KR20220047627A - 변환에 기반한 영상 코딩 방법 및 그 장치 - Google Patents

변환에 기반한 영상 코딩 방법 및 그 장치 Download PDF

Info

Publication number
KR20220047627A
KR20220047627A KR1020227008835A KR20227008835A KR20220047627A KR 20220047627 A KR20220047627 A KR 20220047627A KR 1020227008835 A KR1020227008835 A KR 1020227008835A KR 20227008835 A KR20227008835 A KR 20227008835A KR 20220047627 A KR20220047627 A KR 20220047627A
Authority
KR
South Korea
Prior art keywords
block
lfnst
transform
sub
current block
Prior art date
Application number
KR1020227008835A
Other languages
English (en)
Inventor
구문모
김승환
임재현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20220047627A publication Critical patent/KR20220047627A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

본 문서에 따른 영상 디코딩 방법은 수정된 변환 계수를 도출하는 단계를 포함할 수 있고, 상기 수정된 변환 계수를 도출하는 단계는 상기 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 상기 변환 계수가 존재하는지 여부를 판단하는 단계와; 상기 판단 결과에 기초하여 LFNST 인덱스를 파싱하는 단계와; 상기 LFNST 인덱스 및 LFNST 매트릭스를 기반으로 상기 수정된 변환 계수를 도출하는 단계를 포함하고, 상기 현재 블록이 복수의 서브 파티션 블록으로 분할되고, 상기 복수의 서브 파티션 블록에 대한 개별적인 상기 제2 영역 모두에 상기 변환 계수가 존재하지 않는 것에 기초하여 상기 LFNST 인덱스를 파싱할 수 있다.

