostoc mesenteroides DRC1506 (KCCM11712P) 균주의 성장률을 측정한 것이다.
도 8은 본 발명 Lactobacillus fermentum EFEL6800 및 대조군 DRC1506 균주의 성장시 측정한 pH 값이다.
도 9는 나박김치의 휘발성 향기 성분에 대해 수행된 principal components analysis (PCA)의 Biplot 결과이다.
도 10은 김치의 대사 산물에 대해 수행된 principal components analysis (PCA)의 Biplot 결과이다.
도 11은 프로바이오틱 균주로 발효시킨 최적 숙성 나박김치 시료의 관능평가 결과이다.
1 is a safety test result of the present invention Lactobacillus fermentum EFEL6800.
Figure 2 shows the viability of Lactobacillus fermentum EFEL6800 in simulated gastrointestinal conditions.
Figure 3 shows the antioxidant activity of Lactobacillus fermentum EFEL6800.
Figure 4 shows the inhibitory effect of heat inactivated (death) strains on the expression of nitric oxide (NO) in LPS-induced RAW 264.7 cells.
Figure 5 shows the inhibitory effect of the heat inactivated (killed) strain on the expression of iNOS and COX-2 in LPS-induced RAW 264.7 cells.
6 is a measurement result of cytokine secretion of Lactobacillus fermentum EFEL6800.
Figure 7 is a measure of the growth rate of the present invention Lactobacillus fermentum EFEL6800 and control Leuconostoc mesenteroides DRC1506 (KCCM11712P) strain.
8 is a pH value measured during growth of Lactobacillus fermentum EFEL6800 and control DRC1506 strains of the present invention.
9 is a biplot result of principal components analysis (PCA) performed on the volatile fragrance component of nabak kimchi.
10 is a biplot result of principal components analysis (PCA) performed on the metabolites of kimchi.
11 is a sensory evaluation result of an optimally aged nabak kimchi sample fermented with a probiotic strain.

'프로바이오틱 종균'을 개발하여 김치로 대표되는 발효식품의 향미와 건강기능성을 동시에 향상시킬 수 있다면 김치의 상품 가치가 증대될 것이고 소비자의 건강에도 바람직한 영향을 미칠 수 있을 것이다. If the flavor and health functionality of fermented food represented by kimchi can be improved at the same time by developing 'probiotic spawn', the commercial value of kimchi will increase and it will have a desirable effect on the health of consumers.

이를 위해서 본 발명에서는 개발될 '프로바이오틱 종균'의 필수 요소로 하기와 같은 네가지를 결정하였다. 첫째, 김치의 영양성분을 잘 이용하여 생육할 수 있어야 한다. 둘째, 김치 발효가 진행되는 저온에서 생육해야 한다. 셋째, 발효과정에서 생성되는 대사물질이 우수한 김치의 향미를 제공하는데 기여해야 한다. 넷째, 높은 산-담즙 내성, 장부착능, 안전성, 면역조절능 등의 건강기능성을 보유해야 한다. To this end, in the present invention, the following four elements were determined as essential elements of a 'probiotic seed' to be developed. First, kimchi must be able to grow by using the nutrients well. Second, kimchi must be grown at a low temperature where fermentation takes place. Third, metabolites generated during fermentation should contribute to providing excellent flavor of kimchi. Fourth, it must possess health functionalities such as high acid-bile tolerance, intestinal adhesion, safety, and immunomodulatory ability.

본 발명에서는 상기와 같은 4가지 요건을 충족시키는 종균을 개발하였고, Lactobacillus fermentum EFEL 6800을 제공하고자 한다. 본 발명에서 발굴한 Lactobacillus fermentum EFEL 6800은 김치의 발효에 효과적으로 적용될 수 있는 종균으로서, 동시에 항염 활성의 건강기능성 프로바이오틱으로서의 적합성도 구비하고 있다. In the present invention, a seed strain satisfying the above four requirements has been developed, and it is intended to provide Lactobacillus fermentum EFEL 6800. Lactobacillus fermentum EFEL 6800 discovered in the present invention is a seed that can be effectively applied to fermentation of kimchi, and at the same time has anti-inflammatory activity and suitability as a health functional probiotic.

우선, 본 발명 Lactobacillus fermentum EFEL 6800의 김치 종균으로서 특성을 조사하고자 김치모사배지에서의 성장곡선, GC/MS, NMR을 이용한 대사산물 분석, 관능평가를 실시하였다. 본 발명의 균주는 김치 배지에서 37℃, 15℃에서 모두 성장 가능하며, 적절한 양의 산을 생성하였다. 아울러 본 발명의 균주를 종균으로 사용하여 김치를 제조하였을 때, Lactobacillus 속 균주임에도 불구하고, 양성대조구로 사용한 Leuconostoc mesenteroides DRC1506과 유사한 향기성분과 대사산물을 포함하며, 향미가 좋은 김치를 제조할 수 있음이 확인되었다. First, in order to investigate the characteristics of Lactobacillus fermentum EFEL 6800 of the present invention as a kimchi starter, metabolite analysis and sensory evaluation were performed using growth curves, GC/MS, and NMR in a kimchi imitation medium. The strain of the present invention can grow at both 37 ℃ and 15 ℃ in kimchi medium, and produced an appropriate amount of acid. In addition, when kimchi was prepared using the strain of the present invention as a seed, despite being a Lactobacillus genus strain, It was confirmed that kimchi with good flavor can be prepared, which contains aroma components and metabolites similar to Leuconostoc mesenteroides DRC1506 used as a positive control.

다음으로, 본 발명에서는 Lactobacillus fermentum EFEL 6800 균주의 프로바이오틱스 활성을 확인하여 보았는데, 산-담즙 내성을 나타내 장내 안정성이 우수하였고, 높은 항산화 활성 및 항염증 활성의 건강기능성을 나타내었다. 즉, 본 발명 균주의 열 불활성화 시료는 LPS로 염증이 자극된 대식세포에서 산화질소 (NO) 억제, 염증관련 유전자인 iNOS, COX-2의 mRNA 발현양 억제, pro-inflammatory cytokine의 억제와 anti-inflammatory cytokine의 유도로 높은 항염증 효과를 나타내었다. Next, in the present invention, the probiotic activity of the Lactobacillus fermentum EFEL 6800 strain was confirmed. It showed acid-bile tolerance and excellent intestinal stability, and health functionalities of high antioxidant activity and anti-inflammatory activity. That is, the heat inactivation sample of the strain of the present invention suppressed nitric oxide (NO) in macrophages stimulated by LPS, suppressed mRNA expression levels of inflammation-related genes iNOS and COX-2, suppressed pro-inflammatory cytokines, and -Induction of inflammatory cytokine showed high anti-inflammatory effect.

또한, 본 발명의 Lactobacillus fermentum EFEL 6800 균주는 Biogenic amine 유전자를 보유하고 있지 않으며, 용혈성이 없기 때문에 식품 발효에 사용하기에 안전한 특징이 확인되었다. In addition, the Lactobacillus fermentum EFEL 6800 strain of the present invention does not possess the biogenic amine gene, and it is confirmed that it is safe for use in food fermentation because it does not have hemolytic properties.

이상과 같은 특징이 있는 본 발명의 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)은 발효 종균으로 사용될 수 있는데, 채소, 과일, 곡물 등의 발효 종균으로 사용될 수 있다. Lactobacillus fermentum EFEL 6800 (KACC 81106BP) of the present invention having the above characteristics can be used as a fermented seed, it can be used as a fermented seed for vegetables, fruits, grains, and the like.

락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 발효 종균으로 사용하여 제조되는 발효 채소로는 일 예로 김치가 있고, 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 발효 종균으로 사용하여 제조되는 발효 과일로는 일 예로 아차라(atchara)가 있으며, 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 발효 종균으로 사용하여 제조되는 발효 곡물로는 일 예로 오트밀이 있있다. An example of a fermented vegetable prepared by using Lactobacillus fermentum EFEL 6800 (KACC 81106BP) as a fermented seed is kimchi, and Lactobacillus fermentum EFEL 6800 (KACC 81106BP) is used as a fermented seed. As an example of a fermented fruit produced using, there is atchara, and as an example of a fermented grain produced using Lactobacillus fermentum EFEL 6800 (KACC 81106BP) as a fermentation seed, there is oatmeal. .

한편, 본 발명의 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 발효 종균으로 사용하여 발효 채소, 발효 과일, 발효 곡물의 제조시, 본 발명 균주를 종균으로 사용하는 것 외에는 당업계에 널리 알려진 발효 방법들을 선택적으로 적용 사용할 수 있다. 따라서, 각 제품 별로 구체적인 발효 방법에 대한 설명은 생략하기로 한다. On the other hand, in the production of fermented vegetables, fermented fruits, and fermented grains using Lactobacillus fermentum EFEL 6800 (KACC 81106BP) of the present invention as a fermented seed, there is no one in the art except for using the strain of the present invention as a seed. Well-known fermentation methods can be selectively applied and used. Therefore, a description of a specific fermentation method for each product will be omitted.

이하, 본 발명의 내용을 하기 실시예 및 실험예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예 및 실험예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다. Hereinafter, the content of the present invention will be described in more detail through the following Examples and Experimental Examples. However, the scope of the present invention is not limited only to the following examples and experimental examples, and includes modifications of technical ideas equivalent thereto.

[실시예 1: [Example 1: Lactobacillus fermentumLactobacillus fermentum EFEL6800 분리 및 동정] EFEL6800 Isolation and Identification]

본 발명의 Lactobacillus fermentum 분리를 위해 ribose를 첨가한 MRS+ bromophenol blue (BPB) 배지를 제조하였다. 건강한 성인의 인체 유래 타액을 멸균 식염수 (0.85% NaCl)로 희석하여 선택배지에 도말하고, 혐기 조건 하 37℃에서 48시간 동안 배양하여 콜로니를 얻었다. 그 후에 분리 및 선택되어진 콜로니로부터 게놈 DNA를 분리하고 16S rRNA 유전자 서열을 분석하였고, NCBI와 Ribosomal Database Project (RDP)에서 type 균주의 서열을 비교함으로써 동정하였다. of the present inventionLactobacillus fermentum For separation, MRS+ bromophenol blue (BPB) medium supplemented with ribose was prepared. The human saliva of healthy adults was diluted with sterile saline (0.85% NaCl) and spread on a selective medium, and colonies were obtained by culturing at 37° C. under anaerobic conditions for 48 hours. Thereafter, genomic DNA was isolated from the isolated and selected colonies, the 16S rRNA gene sequence was analyzed, and it was identified by comparing the sequence of the type strain in NCBI and the Ribosomal Database Project (RDP).

이상의 과정을 통해 인체 유래 타액에서 분리한 본 발명의 균주를 EFEL6800로 명명하고, 이 분리주의 16S rRNA 유전자 서열을 분석하였다. 그 결과, Lactobacillus fermentum 타입의 균주와 큰 유사성을 가져 Lactobacillus fermentum으로 동정하였다. The strain of the present invention isolated from human saliva through the above process was named EFEL6800, and the 16S rRNA gene sequence of the isolate was analyzed. As a result, it was identified as Lactobacillus fermentum with great similarity to the Lactobacillus fermentum type strain.

[실시예 2: 본 발명 [Example 2: The present invention Lactobacillus fermentum Lactobacillus fermentum EFEL6800 균주의 생체 아민 유전자 및 용혈능 활성 확인]Confirmation of biological amine gene and hemolytic activity of EFEL6800 strain]

프로바이오틱스를 식품에 사용하기 위해서는 식이 단백질로부터 식중독과 같은 건강에 부정적인 영향을 줄 수 있는 Biogenic amine을 생성해서는 안된다. 본 발명 Lactobacillus fermentum EFEL6800 균주의 안정성을 평가하기 위해, Biogenic amine 형성과 관련된 유전자의 존재를 PCR로 조사하였다. In order for probiotics to be used in food, they must not form biogenic amines from dietary proteins that can adversely affect health, such as food poisoning. The present invention Lactobacillus fermentum To evaluate the stability of the EFEL6800 strain, the presence of genes related to biogenic amine formation was investigated by PCR.