Description

변환에 기반한 영상 코딩 방법 및 그 장치
본 문서는 영상 코딩 기술에 관한 것으로서 보다 상세하게는 영상 코딩 시스템에서 변환(transform)에 기반한 영상 코딩 방법 및 그 장치에 관한 것이다.
최근 4K 또는 8K 이상의 UHD(Ultra High Definition) 영상/비디오와 같은 고해상도, 고품질의 영상/비디오에 대한 수요가 다양한 분야에서 증가하고 있다. 영상/비디오 데이터가 고해상도, 고품질이 될수록 기존의 영상/비디오 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상/비디오 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
또한, 최근 VR(Virtual Reality), AR(Artificial Realtiy) 컨텐츠나 홀로그램 등의 실감 미디어(Immersive Media)에 대한 관심 및 수요가 증가하고 있으며, 게임 영상과 같이 현실 영상과 다른 영상 특성을 갖는 영상/비디오에 대한 방송이 증가하고 있다.
이에 따라, 상기와 같은 다양한 특성을 갖는 고해상도 고품질의 영상/비디오의 정보를 효과적으로 압축하여 전송하거나 저장하고, 재생하기 위해 고효율의 영상/비디오 압축 기술이 요구된다.
본 문서의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 다른 기술적 과제는 변환 인덱스 코딩의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 LFNST를 활용한 영상 코딩 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 서브 파티션 블록에 LFNST을 적용하는 영상 코딩 방법 및 장치를 제공함에 있다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법을 제공한다. 상기 방법은 수정된 변환 계수를 도출하는 단계를 포함할 수 있고, 상기 수정된 변환 계수를 도출하는 단계는 상기 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 상기 변환 계수가 존재하는지 여부를 판단하는 단계와; 상기 판단 결과에 기초하여 LFNST 인덱스를 파싱하는 단계와; 상기 LFNST 인덱스 및 LFNST 매트릭스를 기반으로 상기 수정된 변환 계수를 도출하는 단계를 포함하고, 상기 현재 블록이 복수의 서브 파티션 블록으로 분할되고, 상기 복수의 서브 파티션 블록에 대한 개별적인 상기 제2 영역 모두에 상기 변환 계수가 존재하지 않는 것에 기초하여 상기 LFNST 인덱스를 파싱할 수 있다.
현재 블록이 상기 복수의 서브 파티션 블록으로 분할되지 않고, 상기 제2 영역에 상기 변환 계수가 존재하지 않으면, 상기 LFNST 인덱스를 파싱할 수 있다.
상기 현재 블록은 코딩 블록이고, 개별적인 서브 파티션 블록의 폭 및 높이가 4 이상이면, 상기 현재 블록에 대한 상기 LFNST 인덱스가 상기 복수의 서브 파티션 블록에 적용될 수 있다.
분할된 서브 파티션 블록이 4x4 블록 또는 8x8 블록이면, 상기 현재 블록의 좌상단으로부터 스캔 방향으로 8번째까지의 변환 계수에 상기 LFNST가 적용될 수 있다.
상기 수정된 변환 계수를 도출하는 단계는, 상기 현재 블록의 DC 위치를 제외한 영역에 상기 변환 계수가 존재하는지 여부를 나타내는 제1 변수를 도출하는 단계를 더 포함하고, 상기 LFNST 인덱스는 상기 제1 변수가 상기 DC 위치를 제외한 영역에 상기 변환 계수가 존재하는 것을 나타내면 파싱될 수 있다.
상기 현재 블록이 복수의 서브 파티션 블록으로 분할되는 것에 기초하여, 상기 제1 변수의 도출 없이 상기 LFNST 인덱스를 파싱할 수 있다.
상기 서브 파티션 블록이 4x4 블록 또는 8x8 블록이 아니면, 상기 서브 파티션 블록의 좌상단의 4x4 영역의 변환 계수에 상기 LFNST가 적용될 수 있다.
본 문서의 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 영상 인코딩 방법을 제공한다. 상기 방법은 레지듀얼 샘플들에 대한 1차 변환을 기반으로 상기 현재 블록에 대한 변환 계수들을 도출하는 단계와;
상기 현재 블록의 좌상단 제1 영역의 변환 계수들 및 소정의 LFNST 매트릭스를 기반으로 상기 현재 블록에 대한 수정된 변환 계수들을 도출하는 단계와; 상기 수정된 변환 계수들이 존재하지 않는 상기 현재 블록의 제2 영역을 제로 아웃하는 단계와; 상기 현재 블록이 복수의 서브 파티션 블록으로 분할되고, 상기 복수의 서브 파티션 블록에 모두에 대하여 상기 제로 아웃이 수행되는 것에 기초하여 상기 LFNST 인덱스가 시그널링되도록 영상 정보를 구성하는 단계와; 상기 수정된 변환 계수들의 양자화를 통하여 도출된 레지듀얼 정보 및 상기 LFNST 인덱스를 포함하는 상기 영상 정보를 출력할 수 있다.
본 문서의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행된 영상 인코딩 방법에 따라 생성된 인코딩된 영상 정보 및 비트스트림이 포함된 영상 데이터가 저장된 디지털 저장 매체가 제공될 수 있다.
본 문서의 또 다른 일 실시예에 따르면, 디코딩 장치에 의하여 상기 영상 디코딩 방법을 수행하도록 야기하는 인코딩된 영상 정보 및 비트스트림이 포함된 영상 데이터가 저장된 디지털 저장 매체가 제공될 수 있다.
본 문서에 따르면 전반적인 영상/비디오 압축 효율을 높일 수 있다.
본 문서에 따르면 변환 인덱스 코딩의 효율을 높일 수 있다.
본 문서의 또 다른 기술적 과제는 LFNST를 활용한 영상 코딩 방법 및 장치를 제공한다.
본 문서의 또 다른 기술적 과제는 서브 파티션 블록에 LFNST을 적용하는 영상 코딩 방법 및 장치를 제공할 수 있다.
본 명세서의 구체적인 일례를 통해 얻을 수 있는 효과는 이상에서 나열된 효과로 제한되지 않는다. 예를 들어, 관련된 기술분야의 통상의 지식을 자긴 자(a person having ordinary skill in the related art)가 본 명세서로부터 이해하거나 유도할 수 있는 다양한 기술적 효과가 존재할 수 있다. 이에 따라 본 명세서의 구체적인 효과는 본 명세서에 명시적으로 기재된 것에 제한되지 않고, 본 명세서의 기술적 특징으로부터 이해되거나 유도될 수 있는 다양한 효과를 포함할 수 있다.
도 1은 본 문서가 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 2는 본 문서가 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서의 일 실시예에 따른 다중 변환 기법을 개략적으로 나타낸다.
도 4는 65개 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 5는 본 문서의 일 실시예에 따른 RST를 설명하기 위한 도면이다.
도 6은 일 예에 따라 순방향 1차 변환의 출력 데이터를 1차원 벡터로 배열하는 순서를 도시한 도면이다.
도 7은 일 예에 따라 순방향 2차 변환의 출력 데이터를 2차원 블록으로 배열하는 순서를 도시한 도면이다.
도 8은 LFNST가 적용되는 블록 모양을 도시한 도면이다.
도 9는 일 예에 따라 순방향 LFNST의 출력 데이터의 배치를 도시한 도면이다.
도 10은 일 예에 따라 순방향 LFNST에 대한 출력 데이터 수를 최대 16개로 한정한 것을 나타낸 도면이다.
도 11은 일 예에 따라 4x4 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 12는 일 예에 따라 8x8 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 13은 다른 일 예에 따라 8x8 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 14는 하나의 코딩 블록이 분할되는 서브 블록의 일 예를 도시하는 도면이다.
도 15는 하나의 코딩 블록이 분할되는 서브 블록의 다른 예를 도시하는 도면이다.
도 16은 일 예에 따른 Mx2 (Mx1) 블록과 2xM (1xM) 블록의 대칭성을 도시한 도면이다.
도 17은 일 예에 따라 2xM 블록을 트랜스포즈한 예시를 도시한 도면이다.
도 18은 일 예에 따른 8x2 또는 2x8 영역에 대한 스캐닝 순서를 도시한 것이다.
도 19는 일 예에 따른 ISP 모드인 경우, 샘플링된 LFNST 커널을 설명하기 위한 도면이다.
도 20은 일 예에 따른 영상의 디코딩 방법을 설명하기 위한 도면이다.
도 21은 일 예에 따른 영상의 인코딩 방법을 설명하기 위한 도면이다.
도 22는 본 문서가 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 23은 본 문서가 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
본 문서는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 문서를 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서의 본질에서 벗어나지 않는 한 본 문서의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략한다.
이 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (Versatile Video Coding) 표준 (ITU-T Rec. H.266), VVC 이후의 차세대 비디오/이미지 코딩 표준, 또는 그 이외의 비디오 코딩 관련 표준들(예를 들어, HEVC (High Efficiency Video Coding) 표준 (ITU-T Rec. H.265), EVC(essential video coding) 표준, AVS2 표준 등)과 관련될 수 있다.
이 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
이 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 또는 샘플은 공간 도메인에서의 픽셀값을 의미할 수도 있고, 이러한 픽셀값이 주파수 도메인으로 변환되면 주파수 도메인에서의 변환 계수를 의미할 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
이 문서에서 “/”와 ","는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. (In this document, the term “/” and "," should be interpreted to indicate “and/or.” For instance, the expression “A/B” may mean “A and/or B.” Further, “A, B” may mean “A and/or B.” Further, “A/B/C” may mean “at least one of A, B, and/or C.” Also, “A/B/C” may mean “at least one of A, B, and/or C.”)
추가적으로, 본 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A” 만을 의미하고, 2) “B” 만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다. (Further, in the document, the term “or” should be interpreted to indicate “and/or.” For instance, the expression “A or B” may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term “or” in this document should be interpreted to indicate “additionally or alternatively.”)
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “예측(인트라 예측)”로 표시된 경우, “예측”의 일례로 “인트라 예측”이 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “예측”은 “인트라 예측”으로 제한(limit)되지 않고, “인트라 예측”이 “예측”의 일례로 제안될 것일 수 있다. 또한, “예측(즉, 인트라 예측)”으로 표시된 경우에도, “예측”의 일례로 “인트라 예측”이 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
도 1은 본 문서의 실시예들에 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 1을 참조하면, 인코딩 장치(100)는 영상 분할부(image partitioner, 110), 예측부(predictor, 120), 레지듀얼 처리부(residual processor, 130), 엔트로피 인코딩부(entropy encoder, 140), 가산부(adder, 150), 필터링부(filter, 160) 및 메모리(memory, 170)를 포함하여 구성될 수 있다. 예측부(120)는 인터 예측부(121) 및 인트라 예측부(122)를 포함할 수 있다. 레지듀얼 처리부(130)는 변환부(transformer, 132), 양자화부(quantizer 133), 역양자화부(dequantizer 134), 역변환부(inverse transformer, 135)를 포함할 수 있다. 레지듀얼 처리부(130)는 감산부(subtractor, 131)를 더 포함할 수 있다. 가산부(150)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(110), 예측부(120), 레지듀얼 처리부(130), 엔트로피 인코딩부(140), 가산부(150) 및 필터링부(160)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(170)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(170)를 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(110)는 인코딩 장치(100)에 입력된 입력 영상(또는, 픽쳐, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(100)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(121) 또는 인트라 예측부(122)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(132)로 전송된다. 이 경우 도시된 바와 같이 인코딩 장치(100) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(131)라고 불릴 수 있다. 예측부는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(140)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(140)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(122)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(122)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(121)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(121)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(121)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(120)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보를 기반으로 픽처 내 샘플 값을 시그널링할 수 있다.
상기 예측부 (인터 예측부(121) 및/또는 상기 인트라 예측부(122) 포함)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(132)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen-Loeve Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(133)는 변환 계수들을 양자화하여 엔트로피 인코딩부(140)로 전송되고, 엔트로피 인코딩부(140)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(133)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(140)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(140)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 인코딩 장치에서 디코딩 장치로 전달/시그널링되는 정보 및/또는 신택스 요소들은 비디오/영상 정보에 포함될 수 있다. 상기 비디오/영상 정보는 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(140)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(100)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(140)에 포함될 수도 있다.
양자화부(133)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(134) 및 역변환부(135)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(155)는 복원된 레지듀얼 신호를 인터 예측부(121) 또는 인트라 예측부(122)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(150)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(160)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(160)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(170), 구체적으로 메모리(170)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(160)는 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(140)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(140)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(170)에 전송된 수정된 복원 픽처는 인터 예측부(121)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(100)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(170) DPB는 수정된 복원 픽처를 인터 예측부(121)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(170)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(121)에 전달할 수 있다. 메모리(170)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(122)에 전달할 수 있다.
도 2는 본 문서의 실시예들에 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 2를 참조하면, 디코딩 장치(200)는 엔트로피 디코딩부(entropy decoder, 210), 레지듀얼 처리부(residual processor, 220), 예측부(predictor, 230), 가산부(adder, 240), 필터링부(filter, 250) 및 메모리(memory, 260)를 포함하여 구성될 수 있다. 예측부(230)는 인터 예측부(231) 및 인트라 예측부(232)를 포함할 수 있다. 레지듀얼 처리부(220)는 역양자화부(dequantizer, 221) 및 역변환부(inverse transformer, 221)를 포함할 수 있다. 상술한 엔트로피 디코딩부(210), 레지듀얼 처리부(220), 예측부(230), 가산부(240) 및 필터링부(250)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(260)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(260)를 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(200)는 도 1의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(200)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(200)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(200)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(200)는 도 1의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(210)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(210)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(210)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(210)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(232) 및 인트라 예측부(231))로 제공되고, 엔트로피 디코딩부(210)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 레지듀얼 처리부(220)로 입력될 수 있다. 레지듀얼 처리부(220)는 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들, 레지듀얼 샘플 어레이)를 도출할 수 있다. 또한, 엔트로피 디코딩부(210)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(250)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(200)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(210)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(210)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(221), 역변환부(222), 가산부(240), 필터링부(250), 메모리(260), 인터 예측부(232) 및 인트라 예측부(231) 중 적어도 하나를 포함할 수 있다.
역양자화부(221)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(221)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(221)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(222)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(210)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보가 상기 비디오/영상 정보에 포함되어 시그널링될 수 있다.
인트라 예측부(231)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(231)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(232)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(232)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(240)는 획득된 레지듀얼 신호를 예측부(인터 예측부(232) 및/또는 인트라 예측부(231) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(240)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(250)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(250)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(260), 구체적으로 메모리(260)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(260)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(232)에서 참조 픽쳐로 사용될 수 있다. 메모리(260)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(232)에 전달할 수 있다. 메모리(260)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(231)에 전달할 수 있다.
본 문서에서, 인코딩 장치(100)의 필터링부(160), 인터 예측부(121) 및 인트라 예측부(122)에서 설명된 실시예들은 각각 디코딩 장치(200)의 필터링부(250), 인터 예측부(232) 및 인트라 예측부(231)에도 동일 또는 대응되도록 적용될 수 있다.
상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 원본 블록과 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 레지듀얼 블록과 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 원본 블록과 예측된 블록 간의 레지듀얼 블록을 도출하고, 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 레지듀얼 정보는 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
도 3은 본 문서에 따른 다중 변환 기법을 개략적으로 나타낸다.
도 3을 참조하면, 변환부는 상술한 도 1의 인코딩 장치 내의 변환부에 대응될 수 있고, 역변환부는 상술한 도 1의 인코딩 장치 내의 역변환부 또는 도 2의 디코딩 장치 내의 역변환부에 대응될 수 있다.
변환부는 레지듀얼 블록 내의 레지듀얼 샘플들(레지듀얼 샘플 어레이)를 기반으로 1차 변환을 수행하여 (1차) 변환 계수들을 도출할 수 있다(S310). 이러한 1차 변환(primary transform)은 핵심 변환(core transform)으로 지칭될 수 있다. 여기서 상기 1차 변환은 다중 변환 선택(Multiple Transform Selection, MTS)에 기반할 수 있으며, 1차 변환으로 다중 변환이 적용될 경우 다중 핵심 변환으로 지칭될 수 있다.
다중 핵심 변환은 DCT(Discrete Cosine Transform) 타입 2과 DST(Discrete Sine Transform) 타입 7, DCT 타입 8, 및/또는 DST 타입 1을 추가적으로 사용하여 변환하는 방식을 나타낼 수 있다. 즉, 상기 다중 핵심 변환은 상기 DCT 타입 2, 상기 DST 타입 7, 상기 DCT 타입 8 및 상기 DST 타입 1 중 선택된 복수의 변환 커널들을 기반으로 공간 도메인의 레지듀얼 신호(또는 레지듀얼 블록)를 주파수 도메인의 변환 계수들(또는 1차 변환 계수들)로 변환하는 변환 방법을 나타낼 수 있다. 여기서 상기 1차 변환 계수들은 변환부 입장에서 임시 변환 계수들로 불릴 수 있다.
다시 말하면, 기존의 변환 방법이 적용되는 경우, DCT 타입 2를 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들이 생성될 수 있었다. 이와 달리, 상기 다중 핵심 변환이 적용되는 경우, DCT 타입 2, DST 타입 7, DCT 타입 8, 및/또는 DST 타입 1 등을 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들(또는 1차 변환 계수들)이 생성될 수 있다. 여기서, DCT 타입 2, DST 타입 7, DCT 타입 8, 및 DST 타입 1 등은 변환 타입, 변환 커널(kernel) 또는 변환 코어(core)라고 불릴 수 있다. 이러한 DCT/DST 변환 타입들은 기저 함수들을 기반으로 정의될 수 있다.
상기 다중 핵심 변환이 수행되는 경우, 상기 변환 커널들 중 대상 블록에 대한 수직 변환 커널 및 수평 변환 커널이 선택될 수 있고, 상기 수직 변환 커널을 기반으로 상기 대상 블록에 대한 수직 변환이 수행되고, 상기 수평 변환 커널을 기반으로 상기 대상 블록에 대한 수평 변환이 수행될 수 있다. 여기서, 상기 수평 변환은 상기 대상 블록의 수평 성분들에 대한 변환을 나타낼 수 있고, 상기 수직 변환은 상기 대상 블록의 수직 성분들에 대한 변환을 나타낼 수 있다. 상기 수직 변환 커널/수평 변환 커널은 레지듀얼 블록을 포함하는 대상 블록(CU 또는 서브블록)의 예측 모드 및/또는 변환 인덱스를 기반으로 적응적으로 결정될 수 있다.
또한, 일 예에 따르면, MTS을 적용하여 1차 변환을 수행하는 경우, 특정 기저 함수들을 소정 값으로 설정하고, 수직 변환 또는 수평 변환일 때 어떠한 기저 함수들이 적용되는지 여부를 조합하여 변환 커널에 대한 매핑 관계를 설정할 수 있다. 예를 들어, 수평 방향 변환 커널을 trTypeHor로 나타내고, 수직 방향 변환 커널을 trTypeVer로 나타내는 경우, trTypeHor 또는 trTypeVer 값 0은 DCT2로 설정되고, trTypeHor 또는 trTypeVer 값 1은 DST7 로 설정되고, trTypeHor 또는 trTypeVer 값 2는 DCT8로 설정될 수 있다.
이 경우, 다수의 변환 커널 세트들 중 어느 하나를 지시하기 위하여 MTS 인덱스 정보가 인코딩되어 디코딩 장치로 시그널링될 수 있다. 예를 들어, MTS 인덱스가 0이면 trTypeHor 및 trTypeVer 값이 모두 0인 것을 지시하고, MTS 인덱스가 1이면 trTypeHor 및 trTypeVer 값이 모두 1 인 것을 지시하고, MTS 인덱스가 2이면 trTypeHor 값은 2이고 trTypeVer 값은 1 인 것을 지시하고, MTS 인덱스가 3이면 trTypeHor 값은 1이고 trTypeVer 값은 2 인 것을 지시하고, MTS 인덱스가 4이면 trTypeHor 및 trTypeVer 값이 모두 2 인 것을 지시할 수 있다.
일 예에 따라, MTS 인덱스 정보에 따른 변환 커널 세트를 표로 나타내면 다음과 같다.
Figure pct00001
변환부는 상기 (1차) 변환 계수들을 기반으로 2차 변환을 수행하여 수정된(2차) 변환 계수들을 도출할 수 있다(S320). 상기 1차 변환은 공간 도메인에서 주파수 도메인으로의 변환이고, 상기 2차 변환은 (1차) 변환 계수들 사이에 존재하는 상관 관계(correlation)를 이용하여 보다 압축적인 표현으로 변환하는 것을 의미한다. 상기 2차 변환은 비분리 변환(non- separable transform)을 포함할 수 있다. 이 경우 상기 2차 변환은 비분리 2차 변환(non-separable secondary transform, NSST) 또는 MDNSST(mode-dependent non-separable secondary transform)이라고 불릴 수 있다. 상기 비분리 2차 변환은 상기 1차 변환을 통하여 도출된 (1차) 변환 계수들을 비분리 변환 매트릭스(non-separable transform matrix)를 기반으로 2차 변환하여 레지듀얼 신호에 대한 수정된 변환 계수들(또는 2차 변환 계수들)을 생성하는 변환을 나타낼 수 있다. 여기서, 상기 비분리 변환 매트릭스를 기반으로 상기 (1차) 변환 계수들에 대하여 수직 변환 및 수평 변환을 분리하여(또는 수평 수직 변환을 독립적으로) 적용하지 않고 한번에 변환을 적용할 수 있다. 다시 말해, 상기 비분리 2차 변환은 상기 (1차) 변환 계수들에 대해 수직 방향과 수평 방향에 따로 적용되지 않고, 예를 들어 2차원 신호(변환 계수)들을 특정 정해진 방향(예컨대, 행 우선(row-first) 방향 또는 열 우선(column-first) 방향)을 통하여 1차원 신호로 재정렬한 후, 상기 비분리 변환 매트릭스를 기반으로 수정된 변환 계수들(또는 2차 변환 계수들)을 생성하는 변환 방법을 나타낼 수 있다. 예를 들어, 행 우선 순서는 MxN 블록에 대해 1번째 행, 2번째 행, ... , N번째 행의 순서로 일렬로 배치하는 것이고, 열 우선 순서는 MxN 블록에 대해 1번째 열, 2번째 열, ... , M번째 열의 순서로 일렬로 배치하는 것이다. 상기 비분리 2차 변환은 (1차) 변환 계수들로 구성된 블록(이하, 변환 계수 블록이라고 불릴 수 있다)의 좌상단(top-left) 영역에 대하여 적용될 수 있다. 예를 들어, 상기 변환 계수 블록의 폭(W) 및 높이(H)가 둘 다 8 이상인 경우, 8×8 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 8×8 영역에 대하여 적용될 수 있다. 또한, 상기 변환 계수 블록의 폭(W) 및 높이(H)가 둘 다 4 이상이면서, 상기 변환 계수 블록의 폭(W) 또는 높이(H)가 8보다 작은 경우, 4×4 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 min(8,W)×min(8,H) 영역에 대하여 적용될 수 있다. 다만 실시예는 이에 한정되지 않으며, 예를 들어 상기 변환 계수 블록의 폭(W) 또는 높이(H)가 모두 4 이상인 조건만 만족하더라도, 4×4 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 min(8,W)×min(8,H) 영역에 대하여 적용될 수도 있다.
구체적으로 예를 들어, 4×4 입력 블록이 사용되는 경우 비분리 2차 변환은 다음과 같이 수행될 수 있다.
상기 4×4 입력 블록 X는 다음과 같이 나타내어질 수 있다.
Figure pct00002
상기 X를 벡터 형태로 나타내는 경우, 벡터
Figure pct00003
는 다음과 같이 나타내어질 수 있다.
Figure pct00004
수학식 2와 같이, 벡터
Figure pct00005
는 행 우선(row-first) 순서에 따라 수학식 1의 X의 2차원 블록을 1차원 벡터로 재배열한다.
이 경우, 상기 2차 비분리 변환은 다음과 같이 계산될 수 있다.
Figure pct00006
여기서,
Figure pct00007
는 변환 계수 벡터를 나타내고, T는 16×16 (비분리) 변환 매트릭스를 나타낸다.
상기 수학식 3을 통하여 16×1 변환 계수 벡터
Figure pct00008
가 도출될 수 있으며, 상기
Figure pct00009
는 스캔 순서(수평, 수직, 대각(diagonal) 등)를 통하여 4×4 블록으로 재구성(re-organized)될 수 있다. 다만, 상술한 계산은 예시로서 비분리 2차 변환의 계산 복잡도를 줄이기 위하여 HyGT(Hypercube-Givens Transform) 등이 비분리 2차 변환의 계산을 위하여 사용될 수도 있다.
한편, 상기 비분리 2차 변환은 모드 기반(mode dependent)으로 변환 커널(또는 변환 코어, 변환 타입)이 선택될 수 있다. 여기서 모드는 인트라 예측 모드 및/또는 인터 예측 모드를 포함할 수 있다.
상술한 바와 같이 상기 비분리 2차 변환은 상기 변환 계수 블록의 너비(W) 및 높이(H)를 기반으로 결정된 8×8 변환 또는 4×4 변환에 기반하여 수행될 수 있다. 8x8 변환은 W와 H가 모두 8보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 8x8 영역에 적용될 수 있는 변환을 가리키며 해당 8x8 영역은 해당 변환 계수 블록 내부의 좌상단 8x8 영역일 수 있다. 유사하게, 4x4 변환은 W와 H가 모두 4보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 4x4 영역에 적용될 수 있는 변환을 가리키며 해당 4x4 영역은 해당 변환 계수 블록 내부의 좌상단 4x4 영역일 수 있다. 예를 들어, 8x8 변환 커널 매트릭스는 64x64/16x64 행렬, 4x4 변환 커널 매트릭스는 16x16/8x16 행렬이 될 수 있다.
이때, 모드 기반 변환 커널 선택을 위하여, 8×8 변환 및 4×4 변환 둘 다에 대하여 비분리 2차 변환을 위한 변환 세트당 2개씩의 비분리 2차 변환 커널들이 구성될 수 있고, 변환 세트는 4개일 수 있다. 즉, 8×8 변환에 대하여 4개의 변환 세트가 구성되고, 4×4 변환에 대하여 4개의 변환 세트가 구성될 수 있다. 이 경우 8×8 변환에 대한 4개의 변환 세트에는 각각 2개씩의 8×8 변환 커널들이 포함될 수 있고, 이 경우 4×4 변환에 대한 4개의 변환 세트에는 각각 2개씩의 4×4 변환 커널들이 포함될 수 있다.
다만, 상기 변환의 사이즈, 즉 변환이 적용되는 영역의 사이즈는 예시로서 8×8 또는 4×4 이외의 사이즈가 사용될 수 있고, 상기 세트의 수는 n개, 각 세트 내 변환 커널들의 수는 k개일 수도 있다.
상기 변환 세트는 NSST 세트 또는 LFNST 세트라고 불릴 수 있다. 상기 변환 세트들 중 특정 세트의 선택은 예를 들어, 현재 블록(CU 또는 서브블록)의 인트라 예측 모드에 기반하여 수행될 수 있다. LFNST(Low-Frequency Non-Separable Transform)는 후술될 감소된 비분리 변환의 일 예일 수 있으며, 저주파 성분에 대한 비분리 변환을 나타낸다.
참고로, 예를 들어, 인트라 예측 모드는 2개의 비방향성(non-directinoal, 또는 비각도성(non-angular)) 인트라 예측 모드들과 65개의 방향성(directional, 또는 각도성(angular)) 인트라 예측 모드들을 포함할 수 있다. 상기 비방향성 인트라 예측 모드들은 0번인 플래너(planar) 인트라 예측 모드 및 1번인 DC 인트라 예측 모드를 포함할 수 있고, 상기 방향성 인트라 예측 모드들은 2번 내지 66번의 65개의 인트라 예측 모드들을 포함할 수 있다. 다만, 이는 예시로서 본 문서는 인트라 예측 모드들의 수가 다른 경우에도 적용될 수 있다. 한편, 경우에 따라 67번 인트라 예측 모드가 더 사용될 수 있으며, 상기 67번 인트라 예측 모드는 LM(linear model) 모드를 나타낼 수 있다.
도 4는 65개의 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 4를 참조하면, 우하향 대각 예측 방향을 갖는 34번 인트라 예측 모드를 중심으로 수평 방향성(horizontal directionality)을 갖는 인트라 예측 모드와 수직 방향성(vertical directionality)을 갖는 인트라 예측 모드를 구분할 수 있다. 도 4의 H와 V는 각각 수평 방향성과 수직 방향성을 의미하며, -32 ~ 32의 숫자는 샘플 그리드 포지션(sample grid position) 상에서 1/32 단위의 변위를 나타낸다. 이는 모드 인덱스 값에 대한 오프셋을 나타낼 수 있다. 2번 내지 33번 인트라 예측 모드는 수평 방향성, 34번 내지 66번 인트라 예측 모드는 수직 방향성을 갖는다. 한편, 34번 인트라 예측 모드는 엄밀히 말해 수평 방향성도 수직 방향성도 아니라고 볼 수 있으나, 2차 변환의 변환 세트를 결정하는 관점에서 수평 방향성에 속한다고 분류될 수 있다. 이는, 34번 인트라 예측 모드를 중심으로 대칭되는 수직 방향 모드에 대해서는 입력 데이터를 트랜스포즈(transpose)해서 사용하고 34번 인트라 예측 모드에 대해서는 수평 방향 모드에 대한 입력 데이터 정렬 방식을 사용하기 때문이다. 입력 데이터를 트랜스포즈하는 것은 2차원 블록 데이터 MxN에 대해 행이 열이 되고 열이 행이 되어 NxM 데이터를 구성하는 것을 의미한다. 18번 인트라 예측 모드와 50번 인트라 예측 모드는 각각 수평 인트라 예측 모드(horizontal intra prediction mode), 수직 인트라 예측 모드(vertical intra prediction mode)를 나타내며, 2번 인트라 예측 모드는 왼쪽 참조 픽셀을 가지고 우상향 방향으로 예측하므로 우상향 대각 인트라 예측 모드라 불릴 수 있고, 동일한 맥락으로 34번 인트라 예측 모드는 우하향 대각 인트라 예측 모드, 66번 인트라 예측 모드는 좌하향 대각 인트라 예측 모드라고 불릴 수 있다.
일 예에 따라, 인트라 예측 모드에 따라 4개의 변환 세트들이 매핑(mapping)은 예를 들어 다음 표와 같이 나타내어질 수 있다.
Figure pct00010
표 2와 같이, 인트라 예측 모드에 따라 4개의 변환 세트 중 어느 하나, 즉 lfnstTrSetIdx가 0 부터 3, 즉 4개 중 어느 하나에 매핑될 수 있다.
한편, 비분리 변환에 특정 세트가 사용되는 것으로 결정되면, 비분리 2차 변환 인덱스를 통하여 상기 특정 세트 내 k개의 변환 커널들 중 하나가 선택될 수 있다. 인코딩 장치는 RD(rate-distortion) 체크 기반으로 특정 변환 커널을 가리키는 비분리 2차 변환 인덱스를 도출할 수 있으며, 상기 비분리 2차 변환 인덱스를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 상기 비분리 2차 변환 인덱스를 기반으로 특정 세트 내 k개의 변환 커널들 중 하나를 선택할 수 있다. 예를 들어, lfnst 인덱스 값 0은 첫번째 비분리 2차 변환 커널을 가리킬 수 있고, lfnst 인덱스 값 1은 두번째 비분리 2차 변환 커널을 가리킬 수 있으며, lfnst 인덱스 값 2는 세번째 비분리 2차 변환 커널을 가리킬 수 있다. 또는 lfnst 인덱스 값 0은 대상 블록에 대하여 첫번째 비분리 2차 변환이 적용되지 않음을 가리킬 수 있고, lfnst 인덱스 값 1 내지 3은 상기 3개의 변환 커널들을 가리킬 수 있다.
변환부는 선택된 변환 커널들을 기반으로 상기 비분리 2차 변환을 수행하고 수정된(2차) 변환 계수들을 획득할 수 있다. 상기 수정된 변환 계수들은 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화/역변환부로 전달될 수 있다.
한편, 상술한 바와 같이 2차 변환이 생략되는 경우 상기 1차 (분리) 변환의 출력인 (1차) 변환 계수들이 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화/역변환부로 전달될 수 있다.
역변환부는 상술한 변환부에서 수행된 절차의 역순으로 일련의 절차를 수행할 수 있다. 역변환부는 (역양자화된) 변환 계수들을 수신하여, 2차 (역)변환을 수행하여 (1차) 변환 계수들을 도출하고(S350), 상기 (1차) 변환 계수들에 대하여 1차 (역)변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다(S360). 여기서 상기 1차 변환 계수들은 역변환부 입장에서 수정된(modified) 변환 계수들로 불릴 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
한편, 디코딩 장치는 2차 역변환 적용 여부 결정부(또는 이차 역변환의 적용 여부를 결정하는 요소)와, 2차 역변환 결정부(또는 이차 역변환을 결정하는 요소)를 더 포함할 수 있다. 2차 역변환 적용 여부 결정부는 2차 역변환의 적용 여부를 결정할 수 있다. 예를 들어, 2차 역변환은 NSST, RST 또는 LFNST 일 수 있고, 2차 역변환 적용 여부 결정부는 비트스트림으로부터 파싱한 이차 변환 플래그에 기초하여 2차 역변환의 적용 여부를 결정할 수 있다. 다른 일 예로, 2차 역변환 적용 여부 결정부는 레지듀얼 블록의 변환 계수에 기초하여 2차 역변환의 적용 여부를 결정할 수도 있다.
이차 역변환 결정부는 2차 역변환을 결정할 수 있다. 이때, 2차 역변환 결정부는 인트라 예측 모드에 따라 지정된 LFNST(NSST 또는 RST) 변환 세트에 기초하여 현재 블록에 적용되는 이차 역변환을 결정할 수 있다. 또한, 일 실시예로서, 1차 변환 결정 방법에 의존적으로(depend on) 이차 변환 결정 방법이 결정될 수 있다. 인트라 예측 모드에 따라 일차 변환과 이차 변환의 다양한 여러 조합이 결정될 수 있다. 또한, 일 예로, 이차 역변환 결정부는 현재 블록의 크기에 기초하여 이차 역변환이 적용되는 영역을 결정할 수도 있다.
한편, 상술한 바와 같이 2차 (역)변환이 생략되는 경우 (역양자화된) 변환 계수들을 수신하여 상기 1차 (분리) 역변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
한편, 본 문서에서는 비분리 2차 변환에 수반되는 계산량과 메모리 요구량의 저감을 위하여 NSST의 개념에서 변환 매트릭스(커널)의 크기가 감소된 RST(reduced secondary transform)을 적용할 수 있다.
한편, 본 문서에서 설명된 변환 커널, 변환 매트릭스, 변환 커널 매트릭스를 구성하는 계수, 즉 커널 계수 또는 매트릭스 계수는 8비트로 표현될 수 있다. 이는 디코딩 장치 및 인코딩 장치에서 구현되기 위한 하나의 조건일 수 있으며, 기존의 9비트 또는 10비트와 비교하여 합리적으로 수용할 수 있는 성능 저하를 수반하면서 변환 커널을 저장하기 위한 메모리 요구량을 줄일 수 있다. 또한, 커널 매트릭스를 8비트로 표현함으로써 작은 곱셈기를 사용할 수 있고, 최적의 소프트웨어 구현을 위하여 사용되는 SIMD(Single Instruction Multiple Data) 명령에 보다 적합할 수 있다.
본 명세서에서 RST는 간소화 팩터(factor)에 따라 크기가 감소된 변환 매트릭스(transform matrix)를 기반으로 대상 블록에 대한 레지듀얼 샘플들에 대하여 수행되는 변환을 의미할 수 있다. 간소화 변환을 수행하는 경우, 변환 매트릭스의 크기 감소로 인해 변환 시 요구되는 연산량이 감소될 수 있다. 즉, RST은 크기가 큰 블록의 변환 또는 비분리 변환 시 발생하는 연산 복잡도(complexity) 이슈를 해소하기 위해 이용될 수 있다.
RST는 감소된 변환, 감소 변환, reduced transform, reduced secondary transform, reduction transform, simplified transform, simple transform 등 다양한 용어로 지칭될 수 있으며, RST이 지칭될 수 있는 명칭은 나열된 예시들에 한정되지 않는다. 또는 RST는 주로 변환 블록에서 0이 아닌 계수를 포함하는 저주파 영역에서 이루어지므로 LFNST(Low-Frequency Non-Separable Transform)로 지칭될 수도 있다. 상기 변환 인덱스는 LFNST 인덱스로 명명될 수 있다.
한편, 2차 역변환이 RST를 기반으로 이루어지는 경우, 인코딩 장치(100)의 역변환부(135)와 디코딩 장치(200)의 역변환부(222)는 변환 계수들에 대한 역 RST을 기반으로 수정된 변환 계수들을 도출하는 역 RST부와, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 역 1차변환부를 포함할 수 있다. 역 1차변환은 레지듀얼에 적용되었던 1차 변환의 역변환을 의미한다. 본 문서에서 변환을 기반으로 변환 계수를 도출하는 것은 해당 변환을 적용하여 변환 계수를 도출하는 것을 의미할 수 있다.
도 5는 본 문서의 일 실시예에 따른 RST를 설명하기 위한 도면이다.
본 명세서에서 “대상 블록”은 코딩이 수행되는 현재 블록 또는 레지듀얼 블록 또는 변환 블록을 의미할 수 있다.
일 실시예에 따른 RST에서, N차원 벡터(N dimensional vector)가 다른 공간에 위치한 R차원 벡터(R dimensional vector)에 매핑되어 감소된 변환 매트릭스가 결정될 수 있으며, 여기서 R은 N보다 작다. N은 변환이 적용되는 블록의 한 변의 길이(length)의 제곱 또는 변환이 적용되는 블록과 대응되는 변환 계수들의 총 개수를 의미할 수 있고, 간소화 팩터는 R/N값을 의미할 수 있다. 간소화 팩터는 감소된 팩터, 감소 팩터, reduced factor, reduction factor, simplified factor, simple factor 등 다양한 용어로 지칭될 수 있다. 한편, R은 간소화 계수(reduced coefficient)로 지칭될 수 있으나, 경우에 따라서는 간소화 팩터가 R을 의미할 수도 있다. 또한, 경우에 따라서 간소화 팩터는 N/R값을 의미할 수도 있다.
일 실시예에서, 간소화 팩터 또는 간소화 계수는 비트스트림을 통하여 시그널링될 수 있으나, 실시예가 이에 한정되는 것은 아니다. 예를 들어, 간소화 팩터 또는 간소화 계수에 대한 기 정의된 값이 각 인코딩 장치(100) 및 디코딩 장치(200)에 저장되어 있을 수 있으며, 이 경우 간소화 팩터 또는 간소화 계수는 별도로 시그널링되지 않을 수 있다.
일 실시예에 따른 간소화 변환 매트릭스의 사이즈는 통상의 변환 매트릭스의 사이즈 NxN보다 작은 RxN이며, 아래의 수학식 4와 같이 정의될 수 있다.
Figure pct00011
도 5의 (a)에 도시된 Reduced Transform 블록 내의 매트릭스 T는 수학식 4의 매트릭스 TRxN를 의미할 수 있다. 도 5의 (a)와 같이 대상 블록에 대한 레지듀얼 샘플들에 대하여 간소화 변환 매트릭스 TRxN가 곱해지는 경우, 대상 블록에 대한 변환 계수들이 도출될 수 있다.
일 실시예에서, 변환이 적용되는 블록의 사이즈가 8x8이고, R=16 (즉, R/N=16/64=1/4이다)인 경우, 도 5의 (a)에 따른 RST는 아래의 수학식 5와 같은 행렬 연산으로 표현될 수 있다. 이 경우, 메모리와 곱하기 연산이 간소화 팩터에 의하여 대략 1/4로 감소할 수 있다.
본 문서에서 행렬 연산이란, 행렬을 열 벡터의 왼쪽에 두고 행렬과 열 벡터를 곱하여 열 벡터를 얻는 연산으로 이해될 수 있다.
Figure pct00012
수학식 5에서 r1 내지 r64는 대상 블록에 대한 레지듀얼 샘플들을 나타낼 수 있고, 보다 구체적으로, 일차 변환을 적용하여 생성된 변환 계수일 수 있다. 수학식 5의 연산 결과 대상 블록에 대한 변환 계수들 ci가 도출될 수 있으며, ci의 도출 과정은 수학식 6과 같을 수 있다.
Figure pct00013
수학식 6의 연산 결과, 대상 블록에 대한 변환 계수들 c1 내지 cR이 도출될 수 있다. 즉, R=16인 경우, 대상 블록에 대한 변환 계수들 c1 내지 c16이 도출될 수 있다. 만약 RST가 아니라 통상의(regular) 변환이 적용되어 사이즈가 64x64(NxN)인 변환 매트릭스가 사이즈가 64x1(Nx1)인 레지듀얼 샘플들에 곱해졌다면 대상 블록에 대한 변환 계수들이 64개(N개)가 도출되었겠지만, RST가 적용되었기 때문에 대상 블록에 대한 변환 계수들이 16개(R개)만 도출되는 것이다. 대상 블록에 대한 변환 계수들의 총 개수가 N개에서 R개로 감소하여 인코딩 장치(100)가 디코딩 장치(200)로 전송하는 데이터의 양이 감소하므로 인코딩 장치(100)-디코딩 장치(200) 간 전송 효율이 증가할 수 있다.
변환 매트릭스의 사이즈 관점에서 검토하면, 통상의 변환 매트릭스의 사이즈는 64x64(NxN)인데 간소화 변환 매트릭스의 사이즈는 16x64(RxN)로 감소하므로, 통상의 변환을 수행할 때와 비교하면 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 변환 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 간소화 변환 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(RxN)시킬 수 있다.
일 실시예에서, 인코딩 장치(100)의 변환부(132)는 대상 블록에 대한 레지듀얼 샘플들을 1차 변환 및 RST 기반의 2차 변환을 수행함으로써 대상 블록에 대한 변환 계수들을 도출할 수 있다. 이러한 변환 계수들은 디코딩 장치(200)의 역변환부로 전달될 수 있으며, 디코딩 장치(200)의 역변환부(222)는 변환 계수들에 대한 역 RST(reduced secondary transform)을 기반으로 수정된 변환 계수들을 도출하고, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 대상 블록에 대한 레지듀얼 샘플들을 도출할 수 있다.
일 실시예에 따른 역 RST 매트릭스 TNxR의 사이즈는 통상의 역변환 매트릭스의 사이즈 NxN보다 작은 NxR이며, 수학식 4에 도시된 간소화 변환 매트릭스 TRxN과 트랜스포즈(transpose) 관계에 있다.
도 5 (b)에 도시된 Reduced Inv. Transform 블록 내의 매트릭스 Tt는 역 RST 매트릭스 TRxN T을 의미할 수 있다(위첨자 T는 트랜스포즈를 의미한다). 도 5의 (b)와 같이 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxN T가 곱해지는 경우, 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들이 도출될 수 있다. 역 RST 매트릭스 TRxN T는 (TRxN)T NxR로 표현할 수도 있다.
보다 구체적으로, 2차 역변환으로 역 RST가 적용되는 경우에는, 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxN T가 곱해지면 대상 블록에 대한 수정된 변환 계수들이 도출될 수 있다. 한편, 역 1차변환으로 역 RST가 적용될 수 있고, 이 경우 대상 블록에 대한 변환 계수들에 대하여 역 RST 매트릭스 TRxNT가 곱해지면 대상 블록에 대한 레지듀얼 샘플들이 도출될 수 있다.
일 실시예에서, 역변환이 적용되는 블록의 사이즈가 8x8이고, R=16(즉, R/N=16/64=1/4인 경우)인 경우, 도 5의 (b)에 따른 RST는 아래의 수학식 7과 같은 행렬 연산으로 표현될 수 있다.
Figure pct00014
수학식 7에서 c1 내지 c16은 대상 블록에 대한 변환 계수들을 나타낼 수 있다. 수학식 7의 연산 결과 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들을 나타내는 ri가 도출될 수 있으며, ri의 도출 과정은 수학식 8과 같을 수 있다.
Figure pct00015
수학식 8의 연산 결과, 대상 블록에 대한 수정된 변환 계수들 또는 대상 블록에 대한 레지듀얼 샘플들을 나타내는 r1 내지 rN이 도출될 수 있다. 역변환 매트릭스의 사이즈 관점에서 검토하면, 통상의 역변환 매트릭스의 사이즈는 64x64(NxN)인데 간소화 역변환 매트릭스의 사이즈는 64x16(NxR)으로 감소하므로, 통상의 역변환을 수행할 때와 비교하면 역 RST를 수행할 시 메모리 사용을 R/N 비율로 감소시킬 수 있다. 또한, 통상의 역변환 매트릭스를 이용할 때의 곱셈 연산 수 NxN과 비교하면, 간소화 역변환 매트릭스를 이용하면 곱셈 연산 수를 R/N 비율로 감소(NxR)시킬 수 있다.
한편, 8x8 RST에 대해서도, 표 2와 같은 변환 세트 구성을 적용할 수 있다. 즉, 표 2에서의 변환 세트에 따라 해당 8x8 RST가 적용될 수 있다. 하나의 변환 세트는 화면 내 예측 모드에 따라 2개 또는 3개의 변환 (커널)들로 구성되어 있으므로 2차 변환을 적용하지 않는 경우까지 포함하여 최대 네 개의 변환 중 하나를 선택하도록 구성될 수 있다. 2차 변환을 적용하지 않을 때의 변환은 항등 행렬이 적용된 것이 라고 간주될 수 있다. 네 개의 변환에 대해 각기 0, 1, 2, 3의 인덱스를 부여한다고 했을 때(예를 들어, 0번 인덱스를 항등 행렬, 즉 2차 변환을 적용하지 않는 경우로 할당할 수 있음), 변환 인덱스 또는 lfnst 인덱스라는 신택스 요소(syntax element)를 변환 계수 블록마다 시그널링하여 적용될 변환을 지정할 수 있다. 즉, 변환 인덱스를 통해 8x8 좌상단 블록에 대해서, RST 구성에서는 8x8 RST를 지정할 수 있고, 또는 LFNST가 적용되는 경우 8x8 lfnst를 지정할 수 있다. 8x8 lfnst 및 8x8 RST는 변환의 대상이 되는 대상 블록의 W와 H가 모두 8보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 8x8 영역에 적용될 수 있는 변환을 가리키며 해당 8x8 영역은 해당 변환 계수 블록 내부의 좌상단 8x8 영역일 수 있다. 유사하게, 4x4 lfnst 및 4x4 RST는 대상 블록의 W와 H가 모두 4보다 같거나 클 때 해당 변환 계수 블록 내부에 포함된 4x4 영역에 적용될 수 있는 변환을 가리키며 해당 4x4 영역은 해당 변환 계수 블록 내부의 좌상단 4x4 영역일 수 있다.
한편, 본 문서의 일 실시예에 따라, 인코딩 과정의 변환에서, 8 x 8 영역을 구성하는 64개의 데이터에 대해 16 x 64 변환 커널 매트릭스가 아닌, 48개의 데이터만을 선택하여 최대 16 x 48 변환 커널 매트릭스를 적용할 수 있다. 여기서, “최대”라는 것은 m 개의 계수를 생성할 수 있는 m x 48 변환 커널 매트릭스에 대해 m의 최대 값이 16이라는 것을 의미한다. 즉, 8 x 8 영역에 m x 48 변환 커널 매트릭스(m ≤ 16)를 적용하여 RST를 수행할 경우, 48개의 데이터를 입력 받아서 m개의 계수를 생성해 낼 수 있다. m이 16인 경우, 48개의 데이터를 입력 받아서 16개의 계수를 생성한다. 즉, 48개의 데이터가 48 x 1 벡터를 이룬다고 했을 때, 16 x 48 행렬과 48 x 1 벡터를 순서대로 곱하여 16 x 1 벡터가 생성될 수 있다. 이 때, 8 x 8 영역을 이루는 48개의 데이터를 적절히 배열하여 48 x 1 벡터를 구성할 수 있다. 예를 들어, 8 x 8 영역 중 우하단 4 x 4 영역을 제외한 영역을 구성하는 48 개의 데이터에 기초하여 48 x 1 벡터를 구성할 수 있다. 이때, 최대 16 x 48 변환 커널 매트릭스를 적용하여 행렬 연산을 수행하면 16개의 수정된 변환 계수가 생성되는데, 16개의 수정된 변환 계수는 스캐닝 순서에 따라 좌상단 4 x 4 영역에 배치될 수 있고, 우상단 4 x 4 영역과 좌하단 4 x 4 영역은 0으로 채워질 수 있다.
디코딩 과정의 역변환에는 상기 서술된 변환 커널 매트릭스의 트랜스포즈된 매트릭스가 사용될 수 있다. 즉, 디코딩 장치에서 수행되는 역변환 과정으로 역 RST 또는 LFNST가 수행되는 경우, 역 RST를 적용할 입력 계수 데이터는 소정의 배열 순서에 따라 1차원 벡터로 구성되고, 1차원 벡터에 해당 역 RST 행렬을 왼쪽에서 곱하여 얻어진 수정된 계수 벡터를 소정의 배열 순서에 따라 2차원 블록에 배열될 수 있다.
정리하면, 변환 과정에서, 8x8 영역에 RST 또는 LFNST가 적용되는 경우, 8x8 영역의 변환 계수들 중 8x8 영역의 우하단 영역을 제외한 좌상단, 우상단, 좌하단 영역의 48개 변환 계수들과 16x48의 변환 커널 매트릭스와의 행렬 연산이 수행된다. 행렬 연산을 위하여 48개의 변환 계수들은 1차원 배열로 입력된다. 이러한 행렬 연산이 수행되면 16개의 수정된 변환 계수들이 도출되고, 수정된 변환 계수들은 8x8 영역의 좌상단 영역에 배열될 수 있다.
역으로, 역 변환 과정에서, 8x8 영역에 역 RST 또는 LFNST가 적용되는 경우, 8x8 영역의 변환 계수들 중 8x8 영역의 좌상단에 대응하는 16개의 변환 계수들은 스캐닝 순서에 따라 1차원 배열 형태로 입력되어 48 x 16의 변환 커널 매트릭스와 행렬 연산될 수 있다. 즉, 이러한 경우의 행렬 연산은 (48 x 16 행렬) * (16x1 변환 계수 벡터) = (48 x 1 수정된 변환계수벡터)로 나타낼 수 있다. 여기서 nx1 벡터는 nx1 행렬과 같은 의미로 해석될 수 있으므로, nx1 열 벡터로 표기될 수도 있다. 또한, *은 행렬 곱셈 연산을 의미한다. 이러한 행렬 연산이 수행되면, 48개의 수정된 변환 계수가 도출될 수 있고, 48개의 수정된 변환 계수들은 8x8 영역의 우하단 영역을 제외한 좌상단, 우상단, 좌하단 영역에 배열될 수 있다.
한편, 2차 역변환이 RST를 기반으로 이루어지는 경우, 인코딩 장치(100)의 역변환부(135)와 디코딩 장치(200)의 역변환부(222)는 변환 계수들에 대한 역 RST을 기반으로 수정된 변환 계수들을 도출하는 역 RST부와, 수정된 변환 계수들에 대한 역 1차변환을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 역 1차변환부를 포함할 수 있다. 역 1차변환은 레지듀얼에 적용되었던 1차 변환의 역변환을 의미한다. 본 문서에서 변환을 기반으로 변환 계수를 도출하는 것은 해당 변환을 적용하여 변환 계수를 도출하는 것을 의미할 수 있다.
상술된 비분리 변환, LFNST에 대하여 구체적으로 살펴 보면 다음과 같다. LFNST는 인코딩 장치에에 의한 순방향(forward) 변환과 디코딩 장치에 의한 역방향(inverse) 변환을 포함할 수 있다.
인코딩 장치는 순방향 1차 변환(primary (core) transform)을 적용한 후 도출된 결과(또는 결과의 일부)를 입력으로 하여, 순방향 2차 변환(secondary transform)을 적용한다.
Figure pct00016
상기 수학식 9에서, x와 y는 각각 2차 변환의 입력과 출력이고, G는 2차 변환을 나타내는 행렬로써 변환 기저 벡터(transform basis vector)들은 열 벡터들로 구성된다. 역방향 LFNST의 경우, 변환 행렬 G의 차원(dimension)을 [ row수 x column수 ]로 표기했을 때, 순방향 LFNST의 경우 행렬 G의 트랜스포스를 취한 것이 GT의 차원이 된다.
역방향 LFNST의 경우 행렬 G의 차원은 [ 48 x 16 ], [ 48 x 8 ], [ 16 x 16 ], [16 x 8 ]이 되며, [48 x 8] 행렬과 [16 x 8 ] 행렬은 각각 [ 48 x 16 ] 행렬과 [ 16 x 16 ] 행렬의 왼쪽부터 8개의 변환 기저 벡터들을 샘플링한 부분 행렬이다.
반면, 순방향 LFNST의 경우 행렬 GT의 차원은 [ 16 x 48 ], [ 8 x 48 ], [ 16 x 16 ], [ 8 x 16 ]이 되며, [ 8 x 48] 행렬과 [ 8 x 16 ] 행렬은 각각 [16 x 48 ] 행렬과 [ 16 x 16 ] 행렬의 위쪽부터 8개의 변환 기저 벡터들을 샘플링한 부분 행렬이다.
따라서, 순방향 LFNST의 경우 입력 x로는 [ 48 x 1 ] 벡터 또는 [ 16 x 1 ] 벡터가 가능하며 출력 y로는 [ 16 x 1 ] 벡터 또는 [ 8 x 1 ] 벡터가 가능하다. 비디오 코딩 및 디코딩에서 순방향 1차 변환의 출력은 이차원(2D) 데이터이므로 입력 x로서 [ 48 x 1 ] 벡터 또는 [ 16 x 1 ] 벡터를 구성하기 위하여 순방향 변환의 출력인 2D 데이터를 적절히 배열하여 1차원 벡터를 구성해야 한다.
도 6은 일 예에 따라 순방향 1차 변환의 출력 데이터를 1차원 벡터로 배열하는 순서를 도시한 도면이다. 도 6의 (a) 및 (b)의 왼쪽 도면은 [ 48 x 1 ] 벡터를 만들기 위한 순서를 나타내고, 도 6의 (a) 및 (b)의 오른쪽 도면은 [ 16 x 1 ] 벡터를 만들기 위한 순서를 나타낸다. LFNST의 경우 도 6의 (a) 및 (b)와 같은 순서로 2D 데이터를 순차적으로 배열하여 일차원 벡터 x를 얻을 수 있다.
이러한 순방향 1차 변환의 출력 데이터의 배열 방향은 현재 블록의 인트라 예측 모드에 따라 결정될 수 있다. 예를 들어, 현재 블록의 인트라 예측 모드가 대각선 방향을 기준으로 수평 방향이면 순방향 1차 변환의 출력 데이터들은 도 6의 (a)의 순서로 배열 될 수 있고, 현재 블록의 인트라 예측 모드가 대각선 방향을 기준으로 수직 방향이면 순방향 1차 변환의 출력 데이터들은 도 6의 (b)의 순서로 배열 될 수 있다.
일 예에 따라, 도 6의 (a) 및 (b)의 배열 순서(ordering)와 다른 배열 순서를 적용할 수 있으며, 도 6의 (a) 및 (b)의 배열 순서를 적용하였을 때와 동일한 결과(y 벡터)를 도출하려면 행렬 G의 열 벡터들을 해당 배열 순서에 맞춰서 재배열하면 된다. 즉, x 벡터를 구성하는 각 요소에 대해 항상 동일한 변환 기저 벡터와 곱해지도록 G의 열 벡터들을 재배치할 수 있다.
수학식 9를 통해 도출되는 출력 y는 일차원 벡터이므로, 만약 순방향 2차 변환의 결과를 입력으로 하여 처리하는 구성, 예를 들어 양자화 또는 레지듀얼 코딩을 수행하는 구성들이 입력 데이터로 2차원 데이터가 필요하면 수학식 9의 출력 y 벡터는 다시 2D 데이터로 적절히 배치되어야 한다.
도 7은 일 예에 따라 순방향 2차 변환의 출력 데이터를 2차원 블록으로 배열하는 순서를 도시한 도면이다.
LFNST의 경우 정해진 스캔 순서에 따라 2D 블록에 배치될 수 있다. 도 7의 (a)는 출력 y가 [ 16 x 1 ] 벡터일 경우 2차원 블록의 16개의 위치에 대각 스캔(diagonal scan) 순서에 따라 출력 값이 배치되는 것을 나타낸다. 도 7의 (b)는 출력 y가 [ 8 x 1 ] 벡터일 경우 2차원 블록의 8개의 위치에 대각 스캔 순서에 따라 출력 값이 배치되고 나머지 8개의 위치에는 0으로 채워지는 것을 나타낸다. 도 7의 (b)의 X 는 0으로 채워진 것을 나타낸다.
다른 예에 따라, 양자화 또는 레지듀얼 코딩을 수행하는 구성에 의하여 출력 벡터 y가 처리되는 순서는 기설정된 순서에 따라 수행될 수 있기 때문에 도 7과 같이 출력 벡터 y가 2D 블록에 배치되지 않을 수 있다. 다만, 레지듀얼 코딩의 경우 CG(Coefficient Group)과 같은 2D 블록(예를 들어, 4x4) 단위로 데이터 코딩이 수행될 수 있고, 이 경우 도 7의 대각 스캔 순서와 같이 특정 순서에 따라 데이터가 배열될 수 있다.
한편, 디코딩 장치는 역방향 변환을 위하여 역양자화 과정 등을 통해 출력된 2차원 데이터를 기설정된 스캔 순서에 따라 나열하여 1차원 입력 벡터인 y를 구성할 수 있다. 입력 벡터 y는 하기 수학식에 의해 입력 벡터 x로 출력될 수 있다.
Figure pct00017
역방향 LFNST의 경우 [ 16 x 1 ] 벡터 또는 [ 8 x 1 ] 벡터인 입력 벡터 y에 G 행렬을 곱함으로써, 출력 벡터 x를 도출할 수 있다. 역방향 LFNST의 경우 출력 벡터 x는 [ 48 x 1 ] 벡터 또는 [ 16 x 1 ] 벡터일 수 있다.
출력 벡터 x는 도 6에 도시된 순서에 따라 2차원 블록에 배치되어 2차원 데이터로 배열되고, 이러한 2차원 데이터는 역방향 1차 변환의 입력 데이터(또는 입력 데이터의 일부)가 된다.
따라서, 역방향 2차 변환은 전체적으로 순방향 2차 변환 과정과 반대이며, 역변환의 경우, 순방향에서와 달리 역방향 2차 변환을 먼저 적용한 후 역방향 1차 변환을 적용하게 된다.
역방향 LFNST에서는 변환 행렬 G로서 [ 48 x 16 ] 행렬 8개와 [ 16 x 16 ] 행렬 8개 중 하나가 선택될 수 있다. [ 48 x 16 ] 행렬과 [ 16 x 16 ] 행렬 중 어떤 행렬을 적용할지 여부는 블록의 크기와 모양에 따라 결정된다.
또한 8개의 행렬은 상술된 표 2와 같이 4개의 변환 세트로부터 도출될 수 있고, 각 변환 세트는 2개의 행렬로 구성될 수 있다. 4개의 변환 세트 중에서 어떤 변환 세트를 사용할지는 인트라 예측 모드에 따라 결정되며, 보다 구체적으로 광각 인트라 예측 모드(Wide Angle Intra Prediction, WAIP)까지 고려하여 확장된 인트라 예측 모드 값을 기반으로 변환 세트가 결정된다. 선택된 변환 세트를 구성하는 2개의 행렬 중에서 어떤 행렬을 선택할지는 인덱스 시그널링(index signaling)을 통해 도출된다. 보다 구체적으로, 전송되는 인덱스 값으로는 0, 1, 2가 가능하며, 0은 LFNST를 적용하지 않는 것을 지시하고, 1과 2는 인트라 예측 모드 값을 기반으로 선택된 변환 세트를 구성하는 2개의 변환 행렬 중 어느 하나를 지시할 수 있다.
한편, 상술된 바와 같이, [ 48 x 16 ] 행렬과 [ 16 x 16 ] 행렬 중 어떤 변환 행렬을 LFNST에 적용할지여부는 변환 대상 블록의 크기와 모양에 의해 결정된다.
도 8은 LFNST가 적용되는 블록 모양을 도시한 도면이다. 도 8의 (a)는 4 x 4 블록을, (b)는 4 x 8 및 8 x 4 블록을, (c)는 N이 16이상인 4 x N 또는 N x 4 블록을, (d)는 8 x 8 블록을, (e)는 M ≥8, N ≥8 이고, N 〉8 또는 M 〉8인 M x N 블록을 나타내고 있다.
도 8에서 굵은 테두리를 가진 블록들이 LFNST가 적용되는 영역을 가리킨다. 도 8의 (a) 및 (b)의 블록에 대해서는 좌상단(top-left) 4x4 영역에 대해 LFNST가 적용되며, 도 8의 (c)의 블록에 대해서는 연속되어 배치된 2개의 좌상단 4x4 영역에 대해 각각 LFNST가 적용된다. 도 8의 (a), (b), (c)에서는 4x4 영역 단위로 LFNST가 적용되므로 이러한 LFNST를 이하 “4x4 LFNST”로 명명하기로 하며, 해당 변환 행렬로는 수학식 9 및 수학식 10의 G에 대한 행렬 차원을 기준 [ 16 x 16 ] 또는 [ 16 x 8 ] 행렬이 적용될 수 있다.
보다 구체적으로, 도 8의 (a)의 4x4 블록(4x4 TU 또는 4x4 CU)에 대해서는 [ 16 x 8 ] 행렬이 적용되고, 도 8의 (b) 및 (c)에서의 블록에 대해서는 [ 16 x 16 ] 행렬이 적용된다. 이는 최악의 경우(worst case)에 대한 계산 복잡도를 샘플 당 8 곱셈(8 multiplications per sample)로 맞추기 위해서이다.