Biogenic amine 생성과 관련된 각 유전자16s rRNA 유전자를 다중 PCR 방법을 사용하여 검출했다. hdc (histidine decarboxylase)와 tyrdc (tyrosine decarboxylase) 유전자는 다음 프라이머 쌍을 사용하여 증폭되었다. hdc: HDC3 (5'-GATGGTATTGTTTCKTATGA- 3')와 HDC4 (5'-CAAACACCAGCATCTTC- 3'). tyrdc: TD2 (5'-ACATAGTCAACCATRTTGAA- 3')와 TD5 (5'-CAAATGGAAGAAGAAGTAGG- 3'). 16s rRNA 유전자: 27F와 1492R. Each gene 16s rRNA gene involved in biogenic amine production was detected using a multiplex PCR method. The hdc (histidine decarboxylase) and tyrdc (tyrosine decarboxylase) genes were amplified using the following primer pairs. hdc: HDC3 (5'-GATGGTATTGTTTCKTATGA-3') and HDC4 (5'-CAAACACCAGCATCTTC-3'). tyrdc: TD2 (5'-ACATAGTCAACCATRTTGAA-3') and TD5 (5'-CAAATGGAAGAAGAAGTAGG-3'). 16s rRNA genes: 27F and 1492R.

다중 PCR에서 각 Biogenic amine 유전자는 각 해당 프라이머 세트를 추가하여 PCR 튜브에서 16s rRNA 유전자와 동시에 증폭되었다. 16s rRNA 유전자는 PCR 반응 및 주형 조건에 대한 양성 대조군으로 사용되었다. PCR 조건은 다음과 같았다. 95℃에서 5분에 이어서 95℃에서 45초, 58℃에서 45초, 72℃에서 75초를 32사이클한 뒤, 72℃에서 5분 동안 최종 연장되었다. L. reuteri ATCC 23272 및 Enterococcus faecalis KCCM 11729의 genomic DNA를 각각 hdc, tyrdc 유전자에 대한 양성 대조군으로 사용했다. 용혈 분석을 위해, Ryu and Chang's method를 참고하여 7% 말피 (MB CELL, Seoul, Korea)가 첨가된 BHI 한천 플레이트에 박테리아 세포를 접종하였다. Listeria monocytogenes를 대조군으로 사용하여 37℃에서 24시간 혐기성 배양한 후, 배지에서 적혈구 용혈 여부를 관찰하였다.In multiplex PCR, each biogenic amine gene was amplified simultaneously with the 16s rRNA gene in a PCR tube by adding each corresponding primer set. The 16s rRNA gene was used as a positive control for the PCR reaction and template conditions. PCR conditions were as follows. After 32 cycles of 5 minutes at 95°C, 45 seconds at 95°C, 45 seconds at 58°C, and 75 seconds at 72°C, the final extension was performed at 72°C for 5 minutes. Genomic DNAs of L. reuteri ATCC 23272 and Enterococcus faecalis KCCM 11729 were used as positive controls for hdc and tyrdc genes, respectively. For hemolysis analysis, bacterial cells were inoculated on a BHI agar plate supplemented with 7% malpi (MB CELL, Seoul, Korea) by referring to Ryu and Chang's method. Listeria monocytogenes was used as a control and after anaerobic culture at 37° C. for 24 hours, red blood cell hemolysis was observed in the medium.

도 1은 본 발명 Lactobacillus fermentum EFEL6800 안전성 테스트 결과이다. 1 is a safety test result of the present invention Lactobacillus fermentum EFEL6800.

도 1의 (A)는 생체 아민 생산과 관련된 유전자의 검출 결과이다. 레인 M은 1kb DNA 마커, 레인 1 (B)은 주형 DNA가 없는 음성 대조군, 레인 2 (P)는 각각 hdc (히스티딘 데카 복실 라제, 440bp) 및 tyrdc (티로신 데카 복실 라제, 1100bp) 유전자를 갖는 L. reuteri ATCC 23272 및 Enterococcus faecalis KCCM 11729의 genomic DNA로 양성 대조군이다. 16S rRNA 유전자 (1530bp)의 DNA도 증폭되었다. 레인 3은 EFEL6800 균주이다. 도 1의 (B)는 L. fermentum EFEL6800의 용혈 활성 분석 결과이다. 7% 말 혈액을 함유한 BHI 브로쓰에서 용혈 활성을 측정하였다. 왼쪽은 EFEL6800 균주이고, 오른쪽은 양성 대조군 Listeria monocytogenes인데, 세포 방울(drop) 주변에서 clear zone이 보인다.Figure 1 (A) is the detection result of the gene related to the biological amine production. Lane M is a 1 kb DNA marker, lane 1 (B) is a negative control without template DNA, lane 2 (P) is L with hdc (histidine decarboxylase, 440 bp) and tyrdc (tyrosine decarboxylase, 1100 bp) genes, respectively. .reuteri ATCC 23272 and Enterococcus faecalis KCCM 11729 genomic DNA as a positive control. The DNA of the 16S rRNA gene (1530bp) was also amplified. Lane 3 is the EFEL6800 strain. Figure 1 (B) is the result of analysis of hemolytic activity of L. fermentum EFEL6800. Hemolytic activity was measured in BHI broth containing 7% horse blood. The left is the EFEL6800 strain, and the right is the positive control Listeria monocytogenes , and a clear zone is seen around the cell drop.

도 1의 (A)에서 보이듯이, EFEL6800균주는 각각 히스타민과 티라민을 생성하는 hdc 및 tyrdc 유전자를 보유하지 않았다. 반면, 이들 유전자에 대한 PCR 산물은 양성 대조군인 L. reuteri ATCC 23272 및 Ec. faecalis KCCM 11729의 genomic DNA에서 검출되었다.As shown in (A) of FIG. 1 , the EFEL6800 strain did not have hdc and tyrdc genes that produce histamine and tyramine, respectively. On the other hand, PCR products for these genes were positive controls L. reuteri ATCC 23272 and Ec. It was detected in the genomic DNA of faecalis KCCM 11729.

한편, 식품에 사용하기에 또 다른 중요한 특성은 미생물의 용혈 활성이 없는 것이다. EFEL6800균주의 용혈 활성을 평가하기 위해, 말 혈액 한천 배지에 세포를 접종하고 37℃, 24시간 동안 배양 후 용혈능을 조사했다. EFEL6800 균주는 세포 방울 주변에 clear zone을 나타내지 않았고, 반면 Listeria monocytogenes는 용혈 활성으로 해석될 수 있는 clear zone을 보여주었다 (도 1의 (B)). On the other hand, another important property for use in food is the absence of hemolytic activity of microorganisms. To evaluate the hemolytic activity of the EFEL6800 strain, the cells were inoculated on horse blood agar medium, and the hemolytic ability was examined after incubation at 37° C. for 24 hours. EFEL6800 strain did not show a clear zone around the cell droplet, whereas Listeria monocytogenes showed a clear zone that could be interpreted as hemolytic activity (FIG. 1 (B)).

이러한 결과는 EFEL6800균주에 hdc 및 tyrdc 유전자가 없으며, 용혈능이 없음을 보여준다. These results show that the EFEL6800 strain does not have hdc and tyrdc genes and has no hemolytic ability.

[실시예 3: 본 발명 [Example 3: The present invention Lactobacillus fermentumLactobacillus fermentum EFEL6800 균주의 산 및 담즙 내성 확인]Confirmation of acid and bile resistance of EFEL6800 strain]

산성 조건에 대한 내성은 Conway에 의해 제안된 방법을 약간 수정하여 테스트하였다. 박테리아 균주는 MRS 배지에서 12시간 배양하고, 6,000xg에서 10분 동안 원심 분리하여 얻었다. 균주는 pH 7.2의 PBS(phosphate-buffered saline)를 사용하여 3회 세척한 후 HCl을 사용하여 pH 3.0 및 2.5로 조절된 동일한 부피의 PBS에 재현탁시켰다. 37℃에서 0, 90, 180분 배양한 후, MRS 한천 배지에 균주를 도말하여 37℃에서 48시간 배양 후 생존 세포를 계수하여 산 내성을 평가하였다. Resistance to acidic conditions was tested with slight modifications to the method proposed by Conway. Bacterial strains were obtained by culturing in MRS medium for 12 hours and centrifuging at 6,000xg for 10 minutes. The strain was washed three times using PBS (phosphate-buffered saline) of pH 7.2 and then resuspended in the same volume of PBS adjusted to pH 3.0 and 2.5 using HCl. After 0, 90, 180 minutes of incubation at 37 ° C., the strain was plated on MRS agar medium, and the viable cells were counted after incubation at 37 ° C for 48 hours to evaluate acid resistance.

담즙염에 대한 내성은 0.3%(w/v) 담즙염(Sigma, St. Louis, MO, USA)이 포함된 PBS 용액에 세포를 현탁시켜 37℃에서 배양하여 평가하였다. 담즙염 내성은 산 내성과 동일한 방법으로 측정되었다. Resistance to bile salts was evaluated by suspending cells in PBS solution containing 0.3% (w/v) bile salts (Sigma, St. Louis, MO, USA) and culturing them at 37°C. Bile salt tolerance was measured in the same way as acid tolerance.

도 2는 모의 위장 조건에서 Lactobacillus fermentum EFEL6800의 생존력을 보여준다. 도 2의 (A)는 산성 조건 (pH 3.0), 도 2의 (B)는 산성 조건 (pH 2.5), 도 2의 (C)는 0.3 % 담즙염 조건에서의 결과이다. 결과는 평균±표준 편차 (n=3)로 표시하였다. Lactobacillus plantarum WCFS1 (## p <0.01, ### p <0.001) 또는 Lactobacillus rhamnosus GG (* p <0.05, ** p <0.01)에서 유의한 차이가 나타났다.Figure 2 shows the viability of Lactobacillus fermentum EFEL6800 in simulated gastrointestinal conditions. Figure 2 (A) is an acidic condition (pH 3.0), Figure 2 (B) is an acidic condition (pH 2.5), Figure 2 (C) is the result under 0.3% bile salt conditions. Results are expressed as mean±standard deviation (n=3). Significant differences were found in Lactobacillus plantarum WCFS1 (##p <0.01, ### p <0.001) or Lactobacillus rhamnosus GG (*p <0.05, **p <0.01).

도 2의 (A) 및 (B)에서 보듯이, 양성대조구로 사용한 프로바이오틱 균주 Lactobacillus rhamnosus GG (LGG, KCTC 5033) 및 Lactobacillus plantarum WCFS1 (WCFS1, ATCC BAA-793)와 본 발명 Lactobacillus fermentum EFEL6800의 생존력은 pH 3.0에서 유지되었다. pH 2.5에서 180분 배양 시, EFEL6800는 생존력이 크게 감소하였지만, LGG와 통계적으로 유사하였다. As shown in (A) and (B) of Figure 2, the probiotic strains Lactobacillus rhamnosus GG (LGG, KCTC 5033) and Lactobacillus plantarum WCFS1 (WCFS1, ATCC BAA-793) used as positive controls and Lactobacillus fermentum EFEL6800 of the present invention Viability was maintained at pH 3.0. Upon 180 min incubation at pH 2.5, EFEL6800 had a significant decrease in viability, but was statistically similar to LGG.

또한, 도 2의 (C)에서 보듯이, 0.3% 담즙염에서 담즙 내성 분석 결과, EFEL6800은 WSFS1보다 생존력이 감소하였지만 LGG와 비교하여 더 높은 생존력을 보여주었다. 결과적으로 WCFS1 균주는 장내 안정성이 가장 우수하였고, EFEL6800는 LGG와 비슷한 수준에서 생존할 수 있었다. 이러한 결과는 EFEL6800 균주가 위장관 환경에 내성이 있는 것으로 간주시켜 준다. In addition, as shown in (C) of Figure 2, as a result of analysis of bile tolerance in 0.3% bile salt, EFEL6800 showed a higher viability compared to LGG, although the viability was decreased than that of WSFS1. As a result, WCFS1 strain had the best intestinal stability, and EFEL6800 was able to survive at a similar level to LGG. These results suggest that the EFEL6800 strain is resistant to the gastrointestinal environment.