도 8의 (d) 및 (e)에 대해서는 좌상단 8x8 영역에 대해 LFNST가 적용되며, 이러한 LFNST를 이하 “8x8 LFNST”로 명명하기로 한다. 해당 변환 행렬로는 [ 48 x 16 ] 또는 [ 48 x 8 ] 행렬이 적용될 수 있다. 순방향 LFNST의 경우 입력 데이터로 [ 48 x 1 ] 벡터(수학식 9의 x 벡터)가 입력되므로, 좌상단 8x8 영역의 모든 샘플값들이 순방향 LFNST의 입력값으로 사용되지 않는다. 즉, 도 6의 (a)의 왼편 순서 또는 도 6의 (b)의 왼편 순서에서 볼 수 있듯이, 우하단(bottom-right)의 4x4 블록은 그대로 두고 나머지 3개의 4x4 블록들에 속한 샘플들에 기초하여[ 48 x 1 ] 벡터를 구성할 수 있다.
도 8의 (d)에서의 8x8 블록(8x8 TU 또는 8x8 CU)에 [ 48 x 8 ] 행렬이 적용되고, 도 8의 (e)에서의 8x8 블록에 [ 48 x 16 ] 행렬이 적용될 수 있다. 이 역시 최악의 경우(worst case)에 대한 계산 복잡도를 샘플 당 8 곱셈(8 multiplications per sample)로 맞추기 위함이다.
블록 모양에 따라 이에 대응하는 순방향 LFNST(4x4 LFNST 또는 8x8 LFNST)가 적용되면 8개 또는 16개의 출력 데이터(수학식 9에서의 y 벡터, [ 8 x 1 ] 또는 [ 16 x 1 ] 벡터)가 생성되며, 순방향 LFNST에서는 행렬 GT의 특성상 출력 데이터의 수가 입력 데이터의 수보다 같거나 적게 된다.
도 9는 일 예에 따라 순방향 LFNST의 출력 데이터의 배치를 도시한 도면으로, 블록 모양에 따라 순방향 LFNST의 출력 데이터가 배치되는 블록을 나타내고 있다.
도 9에 도시된 블록의 좌상단에 음영으로 처리된 영역이 순방향 LFNST의 출력 데이터가 위치하는 영역에 해당하며, 0으로 표기된 위치는 0 값으로 채워지는 샘플들을 나타내며, 나머지 영역은 순방향 LFNST에 의해 변경되지 않는 영역을 나타낸다. LFNST에 의해 변경되지 않는 영역에는 순방향 1차 변환의 출력 데이터가 변경되지 않고 그대로 존재한다.
상술된 바와 같이, 블록 모양에 따라 적용되는 변환 행렬의 차원이 달라지므로 출력 데이터의 수도 달라진다. 도 9와 같이, 순방향 LFNST의 출력 데이터가 좌상단 4x4 블록을 다 채우지 못할 수도 있다. 도 9의 (a) 및 (d)의 경우 굵은 선으로 표시된 블록 또는 블록 내부의 일부 영역에는 각각 [ 16 x 8 ] 행렬과 [ 48 x 8 ] 행렬이 적용되어 순방향 LFNST의 출력으로 [ 8 x 1 ] 벡터가 생성된다. 즉, 도 7의 (b)에 도시된 스캔 순서에 따라 8개의 출력 데이터만 도 9의 (a) 및 (d)와 같이 채워지고, 나머지 8개의 위치에 대해서는 0이 채워질 수 있다. 도 8의 (d)의 LFNST 적용 블록의 경우, 도 9의 (d)와 같이 좌상단 4x4 블록에 인접한 우상단 및 좌하단 두 개의 4x4 블록도 0 값으로 채워진다.
상기와 같이, 기본적으로 LFNST 인덱스를 시그널링하여 LFNST 적용 여부 및 적용할 변환 행렬을 지정하게 된다. 도 9에 도시된 바와 같이, LFNST가 적용될 경우 순방향 LFNST의 출력 데이터 수가 입력 데이터 수보다 같거나 적을 수 있기 때문에 0 값으로 채워지는 영역이 다음과 같이 발생한다.
1) 도 9의 (a)와 같이 좌상단 4x4 블록 내에 스캔 순서상 8번째 이후의 위치들, 즉 9번째부터 16번째까지 샘플
2) 도 9의 (d) 및 (e)와 같이, [ 16 x 48 ] 행렬 또는 [ 8 x 48 ] 행렬이 적용되어 좌상단 4x4 블록에 인접한 두 개의 4x4 블록들 또는 스캔 순서상 두 번째와 세 번째 4x4 블록들
따라서, 상기 1)과 2)의 영역을 체크하여 0이 아닌(non-zero) 데이터가 존재하게 되면 LFNST가 적용되지 않은 것이 확실하므로, 해당 LFNST 인덱스의 시그널링을 생략할 수 있게 된다.
일 예에 따라, 예컨대 VVC 표준에 채택된 LFNST의 경우 LFNST 인덱스의 시그널링은 레지듀얼 코딩 이후에 수행되므로, 인코딩 장치는 레지듀얼 코딩을 통해 TU 또는 CU 블록 내부의 모든 위치에 대한 0이 아닌 데이터(유효 계수)의 존재 여부를 알 수 있게 된다. 따라서, 인코딩 장치는 0이 아닌 데이터 존재 여부를 통해 LFNST 인덱스에 대한 시그널링을 수행할지 여부를 판단할 수 있고, 디코딩 장치는 LFNST 인덱스의 파싱 여부를 판단할 수 있다. 만약 상기 1)과 2)에서 지정된 영역에 0이 아닌 데이터가 존재하지 않는 경우 LFNST 인덱스의 시그널링을 수행하게 된다.
LFNST 인덱스에 대한 이진화 방법으로 트런케이티드 유너리 코드(runcated unary code)를 적용하므로 LFNST 인덱스는 최대 2개의 빈으로 구성되며, 가능한 LFNST 인덱스 값인 0, 1, 2에 대한 이진화 코드(binary code)로는 각기 0, 10, 11이 할당된다. 현재 VVC에 채택된 LFNST의 경우 첫 번째 빈에 대해서는 컨텍스트 기반 CABAC 코딩이 적용되며(regular coding), 두 번째 빈에 대해서는 바이 패스 코딩(bypass coding)이 적용된다. 첫 번째 빈에 대한 총 컨텍스트 수는 2개이며, 수평 방향과 수직 방향에 대한 1차 변환 페어(primary transform pair)로서 (DCT-2, DCT-2)가 적용되고, 루마 성분과 크로마 성분이 듀얼 트리 타입으로 코딩되는 경우 하나의 컨텍스트가 할당되고, 나머지 경우들에 대하여 다른 하나의 컨텍스트가 적용된다. 이와 같은 LFNST 인덱스의 코딩을 표로 나타내면 다음과 같다.
Figure pct00018
한편, 채택된 LFNST에 대해서, 다음과 같은 단순화 방법들이 적용될 수 있다.
(i) 일 예에 따라, 순방향 LFNST에 대한 출력 데이터 수를 최대 16개로 한정할 수 있다.
도 8의 (c)의 경우, 좌상단에 인접한 2개의 4x4 영역에 각각 4x4 LFNST가 적용될 수 있고, 이 때 최대 32개의 LFNST 출력 데이터가 생성될 수 있다. 만약 순방향 LFNST에 대한 출력 데이터 수를 최대 16로 한정하면, 4xN/Nx4 (N≥16) 블록(TU 또는 CU)에 대해서도 좌상단에 존재하는 1개의 4x4 영역에 대해서만 4x4 LFNST를 적용하고, 도 8의 모든 블록들에 대해 LFNST를 한 번만 적용할 수 있다. 이를 통해 영상 코딩에 대한 구현이 단순해질 수 있다.
도 10은 일 예에 따라 순방향 LFNST에 대한 출력 데이터 수를 최대 16개로 한정한 것을 나타낸다. 도 10과 같이 N이 16이상인 4 x N 또는 N x 4 블록에서 최좌상단 4x4 영역에 대해 LFNST가 적용되면, 순방향 LFNST의 출력 데이터는 16개가 된다.
(ii) 일 예에 따라, LFNST가 적용되지 않는 영역에 대하여 추가적으로 제로 아웃(zero-out)을 적용할 수 있다. 본 문서에서 제로 아웃은 특정 영역에 속한 모든 위치들의 값을 0 값으로 채우는 것을 의미할 수 있다. 즉, LFNST로 인해 변경되지 않고 순방향 1차 변환의 결과를 유지하고 있는 영역에 대해서도 제로 아웃을 적용할 수 있다. 상술하였듯이 LFNST는 4x4 LFNST와 8x8 LFNST로 구분되므로, 다음과 같이 두 종류((ii)-(A) 및 (ii)-(B))로 제로 아웃을 구분할 수 있다.
(ii)-(A) 4x4 LFNST가 적용될 때 4x4 LFNST가 적용되지 않는 영역을 제로 아웃할 수 있다. 도 11은 일 예에 따라 4x4 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 11과 같이, 4x4 LFNST가 적용되는 블록에 대하여, 즉 도 9의 (a), (b) 및 (c)의 블록에 대하여 LFNST가 적용되지 않는 영역까지 모두 0으로 채워질 수 있다.
한편, 도 11의 (d)는 도 10과 같이 순방향 LFNST의 출력 데이터 개수의 최대값을 16으로 한정한 경우, 4x4 LFNST가 적용되지 않은 나머지 블록에 대하여 제로 아웃을 수행한 것을 나타낸다.
(ii)-(B) 8x8 LFNST가 적용될 때, 8x8 LFNST가 적용되지 않는 영역을 제로 아웃할 수 있다. 도 12는 일 예에 따라 8x8 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 12와 같이, 8x8 LFNST가 적용되는 블록에 대하여, 즉 도 9의 (d) 및 (e)의 블록에 대하여 LFNST가 적용되지 않는 영역까지 모두 0으로 채워질 수 있다.
(iii) 상기 (ii)에서 제시한 제로 아웃으로 인해 LFNST가 적용될 때 0으로 채워지는 영역이 달라질 수 있다. 따라서, 상기 (ii)에서 제안된 제로 아웃에 따라 0이 아닌 데이터가 존재하는지 여부를 도 9의 LFNST의 경우보다 넓은 영역에 대해 체크할 수 있다.
예를 들어, (ii)-(B)를 적용하는 경우, 도 9의 (d) 및 (e)에서 0 값으로 채워지는 영역에 추가하여 도 12에서 추가적으로 0으로 채워진 영역까지 0이 아닌 데이터가 존재하는지 여부를 체크한 후, 0이 아닌 데이터가 존재하지 않는 경우에만 LFNST 인덱스에 대한 시그널링을 수행할 수 있다.
물론, 상기 (ii)에서 제안된 제로 아웃을 적용하더라도 기존 LFNST 인덱스 시그널링과 동일하게 0이 아닌 데이터가 존재하는지 여부를 체크할 수 있다. 즉, 도 9에 0으로 채워진 블록에 대하여 0이 아닌 데이터가 존재하는지 여부를 체크하고 LFNST 인덱스 시그널링을 적용할 수 있다. 이러한 경우 인코딩 장치에만 제로 아웃을 수행하고 디코딩 장치에서는 해당 제로 아웃을 가정하지 않고, 즉 도 9에서 명시적으로 0으로 표기된 영역에 대해서만 0이 아닌 데이터가 존재하는지 여부만 체크하고 LFNST 인덱스 파싱을 수행할 수 있다.
또는 다른 예에 따라, 도 13과 같이 제로 아웃을 수행할 수도 있다. 도 13은 다른 일 예에 따라 8x8 LFNST가 적용되는 블록에서의 제로 아웃을 도시하는 도면이다.
도 11 및 도 12와 같이, LFNST가 적용되는 영역 이외의 영역에 대해서 모두 제로 아웃을 적용할 수도 있고, 도 13과 같이 부분적인 영역에 대해서만 제로 아웃을 적용하는 것도 가능하다. 도 13의 좌상단 8x8 영역 이외의 영역에 대해서만 제로 아웃을 적용하고, 좌상단 8x8 영역 내부의 우하단 4x4 블록에 대해서는 제로 아웃을 적용하지 않을 수 있다.
상기 LFNST에 대한 단순화 방법들((i), (ii)-(A), (ii)-(B), (iii))의 조합을 적용한 다양한 실시예들이 도출될 수 있다. 물론, 상기 단순화 방법들에 대한 조합은 아래 실시예에 한정되지 않으며, 임의의 조합을 LFNST에 적용할 수 있다.
실시예
- 순방향 LFNST에 대한 출력 데이터 수를 최대 16개로 한정 → (i)
- 4x4 LFNST가 적용될 때 4x4 LFNST가 적용되지 않는 영역을 모두 제로 아웃→ (ii)-(A)
- 8x8 LFNST가 적용될 때 8x8 LFNST가 적용되지 않는 영역을 모두 제로 아웃→ (ii)-(B)
- 기존 0 값으로 채워지는 영역과 추가적인 제로 아웃((ii)-(A), (ii)-(B))으로 인하여 0으로 채워지는 영역에 대해서도 0이 아닌 데이터가 존재하는지 여부를 체크한 후, 0이 아닌 데이터가 존재하지 않는 경우에만 LFNST 인덱싱 시그널링→ (iii)
상기 실시예의 경우, LFNST가 적용될 때 0이 아닌 출력 데이터가 존재할 수 있는 영역이 좌상단 4x4 영역 내부로 제한된다. 보다 상세하게 도 11의 (a)와 도 12의 (a)의 경우 스캔 순서상 8번째 위치가 0이 아닌 데이터가 존재할 수 있는 가장 마지막 위치가 되며, 도 11의 (b) 및 (d)와 도 12의 (b)의 경우 스캔 순서상 16번째 위치(즉, 좌상단 4x4 블록의 우하단 가장 자리 위치)가 0이 아닌 데이터가 존재할 수 있는 가장 마직막 위치가 된다.
따라서, LFNST가 적용되었을 때 레지듀얼 코딩 과정이 허용되지 않는 위치(가장 마지막 위치를 넘어 선 위치에서)에서 0이 아닌 데이터가 존재하는지 여부를 체크한 후 LFNST 인덱스 시그널링 여부가 결정될 수 있다.
(ii)에서 제안된 제로 아웃 방식의 경우 1차 변환과 LFNST를 모두 적용했을 때 최종적으로 발생하게 되는 데이터의 수를 줄이기 때문에 전체 변환 과정을 수행할 때 요구되는 계산량을 줄일 수 있다. 즉, LFNST가 적용되는 경우, LFNST가 적용되지 않는 영역에 존재하는 순방향 1차 변환 출력 데이터에 대해서도 제로 아웃을 적용하기 때문에, 순방향 1차 변환을 수행할 때부터 제로 아웃이 되는 영역에 대한 데이터를 생성할 필요가 없다. 따라서, 해당 데이터 생성에 요구되는 연산량을 절약할 수 있다. (ii)에서 제안된 제로 아웃 방식의 추가적인 효과를 정리해 보면 다음과 같다.
첫 번째, 상기된 바와 같이 전체 변환 과정의 수행에 필요한 계산량이 저감된다.
특히 (ii)-(B)를 적용하는 경우 최악의 경우에 대한 계산량이 감소하여 변환 과정을 경량화할 수 있다. 부연하자면, 일반적으로 큰 사이즈의 1차 변환 수행에 많은 양의 연산이 요구되는데, (ii)-(B)를 적용하게 되면 순방향 LFNST 수행 결과로 도출되는 데이터의 수를 16개 이하로 줄일 수 있으며, 전체 블록 (TU 또는 CU) 크기가 커질수록 변환 연산량 저감 효과는 더욱 증가된다.
두 번째, 변환 과정 전체에 필요한 연산량이 감소하여 변환 수행에 필요한 전력 소비를 줄일 수 있다.
세 번째, 변환 과정에 수반되는 지연 시간(latency)을 감소시킨다.
LFNST와 같은 2차 변환은 기존 1차 변환에 계산량을 추가하게 되므로 변환 수행에 수반되는 전체 지연 시간을 증가시킨다. 특히 인트라 예측의 경우, 예측 과정에서 이웃 블록의 복원 데이터가 사용되므로, 인코딩 시 2차 변환으로 인한 지연 시간 증가가 복원(reconstruction)까지의 지연 시간 증가로 이어지게 되어, 인트라 예측 인코딩의 전체적인 지연 시간 증가로 이어질 수 있다.
하지만, (ii)에서 제시한 제로 아웃을 적용하게 되면 LFNST 적용 시 1차 변환 수행의 지연 시간을 대폭 줄일 수 있기 때문에, 변환 수행 전체에 대한 지연 시간은 그대로 유지되거나 오히려 줄어들게 되어 인코딩 장치를 보다 간단하게 구현할 수 있다.
한편, 종래의 인트라 예측은 현재 부호화하고자 하는 블록을 하나의 부호화 단위로 간주하여 분할 없이 부호화를 수행하였다. 그러나 ISP(Intra Sub-Paritions) 코딩은 현재 부호화하고자 하는 블록을 수평 방향 혹은 수직 방향으로 분할하여 인트라 예측 부호화를 수행하는 것을 의미한다. 이 때, 분할된 블록 단위로 부호화/복호화를 수행하여 복원된 블록을 생성하고 복원된 블록은 다음 분할된 블록의 참조 블록으로 사용될 수 있다. 일 예에 따라, ISP 코딩 시 하나의 코딩 블록이 2개 또는 4개의 서브 블록으로 분할되어 코딩될 수 있고, ISP에서 하나의 서브 블록은 인접한 왼쪽 또는 인접한 위쪽에 위치한 서브 블록의 복원된 픽셀 값을 참조하여 인트라 예측이 수행된다. 이하, 사용되는 “코딩”은 인코딩 장치에서 수행되는 코딩과 디코딩 장치에서 수행되는 디코딩을 모두 포함하는 개념으로 사용될 수 있다.
표 4는 ISP 적용 시 블록의 크기에 따라 분할되는 서브 블록의 수를 나타내며, ISP에 따라 분할된 서브 파티션들은 변환 블록(TUs)으로 불릴 수 있다.
Figure pct00019
ISP는 블록의 사이즈에 따라 루마 인트라로 예측된 블록을 수직 방향 또는 수평 방향으로 2 또는 4개의 서브 파티셔닝으로 분할하는 것이다. 예를 들어 ISP가 적용될 수 있는 최소 블록 사이즈는 4 x 8 또는 8 x 4이다. 만약, 블록 사이즈가 4 x 8 또는 8 x 4 보다 크면, 블록은 4개의 서브 파티셔닝으로 분할된다.
도 14 및 도 15는 하나의 코딩 블록이 분할되는 서브 블록의 일 예를 도시하고 있으며, 보다 구체적으로, 도 14는 코딩 블록(폭(W) X 높이(H))이 4 x 8 블록 또는 8 x 4 블록인 경우에 대한 분할의 예시이고, 도 15는 코딩 블록이 4 x 8 블록, 8 x 4 블록, 4 x 4 블록이 아닌 경우에 대한 분할의 예시를 나타내고 있다.
ISP 적용시, 서브 블록들은 분할 형태에 따라, 예를 들어, 수평(Horizontal) 또는 수직(Verticial), 왼쪽에서 오른쪽 또는 위쪽에서 아래쪽으로 순차적으로 코딩되며, 하나의 서브 블록에 대한 역변환과 인트라 예측을 거쳐 복원 과정까지 수행된 후 다음 서브 블록에 대한 코딩이 진행될 수 있다. 가장 왼쪽 또는 가장 위쪽 서브 블록에 대해서는 통상적인 인트라 예측 방식과 같이 이미 코딩된 코딩 블록의 복원 픽셀을 참조하게 된다. 또한, 뒤이은 내부의 서브 블록의 각 변에 대해 이전 서브 블록과 인접하지 않은 경우에는 해당 변에 인접한 참조 픽셀들을 도출하기 위하여, 통상적인 인트라 예측 방식과 같이 이미 코딩된 인접한 코딩 블록의 복원 픽셀을 참조한다.
ISP 코딩 모드에서는 모든 서브 블록들이 동일한 인트라 예측 모드를 가지고 코딩될 수 있으며, ISP 코딩을 사용할지 여부를 나타내는 플래그와 어떤 방향으로 (수평 또는 수직) 분할할지를 나타내는 플래그 등이 시그널링될 수 있다. 도 14 및 도 15에서와 같이, 블록 모양에 따라 서브 블록의 개수를 2개 또는 4개로 조절할 수 있으며, 하나의 서브 블록의 크기(폭 x 높이)가 16 미만인 경우 해당 서브 블록으로의 분할을 허용하지 않는다거나, ISP 코딩 자체를 적용하지 않도록 제한할 수 있다.
한편, ISP 예측 모드일 경우 하나의 코딩 유닛이 2개 또는 4개의 파티션 블록, 즉 서브 블록들로 분할되어 예측되며, 해당 분할된 2개 또는 4개의 파티션 블록들에는 동일한 화면 내 예측 모드가 적용된다.
상술된 바와 같이 분할 방향으로는 수평 방향(가로 길이와 세로 길이가 각기 M, N인 MxN 코딩 유닛이 수평 방향으로 분할되면, 2개로 분할되는 경우 Mx(N/2) 블록들로 분할되고 4개로 분할되는 경우 Mx(N/4) 블록들로 분할됨)과 수직 방향(MxN 코딩 유닛이 수직 방향으로 분할되면, 2개로 분할되는 경우 (M/2)xN 블록들로 분할되고 4개로 분할되는 경우(M/4)xN 블록들로 분할됨)이 모두 가능하다. 수평 방향으로 분할되는 경우 위에서 아래 방향 순서로 파티션 블록들이 코딩되며, 수직 방향으로 분할되는 경우 왼쪽에서 오른쪽 방향 순서로 파티션 블록들이 코딩된다. 현재 코딩되는 파티션 블록은 수평(수직) 방향 분할인 경우 위쪽(왼쪽) 파티션 블록의 복원된 픽셀 값을 참조하여 예측될 수 있다.
ISP 예측 방법으로 생성된 레지듀얼 신호에 파티션 블록 단위로 변환이 적용될 수 있다. 순방향(forward)을 기준으로 1차 변환(core transform 또는 primary transform)에 기존 DCT-2 뿐만 아니라 DST-7/DCT-8 조합 기반의 MTS(Multiple Transform Selection) 기술이 적용될 수 있고, 1차 변환에 따라 생성된 변환 계수에 순방향 LFNST(Low Frequency Non-Separable Transform)가 적용되어 최종적인 수정된 변환 계수가 생성될 수 있다.
즉, ISP 예측 모드가 적용되어 분할된 파티션 블록들에도 LFNST가 적용될 수 있으며, 상술하였듯이 분할된 파티션 블록들에는 동일한 인트라 예측 모드가 적용된다. 따라서, 인트라 예측 모드를 기반으로 도출되는 LFNST 세트 선택 시 모든 파티션 블록들에 도출된 LFNST 세트를 적용할 수 있다. 즉, 모든 파티션 블록에 동일한 인트라 예측 모드가 적용되므로, 이로 인해 모든 파티션 블록들에는 동일한 LFNST 세트가 적용될 수 있다.
한편, 일 예에 따라 LFNST는 가로와 세로의 길이가 모두 4 이상인 변환 블록에 대해서만 적용될 수 있다. 따라서, ISP 예측 방식에 따라 분할된 파티션 블록의 가로 또는 세로의 길이가 4 미만인 경우, LFNST가 적용되지 않고 LFNST 인덱스도 시그널링 되지 않는다. 또한, 각 파티션 블록에 LFNST를 적용할 경우, 해당 파티션 블록을 하나의 변환 블록으로 간주할 수 있다. 물론, ISP 예측 방식이 적용되지 않는 경우, 코딩 블록에 LFNST가 적용될 수 있다.
각 파티션 블록에 LFNST를 적용하는 것을 구체적으로 살펴 보면 다음과 같다.
일 예에 따라, 개별적인 파티션 블록에 대해 순방향 LFNST을 적용한 후, 좌상단 4x4 영역에 변환 계수 스캐닝 순서에 따라 최대 16개(8개 또는 16개)의 계수만 남긴 후 나머지 위치 및 영역은 모두 0 값으로 채우는 제로 아웃이 적용될 수 있다.
또는, 일 예에 따라, 파티션 블록 한 변의 길이가 4인 경우 좌상단 4x4 영역에 대해서만 LFNST를 적용하고, 파티션 블록의 모든 변, 즉 폭 및 높이의 길이가 8 이상인 경우 좌상단 8x8 영역 내부의 우하단 4x4 영역을 제외한 나머지 48개의 계수에 대하여 LFNST를 적용할 수 있다.
또는 일 예에 따라, 최악 경우의 계산 복잡도를 8 곱셈/샘플(multiplications per sample)로 맞추기 위해, 각 파티션 블록이 4x4 또는 8x8인 경우에는 순방향 LFNST 적용 후 8개의 변환 계수만을 출력할 수 있다. 즉, 파티션 블록이 4x4이면 변환 매트릭스로 8x16 행렬이 적용되고, 파티션 블록이 8x8이면 변환 매트릭스로 8x48 행렬이 적용될 수 있다.
한편, 현재 VVC 표준에서, LFNST 인덱스 시그널링은 코딩 유닛 단위로 수행된다. 따라서, ISP 예측 모드이고 모든 파티션 블록들에 대해 LFNST를 적용하는 경우, 해당 파티션 블록들에 대해서는 동일한 LFNST 인덱스 값이 적용될 수 있다. 즉, 코딩 유닛 레벨에서 LFNST 인덱스 값이 한 번 전송되면, 코딩 유닛 내부의 모든 파티션 블록들에 대해서는 해당 LFNST 인덱스가 적용될 수 있다. 상술된 바와 같이, LFNST 인덱스 값은 0, 1, 2 값을 가질 수 있으며, 0은 LFNST가 적용되지 않는 경우를 나타내며, 1과 2는 LFNST가 적용될 때 하나의 LFNST 세트 내에 존재하는 두 개의 변환 매트릭스를 가리킨다.
상기와 같이, LFNST 세트는 인트라 예측 모드에 의해 결정되며, ISP 예측 모드인 경우 코딩 유닛 내의 모든 파티션 블록들이 동일한 인트라 예측 모드로 예측되므로, 파티션 블록들은 동일한 LFNST 세트를 참조할 수 있다.
또 다른 일예로 LFNST 인덱스 시그널링은 여전히 코딩 유닛 단위로 수행되지만, ISP 예측 모드의 경우에 모든 파티션 블록들에 대해 일률적으로 LFNST 적용 여부를 결정하지 않고, 별도의 조건을 통해서 각각의 파티션 블록들에 대해 코딩 유닛 레벨에서 시그널링된 LFNST 인덱스 값을 적용할 것 인지 아니면 LFNST를 적용하지 않을 것인지 결정할 수 있다. 여기서, 별도의 조건은 비트스트림을 통해서 각 파티션 블록 별로 플래그 형태로 시그널링될 수 있고, 플래그 값이 1이면 코딩 유닛 레벨에서 시그널링된 LFNST 인덱스 값을 적용하고, 플래그 값이 0일경우 LFNST를 적용하지 않을 수 있다.
한편, ISP 모드가 적용되는 코딩 유닛에서, 파티션 블록의 한 변의 길이가 4 미만인 경우 LFNST를 적용하는 예에 대하여 살펴보면 다음과 같다.
첫 번째, 파티션 블록의 크기가 Nx2(2xN)인 경우, 좌상단 Mx2(2xM) 영역에 LFNST를 적용할 수 있다(여기서, M ≤ N). 예를 들어, M = 8인 경우 해당 좌상단 영역은 8x2(2x8)이 되므로 16개의 레지듀얼 신호가 존재하는 영역이 순방향 LFNST의 입력이 될 수 있고, Rx16 (R ≤ 16) 순방향 변환 행렬이 적용될 수 있다.
여기서 순방향 LFNST 행렬은, 현재 VVC 표준에 포함되어 있는 행렬이 아닌 별도의 추가적인 행렬일 수 있다. 또한, 최악 경우의 복잡도 조절을 위해 16x16 행렬의 위쪽 8개의 행 벡터(row vector)들만 샘플링한 8x16 행렬을 변환에 사용할 수 있다. 복잡도 조절 방법에 대해서는 이후에 상세히 설명된다.
두 번째, 파티션 블록의 크기가 Nx1(1xN)인 경우, 좌상단 Mx1(1xM) 영역에 LFNST를 적용할 수 있다(여기서, M ≤ N). 예를 들어, M = 16인 경우 해당 좌상단 영역은 16x1(1x16)이 되므로 16개의 레지듀얼 신호가 존재하는 영역이 순방향 LFNST의 입력이 될 수 있고, Rx16 (R ≤ 16) 순방향 변환 행렬이 적용될 수 있다.
여기서 해당 순방향 LFNST 행렬은, 현재 VVC 표준에 포함되어 있는 행렬이 아닌 별도의 추가적인 행렬일 수 있다. 또한, 최악 경우의 복잡도 조절을 위해 16x16 행렬의 위쪽 8개의 행 벡터(row vector)들만 샘플링한 8x16 행렬을 변환에 사용할 수 있다. 복잡도 조절 방법에 대해서는 이후에 상세히 설명된다.
첫 번째 실시예와 두 번째 실시예는 동시에 적용될 수도 있고, 두 개의 실시예 중 어느 하나만 적용될 수도 있다. 특히 두 번째 실시예의 경우, LFNST에 일차원적인 변환이 고려됨으로 인해 기존의 LFNST에서 얻었을 수 있었던 압축 성능 향상이 LFNST 인덱스 시그널링 비용(signaling cost)에 비해 비교적 크지 않은 것들이 실험을 통해 관찰되었다. 하지만 첫 번째 실시예의 경우 기존의 LFNST에서 얻을 수 있었던 압축 성능의 향상과 비슷한 압축 성능 향상이 관측되었다, 즉, ISP 경우 2xN과 Nx2를 위한 LFNST 적용이 실제 압축 성능에 기여하는 것이 실험을 통해 확인할 수 있다.
현재 VVC에서의 LFNST에서는 인트라 예측 모드들 간의 대칭성이 적용된다. 34번 모드(우하단 45도 대각선 방향으로 예측)를 중심으로 배치된 두 방향성 모드에는 동일한 LFNST 세트가 적용되고 있으며, 예를 들어, 18번 모드(수평 방향 예측 모드)와 50번 모드(수직 방향 예측 모드)에는 같은 LFNST 세트가 적용된다. 다만, 35번 모드부터 66번 모드는 순방향 LFNST를 적용할 때 입력 데이터를 트랜스포즈(transpose)한 후 LFNST를 적용하게 된다.
한편, VVC에서는 광각 인트라 예측(Wide Angle Intra Prediction, WAIP) 모드를 지원하는데, WAIP 모드를 고려하여 수정된 인트라 예측 모드를 기반으로 LFNST 세트가 도출된다. WAIP에 의해 확장되는 모드들에 대해서도 일반 인트라 예측 방향 모드와 마찬가지로 대칭성을 활용하여 LFNST 세트를 결정하게 된다. 예를 들어, -1번 모드는 67번 모드와 대칭을 이루므로 동일한 LFNST 세트를 적용하고 -14번 모드는 80번 모드와 대칭을 이루므로 동일한 LFNST 세트를 적용한다. 67번 모드부터 80번 모드는 순방향 LFNST를 적용하기 전에 입력 데이터를 트랜스포즈 한 후 LFNST 변환을 적용하게 된다.
좌상단 Mx2 (Mx1) 블록에 적용되는 LFNST의 경우는 상술한 LFNST에 대한 대칭성을 적용할 수 없는데, LFNST를 적용하는 블록이 비정방형이기 때문이다. 따라서, 표 2의 LFNST 처럼 인트라 예측 모드를 기준으로 하는 대칭성을 적용하는 것이 아니라, Mx2 (Mx1) 블록과 2xM (1xM) 블록 간의 대칭성을 적용할 수 있다.
도 16은 일 예에 따른 Mx2 (Mx1) 블록과 2xM (1xM) 블록의 대칭성을 도시한 도면이다.
도 16과 같이, Mx2 (Mx1) 블록에서의 2번 모드는 2xM (1xM) 블록에서의 66번 모드와 대칭이라고 볼 수 있으므로, 2xM (1xM) 블록과 Mx2 (Mx1) 블록에 동일한 LFNST 세트를 적용할 수 있다.
이 때 2xM (1xM) 블록에, Mx2 (Mx1) 블록에 적용되었던 LFNST 세트를 적용하기 위하여, 66번 모드 대신에 2번 모드를 기준으로 LFNST 세트를 선택하게 된다. 즉, 순방향 LFNST를 적용하기 전에 2xM (1xM) 블록의 입력 데이터를 트랜트포즈 한 후 LFNST를 적용할 수 있다.
도 17은 일 예에 따라 2xM 블록을 트랜스포즈한 예시를 도시한 도면이다.
도 17의 (a)는 2xM 블록에 대해 열 우선(column-first) 순서로 입력 데이터를 읽어서 LFNST를 적용할 수 있는 것을 설명하는 도면이고, 도 17의 (b)는 Mx2 (Mx1) 블록에 대해 행 우선(row-first) 순서로 입력 데이터를 읽어서 LFNST를 적용하는 것을 설명하는 도면이다. 좌상단 Mx2 (Mx1) 또는 2xM (Mx1) 블록에 대해 LFNST를 적용하는 방식을 정리해 보면 다음과 같다.
1. 우선, 도 17의 (a) 및 (b)와 같이, 입력 데이터를 배열하여 순방향 LFNST의 입력 벡터를 구성한다. 예를 들어, 도 16을 참조하면, 2번 모드로 예측되는 Mx2 블록에 대해서는 도 17의 (b)에서의 순서를 따르게 되고, 66번 모드로 예측되는 2xM 블록에 대해서는 도 17의 (a)의 순서에 따라 입력 데이터를 배열한 후 2번 모드에 대한 LFNST 세트를 적용할 수 있다 .
2. Mx2 (Mx1) 블록에 대해서는 WAIP를 고려한 수정된 인트라 예측 모드에 기초하여 LFNST 세트를 결정한다. 상술된 바와 같이, 인트라 예측 모드와 LFNST 세트 간에는 기설정된 매핑 관계가 성립하며, 이는 표 2와 같이 매핑 테이블로 나타낼 수 있다.
2xM (1xM) 블록에 대해서는, WAIP를 고려하여 수정된 인트라 예측 모드로부터, 우하향 45도 대각선 방향의 예측 모드(VVC 표준의 경우 34번 모드)를 중심으로 대칭인 모드를 구한 후, 해당 대칭 모드 및 매핑 테이블을 기반으로 LFNST 세트를 결정한다. 34번 모드를 중심으로 대칭인 모드(y)는 다음의 수식을 통하여 도출될 수 있다. 매핑 테이블에 대한 것은 이하 보다 구체적으로 설명된다.
Figure pct00020
3. 순방향 LFNST를 적용할 때는 1번 과정을 통해 준비한 입력 데이터를 LFNST 커널에 곱하여 변환 계수를 도출할 수 있다. LFNST 커널은 2번 과정에서 결정된 LFNST 세트와 미리 지정된 LFNST 인덱스로부터 선택될 수 있다.
예를 들어, M = 8이고, LFNST 커널로 16x16 행렬이 적용되는 경우, 해당 행렬을 16개의 입력 데이터와 곱하여 16개의 변환 계수가 생성될 수 있다. 생성되는 변환 계수는 좌상단 8x2 또는 2x8 영역에 VVC 표준에서 사용하는 스캐닝 순서에 따라 배될 수 있다.
도 18은 일 예에 따른 8x2 또는 2x8 영역에 대한 스캐닝 순서를 도시한 것이다.
좌상단 8x2 또는 2x8 영역 이외의 영역에 대해서는, 모두 0 값으로 채우거나 (zero-out), 1차 변환을 적용한 기존 변환 계수를 그대로 유지할 수도 있다. 상기 미리 지정된 LFNST 인덱스는 인코딩 과정에서 LFNST 인덱스 값을 변경하면서 RD 비용을 계산할 때 시도되는 LFNST 인덱스 값 (0, 1, 2) 중 하나일 수 있다
최악의 경우에 대한 계산 복잡도를 일정 수준 이하로 맞추는 구성의 경우 (예를 들어, 8 곱셈/샘플), 예컨대 상기 16x16 행렬의 위쪽 8개의 행만 취한 8x16 행렬을 곱하여 8개의 변환 계수만을 생성한 후, 도 18과 같은 스캐닝 순서에 따라 8개의 변환 계수를 배치하고, 나머지 계수 영역에 대해서는 제로 아웃을 적용할 수도 있다. 최악의 경우에 대한 복잡도 조절은 후술된다.
4. 역방향 LFNST를 적용할 때는 기설정된 개수(예를 들어, 16개)의 변환 계수를 입력 벡터로 두고, 2번 과정으로부터 구한 LFNST 세트와 파싱된 LFNST 인덱스로부터 도출된 LFNST 커널(예컨대, 16x16 행렬)을 선택한 후, LFNST 커널과 해당 입력 벡터를 곱하여 출력 벡터를 도출할 수 있다.
Mx2 (Mx1) 블록의 경우는 도 17의 (b)와 같은 행 우선 순서에 따라 출력 벡터를 배치하고, 2xM (1xM) 블록의 경우는 도 17의 (a)와 같이 열 우선 순서에 따라 출력 벡터를 배치할 수 있다.
좌상단 Mx2 (Mx1) 또는 2xM (Mx2) 영역 내부에 해당 출력 벡터가 배치되는 영역을 제외한 나머지 영역과, 파티션 블록 내에 좌상단 Mx2 (Mx1) 또는 2xM (Mx2) 영역 이외의 영역에 대해서는, 모두 0 값으로 채우거나(zero-out) 레지듀얼 코딩과 역양자화 과정으로 통해 복원된 변환 계수를 그대로 유지하도록 구성할 수 있다.
3번에서와 마찬가지로 입력 벡터를 구성할 때는 도 20의 스캐닝 순서에 따라 입력 데이터를 배열할 수 있으며, 최악의 경우에 대한 계산 복잡도를 일정 수준 이하로 맞추기 위해 입력 데이터의 수를 줄여서(예컨대, 16개 대신에 8개) 입력 벡터를 구성할 수도 있다.
예를 들어, M = 8 일 때 8개의 입력 데이터을 사용하는 경우 해당 16x16 행렬로부터 왼쪽 16x8 행렬만을 취해 곱한 후 16개의 출력 데이터를 얻을 수 있다. 최악의 경우에 대한 복잡도 조절은 후술된다
상기 실시예에서는 LFNST 적용 시 Mx2 (Mx1) 블록과 2xM (1xM) 블록 사이에 대칭성을 적용하는 경우를 제시하고 있으나, 다른 예에 따라 두 블록 모양에 대해 각각 다른 LFNST 세트를 적용할 수도 있다.
이하에서는, ISP 모드에 대한 LFNST 세트 구성 및 인트라 예측 모드를 이용한 매핑 방식에 대한 다양한 예를 기술한다.
ISP 모드인 경우, LFNST 세트 구성은 기존의 LFNST 세트와 다를 수 있다. 다시 말해, 기존의 LFNST 커널들과 다른 커널들이 적용될 수도 있고, 현재 VVC 표준에 적용되는 인트라 예측 모드 인덱스와 LFNST 세트 간의 매핑 테이블과 상이한 다른 매핑 테이블을 적용할 수 있다. 현재 VVC 표준에 적용되는 매핑 테이블은 표 2와 같을 수 있다.
표 2에서 preModeIntra 값은 WAIP를 고려하여 변경된 인트라 예측 모드 값을 의미하며, lfnstTrSetIdx 값은 특정 LFNST 세트를 가리키는 인덱스 값이다. 각 LFNST 세트는 2개의 LFNST 커널로 구성되어 있다.
ISP 예측 모드가 적용되는 경우, 각 파티션 블록의 가로 길이와 세로 길이 모두가 4보다 같거나 큰 경우에는 현재 VVC 표준에서 적용되는 LFNST 커널들과 동일한 커널들을 적용할 수 있고, 상기 매핑 테이블도 그대로 적용할 수 있다. 물론 현재 VVC 표준과 다른 LFNST 커널들과 다른 매핑 테이블을 적용할 수도 있다.
ISP 예측 모드가 적용되는 경우, 각 파티션 블록의 가로 길이 또는 세로 길이가 4 미만인 경우에는, 현재 VVC 표준에서와 다른 LFNST 커널들과 다른 매핑 테이블을 적용할 수 있다. 이하 표 5 내지 표 7은 Mx2 (Mx1) 블록 또는 2xM (1xM) 블록에 대해 적용될 수 있는, 인트라 예측 모드 값(WAIP를 고려하여 변경된 인트라 예측 모드 값)과 LFNST 세트 간의 매핑 테이블들을 나타낸다.
Figure pct00021
Figure pct00022
Figure pct00023
표 5의 첫 번째 매핑 테이블은 7개의 LFNST 세트로 구성되고, 표 6의 매핑 테이블은 4개의 LFNST 세트로 구성되며, 표 7의 매핑 테이블은 2개의 LFNST 세트로 구성된다. 또 다른 예로, 1개의 LFNST 세트로 구성되는 경우, preModeIntra 값에 대하여 lfnstTrSetIdx 값은 0으로 고정될 수 있다.
이하에서는, ISP 모드에 LFNST 적용 시 최악의 경우에 대한 계산 복잡도를 유지하는 방법에 대하여 기술한다.
ISP 모드인 경우 LFNST 적용 시 샘플 당 (또는 계수 당, 위치 당) 곱셈 수를 일정 값 이하로 유지하기 위해 LFNST 적용을 제한할 수 있다. 파티션 블록의 크기에 따라 다음과 같이 LFNST를 적용하여 샘플 당 (혹은 계수 당, 위치 당) 곱셈 수를 8개 이하로 유지할 수 있다.
1. 파티션 블록의 가로 길이와 세로 길이 모두 4 이상일 경우는, 현재 VVC 표준에서의 LFNST에 대한 최악의 경우에 대한 계산 복잡도 조절 방식과 동일한 방식을 적용할 수 있다.
즉, 파티션 블록이 4x4 블록인 경우에는 16x16 행렬 대신, 순방향에서는 16x16 행렬로부터 상위 8개의 행을 샘플링한 8x16 행렬을 적용하고, 역방향에서는 16x16 행렬로부터 왼쪽 8개의 열을 샘플링한 16x8 행렬을 적용할 수 있다. 또한, 파티션 블록이 8x8 블록일 때는 순방향의 경우 16x48 행렬 대신, 16x48 행렬로부터 상위 8개의 행을 샘플링한 8x48 행렬을 적용하고, 역방향의 경우 48x16 행렬 대신 48x16 행렬로부터 왼쪽 8개의 열을 샘플링한 48x8 행렬을 적용할 수 있다.
4xN 또는 Nx4 (N > 4) 블록의 경우, 순방향 변환을 수행할 때 좌상단 4x4 블록에 대해서만 16x16 행렬을 적용한 후 생성된 16개의 계수는 좌상단 4x4 영역에 배치되고 이외의 영역은 0 값으로 채워질 수 있다. 또한, 역방향 변환을 수행할 때는 좌상단 4x4 블록에 위치한 16개의 계수를 스캐닝 순서에 따라 배치하여 입력 벡터를 구성한 다음 16x16 행렬을 곱해 16개의 출력 데이터를 생성할 수 있다. 생성된 출력 데이터는 좌상단 4x4 영역에 배치되고 좌상단 4x4 영역을 제외한 나머지 영역은 0으로 채워질 수 있다.
8xN 또는 Nx8 (N > 8) 블록의 경우, 순방향 변환을 수행할 때 좌상단 8x8 블록 내부의 ROI 영역(좌상단 8x8 블록에서 우하단 4x4 블록을 제외한 나머지 영역)에 대해서만 16x48 행렬을 적용한 후 생성된 16개의 계수는 좌상단 4x4 영역에 배치되고 이외 영역은 모두 0 값으로 채워질 수 있다. 또한, 역방향 변환을 수행할 때는 좌상단 4x4 블록에 위치한 16개의 계수를 스캐닝 순서에 따라 배치하여 입력 벡터를 구성한 다음 48x16 행렬을 곱해 48개의 출력 데이터를 생성할 수 있다. 생성된 출력 데이터는 상기 ROI 영역에 채워지고 나머지 영역은 모두 0 값으로 채워질 수 있다.
2. 파티션 블록의 크기가 Nx2 또는 2xN이고, 좌상단 Mx2 또는 2xM 영역에 대해(M ≤ N) LFNST를 적용하는 경우, N 값에 따라 샘플링한 행렬을 적용할 수 있다.
M = 8인 경우, N = 8인 파티션 블록, 즉 8x2 또는 2x8 블록에 대해서는, 순방향 변환의 경우 16x16 행렬 대신에 16x16 행렬로부터 상위 8개의 행을 샘플링한 8x16 행렬을 적용하고, 역방향 변환의 경우 16x16 행렬 대신에 16x16 행렬로부터 왼쪽 8개의 열을 샘플링한 16x8 행렬을 적용할 수 있다.
N이 8보다 큰 경우, 순방향 변환의 경우 좌상단 8x2 또는 2x8 블록에 대해서 16x16 행렬을 적용한 후 생성된 16개의 출력 데이터는 좌상단 8x2 또는 2x8 블록에 배치되고 나머지 영역에 대해서는 0 값으로 채워질 수 있다. 역방향 변환의 경우 좌상단 8x2 또는 2x8 블록에 위치한 16개의 계수를 스캐닝 순서에 따라 배치하여 입력 벡터를 구성한 후 해당 16x16 행렬을 곱해 16개의 출력 데이터를 생성할 수 있다. 생성된 출력 데이터는 좌상단 8x2 또는 2x8 블록에 배치되고 나머지 영역은 모두 0 값으로 채워질 수 있다.
3. 파티션 블록의 크기가 Nx1 또는 1xN이고 좌상단 Mx1 또는 1xM 영역에 대해(M ≤ N) LFNST를 적용하는 경우, N 값에 따라 샘플링한 행렬을 적용할 수 있다.
M = 16인 경우, N = 16인 파티션 블록, 즉 16x1 또는 1x16 블록에 대해서는 순방향 변환의 경우 16x16 행렬 대신에 16x16 행렬로부터 상위 8개의 행을 샘플링한 8x16 행렬을 적용하고, 역방향 변환의 경우 16x16 행렬 대신에 16x16 행렬로부터 왼쪽 8개의 열을 샘플링한 16x8 행렬을 적용할 수 있다.
N이 16보다 큰 경우, 순방향 변환의 경우 좌상단 16x1 또는 1x16 블록에 대해서 16x16 행렬을 적용한 후 생성된 16개의 출력 데이터는 좌상단 16x1 또는 1x16 블록에 배치되고 나머지 영역에 대해서는 0 값으로 채워질 수 있다. 역방향 변환의 경우 좌상단 16x1 또는 1x16 블록에 위치한 16개의 계수를 스캐닝 순서에 따라 배치하여 입력 벡터를 구성한 후 해당 16x16 행렬을 곱해 16개의 출력 데이터를 생성할 수 있다. 생성된 출력 데이터는 좌상단 16x1 또는 1x16 블록에 배치되고 나머지 영역은 모두 0 값으로 채워질 수 있다.
또 다른 일예로 샘플 당 (또는 계수 당, 위치 당) 곱셈 수를 일정 값 이하로 유지하기 위해 ISP 파티션 블록의 크기가 아닌 ISP 코딩 유닛 크기를 기준으로 샘플 당 (혹은 계수 당, 위치 당) 곱셈 수를 8개 이하로 유지할 수 있다. 만약, ISP 파티션 블록 중 LFNST이 적용되는 조건을 만족하는 블록이 하나만 존재하는 경우 파티션 블록의 크기가 아닌 해당 코딩 유닛 크기를 기반으로 LFNST 최악의 경우에 대한 복잡도 연산이 적용될 수 있다. 예를 들어 어떤 코딩 유닛에 대한 루마 코딩 블록이 4x4 크기의 4개의 파티션 블록들로 분할되어 ISP로 코딩되며 그 중 2개의 파티션 블록에 대해서는 0이 아닌 변환 계수가 존재하지 않는 경우, 다른 2개의 파티션 블록에는 (인코더 기준으로) 각기 8개가 아닌 16개의 변환 계수가 생성되도록 설정할 수 있다.
이하에서는, ISP 모드일 경우 LFNST 인덱스를 시그널링하는 방법에 대하여 살펴본다.
상술한 바와 같이, LFNST 인덱스는 0, 1, 2 값을 가질 수 있으며 0은 LFNST를 적용하지 않는다는 것을 지시하고 1 과 2는 선택된 LFNST 세트에 포함된 두 개의 LFNST 커널 매트릭스 중 어느 하나씩을 지시한다. LFNST 인덱스에 의해 선택된 LFNST 커널 매트릭스를 기반으로 LFNST가 적용된다. 현재 VVC 표준에서 LFNST 인덱스가 전송되는 방식을 설명하면 다음과 같다.
1. 코딩 유닛(CU)마다 한 번씩 LFNST 인덱스를 전송할 수 있으며, 듀얼 트리(dual-tree)일 때는 루마 블록과 크로마 블록에 대해 각각 개별적인 LFNST 인덱스가 시그널링될 수 있다.
2. LFNST 인덱스가 시그널링되지 않는 경우에는 LFNST 인덱스 값은 디폴트 값인 0으로 정해진다(infer). LFNST 인덱스 값이 0으로 유추되는 경우는 다음과 같다.
A. 변환이 적용되지 않는 모드인 경우 (예컨대, 변환 스킵(transform skip), BDPCM, 무손실(lossless) 코딩 등)
B. 1차 변환이 DCT-2가 아닌 경우(DST7나 DCT8), 즉 수평 방향의 변환 또는 수직 방향의 변환이 DCT-2가 아닌 경우
C. 코딩 유닛의 루마 블록에 대한 가로 길이 또는 세로 길이가 변환이 가능한 최대 루마 변환의 크기를 초과하는 경우, 예를 들어 변환이 가능한 최대 루마 변환의 크기가 64인 경우 코딩 블록의 루마 블록에 대한 크기가 128x16과 같은 경우에는 LFNST가 적용될 수 없다.
듀얼 트리의 경우, 루마 성분에 대한 코딩 유닛과 크로마 성분에 대한 코딩 유닛 각각에 대하여 최대 루마 변환의 크기를 초과하는지 여부가 판단된다. 즉, 루마 블록에 대하여 변환이 가능한 최대 루마 변환의 크기를 초과하는지 여부가 체크되고, 크로마 블록에 대하여 컬러 포맷에 대한 대응 루마 블록의 가로/세로 길이와 최대 변환이 가능한 최대 루마 변환의 크기를 초과하는지 여부가 체크된다. 예를 들어, 컬러 포맷이 4:2:0인 경우에는 대응 루마 블록의 가로/세로 길이는 각각 해당 크로마 블록의 2배가 되며 대응 루마 블록의 변환 크기는 해당 크로마 블록의 2배가 된다. 또 다른 예로 컬러 포맷이 4:4:4인 경우에는 대응 루마 블록의 가로/세로 길이와 변환 크기는 대응하는 크로마 블록과 같다.
64-길이 변환 또는 32-길이 변환이 의미하는 바가 각기 64 또는 32 길이를 가진 가로 또는 세로에 적용되는 변환을 의미하고, "변환 크기"는 해당 길이인 64 또는 32를 의미할 수 있다.
싱글 트리인 경우, 루마 블록에 대해서 가로 길이 또는 세로 길이가 변환이 가능한 최대 루마 변환 블록 크기를 초과하는지 여부를 체크한 후, 초과하는 경우 LFNST 인덱스 시그널링을 생략할 수 있다.
D. 코딩 유닛의 가로 길이와 세로 길이 모두 4 이상인 경우에만 LFNST 인덱스를 전송할 수 있다.
듀얼 트리인 경우, 해당 성분(즉, 루마 또는 크로마 성분)에 대한 가로 길이와 세로 길이가 모두 4 이상인 경우에 대해서만 LFNST 인덱스를 시그널링할 수 있다.
싱글 트리인 경우는 루마 성분에 대한 가로 길이와 세로 길이가 모두 4 이상인 경우에 대하여 LFNST 인덱스를 시그널링할 수 있다.
E. 마지막 0이 아닌 계수의 위치(last non-zero coefficient position)가 DC 위치(블록의 좌상단 위치)가 아닌 경우, 듀얼 트리 타입의 루마 블록이면 마지막 0이 아닌 계수의 위치가 DC 위치가 아니면 LFNST 인덱스를 전송한다. 듀얼 트리 타입의 크로마 블록이면 Cb에 대한 마지막 0이 아닌 계수의 위치와 Cr에 대한 마지막 0이 아닌 계수의 위치 중 하나라도 DC 위치가 아니면 해당 LNFST 인덱스를 전송한다.
싱글 트리 타입의 경우, 루마 성분, Cb 성분, Cr 성분 중 하나라도 해당 마지막 0이 아닌 계수의 위치가 DC 위치가 아니면 LFNST 인덱스를 전송한다.
여기서 하나의 변환 블록에 대한 변환 계수 존재 여부를 가리키는 CBF(coded block flag) 값이 0이면, LFNST 인덱스 시그널링 여부를 판단하기 위하여 해당 변환 블록에 대한 마지막 0이 아닌 계수의 위치를 체크하지 않는다. 즉, 해당 CBF 값이 0인 경우 해당 블록에 변환이 적용되지 않으므로 LFNST 인덱스 시그널링에 대한 조건을 체크할 때 마지막 0이 아닌 계수의 위치를 고려하지 않을 수 있다.
예를 들어 1) 듀얼 트리 타입이고 루마 성분인 경우 해당 CBF 값이 0이면 LFNST 인덱스를 시그널링하지 않고 2) 듀얼 트리 타입이고 크로마 성분인 경우 Cb에 대한 CBF 값이 0이고 Cr에 대한 CBF 값이 1이면 Cr에 대한 마지막 0이 아닌 계수의 위치만 체크하여 해당 LFNST 인덱스를 전송하며 3) 싱글 트리 타입인 경우는 루마, Cb, Cr 모두에 대해 각 CBF 값이 1인 성분들에 대해서만 마지막 0이 아닌 계수의 위치를 체크하게 된다.
F. LFNST 변환 계수가 존재할 수 있는 위치가 아닌 위치에 변환 계수가 존재하는 것이 확인된 경우 LFNST 인덱스 시그널링을 생략할 수 있다. 4x4 변환 블록과 8x8 변환 블록의 경우는 VVC 표준에서의 변환 계수 스캐닝 순서에 따라 DC 위치부터 8개의 위치에 LFNST 변환 계수가 존재할 수 있고 나머지 위치는 모두 0으로 채워지게 된다. 또한, 4x4 변환 블록과 8x8 변환 블록이 아닌 경우에는 VVC 표준에서의 변환 계수 스캐닝 순서에 따라 DC 위치부터 16개의 위치에 LFNST 변환 계수가 존재할 수 있고 나머지 위치는 모두 0으로 채워지게 된다.
따라서, 레지듀얼 코딩(residual coding)을 진행한 후 상기 0 값이 채워져야만 하는 영역에 0이 아닌 변환 계수가 존재하면 LFNST 인덱스 시그널링을 생략할 수 있다.
한편, ISP 모드는 루마 블록인 경우에만 적용되거나 루마 블록과 크로마 블록 모두에 적용될 수도 있다. 상술하였듯이 ISP 예측이 적용되는 경우 해당 코딩 유닛은 2개 또는 4개의 파티션 블록으로 분할되어 예측되며 변환도 해당 파티션 블록들에 각각 적용될 수 있다. 따라서, 코딩 유닛 단위로 LFNST 인덱스를 시그널링하는 조건을 결정할 때도 해당 파티션 블록들에 각각 LFNST가 적용될 수 있다는 사실을 고려해야 한다. 또한 ISP 예측 모드가 특정 성분(예컨대, 루마 블록)에 대해서만 적용되는 경우에는, 해당 성분에 대해서만 파티션 블록으로 분할된다는 사실을 고려하여 LFNST 인덱스를 시그널링해야 한다. ISP 모드일 때 가능한 LFNST 인덱스 시그널링 방식들을 정리해 보면 다음과 같다.
1. 코딩 유닛(CU)마다 한 번씩 LFNST 인덱스를 전송할 수 있으며, 듀얼 트리(dual-tree)일 때는 루마 블록과 크로마 블록에 대해 각각 개별적인 LFNST 인덱스가 시그널링될 수 있다.
2. LFNST 인덱스가 시그널링되지 않는 경우에는 LFNST 인덱스 값은 디폴트 값인 0으로 정해진다(infer). LFNST 인덱스 값이 0으로 유추되는 경우는 다음과 같다.
A. 변환이 적용되지 않는 모드인 경우 (예컨대, 변환 스킵(transform skip), BDPCM, 무손실(lossless) 코딩 등)
B. 코딩 유닛의 루마 블록에 대한 가로 길이 또는 세로 길이가 변환이 가능한 최대 루마 변환의 크기를 초과하는 경우, 예를 들어 변환이 가능한 최대 루마 변환의 크기가 64인 경우 코딩 블록의 루마 블록에 대한 크기가 128x16과 같은 경우에는 LFNST가 적용될 수 없다.
코딩 유닛 대신에 파티션 블록의 크기를 기준으로 LFNST 인덱스의 시그널링 여부를 결정할 수도 있다. 즉, 해당 루마 블록에 대한 파티션 블록의 가로 길이 또는 세로 길이가 변환이 가능한 최대 루마 변환의 크기를 초과하는 경우 LFNST 인덱스 시그널링을 생략하고 LFNST 인덱스 값을 0으로 유추할 수 있다.
듀얼 트리의 경우, 루마 성분에 대한 코딩 유닛 또는 파티션 블록과 크로마 성분에 대한 코딩 유닛 또는 파티션 블록 각각에 대하여 최대 변환 블록 크기를 초과하는지 여부가 판단된다. 즉, 루마에 대한 코딩 유닛 또는 파티션 블록의 가로와 세로 길이를 각각 최대 루마 변환 크기와 비교하여 하나라도 최대 루마 변환 크기보다 크면 LFNST를 적용하지 않고, 크로마에 대한 코딩 유닛 또는 파티션 블록의 경우에는 컬러 포맷에 대한 대응 루마 블록의 가로/세로 길이와 최대 변환이 가능한 최대 루마 변환의 크기가 비교된다. 예를 들어, 컬러 포맷이 4:2:0인 경우에는 대응 루마 블록의 가로/세로 길이는 각각 해당 크로마 블록의 2배가 되며 대응 루마 블록의 변환 크기는 해당 크로마 블록의 2배가 된다. 또 다른 예로 컬러 포맷이 4:4:4인 경우에는 대응 루마 블록의 가로/세로 길이와 변환 크기는 대응하는 크로마 블록과 같다.
싱글 트리인 경우, 루마 블록(코딩 유닛 또는 파티션 블록)에 대해서 가로 길이 또는 세로 길이가 변환이 가능한 최대 루마 변환 블록 크기를 초과하는지 여부를 체크한 후, 초과하는 경우 LFNST 인덱스 시그널링을 생략할 수 있다.
C. 만약 현재의 VVC 표준에 포함된 LFNST를 적용한다면, 파티션 블록의 가로 길이와 세로 길이 모두가 4 이상인 경우에 대해서만 LFNST 인덱스를 전송할 수 있다.
만약 현재 VVC 표준에 포함된 LFNST 이외에 2xM (1xM) 또는 Mx2 (Mx1) 블록에 대한 LFNST까지 적용한다면 파티션 블록의 크기가 2xM (1xM) 또는 Mx2 (Mx1) 블록보다 같거나 큰 경우에 대해서만 LFNST 인덱스를 전송할 수 있다. 여기서 PxQ 블록이 RxS 블록보다 같거나 크다는 뜻은 P≥R 이고 Q≥S라는 것을 의미한다.
정리하면 파티션 블록이 LFNST가 적용 가능한 최소한의 크기보다 같거나 큰 경우에 대해서만 LFNST 인덱스를 전송할 수 있다. 듀얼 트리의 경우, 루마 또는 크로마 성분에 대한 파티션 블록이 LFNST가 적용 가능한 최소한의 크기보다 같거나 큰 경우에만 LFNST 인덱스를 시그널링할 수 있다. 싱글 트리의 경우, 루마 성분에 대한 파티션 블록이 LFNST가 적용 가능한 최소한의 크기보다 같거나 큰 경우에만 LFNST 인덱스를 시그널링 할 수 있다.
본 문서에서, MxN 블록이 KxL 블록보다 크거나 같다는 것은 M이 K보다 크거나 같고 N이 L보다 크거나 같다는 것을 으미한다. MxN 블록이 KxL 블록보다 크다는 것은 M이 K보다 크거나 같고 N이 L보다 크거나 같으면서, M이 K보다 크거나 N이 L보다 크다는 것을 의미한다. MxN 블록이 KxL 블록보다 작거나 같다는 것은, M이 K보다 작거나 같고 N이 L보다 작거나 같다는 것을 의미하고, MxN 블록이 KxL 블록보다 작다는 것은 M이 K보다 작거나 같고 N이 L보다 작거나 같으면서, M이 K보다 작거나 N이 L보다 작다는 것을 뜻한다.
D. 마지막 0이 아닌 계수의 위치(last non-zero coefficient position)가 DC 위치(블록의 좌상단 위치)가 아닌 경우, 듀얼 트리 타입의 루마 블록이면 모든 파티션 블록들 중 하나라도 해당 마지막 0이 아닌 계수의 위치가 DC 위치가 아니면 LFNST 전송할 수 있다. 듀얼 트리 타입이고 크로마 블록이면 Cb에 대한 모든 파티션 블록들의(ISP 모드가 크로마 성분에 적용되지 않는 경우에는 파티션 블록들의 수는 한 개라고 간주함) 마지막 0이 아닌 계수의 위치와 Cr에 대한 모든 파티션 블록들의 (ISP 모드가 크로마 성분에 적용되지 않는 경우에는 파티션 블록들의 수가 한 개라고 간주함) 마지막 0이 아닌 계수의 위치 중 하나라도 DC 위치가 아니면 해당 LNFST 인덱스를 전송할 수 있다.
싱글 트리 타입 경우, 루마 성분, Cb 성분, Cr 성분에 대한 모든 파티션 블록들 중 하나라도 마지막 0이 아닌 계수의 위치가 DC 위치가 아니면 해당 LFNST 인덱스를 전송할 수 있다.
여기서 각 파티션 블록에 대해 변환 계수 존재 여부를 가리키는 CBF(coded block flag) 값이 0이면, LFNST 인덱스 시그널링 여부를 판단하기 위하여 해당 파티션 블록에 대한 마지막 0이 아닌 계수의 위치를 체크하지 않는다. 즉, 해당 CBF 값이 0인 경우 해당 블록에 변환이 적용되지 않으므로 LFNST 인덱스 시그널링에 대한 조건을 체크할 때 해당 파티션 블록에 대한 마지막 0이 아닌 계수의 위치를 고려하지 않는다.
예를 들어, 1) 듀얼 트리 타입이고 루마 성분인 경우 각 파티션 블록에 대해 해당 CBF 값이 0이면 LFNST 인덱스 시그널링 여부를 결정할 때 해당 파티션 블록을 제외시키고, 2) 듀얼 트리 타입이고 크로마 성분인 경우 각 파티션 블록에 대해 Cb에 대한 CBF 값이 0이고 Cr에 대한 CBF 값이 1이면 Cr에 대한 마지막 0이 아닌 계수의 위치만 체크하여 해당 LFNST 인덱스 시그널링 여부를 결정하고 3) 싱글 트리 타입인 경우 루마 성분, Cb 성분, Cr 성분의 모든 파티션 블록들에 대해 CBF 값이 1인 블록들에 대해서만 마지막 0이 아닌 계수의 위치를 체크하여 LFNST 인덱스 시그널링 여부를 결정할 수 있다.
ISP 모드인 경우에는 마지막 0이 아닌 계수의 위치를 체크하지 않도록 영상 정보를 구성할 수도 있으며, 이에 대한 실시예는 다음과 같다.
i. ISP 모드인 경우는 루마 블록와 크로마 블록 모두에 대해 마지막 0이 아닌 계수의 위치에 대한 체크를 생략하고 LFNST 인덱스 시그널링을 허용할 수 있다. 즉, 모든 파티션 블록에 대해 마지막 0이 아닌 계수의 위치가 DC 위치이거나 해당 CBF 값이 0이더라도, 해당 LFNST 인덱스 시그널링을 허용할 수 있다.
ii. ISP 모드인 경우는 루마 블록에 대해서만 마지막 0이 아닌 계수의 위치에 대한 체크를 생략하고 크로마 블록의 경우는 상술한 방식의 마지막 0이 아닌 계수의 위치에 대한 체크를 수행할 수 있다. 예를 들어, 듀얼 트리 타입이고 루마 블록인 경우는 마지막 0이 아닌 계수의 위치에 대한 체크를 하지 않고 LFNST 인덱스 시그널링을 허용하고, 듀얼 트리 타입이고 크로마 블록인 경우는 상술한 방식으로 마지막 0이 아닌 계수의 위치에 대한 DC 위치 존재 여부를 체크하여 해당 LFNST 인덱스의 시그널링 여부를 결정할 수 있다.
iii. ISP 모드이고 싱글 트리 타입인 경우는 상기 i번 또는 ii번 방식을 적용할 수 있다. 즉, ISP 모드이고 싱글 트리 타입에 i번을 적용할 경우, 루마 블록과 크로마 블록 모두에 대해 마지막 0이 아닌 계수의 위치에 대한 체크를 생략하고 LFNST 인덱스 시그널링을 허용할 수 있다. 또는 ii번을 적용하여 루마 성분에 대한 파티션 블록들에 대해서는 마지막 0이 아닌 계수의 위치에 대한 체크를 생략하고 크로마 성분에 대한 파티션 블록들(크로마 성분에 대해 ISP를 적용하지 않는 경우에는 파티션 블록의 수가 1이라고 간주할 수 있음)에 대해서는 상술한 방식으로 마지막 0이 아닌 계수의 위치에 대한 체크를 수행하여 해당 LFNST 인덱스 시그널링 여부를 결정할 수 있다.
E. 모든 파티션 블록들 중 하나의 파티션 블록에 대해서라도 LFNST 변환 계수가 존재할 수 있는 위치가 아닌 위치에 변환 계수가 존재하는 것이 확인되면 LFNST 인덱스 시그널링을 생략할 수 있다.
예를 들어, 4x4 파티션 블록과 8x8 파티션 블록의 경우는 VVC 표준에서의 변환 계수 스캐닝 순서에 따라 DC 위치부터 8개의 위치에 LFNST 변환 계수가 존재할 수 있고 나머지 위치는 모두 0으로 채워지게 된다. 또한, 4x4보다 같거나 크면서 4x4 파티션 블록 및 8x8 파티션 블록이 아닌 경우에는 VVC 표준에서의 변환 계수 스캐닝 순서에 따라 DC 위치부터 16개의 위치에 LFNST 변환 계수가 존재할 수 있고 나머지 위치는 모두 0으로 채워지게 된다.
따라서, 레지듀얼 코딩(residual coding)을 진행한 후 상기 0 값이 채워져야만 하는 영역에 0이 아닌 변환 계수가 존재하면 LFNST 인덱스 시그널링을 생략할 수 있다.
만약 파티션 블록이 2xM (1xM) 또는 Mx2 (Mx1)인 경우에 대해서도 LFNST를 적용할 수 있다면 다음과 같이 LFNST 변환 계수가 위치할 수 있는 영역을 지정할 수 있다. 변환 계수가 위치할 수 있는 영역 밖의 영역은 0으로 채워질 수 있고, LFNST가 적용되었다고 가정했을 때 0으로 채워져야만 하는 영역에 0이 아닌 변환 계수가 존재한다면 LFNST 인덱스 시그널링을 생략할 수 있다.
i. 2xM 또는 Mx2 블록에 LFNST가 적용될 수 있고 M = 8인 경우, 2x8 또는 8x2 파티션 블록에 대해서는 8개의 LFNST 변환 계수만이 생성될 수 있다. 도 18과 같은 스캐닝 순서로 변환 계수가 배치되는 경우, DC 위치부터 스캐닝 순서로 8개의 변환 계수가 배치되고 나머지 8개의 위치에 대해서는 0으로 채워질 수 있다.
2xN 또는 Nx2 (N > 8) 파티션 블록에 대해서는 16개의 LFNST 변환 계수가 생성될 수 있고 도 18과 같은 스캐닝 순서로 변환 계수가 배치는 경우, DC 위치부터 스캐닝 순서로 16개의 변환 계수가 배치되고 나머지 영역에 대해서는 0으로 채워질 수 있다. 즉, 2xN 또는 Nx2 (N > 8) 파티션 블록에서 좌상단 2x8 또는 8x2 블록 이외의 영역은 0으로 채워질 수 있다. 2x8 또는 8x2 파티션 블록에 대해서도 8개의 LFNST 변환 계수 대신에 16개의 변환 계수가 생성될 수 있으며, 이 경우에는 0으로 채워져야만 하는 영역이 발생하지 않는다. 상술하였듯이, LFNST가 적용되는 경우, 하나의 파티션 블록에서라도 0으로 채워지도록 정해진 영역에 0이 아닌 변환 계수가 존재하는 것으로 탐지된 경우, LFNST 인덱스 시그널링을 생략하고 LFNST 인덱스를 0으로 유추할 수 있다.
ii. 1xM 또는 Mx1 블록에 LFNST가 적용될 수 있고 M = 16인 경우, 1x16 또는 16x1 파티션 블록에 대해서는 8개의 LFNST 변환 계수만이 생성될 수 있다. 왼쪽부터 오른쪽 또는 위쪽부터 아래쪽 스캐닝 순서로 변환 계수가 배치되는 경우, DC 위치부터 해당 스캐닝 순서로 8개의 변환 계수가 배치되고 나머지 8개의 위치에 대해서는 0으로 채워질 수 있다.
1xN 또는 Nx1 (N > 16) 파티션 블록에 대해서는 16개의 LFNST 변환 계수가 생성될 수 있고 왼쪽부터 오른쪽 또는 위쪽부터 아래쪽 스캐닝 순서로 변환 계수가 배치되는 경우, DC 위치부터 해당 스캐닝 순서로 16개의 변환 계수가 배치되고 나머지 영역에 대해서는 0으로 채워질 수 있다. 즉, 1xN 또는 Nx1 (N > 16) 파티션 블록에서 좌상단 1x16 또는 16x1 블록 이외의 영역은 0으로 채워질 수 있다.
1x16 또는 16x1 파티션 블록에 대해서도 8개의 LFNST 변환 계수 대신에 16개의 변환 계수가 생성될 수 있으며, 이 경우에는 0으로 채워져야만 하는 영역이 발생하지 않는다. 상술하였듯이, LFNST가 적용되는 경우, 하나의 파티션 블록에서라도 0으로 채워지도록 정해진 영역에 0이 아닌 변환 계수가 존재하는 것으로 탐지된 경우, LFNST 인덱스 시그널링을 생략하고 LFNST 인덱스를 0으로 유추할 수 있다.
한편, ISP 모드인 경우 현재 VVC 표준에서는 수평 방향과 수직 방향에 대해 각각 독립적으로 길이 조건을 보고 MTS 인덱스에 대한 시그널링 없이 DCT-2 대신 DST-7을 적용하게 된다. 가로 또는 세로의 길이가 4보다 같거나 크고 16보다 같거나 작은지 여부가 판단되고, 판단 결과에 따라 1차 변환 커널이 결정된다. 따라서, ISP 모드이면서 LFNST를 적용할 수 있는 경우에 대해서는 다음과 같은 변환 조합 구성이 가능하다.
1. LFNST 인덱스가 0인 경우(LFNST 인덱스가 0으로 유추되는 경우도 포함)에 대해서는 현재 VVC 표준에 포함된 ISP일 때의 1차 변환 결정 조건을 따를 수 있다. 즉, 수평 방향과 수직 방향에 대해 각각 독립적으로 길이 조건(4보다 같거나 크고 16보다 같거나 작은 조건)의 만족 여부를 체크하여, 만족하게 되면 1차 변환을 위하여 DCT-2 대신 DST-7을 적용하고 만족하지 않으면 DCT-2를 적용할 수 있다.
2. LFNST 인덱스가 0보다 큰 경우에 대해서는 1차 변환으로 다음과 같은 두 가지 구성이 가능할 수 있다.
A. 수평 방향과 수직 방향에 대해 모두 DCT-2를 적용할 수 있다.
B. 현재 VVC 표준에 포함된 ISP일 때의 1차 변환 결정 조건을 따를 수 있다. 즉, 수평 방향과 수직 방향에 대해 각기 독립적으로 길이 조건(4보다 같거나 크고 16보다 같거나 작은 조건)의 만족 여부를 체크하여, 만족하게 되면 DCT-2 대신 DST-7을 적용하고 만족하지 않으면 DCT-2를 적용할 수 있다.
ISP 모드일 때 LFNST 인덱스는 코딩 유닛마다 전송되는 것이 아니라 파티션 블록마다 전송되도록 영상 정보를 구성할 수 있다. 이러한 경우 상술한 LFNST 인덱스 시그널링 방식에서 LFNST 인덱스가 전송되는 단위 내에 파티션 블록이 1개만 존재한다고 간주하고 LFNST 인덱스 시그널링 여부를 결정할 수 있다.
상술된 ISP 모드에서 LFNST가 적용되는 실시예들을 정리하면 다음과 같다.
(1) ISP 모드에서 LFNST가 적용되는 경우, 분할되는 변환 유닛은 최소한 4X4 이상의 크기를 가져야 한다.
(2) ISP 모드가 적용되지 않는 코딩 유닛에 적용된 기존의 LFNST 커널과 동일한 LFNST 커널이 사용될 수 있다.
(3) 모든 변환 유닛은 최대 마지막 위치 값 조건(마지막 0이 아닌 유효 계수의 위치 조건)을 만족해야 한다. 하나 이상의 변환 유닛이 최대 마지막 위치 값 조건을 만족하지 않으면, LFNST는 사용되지 않고 LFNST 인덱스는 파싱되지 않는다.
(4) ISP 모드가 적용되는 경우, 유효 계수가 DC 위치 이외에 존재해야 LFNST가 적용될 수 있다는 설정은 무시될 수 있다.
(5) LFNST가 적용된다면, ISP가 적용되는 변환 유닛의 1차 변환은 DCT-2가 사용된다.
아래 표 8은 상기 내용을 포함하는 신택스 요소를 나타내고 있다.
Figure pct00024
표 8에는 트리 타입에 따른 LFNST가 적용되는 영역의 폭 및 높이를 설정하고 있으며, LFNST 인덱스가 전송되기 위한 조건들이 나타나 있다. 표 8의 신택스 요소들은 코딩 유닛(CU) 레벨에서 시그널링 될 수 있다. 듀얼 트리(dual-tree)일 때는 루마 블록과 크로마 블록에 대해 각각 개별적인 LFNST 인덱스가 시그널링될 수 있다.
우선, LFNST가 적용되는 영역의 폭(lfnstWidth)은 코딩 유닛의 트리 타입이 듀얼 트리 크로마이면, 코딩 유닛의 폭에서 컬러 포맷이 반영된 폭으로 설정될 수 있다((treeType = = DUAL_TREE_CHROMA ) ? cbWidth / SubWidthC).
반면, 코딩 유닛의 트리 타입이 듀얼 트리 크로마가 아니면, 즉, 듀얼 트리 루마 또는 싱글 트리이면, LFNST가 적용되는 영역의 폭(lfnstWidth)은 코딩 유닛이 ISP에 의해 분할되었는지 여부에 따라 코딩 유닛을 서브 파티션의 개수로 나눈 값 또는 코딩 유닛의 폭으로 설정될 수 있다(( IntraSubPartitionsSplitType = = ISP_VER_SPLIT) ? cbWidth / NumIntraSubPartitions : cbWidth). 즉, 코딩 유닛이 ISP에 의해 수직 방향으로 분할되었다면( IntraSubPartitionsSplitType = = ISP_VER_SPLIT), LFNST가 적용되는 영역의 폭은 코딩 유닛을 서브 파티션의 개수로 나눈 값(cbWidth / NumIntraSubPartitions)으로 설정되고, 분할되지 않았다면, 코딩 유닛의 폭(cbWidth)으로 설정될 수 있다.
유사하게, LFNST가 적용되는 영역의 높이(lfnstHeight)는 코딩 유닛의 트리 타입이 듀얼 트리 크로마이면, 코딩 유닛의 높이에서 컬러 포맷이 반영된 높이로 설정될 수 있다((treeType = = DUAL_TREE_CHROMA ) ? cbHeight / SubHeightC).
반면, 코딩 유닛의 트리 타입이 듀얼 트리 크로마가 아니면, 즉, 듀얼 트리 루마 또는 싱글 트리이면, LFNST가 적용되는 영역의 높이(lfnstHeight)는 코딩 유닛이 ISP에 의해 분할되었는지 여부에 따라 코딩 유닛을 서브 파티션의 개수로 나눈 값 또는 코딩 유닛의 높이로 설정될 수 있다(( IntraSubPartitionsSplitType = = ISP_HOR_SPLIT) ? cbHeight / NumIntraSubPartitions : cbHeight). 즉, 코딩 유닛이 ISP에 의해 수평 방향으로 분할되었다면( IntraSubPartitionsSplitType = = ISP_HOR_SPLIT), LFNST가 적용되는 영역의 높이는 코딩 유닛을 서브 파티션의 개수로 나눈 값(cbHeight / NumIntraSubPartitions)으로 설정되고, 분할되지 않았다면, 코딩 유닛의 높이(cbHeight)로 설정될 수 있다.
이렇게 LFNST가 적용되기 위해서, 상기 LFNST가 적용되는 영역의 폭 및 높이는 4 이상이어야 한다(Min( lfnstWidth, lfnstHeight ) >= 4). 즉, 코딩 듀얼 트리인 경우, 해당 성분(즉, 루마 또는 크로마 성분)에 대한 가로 길이와 세로 길이가 모두 4 이상인 경우에 대해서만 LFNST 인덱스가 시그널링될 수 있고, 싱글 트리인 경우는 루마 성분에 대한 가로 길이와 세로 길이가 모두 4 이상인 경우에 대하여 LFNST 인덱스가 시그널링될 수 있다.
코딩 유닛에 ISP가 적용되는 경우, 파티션 블록의 가로 길이와 세로 길이 모두가 4 이상인 경우에 대해서만 LFNST 인덱스가 전송될 수 있다.
또한, 코딩 유닛의 루마 블록에 대한 가로 길이 또는 세로 길이가 변환이 가능한 최대 루마 변환 블록의 크기를 초과하면(Max( cbWidth, cbHeight ) <= MaxTbSizeY의 조건을 만족하지 않는 경우), LFNST가 적용될 수 없고, LFNST 인덱스는 전송되지 않는다.
또한, 마지막 0이 아닌 계수의 위치(last non-zero coefficient position)가 DC 위치(블록의 좌상단 위치)가 아닌 경우에만 LFNST 인덱스가 시그널링 될 수 있다.
듀얼 트리 타입의 루마 블록이면 마지막 0이 아닌 계수의 위치가 DC 위치가 아니면 LFNST 인덱스가 전송된다. 듀얼 트리 타입의 크로마 블록이면 Cb에 대한 마지막 0이 아닌 계수의 위치와 Cr에 대한 마지막 0이 아닌 계수의 위치 중 하나라도 DC 위치가 아니면 해당 LNFST 인덱스가 전송된다. 싱글 트리 타입의 경우, 루마 성분, Cb 성분, Cr 성분 중 하나라도 해당 마지막 0이 아닌 계수의 위치가 DC 위치가 아니면 LFNST 인덱스가 전송될 수 있다.
한편, 코딩 유닛에 ISP가 적용되는 경우, 마지막 0이 아닌 계수의 위치를 체크하지 않고 LFNST 인덱스가 시그널링될 수 있다(IntraSubPartitionsSplitType ! = ISP_NO_SPLIT | | LfnstDcOnly = = 0). 즉, 모든 파티션 블록에 대한 마지막 0이 아닌 계수의 위치가 DC 위치에 위치하더라도 LFNST 인덱스 시그널링을 허용할 수 있다. DC 위치는 해당 블록의 좌상단 위치를 나타낸다.
마지막으로, LFNST 변환 계수가 존재할 수 있는 위치가 아닌 위치에 변환 계수가 존재하는 것이 확인된 경우 LFNST 인덱스 시그널링을 생략할 수 있다(LfnstZeroOutSigCoeffFlag = = 1).
코딩 유닛에 ISP가 적용되는 경우, 모든 파티션 블록들 중 하나의 파티션 블록에 대해서라도 LFNST 변환 계수가 존재할 수 있는 위치가 아닌 위치에 변환 계수가 존재하는 것이 확인되면 LFNST 인덱스 시그널링을 생략할 수 있다.
이하에서는, ISP 모드인 경우 8x8 LFNST로부터 샘플링된 LFNST 커널을 적용하는 실시예를 살펴본다.
일 예에 따라, 8x8 LFNST(순방향 LFNST에 대해 16x48 행렬, 예컨대, 현재 VVC 표준에 포함된 8x8 LFNST)로부터 커널 데이터를 샘플링하여 좌상단 4x4 블록에 적용할 수 있는 LFNST 커널 (A), 좌상단 4x8 블록에 적용할 수 있는 LFNST 커널 (B), 좌상단 8x4 블록에 적용할 수 있는 LFNST 커널(C)을 도출할 수 있다.
도출된 커널들은 ISP 모드이면서 LFNST가 적용될 때 LFNST 커널로 사용될 수 있다. 예를 들어, 4x4 ISP 파티션 블록에 대해서는 (A)를 적용하고 Nx4 ISP 파티션 블록(N ≥ 8)에 대해서는 (B)를 적용하며 4xN ISP 파티션 블록(N ≥ 8)에 대해서는 (C)를 적용할 수 있다. 가로 길이와 세로 길이가 모두 8보다 같거나 큰 ISP 파티션에 대해서는 기존의 8x8 LFNST(예컨대, 현재 VVC 표준에 포함된 8x8 LFNST)를 적용할 수 있다.
LFNST 계산량을 통일하고 메모리 사용을 감소시키기 위하여 LFNST을 위한 16×48 LFNST 커널이 제안되고 있다. 예를 들어, 4×N 또는 N×4과 같은 사이즈가 작은 블록은 8×N 또는 N×8 블록의 일부로 간주될 수 있다. 이를 위하여 16×48 LFNST 커널과 중복되는 부분, 즉 16×48 LFNST 커널의 일부가 LFNST 커널로 사용될 수 있다.
도 19는 일 예에 따른 ISP 모드인 경우, 샘플링된 LFNST 커널을 설명하기 위한 도면이다.
순방향 LFNST의 경우, 16×48 LFNST 커널이 4×N 또는 N×4 블록에 적용될 때, 16×48 LFNST 커널과 겹쳐지는 행렬이 2차 변환을 위하여 사용될 수 있다.