[실시예 4: 본 발명 [Example 4: The present invention Lactobacillus fermentum Lactobacillus fermentum EFEL6800 균주의 항산화 활성] Antioxidant activity of strain EFEL6800]

Lactobacillus fermentum EFEL6800 균주의 항산화 활성은 Das & Goyal가 제안한 DPPH 억제 분석법을 약간 수정하여 측정되었다. Intact cell와 Cell free extract 제조를 위해, Lactobacillus fermentum EFEL6800의 전 배양, 본 배양을 각각 12시간씩 수행하고, 600nm에서 흡광도(optical density)를 1.0으로 맞췄다. Lactobacillus fermentum EFEL6800 세포를 2회 세척하고 0.85% 식염수에 재현탁하여 온전한 세포를 만들었다. Cell free extract의 경우, 초음파 처리기(VP-050N; Taitec Corp., Saitama, Japan)를 사용하여 10분 동안 초음파 분해 처리를 한 후, 원심분리(10,000xg 4℃ 5분)에 의해 세포 파편을 제거하였다. ethanolic DPPH 용액(100 μL, 0.4 mmol/L)은 박테리아 샘플 또는 물(대조군)과 강하게 혼합하여 37℃의 어두운 곳에서 30분 간 배양하였다. 이 혼합물의 흡광도는 마이크로플레이트 리더기를 사용하여 517nm에서 측정되었다.The antioxidant activity of the Lactobacillus fermentum EFEL6800 strain was measured with a slight modification of the DPPH inhibition assay proposed by Das & Goyal. For the preparation of intact cells and cell free extract, pre-culture and main culture of Lactobacillus fermentum EFEL6800 were performed for 12 hours each, and the absorbance (optical density) was set to 1.0 at 600 nm. Lactobacillus fermentum EFEL6800 cells were washed twice and resuspended in 0.85% saline to make intact cells. In the case of cell free extract, after sonication treatment for 10 minutes using a sonicator (VP-050N; Taitec Corp., Saitama, Japan), cell debris is removed by centrifugation (10,000xg 4 5 minutes) did An ethanolic DPPH solution (100 μL, 0.4 mmol/L) was strongly mixed with a bacterial sample or water (control) and incubated at 37°C in the dark for 30 minutes. The absorbance of this mixture was measured at 517 nm using a microplate reader.

도 3은 Lactobacillus fermentum EFEL6800의 항산화 활성을 나타낸다. 항산화 활성은 DPPH 억제 분석으로 측정되었고, 결과는 평균±표준편차 (n=3)로 표시하였다. 오차 막대의 다른 문자는 유의한 차이를 나타낸다. L. plantarum WCFS1 (#p <0.05, ### p <0.001) 또는 L. rhamnosus GG (*** p <0.01)와 유의한 차이가 나타났다. Figure 3 shows the antioxidant activity of Lactobacillus fermentum EFEL6800. Antioxidant activity was measured by DPPH inhibition assay, and the results were expressed as mean±standard deviation (n=3). Different letters in the error bars indicate significant differences. Significant differences were found with L. plantarum WCFS1 (#p <0.05, ### p <0.001) or L. rhamnosus GG (*** p <0.01).

도 3에서 보듯이, EFEL6800의 Intact cell은 22 % DPPH 제거 활성을 보였으며, 이는 WCFS1 (10.6 %), LGG (17.1%)와 비교하여 통계적으로 더 높았다. EFEL6800의 Cell free extract의 항산화 활성은 18.2%로 WCFS1 (1.6 %), LGG (8.0 %)보다 유의하게 높았다. As shown in FIG. 3 , the Intact cells of EFEL6800 showed 22% DPPH removal activity, which was statistically higher than that of WCFS1 (10.6%) and LGG (17.1%). The antioxidant activity of the cell free extract of EFEL6800 was 18.2%, which was significantly higher than that of WCFS1 (1.6%) and LGG (8.0%).

따라서, 본 발명의 Lactobacillus fermentum EFEL6800은 상업적 프로바이오틱스인 Lactobacillus plantarum WCFS1와 Lactobacillus rhamnosus GG보다 더 높은 항산화 활성을 갖는 것으로 판단되었다.Therefore, Lactobacillus fermentum EFEL6800 of the present invention was judged to have higher antioxidant activity than commercial probiotics Lactobacillus plantarum WCFS1 and Lactobacillus rhamnosus GG.

[실시예 5: 본 발명 [Example 5: The present invention Lactobacillus fermentumLactobacillus fermentum EFEL6800 균주의 항 염증 활성]Anti-inflammatory activity of strain EFEL6800]

(1) 산화 질소 (Nitric oxide, NO) 억제능 (1) Nitric oxide (NO) inhibitory ability

Lactobacillus fermentum EFEL6800의 항 염증 활성을 분석하기 위해, RAW 264.7 대식세포에 대장균 유래 lipopolysaccharide(LPS, 1 ug/ml)로 자극하여 염증 매개물질인 nitric oxide (NO)를 과다 생성시킨 후, 균주의 열 불활성화 시료의 NO 억제 활성을 측정하였다. To analyze the anti-inflammatory activity of Lactobacillus fermentum EFEL6800, RAW 264.7 macrophages were stimulated with E. coli-derived lipopolysaccharide (LPS, 1 ug/ml) to excessively produce nitric oxide (NO), an inflammatory mediator, and then heat fire of the strain The NO inhibitory activity of the activated sample was measured.

열 불활성화 균주의 제조를 위해, 균주의 흡광도를 1.0(OD 600nm)으로 조정하고, 10,000xg에서 5분간 원심분리하여 세포 펠렛을 PBS로 2회 헹구고 DMEM에 현탁시켜 90℃에서 30분간 열 사멸시켰다. 대식세포주 RAW 264.7 세포주는 KCLB로부터 얻어졌으며, 10% FBS와 1% penicillin-streptomycin이 첨가된 DMEM에서 유지되었다(37℃, 5% CO2). 세포를 플레이트에서 80-90% 포화 단계까지 sub-culture했다. RAW 264.7 세포에(96well plate에서 ml 당 5x105cells), LPS (1 μg/mL)와 열 불활성화 균주를 첨가하여 24시간 동안 자극하였다. 24시간 후 각 웰의 상층액을 동일한 부피의 Griess 시약과 혼합하고 실온에서 10분 동안 어두운 곳에 두었다. 그 후에 마이크로 플레이트 분광 광도계 (BioTek, Winooski, VT, USA)를 사용하여 540nm에서 흡광도를 측정하였으며 sodium nitrate로 표준곡선을 작성하여 NO의 함량을 산출하였다. 메틸 아르기닌 (methyl arginine)은 양성 대조군으로 사용되었다. For the preparation of heat-inactivated strains, the absorbance of the strain was adjusted to 1.0 (OD 600nm), centrifuged at 10,000xg for 5 minutes, the cell pellet was rinsed twice with PBS and suspended in DMEM, and heat-killed at 90°C for 30 minutes. . Macrophage line RAW 264.7 cell line was obtained from KCLB and maintained in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin (37°C, 5% CO 2 ). Cells were sub-cultured in plates to the 80-90% confluency stage. RAW 264.7 cells (5x10 5 cells per ml in 96 well plate) were stimulated for 24 hours by adding LPS (1 μg/mL) and heat-inactivated strain. After 24 h, the supernatant from each well was mixed with an equal volume of Griess reagent and placed in the dark at room temperature for 10 min. Then, the absorbance was measured at 540 nm using a microplate spectrophotometer (BioTek, Winooski, VT, USA), and the NO content was calculated by creating a standard curve with sodium nitrate. Methyl arginine was used as a positive control.

도 4는 LPS로 유도된 RAW 264.7 세포에서 산화 질소 (NO)의 발현에 대한 열 불활성화(사멸) 균주의 억제 효과를 보여준다. MA은 메틸 아르기닌이고, NO 억제는 Griess 반응 분석에 의해 측정되었으며, 결과는 평균±표준편차 (n=3)로 표시하였다. 오차 막대의 다른 문자는 유의한 차이를 나타낸다. 통계 분석은 LPS 처리 군과 비교하여 독립적인 T- 검정을 사용하여 수행되었다. (* p <0.05, ** p <0.01, *** p <0.001). Figure 4 shows the inhibitory effect of the heat inactivated (death) strain on the expression of nitric oxide (NO) in LPS-induced RAW 264.7 cells. MA is methyl arginine, NO inhibition was measured by Griess reaction analysis, and the results are expressed as mean±standard deviation (n=3). Different letters in the error bars indicate significant differences. Statistical analysis was performed using an independent T-test compared to the LPS-treated group. (*p <0.05, **p <0.01, ***p <0.001).

도 4에서 보듯이 LPS로 처리하지 않은 대조군과 비교하여 LPS로 처리하면 NO 생성이 현저하게 증가했다. 이때, NO 합성 효소 저해제인 메틸 아르기닌 처리는 LPS 처리 군에 비해 용량 의존적으로 NO 생성을 억제했다 (p <0.001). 한편, 테스트된 모든 열 불활성화 균주의 경우, LPS 처리 군에 비해 NO 생성에 상당한 억제 효과를 나타냈으며, 특히 EFEL6800은 WCFS1와 LGG보다 더 높은 NO 억제능을 보여주었다. As shown in FIG. 4 , NO production was significantly increased when treated with LPS compared to the control group not treated with LPS. At this time, treatment with methyl arginine, an NO synthetase inhibitor, inhibited NO production in a dose-dependent manner compared to the LPS-treated group (p <0.001). On the other hand, for all heat-inactivated strains tested, they showed a significant inhibitory effect on NO production compared to the LPS-treated group, and in particular, EFEL6800 showed a higher NO inhibitory ability than WCFS1 and LGG.

(2) RT-qPCR을 이용한 iNOS, COX-2 발현 억제 확인 (2) Confirmation of inhibition of iNOS and COX-2 expression using RT-qPCR

Lactobacillus fermentum EFEL6800의 염증 관련 mRNA의 발현 활성은 LPS로 유도된 RAW 264.7 세포에서 열 불활성화 균주를 처리하고, RNA 추출 후 cDNA합성 및 RT-qPCR으로 측정되었다. RAW 264.7 세포(1x106 cells/well)를 6 well plate에 배양한 후 LPS (1 μg /mL)와 열 불활성화 균주로 24시간 동안 자극하였다. The expression activity of inflammation-related mRNA of Lactobacillus fermentum EFEL6800 was measured by cDNA synthesis and RT-qPCR after RNA extraction in LPS-induced RAW 264.7 cells treated with heat-inactivated strains. RAW 264.7 cells (1x10 6 cells/well) were cultured in a 6 well plate and stimulated with LPS (1 μg/mL) and heat-inactivated strain for 24 hours.

각 웰에서 Trizol 시약을 사용하여 RNA를 추출하고, cDNA synthesis kit (LeGene Express 1st Standard cDNA Synthesis System)를 이용하여 cDNA를 합성하였다. GADPH, iNOS, COX-2 유전자는 다음 프라이머 쌍을 사용하여 RT-qPCR을 진행하여 증폭되었다. GADPH는 Forward (5'-TTGTCTCCTGCGACTTCAACA-3')와 Reverse (5'-GCTGTAGCCGTATTCATTGTCATA-3')로, iNOS는 Forward (5'-ACCATGGAGCATCCCAAGTA-3')와 Reverse (5'-CCATGTACCAACCATTGAAGG-3')로, COX-2는 Forward (5'-AGCATTCATTCCTCTACATAAGC-3')와 Reverse (5'-GTAACAACACTCACATATTCATACAT-3')로 증폭하였다. PCR 조건은 다음과 같았다. 95℃에서 5분 후 95℃에서 15초, 60℃에서 30초, 60℃에서 30초를 40사이클로 진행하였다.RNA was extracted from each well using Trizol reagent, and cDNA was synthesized using a cDNA synthesis kit (LeGene Express 1 st Standard cDNA Synthesis System). GADPH, iNOS, and COX-2 genes were amplified by RT-qPCR using the following primer pairs. GADPH is Forward (5'-TTGTCTCCTGCGACTTCAACA-3') and Reverse (5'-GCTGTAGCCGTATTCATTGTCATA-3'), iNOS is Forward (5'-ACCATGGAGCATCCCAAGTA-3') and Reverse (5'-CCATGTACCAACCATTGAAGG-3'), COX-2 was amplified by Forward (5'-AGCATTCATTCCTCTACATAAGC-3') and Reverse (5'-GTAACAACACTCACATATTCATACAT-3'). PCR conditions were as follows. After 5 minutes at 95°C, 40 cycles of 15 seconds at 95°C, 30 seconds at 60°C, and 30 seconds at 60°C were performed.

도 5는 열 불활성화(사멸) 균주가 LPS로 유도된 RAW 264.7 세포에서 iNOS 및 COX-2의 발현에 미치는 억제 효과를 보여준다. 세포를 열 사멸 균주로 처리하고 LPS로 24 시간 동안 자극하였다. iNOS 및 COX-2의 발현된 mRNA 수준은 실시간 PCR 및 GAPDH를 사용한 정규화에 의한 상대 정량화에 의해 결정되었다. 오차 막대의 다른 문자는 중요한 차이를 나타낸다. 통계 분석은 LPS 처리 군과 비교하여 독립적인 T- 검정을 사용하여 수행되었다. (* p <0.05, ** p <0.01, *** p <0.001). Figure 5 shows the inhibitory effect of the heat inactivated (killed) strain on the expression of iNOS and COX-2 in LPS-induced RAW 264.7 cells. Cells were treated with heat killed strains and stimulated with LPS for 24 h. The expressed mRNA levels of iNOS and COX-2 were determined by real-time PCR and relative quantification by normalization using GAPDH. Different letters on the error bars indicate significant differences. Statistical analysis was performed using an independent T-test compared to the LPS-treated group. (*p <0.05, **p <0.01, ***p <0.001).

도 5에서 보듯이 LPS를 자극하지 않은 안정한 상태에서의 RAW 264.7 cell에서 COX-2 (도 5의 (B))와 iNOS (도 5의 (A))의 mRNA 발현은 거의 확인되지 않았지만, LPS 자극에 의해 발현량이 현저하게 증가되었다. 이에 비하여 테스트된 모든 균주의 열불활성화 시료는 COX-2와 iNOS의 mRNA 발현을 유의하게 억제하였다. 특히, EFEL6800은 WCFS1과 유의한 항염증 활성을 보였다. As shown in FIG. 5, the mRNA expression of COX-2 (FIG. 5(B)) and iNOS (FIG. 5(A)) was hardly confirmed in RAW 264.7 cells in a stable state without LPS stimulation, but LPS stimulation The expression level was significantly increased. In contrast, the heat-inactivated samples of all tested strains significantly inhibited the mRNA expression of COX-2 and iNOS. In particular, EFEL6800 showed significant anti-inflammatory activity with WCFS1.

(3) ELISA를 이용한 염증성 사이토카인 (IL-12), 항염증 사이토카인 (IL-10)의 분비 측정 (3) Measurement of secretion of inflammatory cytokines (IL-12) and anti-inflammatory cytokines (IL-10) using ELISA

Lactobacillus fermentum EFEL6800의 면역 조절 활성은 ELISA kit를 사용하여 LPS로 유도된 마우스 대식세포에서 사이토카인의 생산을 측정하여 평가하였다. 동물 프로토콜은 Kyung Hee University Medical Center Institutional Animal Care and Use Committee (KHUASP(GC)-19-005)의 승인을 받았다. DMEM으로 복막 세척을 통해 7주령의 수컷 Balb/c 마우스로부터 복막 대식세포를 수집하고, 세포(4x105 cells/ml)에 LPS (1 μg /mL)와 열불활성화 균주로 24시간 동안 자극하였다. 각 웰에서 상등액을 수집하고, 배양 배지로 분비된 IL-10 및 IL-12를 ELISA assay kit (R&D systems Mouse DuoSet ELISA IL-10 and IL-12, Minnesota, USA)를 사용하여 정량화하였다.The immunomodulatory activity of Lactobacillus fermentum EFEL6800 was evaluated by measuring cytokine production in LPS-induced mouse macrophages using an ELISA kit. The animal protocol was approved by the Kyung Hee University Medical Center Institutional Animal Care and Use Committee (KHUASP(GC)-19-005). Peritoneal macrophages were collected from 7-week-old male Balb/c mice through peritoneal washing with DMEM, and cells (4x10 5 cells/ml) were stimulated with LPS (1 μg/mL) and heat-inactivated strains for 24 hours. The supernatant was collected from each well, and IL-10 and IL-12 secreted into the culture medium were quantified using an ELISA assay kit (R&D systems Mouse DuoSet ELISA IL-10 and IL-12, Minnesota, USA).

도 6은 Lactobacillus fermentum EFEL6800의 사이토카인 분비 측정 결과이다. 도 6의 (A)는 IL-12, 도 6의 (B)는 IL-10, 도 6의 (C)는 IL-10/IL-12이다. 결과는 평균±표준편차 (n=6)로 표시하였다. 오차 막대의 다른 문자는 유의한 차이를 나타낸다. 통계 분석은 LPS 처리 군과 비교하여 독립적 인 T-검정을 사용하여 수행하였다. (* p <0.05, ** p <0.01, *** p <0.001).6 is a measurement result of cytokine secretion of Lactobacillus fermentum EFEL6800. FIG. 6(A) is IL-12, FIG. 6(B) is IL-10, FIG. 6(C) is IL-10/IL-12. Results are expressed as mean±standard deviation (n=6). Different letters in the error bars indicate significant differences. Statistical analysis was performed using an independent T-test compared to the LPS-treated group. (*p <0.05, **p <0.01, ***p <0.001).

실험 결과, LPS는 염증성 사이토카인인 IL-12의 방출을 강하게 유도한 반면 (도 6의 (A)), 항염증성 사이토카인인 IL-10 은 영향을 받지 않았다 (도 6의 (B)). 테스트된 모든 열 불활성화 균주는 IL-12를 완전히 억제하고 (도 6의 (A)), IL-10를 강력하게 유도하였다 (도 6의 (B)). 특히, Lactobacillus fermentum EFEL6800의 열불활성화 균주는 IL-10의 강력한 유도제이며, IL-12의 저해제로서 상업적 프로바이오틱스인 LGG와 유사한 수준의 높은 항 염증 지수(IL-10/IL-12 비율)을 가졌다 (도 6의 (C)). As a result of the experiment, LPS strongly induced the release of IL-12, an inflammatory cytokine (FIG. 6 (A)), whereas IL-10, an anti-inflammatory cytokine, was not affected (FIG. 6 (B)). All heat-inactivated strains tested completely inhibited IL-12 (FIG. 6(A)) and strongly induced IL-10 (FIG. 6(B)). In particular, the heat-inactivated strain of Lactobacillus fermentum EFEL6800 is a strong inducer of IL-10, and as an inhibitor of IL-12, it has a high anti-inflammatory index (IL-10/IL-12 ratio) at a level similar to that of LGG, a commercial probiotic (Fig. 6(c)).

따라서, Lactobacillus fermentum EFEL6800은 LPS로 자극된 마우스 복막 대식세포에서 IL-12를 감소시키고, IL-10을 유도하며, ex vivo 에서도 면역 조절 능력을 가진 것으로 평가할 수 있었다. Therefore, Lactobacillus fermentum EFEL6800 decreased IL-12 in LPS-stimulated mouse peritoneal macrophages, induced IL-10, and could be evaluated as having immunomodulatory ability ex vivo.

[실시예 6: 김치 모사 주스 (SKJ)에서 본 발명 [Example 6: Invention in Kimchi Mosa Juice (SKJ) Lactobacillus fermentumLactobacillus fermentum EFEL6800의 성장률 측정] Measurement of growth rate of EFEL6800]

스타터 성장을 모니터링하고 재현 가능한 결과를 얻기 위해 김치 모사 주스 (Simulated kimchi juice, SKJ)를 개발하였다. 김치 모사 주스의 재료 및 조성물은 표 1에 제시되었다. Simulated kimchi juice (SKJ) was developed to monitor starter growth and obtain reproducible results. The ingredients and composition of the kimchi simulation juice are presented in Table 1.

김치 모사 주스 조성 Kimchi Mosa Juice Composition IngredientsIngredients ConcentrationConcentration CabbageCabbage 700g700g RadishRadish 200g200g LeekLeek 50g50g GingerGinger 10g10g GarlicGarlic 20g20g SaltSalt 3%3% Fish peptoneFish peptone 0.5%0.5%

원료(배추, 무, 마늘, 생강, 부추)는 시장에서 구입했다. 모든 재료를 믹서기를 사용하여 절단하고, 배추양에 대비하여 소금을 첨가하고 밤새 염장시켰다. 젓갈 대신 Fish peptone (Bision Co., Seongnam, Korea)을 첨가하고, SKJ을 70℃ 30분 간 저온살균하였다. 이후 실온에서 냉각한 후, 혼합물을 7,000 rpm에서 10 분 동안 원심 분리하여 펄프(pulp)를 제거하고, 상층액만을 실험에 사용하였다. Raw materials (cabbage, radish, garlic, ginger, leek) were purchased from the market. All the ingredients were cut using a blender, and salt was added for the amount of cabbage and salted overnight. Fish peptone (Bision Co., Seongnam, Korea) was added instead of salted fish, and SKJ was pasteurized at 70° C. for 30 minutes. After cooling to room temperature, the mixture was centrifuged at 7,000 rpm for 10 minutes to remove pulp, and only the supernatant was used for the experiment.

분리물이 김치 발효에 적합한지 조사하기 위해 SKJ에서 Lactobacillus fermentum EFEL6800의 발효 특성을 모니터링했다. 상업용 김치 스타터인 Leuconostoc mesenteroides DRC1506를 양성대조구로 사용했다. 각 균주를 전 배양한 후 107 CFU/mL에 도달하도록 SKJ에 1% 접종하고 균주의 최적증식온도(37℃에서 24시간, 15℃에서 8일 동안 배양하였고, spectrophotometer (BioTek Instruments, Winooski, VT, USA)을 사용하여 optical density (OD600nm)를 측정하고, pH meter (Orion Versa, Thermo, USA)를 사용하여 pH를 측정하였다. 즉, 김치 환경에서 균주의 적응성을 비교하기 위해 SKJ에서 최적 온도 37℃에서 24 시간, 15℃에서 8 일 동안 성장률을 측정하였고, 김치 맛에 미치는 영향을 비교하기 위해 pH 값을 측정하였다. To investigate whether the isolate was suitable for kimchi fermentation, the fermentation properties of Lactobacillus fermentum EFEL6800 were monitored at SKJ. A commercial kimchi starter, Leuconostoc mesenteroides DRC1506, was used as a positive control. After pre-culturing each strain, 1% of SKJ was inoculated to reach 10 7 CFU/mL and cultured at the optimal growth temperature (37°C for 24 hours, 15°C for 8 days) with a spectrophotometer (BioTek Instruments, Winooski, VT , USA) was used to measure optical density (OD600nm) and pH was measured using a pH meter (Orion Versa, Thermo, USA), that is, the optimum temperature 37 in SKJ to compare the adaptability of strains in the kimchi environment. The growth rate was measured at ℃ for 24 hours and at 15℃ for 8 days, and the pH value was measured to compare the effect on the taste of kimchi.

실험 결과는 도 7 및 도 8과 같았다. 도 7은 본 발명 Lactobacillus fermentum EFEL6800 및 대조군 Leuconostoc mesenteroides DRC1506 (KCCM11712P) 균주의 성장률을 측정한 것으로, 광학밀도(OD) 값은 37℃ (A) 및 15℃ (B)에서 SKJ에 이들 균주를 접종한 후 측정된 것이다. 결과는 평균±표준편차 (n=3)로 표시하였다. 통계 분석은 독립적인 T-검정 (* p <0.05, ** p <0.01, *** p <0.001)을 사용하여 수행하였다. 도 8은 본 발명 Lactobacillus fermentum EFEL6800 및 대조군 DRC1506 균주의 성장시 측정한 pH 값으로, 37℃ (A)와 15℃ (B)에서 SKJ에 이들 균주를 접종한 후 측정한 것이다. 결과는 평균±표준편차 (n=3)로 표시하였다. 통계 분석은 독립적인 T-검정 (* p <0.05, ** p <0.01, *** p <0.001)을 사용하여 수행하였다.The experimental results were as shown in FIGS. 7 and 8 . Figure 7 is a measure of the growth rate of the present invention Lactobacillus fermentum EFEL6800 and the control Leuconostoc mesenteroides DRC1506 (KCCM11712P) strain, the optical density (OD) value is 37 ℃ (A) and 15 ℃ (B) SKJ inoculated with these strains was measured after Results are expressed as mean±standard deviation (n=3). Statistical analysis was performed using an independent T-test (* p <0.05, ** p <0.01, *** p <0.001). 8 is a pH value measured during the growth of Lactobacillus fermentum EFEL6800 and control DRC1506 strains of the present invention, measured after inoculating these strains into SKJ at 37° C. (A) and 15° C. (B). Results are expressed as mean±standard deviation (n=3). Statistical analysis was performed using an independent T-test (* p <0.05, ** p <0.01, *** p <0.001).