도 19는 4×4, 8×4, 4×8 and 16×4 영역에 적용될 수 있는 16×48 LFNST 커널을 나타낸 것이다. 도 19의 (a)는 4×4 영역에 16×48 LFNST 커널을 적용할 경우, 4×4 영역과 겹쳐지는 부분의 커널만을 사용하는 것을 나타내고, 도 19의 (b)는 8×4 영역에 16×48 LFNST 커널을 적용할 경우, 8×4 영역과 겹쳐지는 부분의 커널만을 사용하는 것을 나타내고, 도 19의 (c)는 4×8 영역에 16×48 LFNST 커널을 적용할 경우, 4×8 영역과 겹쳐지는 부분의 커널만을 사용하는 것을 나타낸다. 도 19의 (d)는 16×4 영역에 16×48 LFNST 커널을 적용할 경우, 16×4 영역 중 16×48 LFNST 커널과 겹치는 16×32 행렬이 사용될 수 있음을 나타내고 있다.
역방향 LFNST의 경우, 8개 또는 16의 계수가 입력되고, 출력으로 16개 또는 48개의 계수가 출력될 수 있다. 한편, 블록 크기 영역 내의 샘플, 즉 계수에 대해서만 변환을 위한 연산이 수행될 수 있고, 나머지 샘플들은 계산되지 않는다. 예를 들어, 4×4 변환 유닛의 경우, 8개의 계수와 16×48 LFNST 커널이 주어지면, 좌상단 4×4 영역만이 출력으로 계산되고, 4×4 영역 밖의 계수는 연산되지 않는다.
계수 당 최악의 경우 곱셈 연산 횟수를 유지하기 위하여 8x4 및 4x8 블록의 경우 8 개의 계수만 계산되며, 이는 기존의 4x4 및 8x8 변환 유닛에 적용된 LFNST의 연산 횟수와 일치한다.
이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 20은 본 문서의 일 실시예에 따른 비디오 디코딩 장치의 동작을 도시하는 흐름도이다.
도 20에 개시된 각 단계는 도 2 내지 도 19에서 전술된 내용들 중 일부를 기반으로 한 것이다. 따라서, 도 2 내지 도 19에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다.
일 실시예에 따른 디코딩 장치(200)는, 비트스트림으로부터 레지듀얼 정보를 신할 수 있다(S2010).
보다 구체적으로, 디코딩 장치(200)는 비트스트림으로부터 현재 블록에 대한 양자화된 변환 계수들에 관한 정보를 디코딩할 수 있고, 현재 블록에 대한 양자화된 변환 계수들에 관한 정보를 기반으로 대상 블록에 대한 양자화된 변환 계수들을 도출할 수 있다. 대상 블록에 대한 양자화된 변환 계수들에 관한 정보는 SPS(Sequence Parameter Set) 또는 슬라이스 헤더(slice header)에 포함될 수 있고, 간소화 변환(RST)이 적용되는지 여부에 대한 정보, 간소화 팩터에 관한 정보, 간소화 변환을 적용하는 최소 변환 사이즈에 대한 정보, 간소화 변환을 적용하는 최대 변환 사이즈에 대한 정보, 간소화 역변환 사이즈, 변환 세트에 포함된 변환 커널 매트릭스 중 어느 하나를 지시하는 변환 인덱스에 대한 정보 중 적어도 하나를 포함할 수 있다.
또한, 디코딩 장치는 현재 블록에 대한 인트라 예측 모드에 대한 정보 및 현재 블록에 ISP가 적용되는지 여부에 대한 정보를 더 수신할 수 있다. 디코딩 장치는 ISP 코딩 또는 ISP 모드를 적용할지 여부를 지시하는 플래그 정보를 수신 및 파싱함으로써 현재 블록이 소정 개수의 서브 파티션 변환 블록들로 분할되는지 여부를 도출할 수 있다. 여기서 현재 블록은 코딩 블록일 수 있다. 또한, 디코딩 장치는 현재 블록이 어떠한 방향으로 분할될지를 지시하는 플래그 정보를 통하여 분할되는 서브 파티션 블록의 크기 및 개수를 도출할 수 있다.
예를 들어, 도 14와 같이 현재 블록의 크기(폭 x 높이)가 8x4이면, 현재 블록은 수직 방향으로 분할되어 2개의 서브 블록으로 나누어 질 수 있고, 현재 블록의 크기(폭 x 높이)가 4x8이면, 현재 블록은 수평 방향으로 분할되어 2개의 서브 블록으로 나누어 질 수 있다. 또는, 도 15에 도시되어 있는 바와 같이, 현재 블록의 크기(폭 x 높이)가 4x8 또는 8x4 보다 큰 경우, 즉 현재 블록의 크기가 1) 4xN 또는 Nx4 (N ≥ 16) 이거나 2) M x N (M ≥ 8, N ≥ 8)인 경우, 현재 블록은 수평 또는 수직 방향으로 4개의 서브 블록으로 분할될 수 있다.
현재 블록에서 분할된 서브 파티션 블록에는 동일한 인트라 예측 모드가 적용되고, 디코딩 장치는 서브 파티션 블록 별로 예측 샘플을 도출할 수 있다. 즉, 디코딩 장치는 서브 파티션 블록들의 분할 형태에 따라, 예를 들어, 수평(Horizontal) 또는 수직(Verticial), 왼쪽에서 오른쪽 또는 위쪽에서 아래쪽으로 순차적으로 인트라 예측을 수행한다. 가장 왼쪽 또는 가장 위쪽 서브 블록에 대해서는 통상적인 인트라 예측 방식과 같이 이미 코딩된 코딩 블록의 복원 픽셀을 참조하게 된다. 또한, 뒤이은 내부의 서브 파티션 블록의 각 변에 대해 이전 서브 파티션 블록과 인접하지 않은 경우에는 해당 변에 인접한 참조 픽셀들을 도출하기 위하여, 통상적인 인트라 예측 방식과 같이 이미 코딩된 인접한 코딩 블록의 복원 픽셀을 참조한다.
디코딩 장치(200)는, 현재 블록에 대한 레지듀얼 정보, 즉 양자화된 변환 계수들에 대하여 역양자화를 수행하여 변환 계수들을 도출할 수 있다(S2020).
도출된 변환 계수들은 4 x 4 블록 단위로 역방향 대각 스캔 순서에 따라 배열될 수 있고, 4 x 4 블록 내 변환 계수들 역시 역방향 대각 스캔 순서에 따라 배열될 수 있다. 즉, 역양자화가 수행된 변환 계수들은 VVC나 HEVC에서와 같은 비디오 코덱에서 적용되고 있는 역방향 스캔 순서를 따라 배치될 수 있다.
이러한 레지듀얼 정보를 기반으로 도출된 변환 계수는 상기와 같이 역양자화된 변환 계수일 수 있고, 양자화된 변환 계수일 수도 있다. 즉, 변환 계수는 양자화와 여부와 무관하게 현재 블록에서 0이 아닌 데이터인지 여부를 체크할 수 있는 데이터이면 된다.
디코딩 장치는 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 상기 변환 계수가 존재하는지 여부를 판단할 수 있고, 제2 영역에 변환 계수가 존재하지 않으면, LFNST 인덱스를 파싱할 수 있다. 또한, 디코딩 장치는 현재 블록이 복수의 서브 파티션 블록으로 분할되고, 복수의 서브 파티션 블록에 대한 개별적인 제2 영역 모두에 변환 계수가 존재하지 않는지 여부를 판단할 수 있다(S2030)
디코딩 장치는 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 유효 계수가 존재하는지 여부를 나타내는 제1 변수를 도출함으로써, 제2 영역에 대한 제로 아웃이 수행되었는지 여부를 체크할 수 있다.
제1 변수는 LFNST 적용 시 제로 아웃이 수행된 것을 나타낼 수 있는 변수 LfnstZeroOutSigCoeffFlag 일 수 있다. 제1 변수는 최초에 1로 설정되고, 제2 영역에 유효 계수가 존재하면, 상기 제2 변수는 0으로 변경될 수 있다.
변수 LfnstZeroOutSigCoeffFlag는 마지막 0이 아닌 계수가 존재하는 서브 블록의 인덱스가 0보다 크고 변환 블록의 폭 및 높이가 모두 4와 같거나 또는 크거나, 0이 아닌 마지막 계수가 존재하는 서브 블록 내부에서의 0인 아닌 계수의 마지막 위치가 7보다 크고, 변환 블록의 크기가 4x4 또는 8x8인 경우, 0으로 도출될 수 있다. 서브 블록이란 레지듀얼 코딩에서 코딩 단위로 사용되는 4x4 블록을 의미하는 것으로, CG(Coefficient Group)로 명명될 수도 있다. 서브 블록의 인덱스가 0이라는 것은 좌상단 4x4 서브 블록을 가리킨다.
즉, 변환 블록에서 LFNST 변환 계수가 존재할 수 있는 좌상단 영역 이외의 영역에서 0이 아닌 계수가 도출되거나, 4x4 블록 및 8x8 블록에 대해 스캔 순서상 8번째 위치를 벗어나서 0이 아닌 계수가 존재하면 변수 LfnstZeroOutSigCoeffFlag는 0으로 설정된다.
일 예에 따라, 코딩 유닛에 ISP가 적용되는 경우, 모든 서브 파티션 블록들 중 하나의 서브 파티션 블록에 대해서라도 LFNST 변환 계수가 존재할 수 있는 위치가 아닌 위치에 변환 계수가 존재하는 것이 확인되면 LFNST 인덱스 시그널링을 생략할 수 있다. 즉, 하나의 서브 파티션 블록에서 제로 아웃이 수행되지 않고 제2 영역에 유효 계수가 존재하는 경우, LFNST 인덱스 시그널링 되지 않는다.
한편, 제1 영역은 현재 블록의 크기를 기반으로 도출될 수 있다.
예를 들어, 현재 블록의 크기가 4x4 또는 8x8이면, 제1 영역은 현재 블록의 좌상단으로부터 스캔 방향으로 8번째 샘플 위치까지일 수 있다. 현재 블록이 분할되면, 서브 파티션 블록의 크기가 4x4 또는 8x8 일 때, 제1 영역은 서브 파티션 블록의 좌상단으로부터 스캔 방향으로 8번째 샘플 위치까지일 수 있다.
현재 블록의 크기가 4x4 또는 8x8이면 순방향 LFNST를 통하여 8개의 데이터가 출력되므로, 디코딩 장치로 수신되는 8개의 변환 계수는 도 11의 (a) 및 도 12의 (a)와 같이, 현재 블록의 좌상단으로부터 스캔 방향으로 8번째 샘플 위치까지 배열될 수 있다.
또한, 현재 블록의 크기가 4x4 또는 8x8이 아닌 나머지 경우에는 제1 영역은 현재 블록의 좌상단의 4x4 영역일 수 있다. 현재 블록의 크기가 4x4 또는 8x8이 아니면 순방향 LFNST를 통하여 16개의 데이터가 출력되므로, 디코딩 장치로 수신되는 16개의 변환 계수는 도 11의 (b) 내지 (d), 및 도 12의 (b)와 같이, 현재 블록의 좌상단 4x4 영역에 배열될 수 있다.
한편, 제1 영역에 배열될 수 있는 변환 계수는 도 7과 같이 대각 스캔 방향에 따라 배열될 수 있다.
상술된 바와 같이 디코딩 장치는 현재 블록이 서브 파티션 블록으로 분할되는 경우, 복수의 서브 파티션 블록에 대한 개별적인 제2 영역 모두에 변환 계수가 존재하지 않으면, LFNST 인덱스를 파싱할 수 있다. 어느 하나의 서브 파티션 블록에 대한 제2 영역에 변환 계수가 존재하는 경우, LFNST 인덱스는 파싱되지 않는다.
상술된 바와 같이, 폭 및 높이가 4 이상인 서브 파티션 블록에 LFNST가 적용될 수 있고, 코딩 블록인 현재 블록에 대한 LFNST 인덱스가 복수의 서브 파티션 블록에 적용될 수 있다.
한편, LFNST 반영된 제로 아웃(LFNST 적용에 수반될 수 있는 모든 제로 아웃을 포함함)은 서브 파티션 블록에도 그대로 적용되므로, 제1 영역 역시 서브 파티션 블록에도 동일하게 적용된다. 즉, 분할된 서브 파티션 블록이 4x4 블록 또는 8x8 블록이면, 서브 파티션 블록의 좌상단으로부터 스캔 방향으로 8번째까지의 변환 계수에 LFNST가 적용되고, 서브 파티션 블록이 4x4 블록 또는 8x8 블록이 아니면, 서브 파티션 블록의 좌상단 4X4 영역의 변환 계수에 LFNST가 적용될 수 있다.
한편, 일 예에 따라, 디코딩 장치는 LFNST 인덱스의 파싱 여부를 판단하기 위하여 현재 블록의 DC 위치를 제외한 영역에 상기 변환 계수, 즉 유효한 계수가 존재하는지 여부를 나타내는 제2 변수를 도출할 수 있다.
제2 변수는 레지듀얼 코딩 과정에서 도출될 수 있는 변수 LfnstDcOnly일 수 있다. 제2 변수는 현재 블록 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0이고, 서브 블록 내 상기 마지막 유효 계수의 위치가 0 보다 크면, 0으로 도출될 수 있고, 제2 변수가 0이면, LFNST 인덱스가 파싱될 수 있다. 서브 블록이란 레지듀얼 코딩에서 코딩 단위로 사용되는 4x4 블록을 의미하는 것으로, CG(Coefficient Group)로 명명될 수도 있다. 서브 블록의 인덱스가 0이라는 것은 좌상단 4x4 서브 블록을 가리킨다
제2 변수는 최초에는 1로 설정될 수 있고, DC 위치를 제외한 영역에 유효 계수가 존재하는지 여부에 따라 1이 유지될 수도 있고, 0으로 변경될 수 있다.
변수 LfnstDcOnly는 하나의 코딩 유닛 내의 적어도 하나의 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하는지 여부를 나타내며, 하나의 코딩 유닛 내의 적어도 하나의 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하면 0이 되고, 하나의 코딩 유닛 내의 모든 변환 블록에 대해 DC 성분이 아닌 위치에 0이 아닌 계수가 존재하지 않으면 1이 될 수 있다.
디코딩 장치는 도출 결과에 기초하여 LFNST 인덱스를 파싱할 수 있다(S2040).
즉, 디코딩 장치는 현재 블록이 복수의 서브 파티션 블록으로 분할되는 경우, 복수의 서브 파티션 블록에 대한 개별적인 제2 영역 모두에 변환 계수가 존재하지 않으면 LFNST 인덱스를 파싱하여 LFNST를 수행할 수 있다.
LFNST 인덱스 정보는 신택스 정보로 수신되고, 신택스 정보는 0과 1을 포함하는 이진화된 빈 스트링으로 수신될 수 있다.
본 실시예에 따른 LFNST 인덱스의 신택스 요소는 역 LFNST 또는 역 비분리 변환이 적용되는지 여부 및 변환 세트에 포함된 변환 커널 매트릭스 중 어느 하나를 지시할 수 있으며, 변환 세트가 두 개의 변환 커널 매트릭스을 포함하는 경우, 변환 인덱스의 신택스 요소의 값은 3가지일 수 있다.
즉, 일 실시예에 따라, LFNST 인덱스에 대한 신택스 요소 값은 대상 블록에 역 LFNST가 적용되지 않는 경우를 지시하는 0, 변환 커널 매트릭스 중 첫 번째 변환 커널 매트릭스를 지시하는 1, 변환 커널 매트릭스 중 두 번째 변환 커널 매트릭스를 지시하는 2 를 포함할 수 있다.
상기 인트라 예측 모드 정보 및 LFNST 인덱스 정보는 코딩 유닛 레벨에서 시그널링 될 수 있다.
한편, 디코딩 장치는 현재 블록이 복수의 서브 파티션 블록으로 분할되는 것에 기초하여, 제2 변수의 도출 없이 LFNST 인덱스를 파싱할 수 있다.
일 예에 따라, 디코딩 장치는 현재 블록이 복수의 서브 파티션 블록으로 분할되지 않고, 제2 변수가 DC 위치를 제외한 영역에 변환 계수가 존재하는 것을 나타내면 LFNST 인덱스를 파싱할 수 있고, 만약, 현재 블록이 복수의 서브 파티션 블록으로 분할되는 경우 제2 변수를 체크하지 않고 또는 제1 변수 값을 무시하고 LFNST 인덱스를 파싱할 수 있다.
즉, 현재 블록에 ISP가 적용되는 경우 모든 서브 파티션 블록에 대한 마지막 0이 아닌 계수의 위치가 DC 위치에 위치하더라도 LFNST 인덱스 시그널링을 허용할 수 있다.
디코딩 장치는 LFNST 인덱스 및 LFNST를 위한 LFNST 매트릭스를 기반으로 변환 계수로부터 수정된 변환 계수들을 도출할 수 있다 (S2050).
LFNST는 변환 대상이 되는 계수들을 수직 또는 수평 방향으로 분리하여 변환하는 1차 변환과 달리 계수들을 특정 방향으로 분리하지 않고 변환을 적용하는 비분리 변환이다. 이런 비분리 변환은 블록 전체 영역이 아닌 저주파 영역에만 순방향 변환을 적용하는 저주파 비분리 변환일 수 있다.
디코딩 장치는 인트라 예측 모드 정보로부터 도출된 인트라 예측 모드에 기초하여 LFNST 매트릭스를 포함하는 LFNST 세트를 결정하고, LFNST 세트 및 LFNST 인덱스를 기반으로 복수의 LFNST 매트릭스 중 어느 하나를 선택할 수 있다.
이 때, 현재 블록에서 분할된 서브 파티션 변환 블록에는 동일한 LFNST 세트 및 동일한 LFNST 인덱스가 적용될 수 있다. 즉, 서브 파티션 변환 블록에는 동일한 인트라 예측 모드가 적용되므로, 인트라 예측 모드를 기반으로 결정되는 LFNST 세트 역시 모든 서브 파티션 변환 블록에 동일하게 적용될 수 있다. 또한, LFNST 인덱스는 코딩 유닛 레벨에서 시그널링 되므로, 현재 블록에서 분할된 서브 파티션 변환 블록에는 동일한 LFNST 매트릭스가 적용될 수 있다.
한편, 상술된 바와 같이, 변환의 대상이 되는 변환 블록의 인트라 예측 모드에 따라 변환 세트가 결정될 수 있고, 역 LFNST는 LFNST 인덱스에 의하여 지시되는 변환 세트에 포함되어 있는 변환 커널 매트릭스, 즉 LFNST 행렬 중 어느 하나에 기초하여 수행될 수 있다. 역 LFNST에 적용되는 행렬은 역 LFNST 행렬 또는 LFNST 행렬로 명명될 수 있으며, 이러한 행렬은 순방향 LFNST에 사용되는 행렬과 트랜스포스 관계에 있으면 그 명칭은 무엇이든 무관하다.
일 예시에서, 역 LFNST 행렬은 열의 개수가 행의 개수보다 적은 비정방형 매트릭스일 수 있다.
한편, LFNST의 출력 데이터인 변환 계수들은 현재 블록 또는 서브 파티션 변환 블록의 크기에 기반하여 소정 개수로 도출될 수 있다. 예를 들어, 현재 블록 또는 서브 파티션 변환 블록의 높이 및 폭이 8 이상이면, 도 6의 왼쪽과 같은 48개의 변환 계수들이 도출되고, 서브 파티션 변환 블록의 폭 및 높이가 8 이상이 아니면, 즉 서브 파티션 변환 블록의 폭 및 높이가 4 이상이면서 서브 파티션 변환 블록의 폭 또는 높이가 8 미만이면, 도 6의 오른쪽과 같은 16개의 변환 계수들이 도출될 수 있다.
도 6과 같이, 48개의 변환 계수들은 서브 파티션 변환 블록 좌상단 8x8 영역 중 좌상단, 우상단 및 좌하단의 4x4 영역에 배열될 수 있고, 16개의 변환 계수들은 서브 파티션 변환 블록 좌상단 4x4 영역에 배열될 수 있다.
48개의 변환 계수들 및 16개의 변환 계수들은 서브 파티션 변환 블록의 인트라 예측 모드에 따라 수직 또는 수평 방향으로 배열될 수 있다. 예를 들어, 인트라 예측 모드가 대각선 방향(도 4에서 34번 모드)을 기준으로 수평 방향(도 4에서 2번 내지 34번 모드)이면, 변환 계수들은 도 6의 (a)와 같이 수평 방향, 즉 행 우선 방향순으로 배열될 수 있고, 인트라 예측 모드가 대각선 방향을 기준으로 수직 방향(도 4에서 35번 내지 66번 모드)이면, 변환 계수들은 도 6의 (b)와 같이 수평 방향, 즉 열 우선 방향순으로 배열될 수 있다.
디코딩 장치는 수정된 변환 계수에 대한 1차 역변환을 기반으로 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S2060).
이때 역 1차 변환은 통상적인 분리 변환이 사용될 수 있고, 상술된 MTS가 사용될 수도 있다.
후속적으로 디코딩 장치(200)는, 현재 블록에 대한 레지듀얼 샘플들 및 현재 블록에 대한 예측 샘플들을 기반으로 복원 샘플들을 생성할 수 있다(S2070).
이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 21은 본 문서의 일 실시예에 따른 비디오 인코딩 장치의 동작을 도시하는 흐름도이다.
도 21에 개시된 각 단계는 도 3 내지 도 19에서 전술된 내용들 중 일부를 기반으로 한 것이다. 따라서, 도 1 및 도 3 내지 도 198에서 전술된 내용과 중복되는 구체적인 내용은 설명을 생략하거나 간단히 하기로 한다.
일 실시예에 따른 인코딩 장치(100)는, 현재 블록에 적용되는 인트라 예측 모드에 기초하여 현재 블록에 대한 예측 샘플을 도출할 수 있다(S2110).
인코딩 장치는 현재 블록에 ISP가 적용되는 경우 서브 파티션 변환 블록 별로 예측을 수행할 수 있다.
인코딩 장치는 현재 블록, 즉 코딩 블록에 ISP 코딩 또는 ISP 모드를 적용할지 여부를 판단할 수 있고, 판단 결과에 따라 현재 블록이 어떠한 방향으로 분할될지를 결정하고 분할되는 서브 블록의 크기 및 개수를 도출할 수 있다.
예를 들어, 도 14와 같이 현재 블록의 크기(폭 x 높이)가 8x4이면, 현재 블록은 수직 방향으로 분할되어 2개의 서브 블록으로 나누어 질 수 있고, 현재 블록의 크기(폭 x 높이)가 4x8이면, 현재 블록은 수평 방향으로 분할되어 2개의 서브 블록으로 나누어 질 수 있다. 또는, 도 15에 도시되어 있는 바와 같이, 현재 블록의 크기(폭 x 높이)가 4x8 또는 8x4 보다 큰 경우, 즉 현재 블록의 크기가 1) 4xN 또는 Nx4 (N ≥ 16) 이거나 2) M x N (M ≥ 8, N ≥ 8)인 경우, 현재 블록은 수평 또는 수직 방향으로 4개의 서브 블록으로 분할될 수 있다.
현재 블록에서 분할된 서브 파티션 변환 블록에는 동일한 인트라 예측 모드가 적용되고, 인코딩 장치는 서브 파티션 변환 블록 별로 예측 샘플을 도출할 수 있다. 즉, 인코딩 장치는 서브 파티션 변환 블록들의 분할 형태에 따라, 예를 들어, 수평(Horizontal) 또는 수직(Verticial), 왼쪽에서 오른쪽 또는 위쪽에서 아래쪽으로 순차적으로 인트라 예측을 수행한다. 가장 왼쪽 또는 가장 위쪽 서브 블록에 대해서는 통상적인 인트라 예측 방식과 같이 이미 코딩된 코딩 블록의 복원 픽셀을 참조하게 된다. 또한, 뒤이은 내부의 서브 파티션 변환 블록의 각 변에 대해 이전 서브 파티션 변환 블록과 인접하지 않은 경우에는 해당 변에 인접한 참조 픽셀들을 도출하기 위하여, 통상적인 인트라 예측 방식과 같이 이미 코딩된 인접한 코딩 블록의 복원 픽셀을 참조한다.
인코딩 장치(100)는, 예측 샘플들에 기초하여 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S2120).
또한, 인코딩 장치(100)는, 레지듀얼 샘플에 대한 1차 변환을 기반으로 현재 블록에 대한 변환 계수들을 도출할 수 있다(S2130).
1차 변환은 복수의 변환 커널들을 통하여 수행될 수 있고, 이 경우, 인트라 예측 모드를 기반으로 변환 커널이 선택될 수 있다.
인코딩 장치(100)는 현재 블록에 대한 변환 계수들에 대하여 2차 변환, 또는 비분리 변환, 구체적으로 LFNST를 수행할지 여부를 결정하고, 변환 계수에 LFNST를 적용하여 수정된 변환 계수들을 도출할 수 있다.
LFNST는 변환 대상이 되는 계수들을 수직 또는 수평 방향으로 분리하여 변환하는 1차 변환과 달리 계수들을 특정 방향으로 분리하지 않고 변환을 적용하는 비분리 변환이다. 이러한 비분리 변환은 변환 대상이 되는 대상 블록 전체가 아닌 저주파 영역에만 변환을 적용하는 저주파 비분리 변환일 수 있다.
인코딩 장치는 현재 블록에 ISP가 적용되는 경우 분할된 서브 파티션 블록의 높이 및 폭에 LFNST를 적용할 수 있는지 여부를 판단할 수 있다.
인코딩 장치는 분할된 서브 파티션 블록의 높이 및 폭에 LFNST를 적용할 수 있는지 여부를 판단할 수 있다. 이 경우, 디코딩 장치는 서브 파티션 블록의 높이 및 폭이 4 이상일 때, LFNST 인덱스를 파싱할 수 있다.
또한, 인코딩 장치는 현재 블록의 트리 타입 및 컬러 포맷에 기초하여 LFNST를 적용할 수 있는지 여부를 판단할 수 있다.
일 예에 따라, 현재 블록의 트리 타입이 듀얼 트리 크로마이면, 인코딩 장치는 현재 블록의 크로마 성분 블록에 대응하는 높이 및 폭이 4 이상일 때, LFNST를 적용할 수 있다고 판단할 수 있다.
또한, 일 예에 따라 인코딩 장치는 현재 블록의 트리 타입이 싱글 트리 또는 듀얼 트리 루마이면, 현재 블록의 루마 성분 블록에 대응하는 높이 및 폭이 4 이상일 때, LFNST를 적용할 수 있는 것으로 판단할 수 있다.
예컨대, 현재 블록의 트리 타입이 듀얼 트리 크로마이면 ISP가 적용되지 않을 수 있고, 이 경우 인코딩 장치는 현재 블록의 크로마 성분 블록에 대응하는 높이 및 폭이 4 이상일 때, LFNST를 적용할 수 있는 것으로 판단할 수 있다.
반면, 현재 블록의 트리 타입이 듀얼 트리 크로마가 아닌 듀얼 트리 루마 또는 싱글 트리이면, 인코딩 장치는 현재 블록에 ISP가 적용되는지 여부에 따라 현재 블록의 루마 성분 블록에 대한 서브 파티션 블록의 높이 및 폭 또는 현재 블록의 높이 및 폭이 4 이상일 때, LFNST를 적용할 수 있는 것으로 판단할 수 있다.
또한, 일 예에 따라, 현재 블록은 코딩 유닛이고, 코딩 유닛의 폭 및 높이가 변환이 가능한 최대 루마 변환의 크기보다 작거나 같을 때, 인코딩 장치는 LFNST를 적용할 수 있는 것으로 판단할 수 있다.
LFNST를 수행하는 것으로 결정되면, 인코딩 장치(100)는 인트라 예측 모드에 매핑되는 LFNST 세트와 LFNST 세트에 포함되는 LFNST 매트릭스에 기초하여 현재 블록 또는 서브 파티션 변환 블록에 대한 수정된 변환 계수를 도출할 수 있다(S2140).
인코딩 장치(100)는 현재 블록에 적용되는 인트라 예측 모드에 따른 매핑 관계에 기반하여 LFNST 세트를 결정하고, LFNST 세트에 포함되어 있는 두 개 중 어느 하나의 LFNST 행렬을 기반으로 LFNST, 즉 비분리 변환을 수행할 수 있다.
이 때, 현재 블록에서 분할된 서브 파티션 변환 블록에는 동일한 LFNST 세트 및 동일한 LFNST 인덱스가 적용될 수 있다. 즉, 서브 파티션 변환 블록에는 동일한 인트라 예측 모드가 적용되므로, 인트라 예측 모드를 기반으로 결정되는 LFNST 세트 역시 모든 서브 파티션 변환 블록에 동일하게 적용될 수 있다. 또한, LFNST 인덱스는 코딩 유닛 단위로 인코딩 되므로, 현재 블록에서 분할된 서브 파티션 변환 블록에는 동일한 LFNST 행렬이 적용될 수 있다.
상술된 바와 같이, 변환의 대상이 되는 변환 블록의 인트라 예측 모드에 따라 변환 세트가 결정될 수 있다. LFNST에 적용되는 행렬은 역방향 LFNST에 사용되는 행렬과 트랜스포스 관계에 있다.
일 예시에서, LFNST 행렬은 행의 개수가 열의 개수보다 적은 비정방형 매트릭스일 수 있다.
LFNST의 입력 데이터로 사용되는 변환 계수가 위치하는 영역은 서브 파티션 변환 블록의 크기에 기반하여 도출될 수 있다. 예를 들어, 서브 파티션 변환 블록의 높이 및 폭이 8 이상이면, 상기 영역은 도 6의 왼쪽과 같이 서브 파티션 변환 블록 좌상단 8x8 영역 중 좌상단, 우상단 및 좌하단의 4x4 영역이고, 서브 파티션 변환 블록의 높이 및 폭이 8 이상이 아닌 나머지 경우이면, 상기 영역은 도 6의 오른쪽과 같이 현재 블록 좌상단 4x4 영역일 수 있다.
상기 영역의 변환 계수들은 LFNST 행렬과의 곱셈 연산을 위하여 서브 파티션 변환 블록의 인트라 예측 모드에 따라 수직 또는 수평 방향으로 읽어 1차원 벡터를 구성할 수 있다.
48개의 수정된 변환 계수들 또는 16개의 수정된 변환 계수들은 서브 파티션 변환 블록의 인트라 예측 모드에 따라 수직 또는 수평 방향으로 읽혀서 1차원으로 배열될 수 있다. 예를 들어, 인트라 예측 모드가 대각선 방향(도 3에서 34번 모드)을 기준으로 수평 방향(도 3에서 2번 내지 34번 모드)이면, 변환 계수들은 도 6의 (a)와 같이 수평 방향, 즉 행 우선 방향순으로 배열될 수 있고, 인트라 예측 모드가 대각선 방향을 기준으로 수직 방향(도 3에서 35번 내지 66번 모드)이면, 변환 계수들은 도 6의 (b)와 같이 수평 방향, 즉 열 우선 방향순으로 배열될 수 있다.
일 실시예에서, 인코딩 장치는 LFNST를 적용할 조건에 해당하는지 여부를 판단하고, 상기 판단을 기반으로 LFNST 인덱스를 생성 및 인코딩하는 단계, 변환 커널 매트릭스를 선택하는 단계 및 LFNST를 적용할 조건에 해당하는 경우, 선택된 변환 커널 매트릭스 및/또는 간소화 팩터를 기반으로 레지듀얼 샘플들에 대하여 LFNST를 적용하는 단계를 포함할 수 있다. 이때, 간소화 변환 커널 매트릭스의 사이즈는 간소화 팩터를 기반으로 결정될 수 있다.
한편, 일 예에 따라 인코딩 장치는 수정된 변환 계수들이 존재하지 않는 현재 블록의 제2 영역을 제로 아웃할 수 있다(S2150).
도 11 및 도 12와 같이, 수정된 변환 계수들이 존재하지 않은 현재 블록의 나머지 영역은 모두 0으로 처리될 수 있다. 이러한 제로 아웃으로 인하여 전체 변환 과정의 수행에 필요한 계산량이 감소되고, 변환 과정 전체에 필요한 연산량이 감소하여 변환 수행에 필요한 전력 소비를 줄일 수 있다. 또한, 변환 과정에 수반되는 지연 시간(latency)을 감소되어 영상 코딩 효율이 증가될 수 있다.
또한, 인코딩 장치는 현재 블록이 복수의 서브 파티션 블록으로 분할되고, 복수의 서브 파티션 블록에 모두에 대하여 제로 아웃이 수행되는 것에 기초하여 LFNST 인덱스가 시그널링되도록 영상 정를 구성할 수 있다(S2160).
또한, 일 예에 따라, 인코딩 장치는 현재 블록의 DC 위치를 제외한 영역에 변환 계수가 존재하는 것에 기초하여 LFNST 매트릭스를 지시하는 LFNST 인덱스가 시그널링되도록 영상 정보를 구성할 수 있고, 현재 블록이 복수의 서브 파티션 블록으로 분할되는 것에 기초하여, DC 위치를 제외한 영역에 변환 계수가 존재하는지 여부와 무관하게 LFNST 인덱스가 시그널링되도록 영상 정보를 구성할 수 있다.
인코딩 장치는 표 8에 나타나 있는 영상 정보가 디코딩 장치에서 파싱될 수 있도록 영상 정보를 구성할 수 있다.
즉, 인코딩 장치는 현재 블록이 복수의 서브 파티션 블록으로 분할되지 않고, 현재 블록의 DC 위치를 제외한 영역에 변환 계수가 존재하는 것을 나타내면 LFNST 인덱스가 파싱되도록 영상 정보를 구성할 수 있고, 만약, 현재 블록이 복수의 서브 파티션 블록으로 분할되는 경우 DC 위치를 제외한 영역에 변환 계수가 존재하는지 여부와를 체크하지 않고 LFNST 인덱스가 파싱되도록 영상 정보를 구성할 수 있다.
즉, 인코딩 장치는 현재 블록에 ISP가 적용되는 경우 모든 서브 파티션 블록에 대한 마지막 0이 아닌 계수의 위치가 DC 위치에 위치하더라도 LFNST 인덱스가 시그널링되도록 영상 정보를 구성한다.
일 예에 따라, 인코딩 장치는 현재 블록(또는 서브 파티션 블록) 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0이고, 서브 블록 내 상기 마지막 유효 계수의 위치가 0 보다 크면, DC 위치를 제외한 영역에 상기 유효 계수가 존재하는 것으로 판단하고, LFNST 인덱스가 시그널링되도록 영상 정보를 구성할 수 있다. 본 문서에서는 스캔 순서 상의 첫 번째 위치가 0일 수 있다.
또한, 일 예에 따라 인코딩 장치는 현재 블록(또는 서브 파티션 블록) 내 마지막 유효 계수를 포함하는 서브 블록의 인덱스가 0보다 크고, 현재 블록의 폭 및 높이가 4 이상이면, LFNST가 적용되지 않은 것이 확실한 것으로 판단하고, LFNST 인덱스가 시그널링되지 않도록 영상 정보를 구성할 수 있다.
또한, 일 예에 따라 인코딩 장치는 현재 블록(또는 서브 파티션 블록)의 크기가 4x4 또는 8x8이고, 스캔 순서상 위치의 시작이 0부터라면 마지막 유효 계수의 위치가 7 보다 크면, LFNST가 적용되지 않은 것이 확실한 것으로 판단하고, LFNST 인덱스가 시그널링되지 않도록 영상 정보를 구성할 수 있다.
즉, 인코딩 장치는 디코딩 장치에서 변수 LfnstDcOnly와 변수 LfnstZeroOutSigCoeffFlag가 도출된 후 도출된 변수값에 따라 LFNST 인덱스가 파싱될 수 있도록 영상 정보를 구성할 수 있다.
인코딩 장치는 현재 블록에 대한 수정된 변환 계수들을 기반으로 양자화를 수행하여 양자화된 변환 계수들을 도출하고, 양자화된 변환 계수들에 관한 정보 및 LFNST를 적용할 수 있는 경우 LFNST 매트릭스를 지시하는 LFNST 인덱스 정보를 포함하는 영상 정보를 인코딩 및 출력할 수 있다(S2170).
인코딩 장치는 양자화된 변환 계수들에 대한 정보를 포함하는 레지듀얼 정보를 생성할 수 있다. 레지듀얼 정보는 상술한 변환 관련 정보/신택스 요소를 포함할 수 있다. 인코딩 장치는 레지듀얼 정보를 포함하는 영상/비디오 정보를 인코딩하여 비트스트림 형태로 출력할 수 있다.
보다 구체적으로, 인코딩 장치(200)는 양자화된 변환 계수들에 관한 정보를 생성하고, 생성된 양자화된 변환 계수들에 관한 정보를 인코딩할 수 있다.
본 실시예에 따른 LFNST 인덱스의 신택스 요소는 (역) LFNST가 적용되는지 여부 및 LFNST 세트에 포함된 LFNST 매트릭스 중 어느 하나를 지시할 수 있으며, LFNST 세트가 두 개의 변환 커널 매트릭스을 포함하는 경우, LFNST 인덱스의 신택스 요소의 값은 3가지일 수 있다.
일 예에 따라, 현재 블록에 대한 분할 트리 구조가 듀얼 트리 타입이면, 루마 블록 및 크로마 블록 각각에 대하여 LFNST 인덱스가 인코딩될 수 있다.
일 실시예에 따라, 변환 인덱스에 대한 신택스 요소 값은 현재 블록에 LFNST가 적용되지 않는 경우를 지시하는 0, LFNST 매트릭스 중 첫 번째 LFNST 매트릭스를 지시하는 1, LFNST 매트릭스 중 두 번째 LFNST 매트릭스를 지시하는 2로 도출될 수 있다.
본 문서에서 양자화/역양자화 및/또는 변환/역변환 중 적어도 하나는 생략될 수 있다. 상기 양자화/역양자화가 생략되는 경우, 상기 양자화된 변환 계수는 변환 계수라고 불릴 수 있다. 상기 변환/역변환이 생략되는 경우, 상기 변환 계수는 계수 또는 레지듀얼 계수 라고 불릴 수도 있고, 또는 표현의 통일성을 위하여 변환 계수라고 여전히 불릴 수도 있다.
또한, 본 문서에서 양자화된 변환 계수 및 변환 계수는 각각 변환 계수 및 스케일링된(scaled) 변환 계수라고 지칭될 수 있다. 이 경우 레지듀얼 정보는 변환 계수(들)에 관한 정보를 포함할 수 있고, 상기 변환 계수(들)에 관한 정보는 레지듀얼 코딩 신택스를 통하여 시그널링될 수 있다. 상기 레지듀얼 정보(또는 상기 변환 계수(들)에 관한 정보)를 기반으로 변환 계수들이 도출될 수 있고, 상기 변환 계수들에 대한 역변환(스케일링)을 통하여 스케일링된 변환 계수들이 도출될 수 있다. 상기 스케일링된 변환 계수들에 대한 역변환(변환)을 기반으로 레지듀얼 샘플들이 도출될 수 있다. 이는 본 문서의 다른 부분에서도 마찬가지로 적용/표현될 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 문서는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 문서에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 문서에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 문서에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 즉, 본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다.
또한, 본 문서가 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 문서가 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다. 또한, 본 문서의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독 가능한 캐리어 상에 저장될 수 있다.
도 22는 본 문서를 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 22를 참조하면, 비디오/영상 코딩 시스템은 소스 디바이스 및 수신 디바이스를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포맷을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
도 23은 본 문서가 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
또한, 본 문서가 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다. 상기 비트스트림은 본 문서가 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다. 상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (14)

  1. 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    비트스트림으로부디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    비트스트림으로부터 레지듀얼 정보를 수신하는 단계와;
    상기 레지듀얼 정보를 기반으로 현재 블록에 대한 변환 계수를 도출하는 단계;
    상기 변환 계수들에 LFNST를 적용하여 수정된 변환 계수들을 도출하는 단계;
    상기 수정된 변환 계수들에 대한 역 1차 변환을 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하되,
    상기 수정된 변환 계수를 도출하는 단계는,
    상기 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 상기 변환 계수가 존재하는지 여부를 판단하는 단계와;
    상기 판단 결과에 기초하여 LFNST 인덱스를 파싱하는 단계와;
    상기 LFNST 인덱스 및 LFNST 매트릭스를 기반으로 상기 수정된 변환 계수를 도출하는 단계를 포함하고,
    상기 현재 블록이 복수의 서브 파티션 블록으로 분할되고, 상기 복수의 서브 파티션 블록에 대한 개별적인 상기 제2 영역 모두에 상기 변환 계수가 존재하지 않는 것에 기초하여 상기 LFNST 인덱스를 파싱하는 것을 특징으로 하는 영상 디코딩 방법.
  2. 제1항에 있어서,
    상기 현재 블록이 상기 복수의 서브 파티션 블록으로 분할되지 않고, 상기 제2 영역에 상기 변환 계수가 존재하지 않으면, 상기 LFNST 인덱스를 파싱하는 것을 특징으로 하는 영상 디코딩 방법.
  3. 제1항에 있어서,
    상기 현재 블록은 코딩 블록이고,
    개별적인 서브 파티션 블록의 폭 및 높이가 4 이상이면, 상기 현재 블록에 대한 상기 LFNST 인덱스가 상기 복수의 서브 파티션 블록에 적용되는 것을 특징으로 하는 영상 디코딩 방법.
  4. 제1항에 있어서,
    분할된 서브 파티션 블록이 4x4 블록 또는 8x8 블록이면, 상기 현재 블록의 좌상단으로부터 스캔 방향으로 8번째까지의 변환 계수에 상기 LFNST가 적용되는 것을 특징으로 하는 영상 디코딩 방법.
  5. 제1항에 있어서,
    상기 수정된 변환 계수를 도출하는 단계는,
    상기 현재 블록의 DC 위치를 제외한 영역에 상기 변환 계수가 존재하는지 여부를 나타내는 제1 변수를 도출하는 단계를 더 포함하고,
    상기 LFNST 인덱스는 상기 제1 변수가 상기 DC 위치를 제외한 영역에 상기 변환 계수가 존재하는 것을 나타내면 파싱되는 것을 특징으로 하는 영상 디코딩 방법.
  6. 제5항에 있어서,
    상기 현재 블록이 복수의 서브 파티션 블록으로 분할되는 것에 기초하여, 상기 제1 변수의 도출 없이 상기 LFNST 인덱스를 파싱하는 것을 특징으로 하는 영상 디코딩 방법.
  7. 제1항에 있어서,
    상기 서브 파티션 블록이 4x4 블록 또는 8x8 블록이 아니면,
    상기 서브 파티션 블록의 좌상단의 4x4 영역의 변환 계수에 상기 LFNST가 적용되는 것을 특징으로 하는 영상 디코딩 방법.
  8. 영상 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
    현재 블록에 대한 예측 샘플들을 도출하는 단계와;
    상기 예측 샘플에 기초하여 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 단계와;
    상기 레지듀얼 샘플들에 대한 1차 변환을 기반으로 상기 현재 블록에 대한 변환 계수들을 도출하는 단계와;
    상기 현재 블록의 좌상단 제1 영역의 변환 계수들 및 소정의 LFNST 매트릭스를 기반으로 상기 현재 블록에 대한 수정된 변환 계수들을 도출하는 단계와;
    상기 수정된 변환 계수들이 존재하지 않는 상기 현재 블록의 제2 영역을 제로 아웃하는 단계와;
    상기 현재 블록이 복수의 서브 파티션 블록으로 분할되고, 상기 복수의 서브 파티션 블록에 모두에 대하여 상기 제로 아웃이 수행되는 것에 기초하여 상기 LFNST 인덱스가 시그널링되도록 영상 정보를 구성하는 단계와;
    상기 수정된 변환 계수들의 양자화를 통하여 도출된 레지듀얼 정보 및 상기 LFNST 인덱스를 포함하는 상기 영상 정보를 출력하는 단계를 포함하는 것을 특징으로 하는 영상 인코딩 방법.
  9. 제8항에 있어서,
    상기 현재 블록이 상기 복수의 서브 파티션 블록으로 분할되지 않고, 상기 제2 영역에 상기 변환 계수가 존재하지 않으면, 상기 LFNST 인덱스가 시그널링되도록 상기 영상 정보를 구성하는 것을 특징으로 하는 영상 인코딩 방법.
  10. 제8항에 있어서,
    상기 현재 블록은 코딩 블록이고,
    개별적인 서브 파티션 블록의 폭 및 높이가 4 이상이면, 상기 현재 블록에 대한 상기 LFNST 매트릭스가 상기 복수의 서브 파티션 블록에 적용되도록 상기 영상 정보를 구성하는 것을 특징으로 하는 영상 인코딩 방법.
  11. 제8항에 있어서,
    분할된 서브 파티션 블록이 4x4 블록 또는 8x8 블록이면, 8개의 수정된 변환 계수가 도출되고,
    상기 서브 파티션 블록이 4x4 블록 또는 8x8 블록이 아니면, 16개의 수정된 변환 계수들이 도출되는 것을 특징으로 하는 영상 인코딩 방법.
  12. 제8항에 있어서,
    상기 현재 블록의 DC 위치를 제외한 영역에 상기 변환 계수가 존재하는지 여부를 판단하는 단계를 더 포함하고,
    상기 현재 블록의 DC 위치를 제외한 영역에 상기 변환 계수가 존재하면 상기 LFNST 인덱스가 시그널링되도록 영상 정보를 구성하는 것을 특징으로 하는 영상 인코딩 방법.
  13. 제12항에 있어서,
    상기 현재 블록이 복수의 서브 파티션 블록으로 분할되는 것에 기초하여, 상기 DC 위치를 제외한 영역에 상기 변환 계수가 존재하는지 여부와 무관하게 상기 LFNST 인덱스가 시그널링되도록 영상 정보를 구성하는 것을 특징으로 하는 영상 인코딩 방법.
  14. 영상 디코딩 방법을 수행하도록 야기하는 지시 정보가 저장된 컴퓨터 판독 가능한 디지털 저장 매체로서, 상기 영상 디코딩 방법은,
    비트스트림으로부터 레지듀얼 정보를 수신하는 단계와;
    상기 레지듀얼 정보를 기반으로 현재 블록에 대한 변환 계수를 도출하는 단계;
    상기 변환 계수들에 LFNST를 적용하여 수정된 변환 계수들을 도출하는 단계;
    상기 수정된 변환 계수들에 대한 역 1차 변환을 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하되,
    상기 수정된 변환 계수를 도출하는 단계는,
    상기 현재 블록의 좌상단 제1 영역을 제외한 제2 영역에 상기 변환 계수가 존재하는지 여부를 판단하는 단계와;
    상기 판단 결과에 기초하여 LFNST 인덱스를 파싱하는 단계와;
    상기 LFNST 인덱스 및 LFNST 매트릭스를 기반으로 상기 수정된 변환 계수를 도출하는 단계를 포함하고,
    상기 현재 블록이 복수의 서브 파티션 블록으로 분할되고, 상기 복수의 서브 파티션 블록에 대한 개별적인 상기 제2 영역 모두에 상기 변환 계수가 존재하지 않는 것에 기초하여 상기 LFNST 인덱스를 파싱하는 것을 특징으로 하는 디지털 저장 매체.
KR1020227008835A 2019-09-21 2020-09-21 변환에 기반한 영상 코딩 방법 및 그 장치 KR20220047627A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962903822P 2019-09-21 2019-09-21
US62/903,822 2019-09-21
US201962904634P 2019-09-23 2019-09-23
US62/904,634 2019-09-23
PCT/KR2020/012708 WO2021054799A1 (ko) 2019-09-21 2020-09-21 변환에 기반한 영상 코딩 방법 및 그 장치