본 발명의 Lactobacillus fermentum EFEL6800 균주는 최적온도에서 양성대조구인 Leuconostoc mesenteroides DRC1506보다 성장률이 현저히 높았으며, 24시간 발효 후의 pH는 DRC1506와 비교하여 통계적으로 유사하였다. 15℃에서 배양한 결과, DRC1506은 1일차부터 성장하였고 이에 비하여 EFEL6800은 배양 5일차부터 성장하였지만 결론적으로 저온에서 성장 가능한 것으로 확인되었다. 이러한 결과는 EFEL6800은 식물에서 성장하기 위한 영양 요구성이 충족되며, 저온에서 성장이 가능하며, 발효동안 적절한 양의 산을 생성하는 특성으로 김치용 종균으로서 적합한 것으로 판단된다. The Lactobacillus fermentum EFEL6800 strain of the present invention had a significantly higher growth rate than the positive control, Leuconostoc mesenteroides DRC1506, at the optimum temperature, and the pH after 24 hours of fermentation was statistically similar to that of DRC1506. As a result of culturing at 15° C., DRC1506 grew from the first day, whereas EFEL6800 grew from the fifth day of culture. These results indicate that EFEL6800 satisfies nutritional requirements for growth in plants, can grow at low temperatures, and produces an appropriate amount of acid during fermentation, making it suitable as a seed for kimchi.

[실시예 7: 본 발명 [Example 7: The present invention Lactobacillus fermentumLactobacillus fermentum EFEL6800 사용 나박 김치의 향기성분 분석] Analysis of fragrance components of Nabak Kimchi using EFEL6800]

Starter가 김치 향에 미치는 영향을 평가하기 위해 각각의 다른 starter를 이용한 나박김치를 적식기에 도달할 때까지 발효시킨 후, GC/MS를 통해 휘발성 향기 성분을 분석하였다. starter로는 본 발명의 Lactobacillus fermentum EFEL6800, Lactobacillus brevis DRC301, Lactobacillus paracasei CBA3611, Leuconostoc mesenteroides DRC1506을 사용하였다. To evaluate the effect of starter on kimchi flavor After fermenting nabak kimchi using different starters until it reached the proper season, volatile aroma components were analyzed through GC/MS. As starters, Lactobacillus fermentum EFEL6800, Lactobacillus brevis DRC301, Lactobacillus paracasei CBA3611, and Leuconostoc mesenteroides DRC1506 of the present invention were used as starters.

나박김치는 하기의 방법 (나박김치의 기본 레서피는 국내 T사 제조의 나박김치 레서피를 따름)으로 제조하였다. 주원료인 배추와 나박무를 일정 크기로 절단한 후 세척기를 통과하며 이물을 선별하여 원료를 준비하고, 고춧가루는 이물선별 및 색도를 기준에 맞게 계량하였다. 부원료인 쪽파, 홍고추, 미나리, 마늘, 생강, 당근은 기준에 맞게 세척한 후 당근은 절임 처리하였다. 세척이 완료된 부원료들은 규정된 크기로 절단하여 준비하였다. 각각의 원료 및 부원료들은 배합비에 맞추어 계량한 후 미리 준비한 염수(염도 1.8%)와 혼합하고, 상기 스타터를 각각 접종하였다. 혼합이 완료된 나박물김치는 저온(4℃)에서 2일간 숙성한 후 김치국물과 고형분 함량을 맞추어 용기에 포장을 하였다. Nabak kimchi was prepared by the following method (the basic recipe for Nabak kimchi follows the nabak kimchi recipe manufactured by domestic company T). After cutting Chinese cabbage and radish, the main raw materials, to a certain size, it passed through a washing machine to select foreign substances to prepare raw materials. After washing according to the standards, the auxiliary ingredients such as chives, red pepper, water parsley, garlic, ginger, and carrots were pickled. Sub-materials that have been washed were prepared by cutting them to a prescribed size. Each raw material and auxiliary material was weighed according to the mixing ratio, mixed with the brine (salinity 1.8%) prepared in advance, and inoculated with the starter, respectively. After the mixing was completed, Nabakmul Kimchi was aged at low temperature (4℃) for 2 days, and the solid content was matched with the kimchi broth and packaged in a container.

상기의 방법으로 제조한 나박김치 2 mL을 headspace vial (20 mL, 22.5mm×75.5 mm)에 넣고 분석전에 51 ℃, 20분간 교반하였다. 김치의 휘발성 향기성분은 Solid-phase microextraction (SPME) fibers (DVB/CAR/PDMS, 50/30 μm, Supelco, 57298-U)를 이용하여 표 2의 조건하에서 추출하였다. 2 mL of nabak kimchi prepared by the above method was placed in a headspace vial (20 mL, 22.5 mm×75.5 mm) and stirred at 51° C. for 20 minutes before analysis. The volatile aroma components of kimchi were extracted under the conditions shown in Table 2 using solid-phase microextraction (SPME) fibers (DVB/CAR/PDMS, 50/30 μm, Supelco, 57298-U).

SPME 조건SPME conditions FiberFiber DVB/CAR/PDMS DVB/CAR/PDMS IncubationIncubation 51℃ 20 min51℃ 20 min Adsorption Adsorption 51℃ 30 min51℃ 30 min Desorption Desorption 250℃ 2 min250 2 min

추출된 휘발성 향기성분은 gas chromatography-mass spectrometer (7820A/5977E MSD, Agilent Technologies, USA) 를 사용하여 표 3의 조건 하에서 분석하였다. The extracted volatile fragrance components were analyzed under the conditions of Table 3 using a gas chromatography-mass spectrometer (7820A/5977E MSD, Agilent Technologies, USA).

GC/MS 조건 GC/MS conditions ColumnColumn DB-WAX (50m x 200um x 0.2um, Agilent Technologies, USA) DB-WAX (50m x 200um x 0.2um, Agilent Technologies, USA) Carrier gascarrier gas HeliumHelium Oven temp.Oven temp. 40℃(5min)
~150℃, 5℃/min(0min)
~200℃, 7℃/min(10min)
40℃(5min)
~150℃, 5℃/min (0min)
~200℃, 7℃/min (10min)
Injector temp.injector temp. 250℃250℃ Ion source temp. Ion source temp. 250℃250℃ Split ratiosplit ratio splitlesssplitless Mass scan rangeMass scan range 35~350amu35~350amu

김치의 휘발성 향기성분의 정량은 내부 표준물질인 methyl cinnamate(5 ppm)의 peak area에 대한 각 화합물의 peak area로 계산하였다. The quantification of volatile aroma components of kimchi was calculated as the peak area of each compound relative to the peak area of methyl cinnamate (5 ppm), an internal standard.

실험 결과는 표 4, 도 9와 같았다. The experimental results were shown in Table 4 and FIG. 9 .