Publications (1)

Publication Number Publication Date
KR20220047627A true KR20220047627A (ko) 2022-04-18

Family

ID=74884089

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227008835A KR20220047627A (ko) 2019-09-21 2020-09-21 변환에 기반한 영상 코딩 방법 및 그 장치

Country Status (9)

Country Link
US (1) US20220377335A1 (ko)
EP (1) EP4024870A4 (ko)
JP (2) JP7513703B2 (ko)
KR (1) KR20220047627A (ko)
CN (3) CN117459743A (ko)
AU (2) AU2020349369B2 (ko)
BR (1) BR112022005267A2 (ko)
MX (1) MX2022003319A (ko)
WO (1) WO2021054799A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104476A1 (en) * 2022-11-18 2024-05-23 Douyin Vision Co., Ltd. Method, apparatus, and medium for video processing

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111999A (ja) * 1999-10-05 2001-04-20 Matsushita Electric Ind Co Ltd 画像符号化方法及び画像符号化装置並びに画像符号化処理プログラムを記録した記録媒体
KR101791242B1 (ko) * 2010-04-16 2017-10-30 에스케이텔레콤 주식회사 영상 부호화/복호화 장치 및 방법
GB2561487B (en) * 2011-10-18 2019-01-02 Kt Corp Method for encoding image, method for decoding image, image encoder, and image decoder
EP3345396A4 (en) * 2015-09-01 2019-03-27 Telefonaktiebolaget LM Ericsson (publ) SPATIAL IMPROVEMENT OF TRANSFORMER BLOCKS
US11758136B2 (en) * 2016-06-24 2023-09-12 Electronics And Telecommunications Research Institute Method and apparatus for transform-based image encoding/decoding
US10880564B2 (en) * 2016-10-01 2020-12-29 Qualcomm Incorporated Transform selection for video coding
CN117255197A (zh) * 2017-03-22 2023-12-19 韩国电子通信研究院 基于块形式的预测方法和装置
KR101997604B1 (ko) * 2019-01-22 2019-07-08 에스케이 텔레콤주식회사 영상 부호화/복호화 방법 및 장치
JP7293376B2 (ja) * 2019-02-28 2023-06-19 ヒューマックス・カンパニー・リミテッド イントラ予測ベースのビデオ信号処理方法及び装置
US11240534B2 (en) * 2019-04-05 2022-02-01 Qualcomm Incorporated Extended multiple transform selection for video coding
US11218728B2 (en) * 2019-06-04 2022-01-04 Tencent America LLC Method and apparatus for video coding
CN117354521A (zh) * 2019-06-07 2024-01-05 北京字节跳动网络技术有限公司 视频比特流中的简化二次变换的有条件信令
US11695960B2 (en) * 2019-06-14 2023-07-04 Qualcomm Incorporated Transform and last significant coefficient position signaling for low-frequency non-separable transform in video coding
JP2022537160A (ja) * 2019-06-19 2022-08-24 エルジー エレクトロニクス インコーポレイティド 変換に基づく映像コーディング方法及びその装置
WO2020260313A1 (en) * 2019-06-25 2020-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Decoder, encoder and methods comprising a coding for intra subpartitions
US11677984B2 (en) * 2019-08-20 2023-06-13 Qualcomm Incorporated Low-frequency non-separable transform (LFNST) signaling
US11509910B2 (en) * 2019-09-16 2022-11-22 Tencent America LLC Video coding method and device for avoiding small chroma block intra prediction
US20210092405A1 (en) * 2019-09-19 2021-03-25 Qualcomm Incorporated Matrix combination for matrix-weighted intra prediction in video coding
CN116600115A (zh) * 2019-10-04 2023-08-15 Lg电子株式会社 图像编码设备、图像解码设备及其存储介质和发送设备
JP7223208B2 (ja) * 2019-10-29 2023-02-15 エルジー エレクトロニクス インコーポレイティド 変換に基づく映像コーディング方法及びその装置
US11470353B2 (en) * 2019-12-20 2022-10-11 Qualcomm Incorporated Low-frequency non-separable transform (LFNST) with reduced zero-out in video coding

Also Published As

Publication number Publication date
MX2022003319A (es) 2022-06-16
JP7513703B2 (ja) 2024-07-09
EP4024870A1 (en) 2022-07-06
US20220377335A1 (en) 2022-11-24
JP2022548386A (ja) 2022-11-18
CN114600465B (zh) 2023-12-19
AU2024200814A1 (en) 2024-02-29
CN117459742A (zh) 2024-01-26
BR112022005267A2 (pt) 2022-06-14
JP2024040440A (ja) 2024-03-25
EP4024870A4 (en) 2022-11-02
WO2021054799A1 (ko) 2021-03-25
CN117459743A (zh) 2024-01-26
AU2020349369B2 (en) 2024-02-22
CN114600465A (zh) 2022-06-07
AU2020349369A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
KR102467334B1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
JP7436645B2 (ja) 変換に基づく映像コーディング方法及びその装置
KR20220058582A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220057613A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210158400A (ko) 영상 코딩에서 변환 커널 세트를 나타내는 정보의 시그널링
KR20220070245A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220047628A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220050966A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220127937A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220066351A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220000403A (ko) 변환 커널 세트에 관한 정보에 대한 코딩
JP2024040440A (ja) 変換に基づく画像コーディング方法及びその装置
KR20220050183A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220042209A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220045049A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220066350A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220058583A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220097513A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220024500A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210133300A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220045048A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220070503A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220161382A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220161381A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20220058584A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치