Aroma compoundsAroma compounds Before fermentationBefore fermentation After fermentationAfter fermentation Nk 0dayNk 0day DRC1506 0dayDRC1506 0day NKNK DRC1506DRC1506 EFEL6800EFEL6800 CBA3611CBA3611 DRC301DRC301 Total compoundsTotal compounds 1188.19±182.491188.19±182.49 1384.94±131.471384.94±131.47 218.04±45.48218.04±45.48 255.22±60.45255.22±60.45       Sulfur-containing compoundsSulfur-containing compounds 1019.85±146.831019.85±146.83 1238.85±133.381238.85±133.38 66.63±28.7466.63±28.74 109.54±40.58109.54±40.58 82.95±15.0982.95±15.09 138.88±14.76138.88±14.76 139.11±11.61139.11±11.61 2-Thiophenecarboxylic acid, 5-(1,1-dimethylethoxy)-2-Thiophenecarboxylic acid, 5-(1,1-dimethylethoxy)- -- 15.38±6.3115.38±6.31 -- -- -- -- -- N-MethyltaurineN-Methyltaurine -- 8.70±0.898.70±0.89 -- -- -- -- -- Allyl methyl sulfideAllyl methyl sulfide 218.41±30.02218.41±30.02 230.57±28.76230.57±28.76 -- 21.36±1.2521.36±1.25 20.20±0.3820.20±0.38 18.72±3.8718.72±3.87 15.18±1.7315.18±1.73 Disulfide, dipropylDisulfide, dipropyl 4.03±0.644.03±0.64 5.31±0.195.31±0.19 -- -- -- -- -- 1,5,2,4-Dioxadithiepane-2,2,4,4-tetraoxide1,5,2,4-Dioxadithiepane-2,2,4,4-tetraoxide -- -- -- -- -- 3.07±0.653.07±0.65 2.52±0.092.52±0.09 1,2-Dithiolane1,2-Dithiolane 29.79±2.9429.79±2.94 21.93±13.6821.93±13.68 9.01±4.779.01±4.77 -- -- -- -- 1-Butene, 4-isothiocyanato-1-Butene, 4-isothiocyanato- -- 0.00±0.000.00±0.00 26.47±2.5826.47±2.58 24.58±12.8024.58±12.80 28.23±3.4128.23±3.41 39.30±4.8539.30±4.85 38.56±3.5238.56±3.52 Diallyl disulfideDiallyl disulfide 767.63±114.03767.63±114.03 956.97±119.01956.97±119.01 31.15±21.7831.15±21.78 36.17±16.5236.17±16.52 41.26±11.2041.26±11.20 32.56±4.5132.56±4.51 37.54±4.2037.54±4.20 Cyclopentyl isothiocyanateCyclopentyl isothiocyanate -- -- -- 27.43±13.6527.43±13.65 -- 45.23±4.3545.23±4.35 45.30±3.0845.30±3.08 Nitrile- containing compoundsNitrile-containing compounds 0.98±0.090.98±0.09 7.95±2.867.95±2.86 34.50±5.8734.50±5.87 -- 40.35±4.5840.35±4.58 5.02±2.515.02±2.51 1.24±0.141.24±0.14 2,6,6-Trimethyl-bicyclo[3.1.1]hept-3-ylamine2,6,6-Trimethyl-bicyclo[3.1.1]hept-3-ylamine -- -- -- -- 13.79±1.3113.79±1.31 -- -- HydroxyureaHydroxyurea -- -- -- -- 1.16±0.601.16±0.60 -- 1.24±0.141.24±0.14 2-t-Butyl-1-methyl-3-phenyl-imidazolidin-4-one2-t-Butyl-1-methyl-3-phenyl-imidazolidin-4-one -- -- -- -- -- 3.85±1.723.85±1.72 -- N-MethylcaprolactamN-Methylcaprolactam -- 7.95±2.867.95±2.86 34.50±5.8734.50±5.87 -- 30.00±2.0830.00±2.08 -- -- R-(-)-CyclohexylethylamineR-(-)-Cyclohexylethylamine 0.98±0.090.98±0.09 -- -- -- -- -- -- N-Methoxy-1-ribofuranosyl-4-imidazolecarboxylic amideN-Methoxy-1-ribofuranosyl-4-imidazolecarboxylic amide -- -- -- -- -- 1.07±0.171.07±0.17 -- N-Methoxy-1-ribofuranosyl-4-imidazolecarboxylic amideN-Methoxy-1-ribofuranosyl-4-imidazolecarboxylic amide -- -- -- -- -- 1.39±0.261.39±0.26 -- Alcohols and Amino AlcoholsAlcohols and Amino Alcohols 15.70±2.1815.70±2.18 14.65±2.4914.65±2.49 8.16±1.838.16±1.83 7.25±1.007.25±1.00 8.85±0.318.85±0.31 7.26±0.947.26±0.94 9.07±1.959.07±1.95 4-amino-1-pentanol4-amino-1-pentanol 7.60±2.427.60±2.42 -- 2.76±0.142.76±0.14 2.60±0.112.60±0.11 3.84±0.763.84±0.76 3.64±1.503.64±1.50 2.84±0.472.84±0.47 4-amino-1-pentanol4-amino-1-pentanol 1.67±0.391.67±0.39 -- 1.14±0.031.14±0.03 1.06±0.141.06±0.14 1.24±0.081.24±0.08 -- 0.85±0.100.85±0.10 L-ValinolL-Valinol -- 8.94±2.128.94±2.12 -- -- -- -- -- 4-amino-1-pentanol4-amino-1-pentanol 0.63±0.330.63±0.33 -- -- -- -- -- 2.68±0.342.68±0.34 2-(2-Aminopropyl)phenol2-(2-Aminopropyl)phenol -- 2.52±0.862.52±0.86 3.07±1.673.07±1.67 2.33±0.782.33±0.78 2.37±0.432.37±0.43 2.37±0.742.37±0.74 2.52±0.172.52±0.17 4-amino-1-pentanol4-amino-1-pentanol -- 1.22±0.351.22±0.35 -- -- -- -- -- 1-Methylene-2b-hydroxymethyl-3,3-dimethyl-4b-(3-methylbut-2-enyl)-cyclohexane1-Methylene-2b-hydroxymethyl-3,3-dimethyl-4b-(3-methylbut-2-enyl)-cyclohexane 2.12±0.222.12±0.22 1.98±0.201.98±0.20 1.20±0.111.20±0.11 1.26±0.131.26±0.13 1.41±0.211.41±0.21 1.25±0.181.25±0.18 1.08±0.061.08±0.06 2-Methyl-1-[3-methyl-6-(1-methylethylidene)-3-cyclohexen-1-yl]-3-buten-2-ol2-Methyl-1-[3-methyl-6-(1-methylethylidene)-3-cyclohexen-1-yl]-3-buten-2-ol 3.89±1.403.89±1.40 -- -- -- -- -- -- Benzenes and benzene derivativesBenzenes and benzene derivatives 9.62±3.109.62±3.10 6.24±0.546.24±0.54 13.35±2.5413.35±2.54 27.01±6.3327.01±6.33 26.71±4.0026.71±4.00 24.63±2.9724.63±2.97 35.49±21.5835.49±21.58 Benzeneethanamine, N-[(4-hydroxy)hydrocinnamoyl]-Benzeneethanamine, N-[(4-hydroxy)hydrocinnamoyl]- -- -- -- 9.98±0.159.98±0.15 12.10±2.1512.10±2.15 -- 8.13±0.188.13±0.18 Benzene, 1-methyl-3-(1-methylethyl)- Benzene, 1-methyl-3-(1-methylethyl)- 2.94±2.282.94±2.28 -- -- 10.11±1.0810.11±1.08 -- 13.16±1.9713.16±1.97 -- Benzene, 1,3-bis(1,1-dimethylethyl)-Benzene, 1,3-bis(1,1-dimethylethyl)- -- -- 3.35±1.673.35±1.67 2.37±0.162.37±0.16 4.51±3.374.51±3.37 -- 20.35±25.2420.35±25.24 Benzaldehyde, 3-(2,4,6-trichlorophenoxymethyl)-4-methoxy-Benzaldehyde, 3-(2,4,6-trichlorophenoxymethyl)-4-methoxy- -- -- 2.48±0.592.48±0.59 2.06±0.242.06±0.24 1.38±0.151.38±0.15 1.55±0.361.55±0.36 1.30±0.271.30±0.27 Benzaldehyde, 3-(2,4,6-trichlorophenoxymethyl)-4-methoxy-Benzaldehyde, 3-(2,4,6-trichlorophenoxymethyl)-4-methoxy- -- -- -- -- 1.17±0.421.17±0.42 3.21±0.643.21±0.64 1.34±0.411.34±0.41 Benzeneethanamine, 3-fluoro-β,5-dihydroxy-N-methyl-Benzeneethanamine, 3-fluoro-β,5-dihydroxy-N-methyl- -- -- -- -- 0.90±0.130.90±0.13 -- -- Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl-Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- 6.68±0.886.68±0.88 6.24±0.546.24±0.54 3.04±0.083.04±0.08 3.28±0.373.28±0.37 3.18±0.193.18±0.19 3.01±0.163.01±0.16 2.60±0.142.60±0.14 Benzene, (2-isothiocyanatoethyl)-Benzene, (2-isothiocyanatoethyl)- -- -- 4.48±0.674.48±0.67 3.32±1.513.32±1.51 3.48±0.143.48±0.14 4.77±0.144.77±0.14 4.47±0.194.47±0.19 AcidsAcids 6.62±0.386.62±0.38 -- 15.70±7.0415.70±7.04 13.07±6.6813.07±6.68 28.35±6.1328.35±6.13 41.57±10.6841.57±10.68 34.30±5.2434.30±5.24 (Allythio)acetic acid(Allythio)acetic acid -- -- -- -- 4.36±1.014.36±1.01 7.16±1.247.16±1.24 7.71±1.897.71±1.89 Oxaluric acidOxaluric acid -- -- 15.70±7.0415.70±7.04 13.07±6.6813.07±6.68 23.98±5.9323.98±5.93 34.40±9.5034.40±9.50 26.59±3.3726.59±3.37 2-Butoxyethyl acetate2-Butoxyethyl acetate 6.62±0.386.62±0.38 -- -- -- -- -- -- TerpenesTerpenes 14.81±1.9014.81 ± 1.90 11.76±3.9711.76±3.97 10.09±0.8410.09±0.84 25.62±1.4925.62±1.49 9.93±0.319.93±0.31 35.23±5.7935.23±5.79 18.07±1.0118.07±1.01 β-Terpinenβ-Terpinen -- -- -- 15.34±0.1615.34±0.16 -- 23.60±5.4023.60±5.40 9.98±0.599.98±0.59 β-Caryophylleneβ-Caryophyllene 14.81±1.9014.81 ± 1.90 11.76±3.9711.76±3.97 10.09±0.8410.09±0.84 10.28±1.6210.28±1.62 9.93±0.319.93±0.31 11.63±0.4111.63±0.41 8.09±0.878.09±0.87 Aldehyde and ketoneAldehyde and ketone 1.72±0.471.72±0.47 12.22±2.7512.22±2.75 1.32±0.541.32±0.54 1.44±0.541.44±0.54 1.33±0.551.33±0.55 1.43±0.621.43±0.62 1.28±0.471.28±0.47 Methyl salicylateMethyl salicylate 1.72±0.471.72±0.47 1.74±0.441.74±0.44 1.32±0.541.32±0.54 1.44±0.541.44±0.54 1.33±0.551.33±0.55 1.43±0.621.43±0.62 1.28±0.471.28±0.47 DodecanalDodecal -- 8.63±2.358.63±2.35 -- -- -- -- -- 1,1-Dodecanediol, diacetate1,1-Dodecanediol, diacetate -- 1.85±0.671.85±0.67 -- -- -- -- -- Hydrocarbon hydrocarbon 55.75±19.6755.75±19.67 63.60±10.7063.60±10.70 35.92±13.7535.92±13.75 39.16±3.5239.16±3.52 34.37±1.9534.37±1.95 57.98±11.0157.98±11.01 33.84±3.0333.84±3.03 LimoneneLimonene 55.75±19.6755.75±19.67 63.60±10.7063.60±10.70 35.92±13.7535.92±13.75 36.00±2.8136.00±2.81 34.37±1.9534.37±1.95 57.98±11.0157.98±11.01 33.84±3.0333.84±3.03 Propanepropane -- -- -- 0.73±0.250.73±0.25 -- -- -- MiscellaneousMiscellaneous 51.82±8.6551.82±8.65 29.14±5.8729.14±5.87 32.37±1.8432.37±1.84 32.14±3.2032.14±3.20 30.49±1.8430.49±1.84 35.75±3.1135.75±3.11 32.17±2.1232.17±2.12 Penicillamine, tri-TMSPenicillamine, tri-TMS 5.10±5.855.10±5.85 -- 0.93±0.110.93±0.11 0.89±0.200.89±0.20 0.74±0.140.74±0.14 -- 0.68±0.280.68±0.28 Silane, trichlorodocosyl-Silane, trichlorodocosyl- 10.67±5.0410.67±5.04 5.05±2.965.05±2.96 5.71±0.285.71±0.28 5.55±0.175.55±0.17 6.16±0.996.16±0.99 5.48±0.225.48±0.22 5.10±0.365.10±0.36 Silane, trichlorodocosyl-Silane, trichlorodocosyl- -- -- -- 3.22±1.663.22±1.66 5.00±0.925.00±0.92 -- 3.96±0.503.96±0.50 2-Trifluoroacetoxydodecane2-Trifluoroacetoxydodecane 9.04±1.399.04±1.39 7.44±2.107.44±2.10 4.61±0.894.61±0.89 -- -- 4.36±0.764.36±0.76 -- Silane, trimethyl(1-methyl-1-phenylethoxy)-Silane, trimethyl(1-methyl-1-phenylethoxy)- -- -- -- -- -- 3.45±0.043.45±0.04 -- trans-(2-Chlorovinyl)dimethylethoxysilanetrans-(2-Chlorovinyl)dimethylethoxysilane 1.39±0.101.39±0.10 -- -- -- -- -- -- trans-(2-Chlorovinyl)dimethylethoxysilanetrans-(2-Chlorovinyl)dimethylethoxysilane 1.67±0.531.67±0.53 -- 1.18±0.061.18±0.06 1.43±0.461.43±0.46 -- -- -- Silanediol, dimethyl-Silanediol, dimethyl- 23.28±4.0423.28±4.04 15.94±3.4215.94±3.42 19.50±0.7619.50±0.76 19.78±2.0819.78±2.08 17.73±3.5117.73±3.51 23.62±2.8323.62±2.83 21.56±1.2221.56±1.22 MetaraminolMetaraminol 0.67±0.090.67±0.09 -- -- -- -- -- -- TopotecanTopotecan -- 0.71±0.050.71±0.05 -- 0.54±0.110.54±0.11 -- -- 0.86±0.020.86±0.02 TopotecanTopotecan -- -- 1.15±0.201.15±0.20 0.90±0.510.90±0.51 0.86±0.090.86±0.09 -- --

도 9는 나박김치의 휘발성 향기 성분에 대해 수행된 principal components analysis (PCA)의 Biplot 결과이다. (A)는 발효전 포함 결과이고, (B)는 발효전 제외 결과임).9 is a biplot result of principal components analysis (PCA) performed on the volatile fragrance component of nabak kimchi. (A) is the result of inclusion before fermentation, (B) is the result of exclusion before fermentation).

도 9에서 보듯이, PCA 분석결과, 발효 전과 발효 후의 비휘발성 향기성분은 확연한 차이가 있었다 (도 9의 (A) 및 (B)). 다만, 발효 후의 나박김치만 PCA를 적용하였을 때 (도 9의 (B)), PC1 축을 기준으로 자연발효 (NK), DRC1506, EFEL6800 발효 나박김치는 오른쪽에 위치하고, DRC301, CBA3611 발효 나박김치는 왼쪽에 위치한 것으로 나타났다. 이를 통해 EFEL6800은 Leuconostoc mesenteroides DRC1506와 유사한 향기성분을 함유하는 것으로 판단된다.As shown in FIG. 9 , as a result of PCA analysis, there was a clear difference in non-volatile fragrance components before and after fermentation (FIG. 9 (A) and (B)). However, when PCA was applied only to nabak kimchi after fermentation (Fig. 9 (B)), natural fermentation (NK), DRC1506, EFEL6800 fermented nabak kimchi based on the PC1 axis were located on the right , DRC301, CBA3611 Fermented nabak kimchi was found to be on the left. Through this, it is judged that EFEL6800 contains a fragrance component similar to that of Leuconostoc mesenteroides DRC1506.

[실시예 8: 본 발명 [Example 8: the present invention Lactobacillus fermentumLactobacillus fermentum EFEL6800 사용 김치의 대사산물 분석] Analysis of metabolites of kimchi using EFEL6800]

김치의 대사산물 분석은 500 MHz NMR spectrometer을 사용하여 수행되었다. 간단히, 김치국물 3ml을 pH 6.0으로 조절한 다음 13,000rpm, 5분으로 원심분리하여 상층액을 얻었다. 상층액을 0.5mM 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (DSS; Sigma-Aldrich, USA)가 함유된 99.9% D2O (deuterium oxide; Sigma-Aldrich, USA)에 1:1 비율로 현탁하여 5mm NMR tube로 옮겼다. 그 후에 Bruker 500-MHz NMR spectrometer (Bruker Magnetics, Faellanden, Switzerland)를 사용하여 1H NMR spectra를 얻고, 개별의 metabolites의 동정 및 정량은 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (DSS; Sigma-Aldrich, USA)을 internal standard로 사용하여 Chenomx NMR Suite v. 6.1 (Chenomx, Canada)에 의해 수행되었다. Metabolite analysis of kimchi was performed using a 500 MHz NMR spectrometer. Briefly, 3 ml of kimchi broth was adjusted to pH 6.0 and then centrifuged at 13,000 rpm for 5 minutes to obtain a supernatant. The supernatant was dissolved in 99.9% D 2 O (deuterium oxide; Sigma-Aldrich, USA) containing 0.5 mM 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (DSS; Sigma-Aldrich, USA) 1: It was suspended in a ratio of 1 and transferred to a 5 mm NMR tube. After that, 1 H NMR spectra were obtained using a Bruker 500-MHz NMR spectrometer (Bruker Magnetics, Faellanden, Switzerland), and the identification and quantification of individual metabolites were performed using 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt ( DSS; Sigma-Aldrich, USA) was used as an internal standard, and Chenomx NMR Suite v. 6.1 (Chenomx, Canada).

그 결과는 표 5에 나타내었다. The results are shown in Table 5.

프로바이오틱 균주로 발효시킨 최적 숙성 나박 김치 시료의 대사 산물 정량 값 (mM)Quantitative value of metabolites (mM) of optimally aged nabak kimchi samples fermented with probiotic strains GroupGroup CompoundCompound NK 0dayNK 0day DRC1506 0dayDRC1506 0day NKNK DRC1506DRC1506 EFEL6800EFEL6800 DRC301DRC301 CBA3611CBA3611 CarbohydrateCarbohydrate GlucoseGlucose 7.85±0.227.85±0.22 7.64±0.127.64±0.12 6.06±0.366.06±0.36 6.39±0.246.39±0.24 6.64±0.386.64±0.38 5.13±0.185.13±0.18 6.34±0.246.34±0.24 FructoseFructose 9.90±0.079.90±0.07 9.41±0.059.41±0.05 2.65±0.792.65±0.79 1.73±0.051.73±0.05 4.60±0.104.60±0.10 3.62±0.043.62±0.04 4.36±0.094.36±0.09 SucroseSucrose 0.61±0.020.61±0.02 0.30±0.000.30±0.00 0.75±0.230.75±0.23 1.05±0.081.05±0.08 0.37±0.200.37±0.20 0.22±0.040.22±0.04 0.41±0.020.41±0.02 AlcoholAlcohol EthanolEthanol 4.14±0.684.14±0.68 3.23±0.003.23±0.00 10.52±0.5010.52±0.50 11.85±0.1111.85±0.11 12.86±0.3512.86±0.35 6.58±0.216.58±0.21 7.98±0.087.98±0.08 MannitolMannitol 1.72±0.221.72±0.22 1.43±0.081.43±0.08 12.92±0.3212.92±0.32 13.08±0.6013.08±0.60 12.24±0.8712.24±0.87 8.01±0.338.01±0.33 10.80±0.1710.80±0.17 Organic acidorganic acid 2-Aminobutyrate2-Aminobutyrate 0.08±0.000.08±0.00 0.08±0.010.08±0.01 0.16±0.060.16±0.06 0.19±0.090.19±0.09 0.04±0.030.04±0.03 0.27±0.020.27±0.02 0.30±0.010.30±0.01 4-Aminobutyrate4-Aminobutyrate 0.64±0.010.64±0.01 0.58±0.010.58±0.01 0.99±0.060.99±0.06 1.25±0.081.25±0.08 1.08±0.081.08±0.08 0.82±0.110.82±0.11 1.31±0.031.31±0.03 AcetateAcetate 0.23±0.000.23±0.00 0.58±0.000.58±0.00 9.68±0.319.68±0.31 10.46±0.0610.46±0.06 11.05±0.0511.05±0.05 9.36±0.499.36±0.49 10.84±0.1110.84±0.11 LactateLactate 0.44±0.020.44±0.02 0.79±0.020.79±0.02 13.16±0.4413.16±0.44 13.59±0.0413.59±0.04 13.93±0.3713.93±0.37 13.92±0.3213.92±0.32 15.15±0.0615.15±0.06 SuccinateSuccinate 0.07±0.000.07±0.00 0.09±0.000.09±0.00 0.29±0.160.29±0.16 0.45±0.030.45±0.03 0.52±0.010.52±0.01 0.39±0.010.39±0.01 0.08±0.000.08±0.00 PyruvatePyruvate 0.14±0.010.14±0.01 0.13±0.010.13±0.01 0.04±0.020.04±0.02 0.12±0.040.12±0.04 0.05±0.010.05±0.01 0.08±0.010.08±0.01 0.03±0.010.03±0.01 Amino acidamino acid AlanineAlanine 0.48±0.020.48±0.02 0.51±0.030.51±0.03 1.06±0.051.06±0.05 0.94±0.070.94±0.07 0.96±0.030.96±0.03 0.81±0.110.81±0.11 1.08±0.031.08±0.03 ArginineArginine 0.24±0.010.24±0.01 0.23±0.050.23±0.05 0.38±0.240.38±0.24 0.91±0.020.91±0.02 0.41±0.200.41±0.20 0.46±0.000.46±0.00 1.15±0.011.15±0.01 AsparagineAsparagine 0.53±0.000.53±0.00 0.61±0.100.61±0.10 0.57±0.120.57±0.12 1.21±0.071.21±0.07 0.48±0.200.48±0.20 0.35±0.000.35±0.00 0.98±0.250.98±0.25 AspartateAspartate 0.45±0.090.45±0.09 0.26±0.060.26±0.06 0.30±0.090.30±0.09 0.99±0.080.99±0.08 0.45±0.200.45±0.20 0.28±0.040.28±0.04 0.94±0.110.94±0.11 CysteineCysteine 0.29±0.040.29±0.04 0.23±0.020.23±0.02 0.19±0.100.19±0.10 0.55±0.030.55±0.03 0.36±0.160.36±0.16 0.35±0.000.35±0.00 0.45±0.020.45±0.02 GlutamateGlutamate 1.43±0.011.43±0.01 1.32±0.021.32±0.02 0.91±0.120.91±0.12 1.11±0.001.11±0.00 1.26±0.101.26±0.10 1.17±0.071.17±0.07 1.35±0.091.35±0.09 GlutamineGlutamine 0.18±0.030.18±0.03 0.18±0.000.18±0.00 0.95±0.250.95±0.25 0.72±0.080.72±0.08 1.08±0.071.08±0.07 1.05±0.001.05±0.00 1.51±0.041.51±0.04 GlycineGlycine 0.36±0.130.36±0.13 0.07±0.010.07±0.01 0.39±0.170.39±0.17 0.86±0.040.86±0.04 0.46±0.280.46±0.28 0.28±0.050.28±0.05 0.24±0.040.24±0.04 HistidineHistidine 0.00±0.000.00±0.00 0.00±0.000.00±0.00 0.08±0.060.08±0.06 0.05±0.050.05±0.05 0.01±0.020.01±0.02 0.06±0.090.06±0.09 0.04±0.030.04±0.03 IsoleucineIsoleucine 0.10±0.020.10±0.02 0.15±0.010.15±0.01 0.07±0.030.07±0.03 0.17±0.050.17±0.05 0.12±0.050.12±0.05 0.13±0.000.13±0.00 0.17±0.010.17±0.01 LeucineLeucine 0.10±0.010.10±0.01 0.14±0.010.14±0.01 0.10±0.060.10±0.06 0.17±0.020.17±0.02 0.20±0.030.20±0.03 0.16±0.040.16±0.04 0.24±0.020.24±0.02 LysineLysine 0.03±0.000.03±0.00 0.08±0.020.08±0.02 0.04±0.020.04±0.02 0.09±0.010.09±0.01 0.08±0.040.08±0.04 0.18±0.160.18±0.16 0.07±0.050.07±0.05 MalonateMalonate 0.13±0.020.13±0.02 0.12±0.020.12±0.02 0.04±0.060.04±0.06 0.34±0.050.34±0.05 0.16±0.040.16±0.04 0.16±0.030.16±0.03 0.15±0.040.15±0.04 MethionineMethionine 0.11±0.020.11±0.02 0.11±0.010.11±0.01 0.10±0.010.10±0.01 0.19±0.010.19±0.01 0.06±0.020.06±0.02 0.10±0.000.10±0.00 0.09±0.040.09±0.04 ProlineProline 0.13±0.050.13±0.05 0.38±0.100.38±0.10 0.51±0.240.51±0.24 0.40±0.110.40±0.11 0.34±0.040.34±0.04 0.45±0.000.45±0.00 0.85±0.070.85±0.07 PhenylalaninePhenylalanine 0.03±0.040.03±0.04 0.00±0.000.00±0.00 0.09±0.030.09±0.03 0.05±0.040.05±0.04 0.03±0.040.03±0.04 0.13±0.100.13±0.10 0.14±0.040.14±0.04 SerineSerine 1.19±0.061.19±0.06 0.86±0.030.86±0.03 1.61±0.181.61±0.18 1.19±0.301.19±0.30 0.58±0.090.58±0.09 0.70±0.170.70±0.17 0.86±0.000.86±0.00 OrnithineOrnithine 0.07±0.030.07±0.03 0.02±0.000.02±0.00 0.13±0.030.13±0.03 0.16±0.050.16±0.05 0.05±0.040.05±0.04 0.07±0.000.07±0.00 0.03±0.030.03±0.03 trans-4-Hydroxy-L-prolinetrans-4-Hydroxy-L-proline 0.54±0.000.54±0.00 0.53±0.020.53±0.02 0.34±0.130.34±0.13 0.92±0.130.92±0.13 0.34±0.210.34±0.21 0.37±0.130.37±0.13 0.52±0.030.52±0.03 ThreonineThreonine 0.07±0.000.07±0.00 0.07±0.000.07±0.00 0.47±0.240.47±0.24 0.35±0.130.35±0.13 0.32±0.020.32±0.02 0.46±0.130.46±0.13 0.46±0.010.46±0.01 TryptophanTryptophan 0.00±0.000.00±0.00 0.00±0.000.00±0.00 0.05±0.030.05±0.03 0.02±0.020.02±0.02 0.02±0.030.02±0.03 0.09±0.040.09±0.04 0.23±0.020.23±0.02 TyrosineTyrosine 0.00±0.000.00±0.00 0.01±0.000.01±0.00 0.20±0.100.20±0.10 0.07±0.020.07±0.02 0.10±0.030.10±0.03 0.10±0.000.10±0.00 0.22±0.060.22±0.06 ValineValine 0.06±0.010.06±0.01 0.10±0.000.10±0.00 0.17±0.030.17±0.03 0.19±0.030.19±0.03 0.20±0.070.20±0.07 0.12±0.010.12±0.01 0.07±0.010.07±0.01

또한, PCA 분석결과, 발효 전과 발효 후의 대사산물은 확연한 차이가 있었다. 도 10은 김치의 대사 산물에 대해 수행된 principal components analysis (PCA)의 Biplot 결과이다. (A)는 발효전 포함 결과이고, (B)는 발효전 제외 결과이다. In addition, as a result of PCA analysis, there was a clear difference in metabolites before and after fermentation. 10 is a biplot result of principal components analysis (PCA) performed on metabolites of kimchi. (A) is the result of inclusion before fermentation, and (B) is the result of exclusion before fermentation.

도 10에서 보듯이, 발효 후의 나박김치만 PCA를 적용하였을 때 (도 10의 (B)), PC1 축을 기준으로 자연발효 (NK), DRC1506, EFEL6800 발효 나박김치는 오른쪽에 위치하고, DRC301, CBA3611 발효 나박김치는 왼쪽에 위치한 것으로 나타났다.As shown in FIG. 10, when PCA was applied only to Nabak Kimchi after fermentation ((B) in FIG. 10), Natural Fermentation (NK), DRC1506, EFEL6800 Fermented Nabak Kimchi based on the PC1 axis were located on the right , DRC301, CBA3611 Fermented nabak kimchi was found to be on the left.

이를 통해 EFEL6800은 Leuconostoc mesenteroides DRC1506와 유사한 대사산물을 함유하는 것으로 판단된다. 특히, EFEL6800 발효 나박김치는 DRC1506와 통계적으로 만니톨(mannitol)의 함량이 유사했다. LAB는 프룩토오스(fructose)를 환원시킴으로써 만니톨을 생산하는데, 이는 상쾌하고 부드러운 단맛이 있으며 김치에서 청량감을 준다. 또한, 신맛을 억제하여 김치가 과도하게 시어지는 현상을 억제하는 특성으로 김치의 맛을 향상시키는데 도움이 된다고 보고되어 있다. 이러한 결과는 EFEL6800는 DRC1506과 가장 유사한 대사산물을 함유하며, 높은 만니톨 함량으로 김치의 맛과 풍미를 향상시킬 수 있음을 의미한다.Through this, EFEL6800 is considered to contain metabolites similar to Leuconostoc mesenteroides DRC1506. In particular, EFEL6800 fermented nabak kimchi was statistically similar to DRC1506 in mannitol content. LAB produces mannitol by reducing fructose, which has a refreshing and soft sweetness and gives a refreshing feeling in kimchi. In addition, it has been reported that it helps to improve the taste of kimchi by suppressing sour taste and suppressing the phenomenon of excessive sourness of kimchi. These results indicate that EFEL6800 contains metabolites most similar to DRC1506, and can improve the taste and flavor of kimchi with high mannitol content.

[실시예 9: 본 발명 [Example 9: The present invention Lactobacillus fermentumLactobacillus fermentum EFEL6800 사용 김치의 관능평가] Sensory evaluation of kimchi using EFEL6800]

관능평가는 총 5종의 나박 김치가 적식기(산도 0.17~0.31%/pH 3.99)에 도달한 후 9점 척도법에 따라 총 30명의 관능요원이 평가하였다. 평가내용은 선호도 기준으로 향 (aroma), 신맛 (Sour taste), 단맛 (Sweet taste), 탄산미 (Carbonic acid-like taste), 이미·이취 (Off-flavor), 종합적 선호도(Total preference)를 평가하였고, 그 정도는 1에 가까울수록 선호도가 낮고 9에 가까울수록 선호도가 높은 것으로 나타내었다. Sensory evaluation was conducted by a total of 30 sensory personnel according to the 9-point scale method after a total of 5 kinds of Nabak Kimchi reached the optimum season (acidity 0.17~0.31%/pH 3.99). The evaluation contents are based on preference criteria: aroma, sour taste, sweet taste, carbonic acid-like taste, off-flavor, and total preference. In terms of the degree, the closer to 1, the lower the preference, and the closer to 9, the higher the preference.

그 결과는 도 11에 나타내었다. 도 11은 프로바이오틱 균주로 발효시킨 최적 숙성 나박김치 시료의 관능평가 결과이다. 결과는 평균±표준편차 (n=30)로 표시함. 샘플 간에 유의한 차이가 없었다. The results are shown in FIG. 11 . 11 is a sensory evaluation result of an optimally aged nabak kimchi sample fermented with a probiotic strain. Results are expressed as mean±standard deviation (n=30). There were no significant differences between samples.

전체 평가항목에서 모든 나박김치는 평균 5점 이상으로 보통 이상의 선호도를 보여주었다. 종합적인 선호도 평가 결과, DRC301 발효 나박김치가 가장 높은 선호도를 보였으며, 자연발효 (NK) 나박김치가 가장 낮은 선호도를 보였지만 유의적인 차이는 나타나지 않았다. 본 관능평가 결과에서 유의적인 차이가 나타나지는 않았지만 전반적으로 모든 발효 나박김치에서 보통 이상의 선호도가 나타났으며, 이는 본 발명 Lactobacillus fermentum EFEL6800 스타터 첨가가 나박김치의 관능에 부정적인 영향을 나타내지 않는다는 것을 의미한다. In all evaluation items, all nabak kimchi scored an average of 5 or more, indicating a preference above average. As a result of the comprehensive preference evaluation, DRC301 fermented nabak kimchi showed the highest preference, and natural fermented (NK) nabak kimchi showed the lowest preference, but there was no significant difference. Although no significant difference was found in this sensory evaluation result, overall preference was shown in all fermented nabak kimchi, which means that the addition of the Lactobacillus fermentum EFEL6800 starter of the present invention does not have a negative effect on the sensory of nabak kimchi.

기탁기관명 : 농업생명공학연구원Deposited organization name: Agricultural Biotechnology Research Institute

수탁번호 : KACC81106Accession number: KACC81106

수탁일자 : 20191025Deposit date: 20191025

Claims (6)

락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)
Lactobacillus fermentum EFEL 6800 (KACC 81106BP)
제1항에 있어서,
상기 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)은,
항염 프로바이오틱 활성이 있는 것을 특징으로 함.
According to claim 1,
The Lactobacillus fermentum ( Lactobacillus fermentum ) EFEL 6800 (KACC 81106BP) is,
It is characterized by having anti-inflammatory and probiotic activity.
채소에 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 종균으로 접종하여 발효시킴으로써 제조되는 발효 채소.
A fermented vegetable produced by inoculating vegetables with Lactobacillus fermentum EFEL 6800 (KACC 81106BP) as a seed and fermenting it.
제1항에 있어서,
상기 발효 채소는,
김치인 것을 특징으로 하는 발효 채소.
According to claim 1,
The fermented vegetables are
A fermented vegetable, characterized in that it is kimchi.
과일에 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 종균으로 접종하여 발효시킴으로써 제조되는 발효 과일.
A fermented fruit produced by inoculating a fruit with Lactobacillus fermentum EFEL 6800 (KACC 81106BP) as a seed and fermenting it.
곡물에 락토바실러스 퍼멘툼 (Lactobacillus fermentum) EFEL 6800 (KACC 81106BP)을 종균으로 접종하여 발효시킴으로써 제조되는 발효 곡물.
Fermented grains produced by inoculating grains with Lactobacillus fermentum EFEL 6800 (KACC 81106BP) as a seed and fermenting them.
KR1020200133154A 2020-10-15 2020-10-15 Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity KR102431335B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200133154A KR102431335B1 (en) 2020-10-15 2020-10-15 Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200133154A KR102431335B1 (en) 2020-10-15 2020-10-15 Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity

Publications (2)

Publication Number Publication Date
KR20220050257A true KR20220050257A (en) 2022-04-25
KR102431335B1 KR102431335B1 (en) 2022-08-10

Family

ID=81452156

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200133154A KR102431335B1 (en) 2020-10-15 2020-10-15 Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity

Country Status (1)

Country Link
KR (1) KR102431335B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854647A (en) * 2022-06-16 2022-08-05 广西大学 Lactobacillus fermentum and culture and application thereof
CN115644212A (en) * 2022-06-01 2023-01-31 华南理工大学 Lactobacillus fermentum and application thereof in preparation of goat milk reinforced whole-wheat sour dough bread
KR102501958B1 (en) * 2022-05-24 2023-02-21 주식회사 한국인삼공사 A novel Lactobacillus fermentum strain derived from Panax ginsengand the use thereof
KR102582095B1 (en) * 2023-03-17 2023-09-26 에스피씨 주식회사 Limosilactobacillus fermentum SPC L751 with excellent probiotic and baking properties
KR102586000B1 (en) 2023-04-04 2023-10-06 주식회사 현대바이오랜드 Lactobacillus fermentum HDB1098 that selectively degrades acetaldehyde and composition for removing hangover containing the same as an active ingredient

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511976B1 (en) * 2013-11-01 2015-04-14 주식회사한국야쿠르트 The new Lactobacillus fermentum HY7301 producing poly saccharides having immune stimulating activity and products containing thereof as effective component
KR101981333B1 (en) * 2018-10-31 2019-05-23 주식회사 메디오젠 Lactobacillus fermentum MG4231 or MG4244 having antiobesity activity derived from human and composition comprising the same
KR20190067537A (en) * 2017-12-07 2019-06-17 대상 주식회사 Lactobacillus fermentum C-7A and Use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511976B1 (en) * 2013-11-01 2015-04-14 주식회사한국야쿠르트 The new Lactobacillus fermentum HY7301 producing poly saccharides having immune stimulating activity and products containing thereof as effective component
KR20190067537A (en) * 2017-12-07 2019-06-17 대상 주식회사 Lactobacillus fermentum C-7A and Use thereof
KR101981333B1 (en) * 2018-10-31 2019-05-23 주식회사 메디오젠 Lactobacillus fermentum MG4231 or MG4244 having antiobesity activity derived from human and composition comprising the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. Dairy Sci., Vol.102, pp.9570-9585(2019.11.)* *
대한민국 특허공개번호 제1020170080837호 (공개일자 2017.07.11)에는, 신규 김치유산균 Weissella cibaria MFST 균주 및 이를 이용한 대추씨 조성물이 기재되어 있다.
대한민국 특허공개번호 제1020180052032호 (공개일자 2018.05.17)에는, 김치유래 신규한 유산균 락토바실러스 플란타룸 DGK-17(KACC 81028BP) 및 이로부터 제조되는 발효 조성물을 포함하는 김치와 그의 제조방법에 대해 기재되어 있다.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501958B1 (en) * 2022-05-24 2023-02-21 주식회사 한국인삼공사 A novel Lactobacillus fermentum strain derived from Panax ginsengand the use thereof
CN115644212A (en) * 2022-06-01 2023-01-31 华南理工大学 Lactobacillus fermentum and application thereof in preparation of goat milk reinforced whole-wheat sour dough bread
CN114854647A (en) * 2022-06-16 2022-08-05 广西大学 Lactobacillus fermentum and culture and application thereof
CN114854647B (en) * 2022-06-16 2023-08-29 广西大学 Lactobacillus fermentum and culture and application thereof
KR102582095B1 (en) * 2023-03-17 2023-09-26 에스피씨 주식회사 Limosilactobacillus fermentum SPC L751 with excellent probiotic and baking properties
KR102586000B1 (en) 2023-04-04 2023-10-06 주식회사 현대바이오랜드 Lactobacillus fermentum HDB1098 that selectively degrades acetaldehyde and composition for removing hangover containing the same as an active ingredient

Also Published As

Publication number Publication date
KR102431335B1 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
KR102431335B1 (en) Novel starter of Lactobacillus fermentum EFEL6800 with probiotic activity
Di Cagno et al. Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L.) fruit puree
Daneshi et al. Effect of refrigerated storage on the probiotic survival and sensory properties of milk/carrot juice mix drink
Park et al. Lactic acid bacteria in vegetable fermentations
KR102552976B1 (en) Novel starter of Lactobacillus reuteri EFEL6901 with probiotic activity
Kim et al. Potato juice fermented with Lactobacillus casei as a probiotic functional beverage
El-Kholy et al. Research Article Tallaga Cheese as a New Functional Dairy Product
Karovičová et al. Utilisation of quinoa for development of fermented beverages.
Dogahe et al. Effect of process variables on survival of bacteria in probiotics enriched pomegranate juice
Sridharan et al. A study on suitable non dairy food matrix for probiotic bacteria–a systematic review
KR102155849B1 (en) Lactobacillus plantarum SRCM102369 strain having antimicrobial activity against pathogenic microorganism and lactic acid production ability and uses thereof
Zielińska et al. Development of tofu production method with probiotic bacteria addition.
Jo et al. Lactobacillus pentosus SMB718 as a probiotic starter producing allyl mercaptan in garlic and onion-enriched fermentation
Liang et al. Vitality, fermentation, aroma profile, and digestive tolerance of the newly selected Lactiplantibacillus plantarum and Lacticaseibacillus paracasei in fermented apple juice
KR20150032379A (en) Lactobacillus brevis 4-12 having GABA production capacity and methods for preparing Kimchi comprising the same
KR101193338B1 (en) Food composition comprising lactic acid bacteria fermented sweet potato and preparation method thereof
KR101828494B1 (en) Manufacturing method for fermented beverage using lactic acid bacterias
KR101380920B1 (en) Fermented jam comprising fermented opuntia humifusa fruit by lactic acid bacteria
JP6921350B1 (en) New lactic acid bacteria belonging to Lactobacillus plantarum isolated from Yaezakura flowers and their utilization
Alzahra et al. Evaluation of Lactiplantibacillus pentosus probiotic fermented buffalo milk with citrus juice
Verón et al. Assessment of technological and functional features of Lactiplantibacillus and Fructobacillus strains isolated from Opuntia ficus-indica fruits
KR100921697B1 (en) Method for using high osmotic pressure tolerant strain as natural flavor
Akhtar et al. Small-and Large-Scale Production of Probiotic Foods, Probiotic Potential and Nutritional Benefits
KR102015783B1 (en) Black ginseng fermented jelly and its manufacturing method
Coman et al. Fruit and vegetable juices tested as possible probiotic beverage

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant