KR20220046900A - Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer - Google Patents

Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer Download PDF

Info

Publication number
KR20220046900A
KR20220046900A KR1020200130150A KR20200130150A KR20220046900A KR 20220046900 A KR20220046900 A KR 20220046900A KR 1020200130150 A KR1020200130150 A KR 1020200130150A KR 20200130150 A KR20200130150 A KR 20200130150A KR 20220046900 A KR20220046900 A KR 20220046900A
Authority
KR
South Korea
Prior art keywords
aps
emulsion
oxidation
solution
copolymer
Prior art date
Application number
KR1020200130150A
Other languages
Korean (ko)
Other versions
KR102418116B1 (en
Inventor
김진철
박석호
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020200130150A priority Critical patent/KR102418116B1/en
Publication of KR20220046900A publication Critical patent/KR20220046900A/en
Application granted granted Critical
Publication of KR102418116B1 publication Critical patent/KR102418116B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8182Copolymers of vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/49Solubiliser, Solubilising system

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to oxidation-responsive emulsion which uses as an emulsifier a copolymer which maintains amphiphilicity in a reducing environment, but decreases amphiphilicity by oxidation. The emulsion specifically responds to an oxidizing environment and promotes the release of the loaded active ingredient, and thus the active ingredient is released slowly through constant simple diffusion regardless of the surrounding environment, thereby providing an advantage of compensating for the disadvantages of emulsions, which are difficult to express the efficacy of active ingredients to the maximum. The oxidation-responsive emulsion of the present invention specifically responds to oxidation of the loaded active ingredient and shows a release rate beyond simple diffusion, and thus can be used as a drug delivery system and a cosmetic raw material which delivers active ingredients in response to an oxidizing environment.

Description

양친매성 공중합체로 안정화된 산화 응답성 에멀젼{Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer}Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer

본 발명은 양친매성 공중합체로 안정화된 산화 응답성 에멀젼에 관한 것이다. 상세하게는 폴리(비닐피롤리돈-코-알릴페닐설파이드)를 유화제로서 사용하여 수상과 오일상을 안정화시키되 산화환경에서 액적의 융착 및 상분리가 유도되어 유효성분의 방출이 촉진되는 산화 응답성 에멀젼에 관한 것이다. The present invention relates to oxidation responsive emulsions stabilized with amphiphilic copolymers. Specifically, an oxidation-responsive emulsion that uses poly(vinylpyrrolidone-co-allylphenylsulfide) as an emulsifier to stabilize the aqueous phase and oil phase, but fusion of droplets and phase separation are induced in an oxidizing environment to promote release of active ingredients is about

약물전달시스템(Drug Delivery System)은 기존 의약품의 부작용을 최소화하고 유효성분의 효능 및 효과를 극대화하기 위하여 필요한 양의 유효성분을 효율적으로 전달할 수 있도록 설계한 제형을 의미한다. 상기 약물전달시스템은 고체분산체(solid dispersions), 겔제(gels), 나노입자(nanoparticles), 리포좀(liposomes), 에멀젼(emulsion 또는 유화액), 펠렛(Pellets), 매트릭스 정제(Matrix tablets), 삼투압 제제(Osmotic pumps) 기술등이 사용될 수 있으며 생체이용률을 향상시키거나 유효성분의 전달양 및 시간을 조절하고 유효성분이 표적부위 특이적인 전달되도록 하는 지속형 약물방출시스템, 제어방출시스템, 또는 표적지향적 약물전달시스템으로 사용 가능하다.A drug delivery system refers to a formulation designed to efficiently deliver the required amount of an active ingredient in order to minimize the side effects of existing drugs and maximize the efficacy and effect of the active ingredient. The drug delivery system includes solid dispersions, gels, nanoparticles, liposomes, emulsions, pellets, matrix tablets, and osmotic agents. (Osmotic pumps) technology, etc. can be used, and a sustained drug release system, controlled release system, or target-directed drug delivery that improves bioavailability, controls the amount and time of delivery of an active ingredient, and allows the active ingredient to be delivered specific to a target site available as a system.

상기 유화액(emulsion)은 연속상(continuous phase), 분산상(dispersion phase) 및 유화제(emulsifier)로 구성된다. 상기 연속상은 분산매(dispersion medium)이라고도 하며 상기 분산상은 비연속상(discontinuous phase)라고도 한다. 예를 들어 수중유적형(oil-in-water type, 또는 O/W type) 유화액의 경우 연속상은 물이고 분산상은 오일이며, 유중수적형(water-in-oil type, 또는 W/O type) 유화액의 경우 연속상은 오일이고 분산상은 물이 된다. 표면활성분자(Surface-active molecule)는 유화제로서 사용되어 오일과 물 사이의 계면에너지를 감소시킨다. 따라서 유화액에 표면활성분자를 사용하면 연속상(continuous phase)의 오일 액적(oil droplet) 및 물 액적(water droplet)을 안정화시키게 된다. The emulsion is composed of a continuous phase, a dispersion phase and an emulsifier. The continuous phase is also referred to as a dispersion medium and the dispersed phase is also referred to as a discontinuous phase. For example, in the case of an oil-in-water type (or O/W type) emulsion, the continuous phase is water, the disperse phase is oil, and a water-in-oil type (or W/O type) emulsion. The continuous phase is oil and the disperse phase is water. Surface-active molecules are used as emulsifiers to reduce the interfacial energy between oil and water. Therefore, when the surface active molecule is used in the emulsion, oil droplets and water droplets of a continuous phase are stabilized.

유화제는 빛, 온도 변화 및 pH 값 변화와 같은 자극에 응답하여 분자구조가 변할 수 있다. 상기와 같은 유화제를 사용하면 특정 자극에 의하여 오일 액적과 물 액적이 융착(coalescence)되고 상분리(phase separation)되므로 상기 액적이 방출되는 효과가 있다. 상기 융착은 계면이 무너져 입자끼리 서로 접촉하고 합일되는 것을 의미하며 상기 상분리는 연속상과 분산상이 서로 분리되는 것을 의미한다. Emulsifiers can change their molecular structure in response to stimuli such as light, changes in temperature, and changes in pH values. When the emulsifier as described above is used, oil droplets and water droplets are fused (coalescence) and phase separated by a specific stimulus, so that the droplets are released. The fusion means that the interface is collapsed, the particles contact each other and are united, and the phase separation means that the continuous phase and the dispersed phase are separated from each other.

자극반응성 유화제를 사용하면 필요에 따라 용이하게 해유화(demulsification)되는 유화액을 제조할 수 있다. 자극에 응답하는 유화액의 예로서, 공중합체인 폴리(N-이소프로필아크릴아미드-코-메타크릴산-코-옥타데실아크릴레이트)(poly(N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate))를 유화제로서 포함하는 온도 및 pH 응답성 유화액이 있다. 상기 공중합체는 온도와 pH값이 변하면 수축된 형태를 변화하는 특성이 있다. 따라서 상기 유화액의 온도 및 pH가 변화하면 상기 공중합체는 수축하게 되고 이로 인하여 O/W 계면이 완전히 덮여지지 못하므로 융착 및 상분리가 일어나게 된다.If the stimulus-responsive emulsifier is used, it is possible to prepare an emulsion that is easily demulsified if necessary. As an example of an emulsion that responds to stimulation, the copolymer poly(N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate)) There are temperature and pH responsive emulsions containing as emulsifiers. The copolymer has a property of changing the contracted form when the temperature and pH value are changed. Therefore, when the temperature and pH of the emulsion are changed, the copolymer is contracted and thus the O/W interface is not completely covered, so fusion and phase separation occur.

자극에 응답하는 다른 유화액의 예로서, 공중합체인 폴리(2-하이드록시에틸아크릴레이트-코-쿠마릴아크릴레이트-코-2-에틸헥실아크릴레이트)(poly(2-hydroxyethyl acrylate-co-coumaryl acrylate-co-2-ethylhexyl acrylate))를 유화제로서 포함하는 유화액은 온도 및 빛(UV) 응답성 유화액이 있다. 상기 공중합체는 수용액상에서 낮은임계용액온도(lower critical solution temperature, LCST)를 가지므로 매질(medium)의 온도가 상변이 온도 이상으로 상승하게 되면 수축된 형태를 가지게 된다. 또한 상기 공중합체는 쿠마릴 잔기(coumaryl group)를 가지며 상기 쿠마릴 잔기는 UV가 조사되면 광이량체(photo-dimer)를 형성하여 공중합체 사슬을 서로 연결하게 되므로 수축된 형태를 가지게 된다. 따라서 상기 유화제가 LCST 이상의 온도로 가열되거나 UV에 노출되면 상기 공중합체는 수축되어 O/W 계면을 안정화 할 수 있을 만큼 넓은 면적을 가지지 못하게 되므로 합일 및 상분리가 일어난다.As an example of another emulsion that responds to stimulation, the copolymer poly(2-hydroxyethyl acrylate-co-coumaryl acrylate) (poly(2-hydroxyethyl acrylate- co -coumaryl acrylate) - Emulsions containing co -2-ethylhexyl acrylate)) as emulsifiers include temperature and light (UV) responsive emulsions. Since the copolymer has a lower critical solution temperature (LCST) in the aqueous phase, when the temperature of the medium rises above the phase change temperature, it has a contracted form. In addition, the copolymer has a coumaryl group, and the coumaryl residue forms a photo-dimer when irradiated with UV to connect the copolymer chains to each other, so it has a contracted form. Therefore, when the emulsifier is heated to a temperature higher than LCST or exposed to UV, the copolymer shrinks and does not have a large area to stabilize the O/W interface, so coalescence and phase separation occur.

자극에 응답하는 또 다른 유화액의 예로서, 프로테노이드 황화물(proteinoid sulfide)를 유화제로 포함하는 환원 응답성 유화액이 있다. 상기 프로테노이드 황화물은 환원 환경에 놓이게 되면 이황화 결합이 제거되어 티올 프레토노이드(thiol proteinoid) 상태가 된다. 상기 티올 프레토노이드는 프로테노이드 황화물에 대비하여 낮은 유화성능을 가지는 특성을 가지므로 상기 유화제가 환원 환경에 놓이게 되면 오일액적의 융착 및 상분리가 일어나게 된다.Another example of an emulsion that responds to stimulation is a reduction-responsive emulsion containing proteinoid sulfide as an emulsifier. When the protenoid sulfide is placed in a reducing environment, the disulfide bond is removed to become a thiol proteinoid. Since the thiol pretonoid has a low emulsification performance compared to the protenoid sulfide, when the emulsifier is placed in a reducing environment, fusion and phase separation of oil droplets occur.

자극에 응답하는 또 다른 유화액의 예로서, 온도감음성 양친매성 공중합체인 폴리(2-하이드록시에틸아크릴레이트-코-프로필메타크리아에이트)(poly(2-hydroxyethyl acrylate-co-propyl methacryate))를 유화제로서 사용하고 금나노입자(gold nanoparticle, GNP)용액에 오일을 유화시켜 제조한 근적외선(near InfraRed, NIR) 응답성 유화액이 있다. 상기 유화액은 근적외선이 조사되면 금나노입자의 표면 플라스몬 공명에 의하여 열이 발생하고 상기 열에 의해 상기 공중합체가 수축하면서 융착과 상분리가 이루어진다.As another example of an emulsion responsive to stimulation, poly(2-hydroxyethyl acrylate- co -propyl methacryate), a thermosensitive amphipathic copolymer There is a near InfraRed (NIR) responsive emulsion prepared by using as an emulsifier and emulsifying oil in a gold nanoparticle (GNP) solution. When the emulsion is irradiated with near-infrared rays, heat is generated by surface plasmon resonance of the gold nanoparticles, and the copolymer is contracted by the heat to achieve fusion and phase separation.

유화액은 약물전달체로서 탑재하고 있는 유효성분을 단순 확산에 의해 서서히 방출시키기 때문에 유효성분의 효능을 최대로 발현시키기 어려운 문제점이 있었다. 따라서 상기와 같이 특정 자극에 의해 특이적으로 유효성분을 방출시킬 수 있는 특성이 가진 유화액이 개발된다면 표적부위 방출을 통해 유효성분의 효능을 향상 시킬 수 있을 것으로 기대된다. Since the emulsion slowly releases the active ingredient loaded as a drug delivery system by simple diffusion, there is a problem in that it is difficult to maximize the efficacy of the active ingredient. Therefore, if an emulsion having the characteristic of specifically releasing an active ingredient by a specific stimulus as described above is developed, it is expected that the efficacy of the active ingredient can be improved through the release of the target site.

본 명세서에서 언급된 특허문헌 및 참고문헌은 각각의 문헌이 참조에 의해 개별적이고 명확하게 특정된 것과 동일한 정도로 본 명세서에 참조로 삽입된다. The patents and references mentioned in this specification are hereby incorporated by reference to the same extent as if each publication were individually and expressly specified by reference.

Brugger, B. and Richtering, W. Adv. Mater. 2007, 19, 2973-2978. Tang, J., Quinlan, P. J. and Tam, K. C. Soft Matter. 2015, 11, 3512-3529. Brugger, B., Rosen, B. A. and Richtering, W. Langmuir. 2008, 24, 12202-12208. Besnard, L., Marchal, F., Paredes, J. F., Daillant, J., Pantoustier, N., Perrin, P. and Guenoun, P. Adv. Mater. 2013, 25, 2844-2848. Khoukh, S., Perrin, P., Bes de Berc, F.,Tribet, C. Chem. Phys. Chem. 2005, 6, 2009-2012. Li, Z. and Ngai, T. Colloid. Polym. Sci. 2011, 289, 489-496. Seo, S. R., Lee, H. Y. and Kim, J. C. J. Disper. Sci. Technol. 2013, 34, 1280-1285. Seo, S. R. and Kim, J. C. J. Macromol. Sci. A. 2013, 50, 855-860. Kwon, K. and Kim, J. C. J. Disper. Sci. Technol. 2018, 39, 333-340. Park, S. H. and Kim, J. C. J. Disper. Sci. Technol. 2018, 39, 961-969. Chung, S. L. and Ferrier, L. K. J. Food. Sci. 1992, 57, 40-42. Zorba, O. Food hydrocolloids. 2006, 20, 698-702. Liu, Y., Bhatnagar, A., Ji, Q., Riffle, J. S.,McGrath, J. E., Geibel, J. F. and Kashiwagi, T. Polymer. 2000, 41, 5137-5146. Zhunuspayev, D. E., Mun, G. A. and Khutoryanskiy, V. V. Langmuir. 2010, 26, 7590-7597. Israelachvili, J. N. and Wennerstroem, H. J. Phys. Chem. 1992, 96, 520-531. Zilman, A., Tlusty, T. and Safran, S. A. J. Phys. Condens. Mat. 2002, 15, S57. Nie, Z., Fava, D., Kumacheva, E., Zou, S., Walker, G. C. and Rubinstein, M. Nat. Mater. 2007, 6, 609. Busico, V., Ferraro, A. and Vacatello, M. Mol. Cryst. Liq. Cryst. 1985, 128, 243-261. Mondal, J. and Yethiraj, A. J. Phys. Chem. Lett. 2011, 2, 2391-2395.

Figure pat00001
Wessln, B., Kober, M., Freij-Larsson, C., Ljungh, Å. And Paulsson, M. Biomaterials. 1994, 15, 278-284. Maltesh, C., Xu, Q., Somasundaran, P., Benton, W. J. and Hung, N. Langmuir. 1992, 8, 1511-1513. Brugger, B. and Richtering, W. Adv. Mater. 2007, 19, 2973-2978. Tang, J., Quinlan, PJ and Tam, KC Soft Matter. 2015, 11, 3512-3529. Brugger, B., Rosen, BA and Richtering, W. Langmuir. 2008, 24, 12202-12208. Besnard, L., Marchal, F., Paredes, JF, Daillant, J., Pantoustier, N., Perrin, P. and Guenoun, P. Adv. Mater. 2013, 25, 2844-2848. Khoukh, S., Perrin, P., Bes de Berc, F., Tribet, C. Chem. Phys. Chem. 2005, 6, 2009-2012. Li, Z. and Ngai, T. Colloid. Polym. Sci. 2011, 289, 489-496. Seo, SR, Lee, HY and Kim, JCJ Disper. Sci. Technol. 2013, 34, 1280-1285. Seo, SR and Kim, JCJ Macromol. Sci. A. 2013, 50, 855-860. Kwon, K. and Kim, JCJ Disper. Sci. Technol. 2018, 39, 333-340. Park, SH and Kim, JCJ Disper. Sci. Technol. 2018, 39, 961-969. Chung, SL and Ferrier, LKJ Food. Sci. 1992, 57, 40-42. Zorba, O. Food hydrocolloids. 2006, 20, 698-702. Liu, Y., Bhatnagar, A., Ji, Q., Riffle, JS, McGrath, JE, Geibel, JF and Kashiwagi, T. Polymer. 2000, 41, 5137-5146. Zhunuspayev, DE, Mun, GA and Khutoryanskiy, VV Langmuir. 2010, 26, 7590-7597. Israelachvili, JN and Wennerstroem, HJ Phys. Chem. 1992, 96, 520-531. Zilman, A., Tlusty, T. and Safran, SAJ Phys. Condens. Mat. 2002, 15, S57. Nie, Z., Fava, D., Kumacheva, E., Zou, S., Walker, GC and Rubinstein, M. Nat. Mater. 2007, 6, 609. Busico, V., Ferraro, A. and Vacatello, M. Mol. Crystal. Liq. Crystal. 1985, 128, 243-261. Mondal, J. and Yethiraj, AJ Phys. Chem. Lett. 2011, 2, 2391-2395.
Figure pat00001
Wessln, B., Kober, M., Freij-Larsson, C., Ljungh, Å. And Paulsson, M. Biomaterials. 1994, 15, 278-284. Maltesh, C., Xu, Q., Somasundaran, P., Benton, WJ and Hung, N. Langmuir. 1992, 8, 1511-1513.

본 발명은 상기 문제점을 해결하기 위한 것으로, 환원환경에서 양친매성을 유지하여 수상과 오일상을 안정화시키다가 산화환경에서 잔기가 산화되어 양친매성이 감소하는 것을 특징으로 하는 공중합체를 유화제로서 포함하므로, 산화환경에 응답하여 액적이 융착되고 상분리가 진행되어 탑재된 유효성분의 방출이 촉진되는 산화 응답성 유화액(emulsion)을 제공하는 것을 목적으로 한다.The present invention is to solve the above problem, and it contains a copolymer as an emulsifier, characterized in that the amphiphilicity is maintained in a reducing environment to stabilize the aqueous phase and the oil phase, and the residue is oxidized in an oxidizing environment to reduce the amphiphilicity. , an object of the present invention is to provide an oxidation-responsive emulsion in which droplets are fused in response to an oxidizing environment and phase separation proceeds to promote release of loaded active ingredients.

본 발명의 다른 목적 및 기술적 특징은 이하의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 구체적으로 제시된다. Other objects and technical features of the present invention are more specifically set forth by the following detailed description of the invention, claims and drawings.

본 발명은 폴리(비닐피롤리돈-코-알릴페닐설파이드)(poly(vinyl pyrrolidone-co-allyl phenyl sulfide)를 유화제로 포함하는 산화 응답성 유화액을 제공한다.The present invention provides an oxidation-responsive emulsion containing poly(vinyl pyrrolidone-co-allyl phenyl sulfide) as an emulsifier.

상기 폴리(비닐피롤리돈-코-알릴페닐설파이드)(poly(vinyl pyrrolidone-co-allyl phenyl sulfide)는 유화제로서 양친매성을 가지며 산화환경에서 알릴페닐설파이드 잔기가 알릴페닐설폰 잔기로 산화되어 양친매성이 감소하므로 액적의 융착과 상분리가 유도되는 것을 특징으로 한다.The poly (vinyl pyrrolidone-co-allyl phenyl sulfide) (poly (vinyl pyrrolidone-co-allyl phenyl sulfide) is amphiphilic as an emulsifier, and the allylphenyl sulfide residue is oxidized to an allylphenyl sulfone residue in an oxidizing environment to become amphiphilic. As this decreases, fusion and phase separation of the droplets are induced.

상기 폴리(비닐피롤리돈-코-알릴페닐설파이드)는 비닐피롤리돈 단량체와 알릴페닐설파이드 단량체가 100 : 3 내지 10의 몰비로 구성된 것을 특징으로 하며 수용액상에서 안정기 계면장력이 55 내지 66 dyne/㎝인 것을 특징으로 한다.The poly(vinylpyrrolidone-co-allylphenylsulfide) is characterized in that the vinylpyrrolidone monomer and the allylphenylsulfide monomer are composed of a molar ratio of 100: 3 to 10, and the interfacial tension of the stabilized group in the aqueous solution is 55 to 66 dyne/ It is characterized in that it is cm.

상기 산화 응답성 유화액은 수상(water phase)으로서 0.5% 폴리(비닐피롤리돈-코-알릴페닐설파이드) 유화제를 포함하는 친수성 용액을 포함하며 오일상(oil phase)으로서 오일을 포함하는 oil in water (O/W) 타입의 유화액으로서, 환원환경에서 오일 액적의 직경이 3 내지 4㎛ 수준이었다가 300시간 이후 30 내지 15 내지 35㎛으로 증가하며, 산화환경에서 오일 액적의 직경이 3 내지 4㎛ 수준이었다가 300시간 이후 30 내지 40 내지 100㎛으로 증가하는 것을 특징으로 한다. 또한 상기 산화 응답성 유화액은 산화환경의 상분리 안정성(stability, 50%)이 환원환경의 상분리 안정성(stability, 50%)의 55 내지 80% 수준으로 감소되는 것을 특징으로 한다.The oxidation-responsive emulsion contains a hydrophilic solution containing 0.5% poly(vinylpyrrolidone-co-allylphenylsulfide) emulsifier as a water phase and oil in water containing oil as an oil phase As an (O/W) type emulsion, the diameter of the oil droplets was at a level of 3 to 4 µm in a reducing environment and increased to 30 to 15 to 35 µm after 300 hours, and the diameter of the oil droplets was 3 to 4 µm in an oxidizing environment It is characterized in that it increases to 30 to 40 to 100 μm after 300 hours. In addition, the oxidation-responsive emulsion is characterized in that the phase separation stability (stability, 50%) in the oxidizing environment is reduced to a level of 55 to 80% of the phase separation stability (stability, 50%) in the reducing environment.

본 발명은 산화 응답성 유화액은 환원환경에서는 양친매성을 유지하다가 산화에 의해 양친매성이 감소하는 공중합체를 유화제로서 사용한 유화액에 관한 것으로 산화환경에 특이적으로 응답하여 탑재된 유효성분의 방출을 촉진하므로 주위환경에 상관없이 일정한 단순 확산을 통해 유효성분을 서서히 방출하므로 유효성분의 효능을 최대로 발현시키기 어려운 유화액의 단점을 보완 할 수 있는 장점이 있다. The present invention relates to an emulsion using, as an emulsifier, a copolymer whose amphiphilic properties are reduced by oxidation while maintaining amphiphilic properties in an oxidation-responsive emulsion in a reducing environment. Therefore, regardless of the surrounding environment, the active ingredient is gradually released through a constant simple diffusion, so it has the advantage of compensating for the disadvantages of the emulsion, which is difficult to maximize the efficacy of the active ingredient.

본 발명의 산화 응답성 유화액은 탑재된 유효성분을 산화에 특이적으로 응답하여 단순 확산 이상의 방출율을 보이므로 산화환경에 특이적으로 응답하여 유효성분을 전달하는 약물전달 시스템 및 화장품 원료로서 사용가능한 장점이 있다. The oxidation-responsive emulsion of the present invention responds specifically to oxidation of the loaded active ingredient and exhibits a release rate above simple diffusion, so it can be used as a drug delivery system and cosmetic raw material that specifically responds to an oxidizing environment to deliver the active ingredient There is this.

도 1은 본 발명의 산화 응답성 유화액이 산화에 의하여 액적이 융착되고 상분리가 유도되는 과정을 보여준다.
도 2는 본 발명의 폴리(비닐피롤리돈-코-알릴페닐설파이드)(P(VP-APS)(a/b))에 대한 수소핵자기공명분석 결과를 보여준다. 패널(A)는 P(VP-APS)(100/0)에 대한 수소핵자기공명분석 결과를 보여주며, 패널(B)는 Oxi-P(VP-APS)(100/0)에 대한 수소핵자기공명분석 결과를 보여주며, 패널(C)는 P(VP-APS)(98/2)에 대한 수소핵자기공명분석 결과를 보여주며, 패널(D)는 Oxi-P(VP-APS)(98/2)에 대한 수소핵자기공명분석 결과를 보여준다.
도 3은 본 발명의 폴리(비닐피롤리돈-코-알릴페닐설파이드)(P(VP-APS)(a/b))에 대한 XPS 스펙트럼분석 결과를 보여준다. 패널(A)는 P(VP-APS)(100/0)에 대한 XPS 스펙트럼(실선)과 Oxi-P(VP-APS)(100/0)에 대한 XPS 스펙트럼(점선)을 보여주며, 패널(B)는 P(VP-APS)(96/4)에 대한 XPS 스펙트럼(실선)과 Oxi-P(VP-APS)(96/4)에 대한 XPS 스펙트럼(점선)을 보여준다.
도 4는 본 발명의 동종중합체 P(VP-APS)(100/0) 용액(●), 동종중합체 Oxi-P(VP-APS)(100/0) 용액(○), 공중합체 P(VP-APS)(98/2) 용액(▼), 공중합체 Oxi-P(VP-APS)(98/2) 용액(▽), 공중합체 P(VP-APS)(97.5/2.5) 용액(■), 공중합체 Oxi-P(VP-APS)(97.5/2.5) 용액(□), 공중합체 P(VP-APS)(96/4) 용액(◆) 및 공중합체 Oxi-P(VP-APS)(96/4) 용액(◇)의 온도에 따른 광학밀도변화를 보여준다.
도 5는 본 발명의 동종중합체 P(VP-APS)(100/0) 용액(●), 동종중합체 Oxi-P(VP-APS)(100/0) 용액(○), 공중합체 P(VP-APS)(98/2) 용액(▼), 공중합체 Oxi-P(VP-APS)(98/2) 용액(▽), 공중합체 P(VP-APS)(97.5/2.5) 용액(■), 공중합체 Oxi-P(VP-APS)(97.5/2.5) 용액(□), 공중합체 P(VP-APS)(96/4) 용액(◆) 및 공중합체 Oxi-P(VP-APS)(96/4) 용액(◇)의 공기/물 계면장력 분석결과를 보여준다.
도 6은 본 발명의 산화 응답성 유화액의 액적 직경(droplet diameter) 변화를 측정한 결과를 보여준다. 패널(A)는 미네랄 오일을 유상(oil phase)으로 사용하고 증류수를 수상(water phase)으로 사용하되 본 발명의 P(VP-APS)(100/0)(●), P(VP-APS)(98/2)(▲), P(VP-APS)(97.5/2.5)(■) 및 P(VP-APS)(96/4)(◆)을 유화제로 사용하여 안정화시킨 O/W 유화액의 시간에 따른 액적 직경(droplet diameter) 변화를 측정한 결과를 보여주며, 패널(B)는 미네랄 오일을 유상(oil phase)으로 사용하고 10% H2O2 용액을 수상(water phase)으로 사용하며 본 발명의 P(VP-APS)(100/0)(○), P(VP-APS)(98/2)(△), P(VP-APS)(97.5/2.5)(□) 또는 P(VP-APS)(96/4)(◇)를 유화제로 사용하여 안정화시킨 O/W 유화액의 시간에 따른 액적 직경(droplet diameter) 변화를 측정한 결과를 보여준다.
도 7은 본 발명의 산화 응답성 유화액의 안정성(%)을 평가한 결과를 보여준다. 패널(A)는 미네랄 오일을 유상(oil phase)으로 사용하고 증류수를 수상(water phase)으로 사용하되 본 발명의 P(VP-APS)(100/0)(●), P(VP-APS)(98/2)(▲), P(VP-APS)(97.5/2.5)(■) 및 P(VP-APS)(96/4)(◆)을 유화제로 사용하여 안정화시킨 O/W 유화액의 안정성(%)을 평가한 결과를 보여주며, 패널(B)는 미네랄 오일을 유상(oil phase)으로 사용하고 10% H2O2 용액을 수상(water phase)으로 사용하며 본 발명의 P(VP-APS)(100/0)(○), P(VP-APS)(98/2)(△), P(VP-APS)(97.5/2.5)(□) 또는 P(VP-APS)(96/4)(◇)를 유화제로 사용하여 안정화시킨 O/W 유화액의 안정성(%)을 평가한 결과를 보여준다.
1 shows a process in which droplets are fused and phase separation is induced by oxidation of the oxidation-responsive emulsion of the present invention.
2 shows the results of nuclear magnetic resonance analysis of poly(vinylpyrrolidone-co-allylphenylsulfide) (P(VP-APS)(a/b)) of the present invention. Panel (A) shows the hydrogen nuclear magnetic resonance analysis results for P(VP-APS) (100/0), and panel (B) shows hydrogen nuclei for Oxi-P(VP-APS) (100/0). Shows the magnetic resonance analysis results, panel (C) shows the hydrogen nuclear magnetic resonance analysis results for P(VP-APS) (98/2), and panel (D) shows the results of Oxi-P(VP-APS) ( 98/2) shows the results of hydrogen nuclear magnetic resonance analysis.
3 shows the XPS spectral analysis results for poly(vinylpyrrolidone-co-allylphenylsulfide) (P(VP-APS)(a/b)) of the present invention. Panel (A) shows the XPS spectrum (solid line) for P(VP-APS) (100/0) and the XPS spectrum (dashed line) for Oxi-P(VP-APS) (100/0), panel ( B) shows the XPS spectrum (solid line) for P(VP-APS) (96/4) and the XPS spectrum (dashed line) for Oxi-P(VP-APS) (96/4).
4 is a homopolymer P (VP-APS) (100/0) solution (●), homopolymer Oxi-P (VP-APS) (100/0) solution (○), copolymer P (VP-) of the present invention. APS)(98/2) solution(▼), copolymer Oxi-P(VP-APS)(98/2) solution(▽), copolymer P(VP-APS)(97.5/2.5) solution(■), Copolymer Oxi-P(VP-APS)(97.5/2.5) solution (□), copolymer P(VP-APS)(96/4) solution(♦) and copolymer Oxi-P(VP-APS)(96) /4) It shows the optical density change according to the temperature of the solution (◇).
5 is a homopolymer P (VP-APS) (100/0) solution (●), homopolymer Oxi-P (VP-APS) (100/0) solution (○), copolymer P (VP-) of the present invention. APS)(98/2) solution(▼), copolymer Oxi-P(VP-APS)(98/2) solution(▽), copolymer P(VP-APS)(97.5/2.5) solution(■), Copolymer Oxi-P(VP-APS)(97.5/2.5) solution (□), copolymer P(VP-APS)(96/4) solution(♦) and copolymer Oxi-P(VP-APS)(96) /4) It shows the air/water interface tension analysis result of the solution (◇).
6 shows the results of measuring the change in droplet diameter of the oxidation-responsive emulsion of the present invention. Panel (A) uses mineral oil as an oil phase and distilled water as a water phase, but P(VP-APS)(100/0)(●), P(VP-APS) of the present invention (98/2)(▲), P(VP-APS)(97.5/2.5)(■) and P(VP-APS)(96/4)(♦) of O/W emulsion stabilized using emulsifier It shows the result of measuring the change in droplet diameter over time, and panel (B) uses mineral oil as an oil phase and 10% H 2 O 2 solution as a water phase. P(VP-APS)(100/0)(○), P(VP-APS)(98/2)(Δ), P(VP-APS)(97.5/2.5)(□) or P( VP-APS) (96/4) (◇) was used as an emulsifier to measure the change in droplet diameter with time of an O/W emulsion stabilized is shown.
7 shows the results of evaluating the stability (%) of the oxidation-responsive emulsion of the present invention. Panel (A) uses mineral oil as an oil phase and distilled water as a water phase, but P(VP-APS)(100/0)(●), P(VP-APS) of the present invention (98/2)(▲), P(VP-APS)(97.5/2.5)(■) and P(VP-APS)(96/4)(♦) of O/W emulsion stabilized using emulsifier Shows the results of evaluating stability (%), and panel (B) uses mineral oil as an oil phase and 10% H 2 O 2 solution as a water phase, and P (VP) of the present invention -APS)(100/0)(○), P(VP-APS)(98/2)(Δ), P(VP-APS)(97.5/2.5)(□) or P(VP-APS)(96 /4) Shows the results of evaluating the stability (%) of the O/W emulsion stabilized using (◇) as an emulsifier.

본 발명은 폴리(비닐피롤리돈-코-알릴페닐설파이드)(poly(vinyl pyrrolidone-co-allyl phenyl sulfide)를 유화제로 포함하는 산화 응답성 유화액을 제공한다.The present invention provides an oxidation-responsive emulsion containing poly(vinyl pyrrolidone-co-allyl phenyl sulfide) as an emulsifier.

상기 폴리(비닐피롤리돈-코-알릴페닐설파이드)(poly(vinyl pyrrolidone-co-allyl phenyl sulfide)는 유화제로서 양친매성을 가지며 산화환경에서 알릴페닐설파이드 잔기가 알릴페닐설폰 잔기로 산화되어 양친매성이 감소하므로 액적의 융착과 상분리가 유도되는 것을 특징으로 한다.The poly (vinyl pyrrolidone-co-allyl phenyl sulfide) (poly (vinyl pyrrolidone-co-allyl phenyl sulfide) is amphiphilic as an emulsifier, and the allylphenyl sulfide residue is oxidized to an allylphenyl sulfone residue in an oxidizing environment to become amphiphilic. As this decreases, fusion and phase separation of the droplets are induced.

상기 폴리(비닐피롤리돈-코-알릴페닐설파이드)는 비닐피롤리돈 단량체와 알릴페닐설파이드 단량체가 100 : 3 내지 10의 몰비로 구성된 것을 특징으로 하며 수용액상에서 안정기 계면장력이 55 내지 66 dyne/㎝인 것을 특징으로 한다. 바람직하게는 상기 폴리(비닐피롤리돈-코-알릴페닐설파이드)는 비닐피롤리돈 단량체와 알릴페닐설파이드 단량체가 100 : 3 내지 5의 몰비로 구성되며, 더 바람직하게는 비닐피롤리돈 단량체와 알릴페닐설파이드 단량체가 100 : 3.4, 3.6 또는 4.8로 구성되는 것을 특징으로 한다. 상기 비닐피롤리돈 단량체와 알릴페닐설파이드 단량체의 몰비가 100:3 미만인 폴리(비닐피롤리돈-코-알릴페닐설파이드)는 양친매성이 낮아 유화액의 안정성이 낮은 단점이 있으며 상기 비닐피롤리돈 단량체와 알릴페닐설파이드 단량체의 몰비가 100:10을 초과하는 폴리(비닐피롤리돈-코-알릴페닐설파이드)는 산화환경에 대한 반응성이 낮아 유효성분의 방출능이 저하되는 단점이 있다.The poly(vinylpyrrolidone-co-allylphenylsulfide) is characterized in that the vinylpyrrolidone monomer and the allylphenylsulfide monomer are composed of a molar ratio of 100: 3 to 10, and the interfacial tension of the stabilized group in the aqueous solution is 55 to 66 dyne/ It is characterized in that it is cm. Preferably, the poly(vinylpyrrolidone-co-allylphenylsulfide) is composed of a vinylpyrrolidone monomer and an allylphenylsulfide monomer in a molar ratio of 100:3 to 5, more preferably a vinylpyrrolidone monomer and It is characterized in that the allylphenyl sulfide monomer consists of 100: 3.4, 3.6 or 4.8. Poly(vinylpyrrolidone-co-allylphenylsulfide) in which the molar ratio of the vinylpyrrolidone monomer to the allylphenylsulfide monomer is less than 100:3 has a disadvantage in that the stability of the emulsion is low due to low amphiphilicity, and the vinylpyrrolidone monomer Poly(vinylpyrrolidone-co-allylphenylsulfide) in which the molar ratio of the and allylphenylsulfide monomers exceeds 100:10 has a disadvantage in that the reactivity of the active ingredient is lowered due to low reactivity to the oxidizing environment.

본 발명의 산화 응답성 유화액은 수상(water phase)으로서 0.5% 폴리(비닐피롤리돈-코-알릴페닐설파이드) 유화제를 포함하는 친수성 용액을 포함하며 오일상(oil phase)으로서 오일을 포함하는 oil in water (O/W) 타입의 유화액인 것을 특징으로 한다. O/W 타입 유화액은 연속상(continuous phase) 또는 분산매(dispersion medium)로서 수상(water phase)를 사용하고 분산상(dispersion phase)으로서 오일상(oil phase)를 사용하는 것으로 상기 오일상이 유화제에 의하여 수상에 분산된 것을 의미한다. 본 발명의 실시예에 따르면 본 발명의 유화액에 사용된 유화제는 양친매성 공중합체인 폴리(비닐피롤리돈-코-알릴페닐설파이드)일 수 있으며, 수상은 물 또는 10% 과산화수소 수용액일 수 있으며, 오일상은 미네랄 오일일 수 있다. 본 발명의 유화제인 폴리(비닐피롤리돈-코-알릴페닐설파이드)는 비닐피롤리돈 단량체와 알릴페닐설파이드 단량체가 중합된 것으로 양친매성을 가지나 상기 알릴페닐설파이드가 산화되면 알릴페닐설폰이 되어 양친매성이 사라지게 된다. 따라서 본 발명의 산화 응답성 유화액은 환원환경에서는 폴리(비닐피롤리돈-코-알릴페닐설파이드)의 양친매성이 유지되어 유화액을 안정한 상태로 유지하지만 산화환경에서는 폴리(비닐피롤리돈-코-알릴페닐설파이드)의 양친매성이 사라지면서 오일 액적이 융착되고 상전이가 일어나 수상과 오일상이 분리된다.The oxidation-responsive emulsion of the present invention comprises a hydrophilic solution containing 0.5% poly(vinylpyrrolidone-co-allylphenylsulfide) emulsifier as a water phase and an oil containing oil as an oil phase It is characterized in that it is an in water (O/W) type emulsion. The O/W type emulsion uses a water phase as a continuous phase or a dispersion medium and an oil phase as a dispersion phase, and the oil phase is a water phase by an emulsifier. means distributed in According to an embodiment of the present invention, the emulsifier used in the emulsion of the present invention may be poly(vinylpyrrolidone-co-allylphenylsulfide), which is an amphipathic copolymer, and the aqueous phase may be water or a 10% aqueous hydrogen peroxide solution, and oil The phase may be mineral oil. Poly(vinylpyrrolidone-co-allylphenylsulfide), which is the emulsifier of the present invention, is a polymerization of a vinylpyrrolidone monomer and an allylphenylsulfide monomer, and has amphiphilic properties. However, when the allylphenylsulfide is oxidized, it becomes allylphenylsulfone masculinity will disappear. Therefore, in the oxidation-responsive emulsion of the present invention, the amphiphilicity of poly(vinylpyrrolidone-co-allylphenylsulfide) is maintained in a reducing environment to maintain the emulsion in a stable state, but in an oxidizing environment, poly(vinylpyrrolidone-co- allylphenyl sulfide) disappears, oil droplets are fused and a phase transition occurs, separating the aqueous phase and the oil phase.

본 발명의 실시예에 따르면 본 발명의 산화 응답성 유화액은 환원환경의 경우 오일 액적의 직경이 3 내지 4㎛ 수준이었다가 300시간 이후 30 내지 15 내지 35㎛으로 증가하며, 산화환경의 경우 오일 액적의 직경이 3 내지 4㎛ 수준이었다가 300시간 이후 30 내지 40 내지 100㎛으로 증가하는 것을 특징으로 하며 안정성에 있어서도 산화환경의 상분리 안정성(stability, 50%)이 환원환경의 상분리 안정성(stability, 50%)의 55 내지 80% 수준으로 감소되는 것을 특징으로 한다.According to an embodiment of the present invention, in the oxidation-responsive emulsion of the present invention, the diameter of the oil droplets was at a level of 3 to 4 μm in a reducing environment and increased to 30 to 15 to 35 μm after 300 hours, and in an oxidizing environment, the oil liquid It is characterized in that the diameter of the enemy was at the level of 3 to 4 μm and then increased to 30 to 40 to 100 μm after 300 hours. %) to a level of 55 to 80%.

본 발명의 산화 응답성 유화액은 추가적으로 소수성인 유효성분을 오일 액적에 포함시키는 방법으로 탑재하여 약물전달시스템으로 활용하거나 화장품의 원료로서 사용할 수 았다. 상기 약물전달시스템은 표면적을 증가시켜 난용성 유효성분(약물)의 용해도를 증대시키고 흡수를 향상시켜 생체 이용률(biocompatibility)을 향상시킬 수 있는 약물전달시스템으로서 유화액 상태로 직접 피부등에 도포되어 약물을 전달할 수 있고 수상이 제거된 액체 또는 고체 상태의 균일한 혼합물로서 복용 시 체액과 같은 수상을 만나수중유화(o/w) 에멀젼(유화액)을 형성하여 유효성분을 전달 할 수 도 있다. 상기 화장품은 유화(emulsification) 제품을 의미하며 주로 유백색의 형상을 갖는 크림류, 로션류, 화운데이션등에 사용 가능하다.The oxidation-responsive emulsion of the present invention can be used as a drug delivery system or used as a raw material for cosmetics by loading an additional hydrophobic active ingredient into oil droplets. The drug delivery system is a drug delivery system that can increase the surface area to increase the solubility of poorly soluble active ingredients (drugs) and improve absorption to improve biocompatibility. As a homogeneous mixture in a liquid or solid state from which the aqueous phase has been removed, the active ingredient can be delivered by meeting the aqueous phase such as body fluid when taking it to form an emulsion (o/w) in water. The cosmetic means an emulsification product and can be used in creams, lotions, foundations, and the like, mainly having a milky white shape.

하기 실시예를 통해 본 발명을 상세히 설명한다.The present invention will be described in detail through the following examples.

실시예 Example

1. 실험방법 1. Experimental method

1.1. 실험재료1.1. test material

비닐피롤리돈(vinyl pyrrolidone, VP)과 미네랄 오일은 Sigma-Aldrich Chemiccal Co.에서 구입하였다. 알릴페닐설파이드(allyl phenyl sulfide, APS)는 Tokyo Chemical Industry Co., Ltd.에서 구입하였다. α,α'-아조비스이소부티로니트릴(α,α'-azobisisobutyronitrile, AIBN)은 Junsei Chemical Co.에서 구입하였다. 테트라하이드로퓨란(tetrahydrofuran), 헥산(hexane), H2O2용액(30%)은 대중화학에서 구입하였다.Vinyl pyrrolidone (VP) and mineral oil were purchased from Sigma-Aldrich Chemiccal Co. Allyl phenyl sulfide (allyl phenyl sulfide, APS) was purchased from Tokyo Chemical Industry Co., Ltd.. α,α'-azobisisobutyronitrile (α,α'-azobisisobutyronitrile, AIBN) was purchased from Junsei Chemical Co. Tetrahydrofuran (tetrahydrofuran), hexane (hexane), H 2 O 2 solution (30%) was purchased from popular chemical.

1.2. 공중합체와 동종중합체의 제조1.2. Preparation of copolymers and homopolymers

공중합체(copolymers)인 폴리(비닐피롤리돈-코-알릴페닐설파이드)(poly(vinyl pyrrolidone-co-allyl phenyl sulfide, P(VP-APS))와 동종중합체(homopolymers)인 폴리비닐피롤리돈(poly(vinyl pyrrolidone), P(VP))를 자유라디칼 반응을 이용하여 제조하였다. 다양한 비율의 VP 단량체와 APS 단량체 및 50㎖의 테트라하이드로퓨란을 250㎖ 둥근바닥 플라스크에 넣고 혼합하여 VP:APS 몰비가 98:2(실시예 1), 97.5:2.5(실시예 2), 또는 96:4(실시예 3)인 혼합물을 제조하되 상기 단량체의 총질량이 5.557g이 되도록 하였다. 또한 비교예로서 동일한 방법으로 VP:APS 몰비가 100:0인 동종중합체를 제조하였다. 상기 VP 모노머 및 APS 모노머가 다양한 몰비로 포함된 혼합물은 N2-스트림을 이용하여 30분 동안 탈기(degas)하고, 각각의 혼합물에 40㎎의 AIBN을 더 첨가하였다. AIBN이 첨가된 혼합물을 오일 배스(oil bath)에 담긴 둥근바닥 플라스크에 넣고 환류상태 및 75℃로 가열하며 마그네틱 바를 이용하여 12시간 동안 교반하였다. 공중합체인 P(VP-APS) 및 동종중합체인 P(VP)의 침전을 위해, 각각의 반응혼합물을 실온으로 냉각시킨 후 헥산 600㎖이 담긴 1ℓ비커에 부어 혼합한 후 여과지(Whatman No.2)를 이용하여 공중합체 또는 동종중합체가 포함된 1차 케이크(1st cake)를 수득하였다. Poly(vinyl pyrrolidone-co-allyl phenyl sulfide, P(VP-APS)) as copolymers and polyvinylpyrrolidone as homopolymers (poly(vinyl pyrrolidone), P(VP)) was prepared using a free radical reaction. Various ratios of VP monomer, APS monomer, and 50 ml of tetrahydrofuran were placed in a 250 ml round-bottom flask and mixed, followed by VP:APS. A mixture having a molar ratio of 98:2 (Example 1), 97.5:2.5 (Example 2), or 96:4 (Example 3) was prepared so that the total mass of the monomer was 5.557 g. In the same manner, homopolymers having a VP:APS molar ratio were prepared of 100: 0. The mixture containing the VP monomer and the APS monomer in various molar ratios was degassed using an N2-stream for 30 minutes, and each mixture was degassed. 40 mg of AIBN was further added to .The mixture with AIBN was placed in a round bottom flask in an oil bath, heated to reflux and 75° C., and stirred for 12 hours using a magnetic bar. Copolymer P For precipitation of (VP-APS) and the homopolymer P(VP), each reaction mixture was cooled to room temperature, poured into a 1ℓ beaker containing 600 ml of hexane, mixed, and then filtered using filter paper (Whatman No. 2). A first cake (1 st cake) containing the copolymer or homopolymer was obtained.

상기 공중합체 또는 동종중합체의 정제를 위해 상기 케이크를 테트라하이드로퓨란에 다시 용해시킨 후 헥산에서 재침전 시켜 2차 케이크(1nd cake)를 제조하고 50℃ 항온진공오븐에서 건조시켰다. VP/APS 몰비가 a/b인 반응혼합물로부터 얻은 공중합체 또는 동종중합체를 P(VP-APS)(a/b)로 명명하였으며 하기 표 1과 같다. 하기 표 1의 제조 후 실제 존재하는 단량체의 몰비는 수소핵자기공명을 통해 분석한 결과이다.For purification of the copolymer or homopolymer, the cake was re-dissolved in tetrahydrofuran and re-precipitated in hexane to prepare a second cake (1 nd cake) and dried in a vacuum oven at 50°C. A copolymer or homopolymer obtained from a reaction mixture having a VP/APS molar ratio a/b was named P(VP-APS)(a/b) and is shown in Table 1 below. The molar ratio of the monomers actually present after preparation in Table 1 below is the result of analysis through hydrogen nuclear magnetic resonance.

이름name 제조시 사용한 단량체의 몰비(VP:APS)Molar ratio of monomers used in the preparation (VP:APS) 제조 후 존재하는 단량체의 몰비(VP:APS)Molar ratio of monomers present after preparation (VP:APS) 비교예 1Comparative Example 1 P(VP-APS)(100/0)P(VP-APS)(100/0) 100:0100:0 100:0100:0 실시예 1Example 1 P(VP-APS)(98/2)P(VP-APS)(98/2) 98:298:2 100:3.4100:3.4 실시예 2Example 2 P(VP-APS)(97.25/2.5)P(VP-APS) (97.25/2.5) 97.25:2.597.25:2.5 100:3.6100:3.6 실시예 3Example 3 P(VP-APS)(96/4)P(VP-APS)(96/4) 96:496:4 100:4.8100:4.8

1.3. 공중합체 및 동종중합체의 산화처리1.3. Oxidation of copolymers and homopolymers

20㎖ 바이알에서 상기 제조한 동종중합체(비교예 1: P(VP-APS)(100/0)) 또는 공중합체(실시예 1: :P(VP-APS)(98/2), 실시예 2: P(VP-APS)(97.52.5), 실시예 3: P(VP-APS)(96/4)) 0.2g와 H2O2용액(10%, 증류수) 10㎖을 혼합하여 상기 동종중합체 또는 공중합체를 용해시킨 후 상온에서 3일간 방치하였다. 상기 공중합체 또는 동종중합체가 용해된 H2O2용액을 동결건조하여 산화처리된 공중합체 또는 동종중합체만을 수득하였다. 상기 산화처리된 공중합체는 Oxi-P(VP-APS)(a/b)로 명명하였으며 하기 표 2와 같다. 하기 표 2의 제조 후 실제 존재하는 단량체의 몰비는 수소핵자기공명을 통해 분석한 결과이다.Homopolymer (Comparative Example 1: P(VP-APS) (100/0)) or copolymer (Example 1: :P(VP-APS) (98/2), Example 2) prepared above in a 20 mL vial : P (VP-APS) (97.52.5), Example 3: P (VP-APS) (96/4)) 0.2 g and H 2 O 2 solution (10%, distilled water) 10㎖ by mixing the same After dissolving the polymer or copolymer, it was left at room temperature for 3 days. The H 2 O 2 solution in which the copolymer or homopolymer was dissolved was lyophilized to obtain only an oxidation-treated copolymer or homopolymer. The oxidation-treated copolymer was named Oxi-P (VP-APS) (a/b) and is shown in Table 2 below. The molar ratio of the monomers actually present after preparation in Table 2 below is the result of analysis through hydrogen nuclear magnetic resonance.

이름name 제조시 사용한 단량체의 몰비(VP:APS)Molar ratio of monomers used in preparation (VP:APS) 제조 후 존재하는 단량체의 몰비(VP:APS)Molar ratio of monomers present after preparation (VP:APS) 비교예 1-1Comparative Example 1-1 Oxi-P(VP-APS)(100/0)Oxi-P (VP-APS) (100/0) 100:0100:0 100:0100:0 실시예 1-1Example 1-1 Oxi-P(VP-APS)(98/2)Oxi-P (VP-APS) (98/2) 98:298:2 100:3.4100:3.4 실시예 2-1Example 2-1 Oxi-P(VP-APS)(97.25/2.5)Oxi-P (VP-APS) (97.25/2.5) 97.25:2.597.25:2.5 100:3.6100:3.6 실시예 3-1Example 3-1 Oxi-P(VP-APS)(96/4)Oxi-P (VP-APS) (96/4) 96:496:4 100:4.8100:4.8

1.4. 수소핵자기공명1.4. hydrogen nuclear magnetic resonance

상기 실시예 및 비교예의 화합물을 건조제인 오산화인(phosphorus pentoxide)과 함께 50℃ 진공오븐에서 밤새 건조시켰다. 상기 건조된 공중합체 및 동종중합체는 DMSO-d6에 용해시켜 12㎎/㎖의 농도인 NMR 시료로 제조하였다. 상기 시료를 NMR 튜브(외경 0.5mm, 길이 180mm)에 넣고 밀봉한 후 FT-NMR 분광기(Bruker DPX 400MHz (9.4T), Bruker Analytik GmbH)를 이용하여 수소핵자기공명스펙트럼을 수득하였다. The compounds of Examples and Comparative Examples were dried overnight in a vacuum oven at 50° C. together with phosphorus pentoxide as a drying agent. The dried copolymer and homopolymer were dissolved in DMSO-d6 to prepare an NMR sample having a concentration of 12 mg/ml. The sample was placed in an NMR tube (outer diameter of 0.5 mm, length of 180 mm) and sealed, and then a hydrogen nuclear magnetic resonance spectrum was obtained using an FT-NMR spectrometer (Bruker DPX 400 MHz (9.4T), Bruker Analytik GmbH).

1.5. X선 광전자 분광법1.5. X-ray photoelectron spectroscopy

본 발명의 비교예 및 실시예의 화합물이 H2O2 처리에 의해 산화되는지 확인하기 위하여 X선 광전자 분광법 (X-ray photoelectron spectroscopy, XPS) 분석을 수행하였다 상기 XPS 분석은 비교예 1, 비교예 1-1, 실시예 3, 및 실시예 3-1에 대하여 수행하였다. 상기 XPS 분석은 128 채널 위치감지기가 장착된 180° 이중초점반구형분석기를 사용하여 전자의 결합에너지(binding energy, eV)를 분석하는 방법으로 수행하였다. 상기 공중합체 및 동종중합체의 XPS 스펙트럼은 A MaKa (1253.6eV) 무색 X선 소스를 사용하여 조사하였으며 5x10-8mbar 이하의 실온에서 톈 스펙트럼을 수득하였다. 원자 전자의 결합에너지는 관찰된 C1s 전자의 결합에너지(284.5eV)를 기준값으로 결정하였다.In order to confirm whether the compounds of Comparative Examples and Examples of the present invention are oxidized by H 2 O 2 treatment, X-ray photoelectron spectroscopy (XPS) analysis was performed. The XPS analysis is Comparative Example 1, Comparative Example 1 -1, Example 3, and Example 3-1 were performed. The XPS analysis was performed by using a 180° bifocal hemispherical analyzer equipped with a 128-channel position sensor to analyze the binding energy (eV) of electrons. XPS spectra of the copolymers and homopolymers were investigated using A MaKa (1253.6 eV) colorless X-ray source, and Tien spectra were obtained at room temperature of 5x10 -8 mbar or less. The binding energy of atomic electrons was determined based on the observed binding energy of C1s electrons (284.5 eV).

1.6. 동종중합체 용액 또는 공중합체 용액의 온도에 따른 광학밀도변화1.6. Optical density change according to temperature of homopolymer solution or copolymer solution

본 발명의 비교예 또는 실시예의 화합물 60㎎을 10㎖ 유리병에서 증류수 3㎖에 녹여 농도가 2%(w/v)인 동종중합체 또는 공중합체 용액을 제조하였다. 상기 동종중합체 용액 또는 공중합체 용액 0.8㎖를 큐벳에 넣고 온도조절기(Peltier Controller, JENWAY, Staffordshire, UK)가 설치된 7315 분광광도계(Jenway, Staffordshire, UK)에서 20 내지 50℃의 온도범위에서 2℃/분의 속도로 가열하며 광학밀도(600㎚)를 측정하였다.A solution of a homopolymer or copolymer having a concentration of 2% (w/v) was prepared by dissolving 60 mg of a compound of Comparative Example or Example of the present invention in 3 ml of distilled water in a 10 ml glass bottle. 0.8 ml of the homopolymer solution or copolymer solution is placed in a cuvette and a temperature controller (Peltier Controller, JENWAY, Staffordshire, UK) is installed in a 7315 spectrophotometer (Jenway, Staffordshire, UK) in a temperature range of 20 to 50 ° C. The optical density (600 nm) was measured while heating at a rate of minutes.

1.7. 공기/물 계면장력 측정1.7. Air/water interface tension measurement

본 발명의 비교예 또는 실시예 화합물 20㎎을 30㎖ 유리 바이알에 넣고 증류수 20㎖을 첨가하여 농도 1㎎/㎖인 동종중합체 용액 및 공중합체 용액을 제조하였다. 그 후 상기 동종중합체 용액 또는 공중합체 용액을 2회 희석하여 농도가 0.0039㎎/㎖가 되도록 한 후 링 방법 및 장력계 (DST 60, SEO Co., Gunpo, South Korea)를 사용하여 공기/물 계면장력을 측정하였다.20 mg of the compound of Comparative Example or Example of the present invention was placed in a 30 ml glass vial, and 20 ml of distilled water was added to prepare a homopolymer solution and a copolymer solution having a concentration of 1 mg/ml. After that, the homopolymer solution or the copolymer solution was diluted twice so that the concentration was 0.0039 mg/ml, and then the air/water interface was used using the ring method and a tensiometer (DST 60, SEO Co., Gunpo, South Korea). The tension was measured.

1.8. 유화액의 제조1.8. Preparation of emulsions

본 발명의 비교예 및 실시예의 화합물을 증류수 또는 10% H2O2 용액에 각각 0.5%(w/v)이 되도록 용해시켜 유화제 용액을 제조하였다. 10㎖ 바이알에 상기 유화제 용액 4.5㎖을 넣은 후 0.5㎖ 미네랄 오일(mineral oil)을 첨가하여 유화액을 제조하였다. 상기 유화액은 팁 타입 초음파기(VC 505, Sonic & Materials, Newtown, USA)를 이용하여 90초 동안 27%의 밀도로 초음파 처리하였다. 상기 제조한 유화액은 10% 오일상을 포함하며 유화제가 0.5%(w/v)로 포함된 유화액이며 유화제의 종류, 오일상의 종류 및 수상의 종류는 하기 표 3과 같다. An emulsifier solution was prepared by dissolving the compounds of Comparative Examples and Examples of the present invention in distilled water or 10% H 2 O 2 solution to be 0.5% (w/v), respectively. After putting 4.5 ml of the emulsifier solution in a 10 ml vial, 0.5 ml of mineral oil was added to prepare an emulsion. The emulsion was sonicated at a density of 27% for 90 seconds using a tip-type ultrasonicator (VC 505, Sonic & Materials, Newtown, USA). The prepared emulsion is an emulsion containing 10% oil phase and 0.5% (w/v) emulsifier, and the types of emulsifiers, types of oil phases and types of water phase are shown in Table 3 below.

유화제emulsifier 오일상oil phase 수상Awards 비교예 2Comparative Example 2 P(VP-APS)(100/0)P(VP-APS)(100/0) 미네랄오일mineral oil 증류수(H2O)distilled water (H 2 O) 비교예 2-1Comparative Example 2-1 P(VP-APS)(100/0)P(VP-APS)(100/0) 미네랄오일mineral oil 과산화수소용액
(10% H2O2+90% H2O)
hydrogen peroxide solution
(10% H 2 O 2 +90% H 2 O)
실시예 4Example 4 P(VP-APS)(98/2)P(VP-APS)(98/2) 미네랄오일mineral oil 증류수(H2O)distilled water (H 2 O) 실시예 4-1Example 4-1 P(VP-APS)(98/2)P(VP-APS)(98/2) 미네랄오일mineral oil 과산화수소용액
(10% H2O2+90% H2O)
hydrogen peroxide solution
(10% H 2 O 2 +90% H 2 O)
실시예 5Example 5 P(VP-APS)(97.25/2.5)P(VP-APS) (97.25/2.5) 미네랄오일mineral oil 증류수(H2O)distilled water (H 2 O) 실시예 5-1Example 5-1 P(VP-APS)(97.25/2.5)P(VP-APS) (97.25/2.5) 미네랄오일mineral oil 과산화수소용액
(10% H2O2+90% H2O)
hydrogen peroxide solution
(10% H 2 O 2 +90% H 2 O)
실시예 6Example 6 P(VP-APS)(96/4)P(VP-APS)(96/4) 미네랄오일mineral oil 증류수(H2O)distilled water (H 2 O) 실시예 6-1Example 6-1 P(VP-APS)(96/4)P(VP-APS)(96/4) 미네랄오일mineral oil 과산화수소용액
(10% H2O2+90% H2O)
hydrogen peroxide solution
(10% H 2 O 2 +90% H 2 O)

1.9. 유화액의 안정성 측정1.9. Determination of stability of emulsions

상기 비교예 및 실시예를 통해 제조한 유화액의 안정성은 오일 액적(oil droplet) 크기와 상 분리(phase separation) 정도를 측정하여 평가하였다. 먼저 상기 유화액을 바이알을 담아 질소로 채운 후 단단히 밀봉하여 25℃의 어두운 조건에서 28일 동안 방치하였다. 시간에 따라 상기 유화액을 현미경으로 촬영하고 오일 액적의 직경을 이미지 분석기(Image-Pro Plus Version 5.1, Media Cybernetics, Rockville, USA)를 이용하여 분석하였다. 또한, 유화액의 상 분리 정도는 다음 수학식 1을 사용 하여 결정하였다.The stability of the emulsions prepared in Comparative Examples and Examples was evaluated by measuring the size of oil droplets and the degree of phase separation. First, the emulsion was placed in a vial, filled with nitrogen, tightly sealed, and left in the dark at 25°C for 28 days. The emulsion was photographed with a microscope over time, and the diameter of the oil droplets was analyzed using an image analyzer (Image-Pro Plus Version 5.1, Media Cybernetics, Rockville, USA). In addition, the degree of phase separation of the emulsion was determined using Equation 1 below.

Figure pat00002
Figure pat00002

2. 실험결과 및 토의2. Experimental results and discussion

2.1. 수소핵자기 공명 분석결과2.1. Hydrogen Nuclear Magnetic Resonance Analysis Results

도 2의 패널(A)는 본 발명의 비교예 1의 P(VP-APS)(100/0)에 대한 1H-NMR 스펙트럼 분석결과를 보여준다. 분석결과 P(VP-APS)(100/0)의 비닐기 메틸렌에 포함된 수소(proton) 잔기는 1.3ppm에서, 메틴에 포함된 수소잔기는 3.7ppm에서, 피롤리돈기의 카르보닐기 옆에 인접한 2개의 메틸렌에 포함된 수소잔기는 1.8ppm과 2.1ppm에서, 질소 옆에 위치한 메틸렌에 포함된 수소잔기는 3.2ppm에서 확인된다.Panel (A) of FIG. 2 shows the 1H-NMR spectrum analysis result for P(VP-APS) (100/0) of Comparative Example 1 of the present invention. As a result of the analysis, the hydrogen (proton) residue contained in the vinyl group methylene of P(VP-APS) (100/0) was 1.3 ppm, the hydrogen residue contained in methine was 3.7 ppm, and the 2 adjacent to the carbonyl group of the pyrrolidone group Hydrogen residues included in methylene are found at 1.8 ppm and 2.1 ppm, and hydrogen residues included in methylene next to nitrogen are found at 3.2 ppm.

도 2의 패널(B)는 비교예 1-1의 Oxi-P(VP-APS)(100/0)의 1H NMR 스펙트럼 분석결과를 보여준다. 상기 Oxi-P(VP-APS)(100/0)의 수소 잔기에 대한 NMR 신호는 비교예 1의 P(VP-APS)(100/0)와 동일한 위치에 확인된다. 따라서 본 발명의 동종중합체 P(VP-APS)(100/0)는 산화제(H2O2)에 대해 안정적인 것으로 판단된다. 실제로 P(VP-APS)(100/0)의 구조에는 산화 가능한 잔기가 포함되지 않은 것으로 확인된다.Panel (B) of FIG. 2 shows the 1H NMR spectrum analysis result of Oxi-P (VP-APS) (100/0) of Comparative Example 1-1. The NMR signal for the hydrogen residue of Oxi-P(VP-APS) (100/0) was confirmed at the same position as that of P(VP-APS) (100/0) of Comparative Example 1. Therefore, the homopolymer P(VP-APS) (100/0) of the present invention is judged to be stable to an oxidizing agent (H 2 O 2 ). Indeed, it is confirmed that the structure of P(VP-APS) (100/0) does not contain oxidizable residues.

도 2의 패널 (C)는 본 발명의 실시예 1 의 P(VP-APS)(98/2)의 1H NMR 스펙트럼을 분석한 결과를 보여준다. 분석결과 P(VP-APS)(98/2)에 포함된 APS와 관련하여 비닐기의 메틸렌에 포함된 수소잔기는 1.6ppm에서, 메틴에 포함된 수소잔기는 1.9ppm에서, 황원자 옆의 메틸렌에 포함된 수소잔기는 2.4ppm에서, 페닐에 포함된 수소잔기는 7.3 내지 7.6ppm에서 확인된다. P(VP-APS)(98/2)의 VP와 관련된 수소잔기의 NMR 신호는 상기 P(VP-APS)(100/0)와 동일한 위치에서 발견되는데 이는 상기 VP가 화학적 열화 없이 APS와 공중합 되는 것을 의미한다. 상기 VP의 질소원자 옆에 위치하는 메틴에 포함된 수소잔기와 메틸렌에 포함된 수소잔기의 NMR 신호 면적을 적분한 값과 APS의 4 위치에서 방향족에 포함된 수소잔기의 NMR 신호 면적을 적분한 값을 비교하여 공중합체에 포함된 VP 단량체와 APS 단량체의 몰비를 계산한 결과 VP:APS=100:3.4의 몰비를 가지는 것으로 확인되었다. 상기 P(VP-APS)(98/2) 공중합체의 제조를 위한 반응혼합물에 사용된 VP 단량체와 APS 단량체의 몰비가 VP:APS=98:2에 불과하다. 따라서 상기 P(VP-APS)(98/2) 공중합체의 제조시 APS의 반응성이 VP의 반응성보다 더 높은 것으로 판단된다.Panel (C) of FIG. 2 shows the result of analyzing the 1H NMR spectrum of P(VP-APS)(98/2) of Example 1 of the present invention. As a result of the analysis, with respect to the APS contained in P(VP-APS)(98/2), the hydrogen residue contained in the methylene of the vinyl group was at 1.6 ppm, the hydrogen residue contained in the methine was at 1.9 ppm, and the methylene next to the sulfur atom was The hydrogen residue included in 2.4 ppm, the hydrogen residue included in phenyl is confirmed at 7.3 to 7.6 ppm. The NMR signal of the hydrogen residue associated with the VP of P(VP-APS) (98/2) is found at the same position as the P(VP-APS) (100/0), which indicates that the VP is copolymerized with APS without chemical degradation. means that A value obtained by integrating the NMR signal area of a hydrogen residue contained in methine and a hydrogen residue contained in methylene located next to the nitrogen atom of VP, and a value obtained by integrating the NMR signal area of a hydrogen residue contained in aromatics at position 4 of APS As a result of calculating the molar ratio of the VP monomer and the APS monomer included in the copolymer by comparing The molar ratio of the VP monomer and the APS monomer used in the reaction mixture for preparing the P(VP-APS)(98/2) copolymer is only VP:APS=98:2. Therefore, it is determined that the reactivity of APS is higher than that of VP in the preparation of the P(VP-APS)(98/2) copolymer.

도 2의 패널(D)는 실시예 1-1의 Oxi-P(VP-APS)(98/2)의 1H NMR 스펙트럼 분석결과를 보여준다. Oxi-P(VP-APS)(98/2)의 VP와 관련된 NMR 신호는 P(VP-APS)(98/2)와 동일한 위치에서 확인된다. 그러나 Oxi-P(VP-APS)(98/2)의 황 원자 옆에 위치하는 페닐에 포함된 수소잔기와 메틸렌에 포함된 수소잔기의 NMR 신호는 P(VP-APS)(98/2)의 NMR 신호보다 다운필드에서 확인된다. 상세하게는 Oxi-P(VP-APS)(98/2)의 페닐에 포함된 수소잔기는 7.6 내지 7.7 ppm에서 발견되는 반면 P(VP-APS)(98/2)의 페닐에 포함된 수소잔기는 7.3 내지 7.6 ppm에서 발견되었다. Panel (D) of FIG. 2 shows the 1H NMR spectrum analysis result of Oxi-P(VP-APS) (98/2) of Example 1-1. The NMR signal associated with the VP of Oxi-P(VP-APS) 98/2 is identified at the same position as that of P(VP-APS) 98/2. However, the NMR signal of the hydrogen residue contained in phenyl and the hydrogen residue contained in methylene located next to the sulfur atom of Oxi-P(VP-APS)(98/2) is that of P(VP-APS)(98/2). It is identified in the downfield than the NMR signal. Specifically, the hydrogen residue included in the phenyl of Oxi-P(VP-APS) (98/2) is found at 7.6 to 7.7 ppm, whereas the hydrogen residue included in the phenyl of P(VP-APS) (98/2) was found between 7.3 and 7.6 ppm.

황화물(sulfide)는 산화조건 하에서 설폭사이드(sulfoxide)와 설폰(sulfone)으로 산화된다. 상기 P(VP-APS)(98/2)의 APS는 H2O2와 같은 산화제에 의해 산화될 수 있다. 상기 황화물이 산화되면 전기 음성도가 음성인 산소가 황에 부착하게 되고, 인접한 수소 원자는 전자 밀도가 감소하고 차폐(shield)가 해제된다. 상기 차폐의 해제는 페닐에 포함된 수소잔기의 NMR 신호와 황 옆에 위치한 메틸렌에 포함된 수소잔기의 NMR 신호를 다운필드(down field)fh 이동시키게 된다. 추가적으로 실시예 2의 P(VP-APS)(97.5/2.5) 및 실시예 3의 P(VP-APS)(96/4)는 상기 P(VP-APS)(98/2)와 동일한 위치에서 NMR 신호를 보이는 것으로 확인된다.Sulfide is oxidized to sulfoxide and sulfone under oxidizing conditions. The APS of the P(VP-APS) 98/2 may be oxidized by an oxidizing agent such as H 2 O 2 . When the sulfide is oxidized, oxygen with negative electronegativity is attached to the sulfur, and electron density of adjacent hydrogen atoms is reduced and the shield is released. When the shielding is released, the NMR signal of the hydrogen residue contained in phenyl and the NMR signal of the hydrogen residue contained in methylene located next to sulfur are shifted down field fh. Additionally, P(VP-APS) (97.5/2.5) of Example 2 and P(VP-APS) (96/4) of Example 3 are NMR at the same position as the P(VP-APS) (98/2) It is confirmed that the signal is visible.

본 발명의 공중합체는 단량체로 구성되며 합성과정에 사용된 VP 단량체와 APS 단량채의 조성비(VP/APS 몰비)가 서로 상이하기 때문에 합성된 공중합체에 포함된 VP 단량체와 APS 단량체의 양은 서로 상이할 수 있다. NMR 스펙트럼에 있어서 VP에 포함된 수소의 NMR 신호를 적분하여 계산한 면적과 APS에 포함된 수소의 NMR 신호를 적분하여 계산한 면적을 이용하면 공중합체에 포함된 VP/APS 몰비를 산출 할 수 있다. 상기 VP 와 APS의 NMR 신호를 적분하여 분석한 결과 P(VP-APS)(97.5/2.5) 및 P(VP-APS)(96/4)의 VP:APS 몰비는 각각 100:3.6 및 100:4.8인 것으로 확인되었다. 상기 결과는 P(VP-APS)(97.5/2.5) 및 P(VP-APS)(96/4) 역시 P(VP-APS)(98/2)와 동일하게 제조시 사용한 반응혼합물의 VP:APS 몰비보다 합성된 상태의 VP:APS 몰비가 더 높은 것으로 확인 되었으므로 ASP의 반응성이 VP의 반응성보다 높다는 것을 의미한다. NMR 스펙트럼 분석결과 P(VP-APS)(97.5/2.5)와 P(VP-APS)(96/4)는 상기 P(VP-APS)(98/2)와 동일하게 H2O2에 의해 산화된 후 페닐에 포함된 수소잔기와 메틸렌에 포함된 수소잔기의 NMR 신호가 다운 필드로 이동한 것이 확인되었다. 상기 결과는 주위 수소잔기가 산화에 의하여 차폐가 감소하는 현상에 의해 상기 페닐에 포함된 수소잔기와 메틸렌에 포함된 수소잔기의 화학적 이동(chemical shift)이 영향 받았다는 것을 의미한다.The copolymer of the present invention is composed of monomers, and since the composition ratio (VP/APS molar ratio) of the VP monomer and the APS monomer used in the synthesis process is different from each other, the amounts of the VP monomer and the APS monomer included in the synthesized copolymer are different from each other. can do. In the NMR spectrum, using the area calculated by integrating the NMR signal of hydrogen contained in VP and the area calculated by integrating the NMR signal of hydrogen contained in APS, the VP/APS molar ratio contained in the copolymer can be calculated. . As a result of integrating and analyzing the NMR signals of VP and APS, the VP:APS molar ratios of P(VP-APS)(97.5/2.5) and P(VP-APS)(96/4) are 100:3.6 and 100:4.8, respectively. was confirmed to be The above results show that P(VP-APS) (97.5/2.5) and P(VP-APS) (96/4) are also VP:APS of the reaction mixture used in the preparation in the same manner as P(VP-APS) (98/2). As it was confirmed that the molar ratio of VP:APS in the synthesized state was higher than the molar ratio, it means that the reactivity of ASP is higher than that of VP. As a result of NMR spectrum analysis, P(VP-APS) (97.5/2.5) and P(VP-APS) (96/4) were oxidized by H 2 O 2 in the same manner as P(VP-APS) (98/2). It was confirmed that the NMR signals of the hydrogen residues contained in phenyl and the hydrogen residues contained in methylene moved to the down field after the conversion. The above result means that the chemical shift of the hydrogen residue contained in the phenyl and the hydrogen residue contained in the methylene is affected by the phenomenon that the shielding is reduced due to oxidation of the surrounding hydrogen residue.

2.2. X 선 광전자 분광법 분석결과2.2. X-ray photoelectron spectroscopy analysis result

도 3의 패널(A)는 본 발명의 비교예 1의 P(VP-APS)(100/0) 및 비교예 1-1의 Oxi-P(VP-APS)(100/0)의 XPS 스펙트럼을 분석한 결과를 보여준다. P(VP-APS)(100/0)의 XPS 스펙트럼과 Oxi-P(VP-APS)(100/0)의 XPS 스펙트럼에서는 유의미한 신호가 발견되지 않았다. 이는 상기 결과가 황 원자의 신호가 나타나는 범위에 대하여 전자의 결합에너지를 스캔한 것이기 때문이다. 상기 P(VP-APS)(100/0)에는 APS가 사용되지 않았다. 따라서 P(VP-APS)(100/0) 및 Oxi-P(VP-APS)(100/0)의 XPS 스펙트럼에는 황이 확인되지 않는다. Panel (A) of FIG. 3 shows the XPS spectrum of P(VP-APS) (100/0) of Comparative Example 1 and Oxi-P(VP-APS) (100/0) of Comparative Example 1-1 of the present invention. Show the analysis results. No significant signal was found in the XPS spectrum of P(VP-APS) (100/0) and the XPS spectrum of Oxi-P(VP-APS) (100/0). This is because the above result is a scan of the binding energy of electrons in the range in which the signal of the sulfur atom appears. APS was not used for the P(VP-APS) (100/0). Therefore, no sulfur was found in the XPS spectra of P(VP-APS) (100/0) and Oxi-P(VP-APS) (100/0).

도 3의 패널(B)는 실시예 3의 P(VP-APS)(96/4) 및 실시예 3-1의 Oxi-P(VP-APS)(96/4)의 XPS 스펙트럼을 분석한 결과를 보여준다. P(VP-APS)(96/4)의 XPS 스펙트럼에서는 APS의 황화물인 알릴페닐설파이드(ally phenyl sulfide)에 해당하는 약 163eV의 피크가 발견되며, Oxi-P(VP-APS)(96/4) XPS 스펙트럼에서는 Oxi-P(VP-APS)(96/4)의 황화물인 알릴페닐설폰(ally phenyl sulfone)에 해당하는 168eV 부근의 날카로운 피크가 확인된다. Panel (B) of Figure 3 shows the results of analyzing XPS spectra of P (VP-APS) (96/4) of Example 3 and Oxi-P (VP-APS) (96/4) of Example 3-1 shows In the XPS spectrum of P(VP-APS) (96/4), a peak of about 163 eV corresponding to ally phenyl sulfide, which is the sulfide of APS, is found, and Oxi-P(VP-APS) (96/4) ) In the XPS spectrum, a sharp peak near 168 eV corresponding to ally phenyl sulfone, which is a sulfide of Oxi-P(VP-APS) (96/4), is confirmed.

황화물은 산화되면 설폭사이드(sulfoxide)가 되고 더 산화되면 설폰(sulfone)이 된다. 상기 설폰 신호는 Oxi-P(VP-APS)(96/4)의 XPS 스펙트럼에서 발견되었는데 이는 현재 산화조건 하에서 산화되기 전인 P(VP-APS)(96/4)의 알릴페닐설파이드(ally phenyl sulfide)가 알릴페닐설폰(ally phenyl sulfone)로 산화되었기 때문으로 판단된다.Sulfide is oxidized to sulfoxide and further oxidized to sulfone. The sulfone signal was found in the XPS spectrum of Oxi-P(VP-APS)(96/4), which is ally phenyl sulfide of P(VP-APS)(96/4) before oxidation under current oxidizing conditions. ) was oxidized to ally phenyl sulfone.

2.3. 공중합체용액의 온도에 따른 광학밀도 변화 분석결과2.3. Analysis result of optical density change according to the temperature of the copolymer solution

도 4는 본 발명의 동종중합체 P(VP-APS)(100/0) 용액, 동종중합체 Oxi-P(VP-APS)(100/0) 용액, 공중합체 P(VP-APS)(98/2) 용액, 공중합체 Oxi-P(VP-APS)(98/2) 용액, 공중합체 P(VP-APS)(97.5/2.5) 용액, 공중합체 Oxi-P(VP-APS)(97.5/2.5) 용액, 공중합체 P(VP-APS)(96/4) 용액 및 공중합체 Oxi-P(VP-APS)(96/4)용액의 온도에 따른 광학밀도변화를 보여준다.4 is a solution of homopolymer P(VP-APS) (100/0) of the present invention, solution of homopolymer Oxi-P(VP-APS) (100/0), copolymer P(VP-APS) (98/2) ) solution, copolymer Oxi-P(VP-APS)(98/2) solution, copolymer P(VP-APS)(97.5/2.5) solution, copolymer Oxi-P(VP-APS)(97.5/2.5) The optical density change according to the temperature of the solution, the copolymer P(VP-APS)(96/4) solution, and the copolymer Oxi-P(VP-APS)(96/4) solution is shown.

친수성 당량체와 소수성 단량체의 공중합체는 낮은임계용액온도(LCST)를 가지는 것으로 알려져 있다. 본 발명의 VP는 친수성 당량체이며 APS는 소수성 단량체의 일종이다. 따라서 상기 VP와 APS가 사용된 본 발명의 공중합체 P(VP-APS)(a/b) 및 Oxi-P(VP-APS)(a/b)는 LCST의 거동을 보일 것으로 판단된다. 상기 예측을 확인하기 위하여 상기 공중합체를 용액으로 제조하고 온도의 변화에 따른 광학밀도변화를 관찰하였다. 분석결과 본 발명의 모든 공중합체용액은 실험 온도범위에서 거의 일정한 광학밀도를 유지하여 LCST 거동을 보이지 않는 것으로 확인되었다. 상기 결과는 본 발명의 공중합체에 포함된 소수성 단량체인 APS 함량이 온도창(temperature window)에서 LCST 거동을 나타내기에 적당하지 않았기 때문으로 추측된다. 이에 대하여는 추가적인 연구가 진행되어야 할 것으로 판단된다.Copolymers of hydrophilic equivalents and hydrophobic monomers are known to have a low critical solution temperature (LCST). In the present invention, VP is a hydrophilic monomer and APS is a type of hydrophobic monomer. Therefore, it is judged that the copolymers P(VP-APS)(a/b) and Oxi-P(VP-APS)(a/b) of the present invention in which VP and APS are used will show LCST behavior. In order to confirm the prediction, the copolymer was prepared as a solution and optical density change according to temperature change was observed. As a result of the analysis, it was confirmed that all the copolymer solutions of the present invention did not show LCST behavior by maintaining an almost constant optical density in the experimental temperature range. The above result is presumed to be because the content of APS, which is a hydrophobic monomer included in the copolymer of the present invention, was not suitable for exhibiting LCST behavior in a temperature window. In this regard, it is judged that additional research should be conducted.

흥미롭게도 본 발명의 공중합체용액의 광학밀도는 APS 함량에 크게 의존하는 것으로 확인되었다. 분석결과에 따르면, 20℃에서의 P(VP-APS)(100/0) 용액, P(VP-APS)(98/2) 용액, P(VP-APS)(97.5/2.5) 용액, 및 P(VP-APS)(96/4) 용액의 광학밀도는 각각 0.01, 0.23, 0.38 및 0.5인 것으로 확인된다. VP는 친수성 단량체이며 APS는 친유성(소수성) 단량체이기 때문에 P(VP-APS)(100/0)를 제외한 P(VP-APS)(a/b)는 양친매성을 보일 가능성이 크다. 양친매성분자는 수용액에서 엔트로피 구동공정(an entropy-driven process)에 의한 자가조립(self-assemblies)에 의해 생성될 수 있다. 따라서 본 발명의 공중합체는 고분자 미셀(micelle)로 자가조립되는 것으로 판단되며 상기 공중합체용액의 광학밀도 분석결과는 본 발명의 공중합체가 자가조립의 형성에 기인한다는 것을 지지한다. Interestingly, it was confirmed that the optical density of the copolymer solution of the present invention was highly dependent on the APS content. According to the analysis results, P(VP-APS)(100/0) solution, P(VP-APS)(98/2) solution, P(VP-APS)(97.5/2.5) solution, and P at 20°C The optical densities of the (VP-APS) (96/4) solution were found to be 0.01, 0.23, 0.38 and 0.5, respectively. Since VP is a hydrophilic monomer and APS is a lipophilic (hydrophobic) monomer, P(VP-APS)(a/b), except for P(VP-APS)(100/0), is likely to be amphiphilic. Amphiphilic molecules can be generated by self-assembly in aqueous solution by an entropy-driven process. Therefore, it is judged that the copolymer of the present invention is self-assembled into polymer micelles, and the optical density analysis result of the copolymer solution supports that the copolymer of the present invention is due to the formation of self-assembly.

상기 APS는 소수성 단량체로서 친수성 단량체와 함께 공중합체에 사용되면 양친매성을 부여하게 된다. 따라서 공중합체의 양친매성과 자가 조립의 정도는 상기 소수성 단량체의 함량에 비례하는 특성을 가진다. 상기 결과는 공중합체의 APS 함량이 증가함에 따라 광학밀도가 증가한 이유를 설명한다. P(VP-APS)(100/0) 용액은 친수성 단량체인 VP만으로 구성된 동종중합체이므로 양친매성이 아니다. 따라서 P(VP-APS)(100/0)는 수용액에서 자가 조립되지 않으므로 0에 가까운 광학밀도가 측정된다. The APS is a hydrophobic monomer, and when used in a copolymer together with a hydrophilic monomer, amphiphilicity is imparted. Therefore, the degree of amphiphilicity and self-assembly of the copolymer is proportional to the content of the hydrophobic monomer. The above results explain why the optical density increased as the APS content of the copolymer increased. The P(VP-APS)(100/0) solution is not amphiphilic as it is a homopolymer composed only of the hydrophilic monomer, VP. Therefore, since P(VP-APS)(100/0) does not self-assemble in aqueous solution, an optical density close to zero is measured.

Oxi-P(VP-APS)(a/b) 용액의 광학밀도 역시 Oxi-P(VP-APS)(100/0) 용액을 제외한 나머지 공중합체 용액에서 0츨 초과하는 값으로 측정되었으며 Oxi-P(VP-APS)(98/2) 용액, Oxi-P(VP-APS)(97.5/2.5) 용액 및 Oxi-P(VP-APS)(96/4) 용액의 광학밀도가 각각 0.07, 0.11, 및 0.34인 것으로 확인되어 APS의 함량에 비례하는 광학밀도를 보이는 것으로 확인된다. The optical density of the Oxi-P(VP-APS)(a/b) solution was also measured as a value exceeding 0 in the copolymer solutions except for the Oxi-P(VP-APS)(100/0) solution, and Oxi-P The optical densities of the (VP-APS) (98/2) solution, the Oxi-P (VP-APS) (97.5/2.5) solution and the Oxi-P (VP-APS) (96/4) solution were 0.07 and 0.11, respectively. And it is confirmed to be 0.34, and it is confirmed that it shows an optical density proportional to the content of APS.

상기에서 설명한바와 같이, 황화물(설파이드)은 산화조건 하에서 설파이드과 설폰으로 산화된다. 도 3의 공중합체 P(VP-APS)(96/4)의 APS는 H2O2 처리를 통해 설폰으로 산화되었다. APS가 산화되면 친수성으로 변화하므로 공중합체의 양친매성은 감소하게 되고 이는 자가 조립성이 감소로 이어진다. 그 결과 Oxi-P(VP-APS)(96/4) 용액의 광학밀도는 P(VP-APS)(96/4) 용액의 광학밀도에 대비하여 감소하게 되는 것이다.As described above, sulfides (sulfides) are oxidized to sulfides and sulfones under oxidizing conditions. APS of copolymer P(VP-APS) (96/4) of FIG. 3 was oxidized to sulfone through H 2 O 2 treatment. When APS is oxidized, it changes to hydrophilicity, so the amphiphilicity of the copolymer decreases, which leads to a decrease in self-assembly. As a result, the optical density of the Oxi-P (VP-APS) (96/4) solution is decreased compared to the optical density of the P (VP-APS) (96/4) solution.

2.4. 공기/물 계면 장력 측정 결과2.4. Air/water interface tension measurement result

도 5는 본 발명의 P(VP-APS)(100/0) 용액, Oxi-P(VP-APS)(100/0) 용액, P(VP-APS)(98)/2 용액, Oxi-P(VP-APS)(98/2) 용액, P(VP-APS)(97.5/2.5) 용액, Oxi-P(VP-APS)(97.5/2.5) 용액, P(VP-APS)(96/4) 용액 및 Oxi-P(VP-APS)(96/4)용액의 공기/물 계면장력 분석결과를 보여준다. P(VP-APS)(100/0) 용액의 계면장력은 0 내지 1.0㎎/㎖의 범위에서 농도가 증가함에 따라 72dyne/㎝에서 70dyne/㎝을 감소하는 것으로 확인되었으며 Oxi-P(VP-APS)(100/0) 용액의 계면장력 또한 상기 P(VP-APS(100/0)의 계면장력 측정결과와 거의 동일한 경향을 보이는 것으로 확인되었다. 상기 결과는 P(VP-APS)(100/0) 용액의 계면활성이 H2O2 처리에 의해 산화되는 APS를 포함하고 있지 않으므로 산화처리에 의해 영향을 받지 않았다는 것을 의미한다. 5 is P(VP-APS)(100/0) solution, Oxi-P(VP-APS)(100/0) solution, P(VP-APS)(98)/2 solution, Oxi-P of the present invention (VP-APS)(98/2) solution, P(VP-APS)(97.5/2.5) solution, Oxi-P(VP-APS)(97.5/2.5) solution, P(VP-APS)(96/4) ) and Oxi-P (VP-APS) (96/4) solutions show the results of air/water interfacial tension analysis. It was confirmed that the interfacial tension of the P(VP-APS)(100/0) solution decreased from 72dyne/cm to 70dyne/cm with increasing concentration in the range of 0 to 1.0mg/ml, and Oxi-P(VP-APS) It was confirmed that the interfacial tension of the )(100/0) solution also showed almost the same trend as the interfacial tension measurement result of the P(VP-APS(100/0). The result was P(VP-APS)(100/0). ), which means that the surface activity of the solution was not affected by the oxidation treatment because it did not contain APS that was oxidized by the H 2 O 2 treatment.

P(VP-APS)(98/2) 용액의 계면장력은 농도범위 0 내지 0.25㎎/㎖에서 농도가 증가함에 따라 72.5dyne/㎝에서 64.5dyne/㎝로 급격하게 감소하는 것이 확인되며, 농도 범위 0.25 내지 1㎎/㎖에서는 64.5dyne/㎝로 거의 일정하게 유지되는 안정기 계면장력(plateau interfacial tension)을 보이는 것으로 확인된다. 상기 도 5와같이 안정기 계면장력을 가져 L자형으로 표현되는 계면장력 프로파일은 계면활성제의 전형적인 프로파일이다. 본 발명의 P(VP-APS)(100/0) 용액의 안정기 계면장력은 70dyne/㎝ 수준임에 반하여 본 발명의 P(VP-APS)(98/2) 용액의 안정기 계면장력은 64.5dyne/㎝ 수준으로 더 작은 것으로 확인된다. 이는 P(VP-APS)(98/2)의 계면활성이 동종중합체인 P(VP-APS)(100/0의 계면활성보다 더 높다는 것을 의미한다. VP는 친수성 단량체이고 APS는 소수성 단량체이므로 VP와 APS가 공중합체를 형성하게 되면 양친매성 및 표면활성 공중합체가 형성된다. 따라서 본 발명의 P(VP-APS)(98/2)가 P(VP-APS)(100/0)보다 표면활성이 더 높은 것으로 판단된다. It is confirmed that the interfacial tension of the P (VP-APS) (98/2) solution rapidly decreases from 72.5 dyne/cm to 64.5 dyne/cm as the concentration increases in the concentration range of 0 to 0.25 mg/ml, and the concentration range At 0.25 to 1 mg/ml, it is confirmed that the plateau interfacial tension is maintained almost constantly at 64.5 dyne/cm. As shown in FIG. 5, the interfacial tension profile expressed in an L-shape having a stabilized interfacial tension is a typical profile of a surfactant. The stabilized interfacial tension of the P(VP-APS)(100/0) solution of the present invention is at a level of 70 dyne/cm, whereas the stabilized interfacial tension of the P(VP-APS)(98/2) solution of the present invention is 64.5 dyne/cm level is found to be smaller. This means that the surface activity of P(VP-APS)(98/2) is higher than that of the homopolymer P(VP-APS)(100/0. VP is a hydrophilic monomer and APS is a hydrophobic monomer, so VP When APS and APS form a copolymer, an amphiphilic and surface active copolymer is formed, so P(VP-APS) (98/2) of the present invention has a more surface activity than P(VP-APS) (100/0) is considered to be higher.

본 발명의 Oxi-P(VP-APS)(98/2) 용액의 계면장력 프로파일은 P(VP-APS)(98/2) 용액의 계면장력 프로파일과 유사한 것으로 확인되었다. 그러나 Oxi-P(VP-APS)(98/2) 용액의 안정기 계면장력은 67.1dyne/㎝ 수준으로 P(VP-APS)(98/2) 용액의 안정기 계면장력 70dyne/㎝보다 유의하게 높은 것으로 확인되었다. 상기 결과는 H2O2 처리된 공중합체인 Oxi-P(VP-APS)(98/2)의 계면활성이 산화 처리되지 않은 공중합체인 P(VP-APS)(98/2)보다 더 적다는 것을 의미한다. 도 3에서 보는 바와 같이 VP와 APS로 구성된 공중합체의 APS의 황화물은 H2O2 처리에 의해 설폰(sulfone)으로 산화되고 상기 산화는 APS의 소수성을 감소시켜 공중합체의 양친매성을 감소시키게 된다. 따라서 Oxi-P(VP-APS)(98/2)은 APS의 황화물이 설폰으로 산화된 상태이므로 계면활성이 감소한 것으로 판단된다. It was confirmed that the interfacial tension profile of the Oxi-P(VP-APS)(98/2) solution of the present invention was similar to that of the P(VP-APS)(98/2) solution. However, the Oxi-P(VP-APS)(98/2) solution had a plateau interfacial tension of 67.1 dyne/cm, which was significantly higher than that of the P(VP-APS)(98/2) solution, 70 dyne/cm. Confirmed. The above results show that the surface activity of the H 2 O 2 treated copolymer, Oxi-P(VP-APS) (98/2), is less than that of the non-oxidized copolymer, P(VP-APS) (98/2). it means. As shown in FIG. 3 , the sulfide of APS in the copolymer composed of VP and APS is oxidized to sulfone by H 2 O 2 treatment, and the oxidation reduces the hydrophobicity of APS, thereby reducing the amphipathic properties of the copolymer. . Therefore, it is determined that the surface activity of Oxi-P(VP-APS) 98/2 is decreased because the sulfide of APS is oxidized to sulfone.

본 발명의 P(VP-APS)(97.5/2.5) 용액의 계면장력 역시 L자형 포화방식으로 감소하는 것이 확인되었다. 본 발명의 P(VP-APS)(97.5/2.5) 용액의 안정기 계면장력은 62.3dyne/㎝ 수준으로 P(VP-APS)(98/2) 용액의 안정기 계면장력 64.5dyne/㎝보다 유의하게 낮은 것이 확인되며, 이는 P(VP-APS)(97.5/2.5)의 계면 활성이 P(VP-APS)(98/2)의 계면활성보다 더 높다는 것을 의미한다. P(VP-APS)(97.5/2.5)의 APS 함량은 3.55%로서 P(VP-APS)(98/2)의 APS 함량 3.39% 보다 높기 때문에 공중합체의 양친매성이 더 강할 것으로 판단된다. P(VP-APS)(98/2) 용액과 마찬가지로 Oxi-P(VP-APS)(97.5/2.5) 용액의 안정기 계면장력은 더 증가하는 것이 확인되었으며 이는 산화처리로 인한 계면 활성이 감소되었기 때문으로 판단된다. 예를 들어, Oxi-P(VP-APS)(97.5/2.5)의 안정기 계면장력은 63.6dyne/㎝인 반면, P(VP-APS)(97.5/2.5)의 안정기 계면장력은 62.3dyne/㎝로 유의하게 높은 것으로 확인된다. 이는 P(VP-APS)(97.5/2.5)에 포함된 APS의 산화가 계면 활성 감소의 원인이 되었다는 것을 의미한다.It was confirmed that the interfacial tension of the P(VP-APS) (97.5/2.5) solution of the present invention also decreased in an L-shaped saturation manner. The plateau interfacial tension of the P(VP-APS) (97.5/2.5) solution of the present invention is 62.3 dyne/cm, which is significantly lower than that of the P(VP-APS) (98/2) solution of 64.5 dyne/cm is confirmed, which means that the surface activity of P(VP-APS) (97.5/2.5) is higher than that of P(VP-APS) (98/2). The APS content of P(VP-APS) (97.5/2.5) is 3.55%, which is higher than the APS content of 3.39% of P(VP-APS) (98/2), so it is judged that the amphiphilicity of the copolymer is stronger. Like the P(VP-APS)(98/2) solution, it was confirmed that the plateau interfacial tension of the Oxi-P(VP-APS)(97.5/2.5) solution was further increased, because the surface activity was decreased due to the oxidation treatment. is judged as For example, the plateau interfacial tension of Oxi-P(VP-APS) (97.5/2.5) was 63.6 dyne/cm, whereas that of P(VP-APS) (97.5/2.5) was 62.3 dyne/cm. found to be significantly higher. This means that the oxidation of APS contained in P(VP-APS) (97.5/2.5) was responsible for the decrease in surface activity.

P(VP-APS)(96/4) 용액 역시 L자형의 계면 장력 프로파일을 보였으며 공중합체 용액 중에서 가장 낮은 계면장력을 보였다. 이는 상기 P(VP-APS)(96/4)가 가장 높은 계면활성을 가진다는 것을 의미하며 이는 P(VP-APS)(96/4)는 APS 함량이 4.8%로 가장 높아 가장 강한 양친매성을 가진다는 결과에 의해 지지된다. Oxi-P(VP-APS)(96/4) 용액 역시 계면장력이 증가하여 계면활성이 감소하는 것이 확인되었다. 상세하게는 Oxi-P(VP-APS)(96/4) 용액의 최소 계면장력은 61.5 dyne/㎝으로 P(VP-APS)(96/4) 용액의 최소 계면장력 57.0dyne/㎝보다 유의하게 높은 것으로 확인되었다.The P(VP-APS)(96/4) solution also showed an L-shaped interfacial tension profile and showed the lowest interfacial tension among the copolymer solutions. This means that the P(VP-APS) (96/4) has the highest surface activity, which means that P(VP-APS) (96/4) has the highest APS content of 4.8%, showing the strongest amphipathic properties. supported by the results of having Oxi-P (VP-APS) (96/4) solution also increased the interfacial tension was confirmed to decrease the surface activity. Specifically, the minimum interfacial tension of the Oxi-P(VP-APS)(96/4) solution was 61.5 dyne/cm, which was significantly higher than that of the P(VP-APS)(96/4) solution of 57.0 dyne/cm. was found to be high.

2.5. 유화액의 안정성 분석 결과2.5. Results of stability analysis of emulsion

도 6의 패널(A)는 미네랄 오일을 유상(oil phase)으로 사용하고 증류수를 수상(water phase)으로 사용하되 본 발명의 P(VP-APS)(100/0), P(VP-APS)(98/2), P(VP-APS)(97.5/2.5) 및 P(VP-APS)(96/4)을 유화제로 사용하여 안정화시킨 O/W 유화액의 시간에 따른 액적 직경(droplet diameter) 변화를 측정한 결과를 보여준다. 실험결과 P(VP-APS)(100/0) 유화제를 포함하는 O/W 유화액(비교예 2)의 액적 직경은 24시간 동안 2㎛에서 55㎛로 빠르게 증가하는 것이 확인되었으며 24시간 이후에는 액적 직경의 증가가 거의 발견되지 않았다. 상기 액적 직경의 빠른 증가는 오일 액적이 짧은 기간 동안 융착되었음을 의미한다. 도 5의 결과에 따르면, P(VP-APS)(100/0)는 VP의 동종중합체로서 양친매성이 약하여 낮은 계면활성을 가지는 것으로 확인된다. 따라서 상기 P(VP-APS)(100/0)와 같은 동종중합체가 안정화제(유화제)로서 사용되면 O/W 계면에너지를 감소시킬 수 없으므로 오일 액적을 안정화시킬 수 없게 되는 것으로 판단된다. Panel (A) of Figure 6 uses mineral oil as an oil phase and distilled water as a water phase, but P (VP-APS) (100/0), P (VP-APS) of the present invention Droplet diameter over time of O/W emulsions stabilized using (98/2), P(VP-APS)(97.5/2.5) and P(VP-APS)(96/4) as emulsifiers Shows the result of measuring change. As a result of the experiment, it was confirmed that the droplet diameter of the O/W emulsion (Comparative Example 2) containing the P(VP-APS)(100/0) emulsifier rapidly increased from 2㎛ to 55㎛ for 24 hours, and after 24 hours, the droplet diameter Almost no increase in diameter was found. The rapid increase in the droplet diameter means that the oil droplets were fused for a short period of time. According to the result of FIG. 5, P(VP-APS) (100/0) is a homopolymer of VP, and it is confirmed that it has low surface activity due to weak amphipathic properties. Therefore, when a homopolymer such as P(VP-APS) (100/0) is used as a stabilizer (emulsifier), it is determined that the O/W interfacial energy cannot be reduced and thus the oil droplets cannot be stabilized.

이에 반하여 P(VP-APS)(98/2) 유화제를 포함하는 유화액(실시예 4)의 액적 직경의 증가는 상기 P(VP-APS)(100/0) 유화제를 포함하는 유화액보다 훨씬 느리게 진행되는 것이 확인되었다. 상세하게는 P(VP-APS)(98/2) 유화제를 포함하는 유화액의 액적 직경은 336시간 동안 4㎛에서 31㎛로 천천히 증가하였다. 도 5의 결과에 따르면, P(VP-APS)(98/2)의 계면활성은 P(VP-APS)(100/0)보다 유의하게 높은 것이 확인된다. 따라서 P(VP-APS)(98/2)가 유화제로서 사용되면 공기/물 계면에너지를 줄이고 액적을 보다 효과적으로 안정화 시키게 된다. P(VP-APS)(97.5/2.5) 유화제를 포함하는 유화액(실시예 5)의 액적 직경 증가는 336시간 동안 3㎛에서 28㎛로 천천히 증가하였으며 P(VP-APS)(96/4) 유화제를 포함하는 유화액(실시예 6)의 액적 직경의 증가는 336시간 동안 3㎛에서 16㎛로 천천히 증가하는 것이 확인되었다. In contrast, the increase in droplet diameter of the emulsion containing the P(VP-APS)(98/2) emulsifier (Example 4) proceeded much more slowly than the emulsion containing the P(VP-APS)(100/0) emulsifier. was confirmed to be Specifically, the droplet diameter of the emulsion containing P(VP-APS)(98/2) emulsifier slowly increased from 4㎛ to 31㎛ for 336 hours. According to the results of FIG. 5 , it is confirmed that the surface activity of P(VP-APS) (98/2) is significantly higher than that of P(VP-APS) (100/0). Therefore, when P(VP-APS) (98/2) is used as an emulsifier, it reduces the air/water interface energy and stabilizes the droplets more effectively. The droplet diameter increase of the emulsion containing P(VP-APS) (97.5/2.5) emulsifier (Example 5) increased slowly from 3 μm to 28 μm over 336 hours, and P(VP-APS) (96/4) emulsifier It was confirmed that the increase in the droplet diameter of the emulsion containing Emulsion (Example 6) slowly increased from 3 μm to 16 μm for 336 hours.

정리하면 본 발명의 동종중합체 또는 공중합체를 유화제로서 사용한 유화액의 액적 직경의 증가율은 P(VP-APS)(100/0) 유화제를 포함하는 유화액 > P(VP-APS)(98/2) 유화제를 포함하는 유화액 > P(VP-APS)(97.5/2.5) 유화제를 포함하는 유화액 > P(VP-APS)(96/4) 유화제를 포함하는 유화액 > P(VP-APS)(100/0) 유화제를 포함하는 유화액순인 것으로 확인된다. 따라서 본 발명의 동종중합체 또는 공중합체가 유화제로서 액적을 안정화시키는 효능은 P(VP-APS)(94/4) > P(VP-APS)(97.5/2.5) > P(VP-APS)(98/2) > P(VP-APS)(100/0)순인 것으로 확인된다. 일반적으로 계면활성이 높을수록 계면활성제의 액적 안정화 효능은 더 높다. 도 5의 결과에 따르면, 본 발명의 동종중합체 또는 공중합체의 계면활성은 P(VP-APS)(96/4) > P(VP-APS)(97.5/2.5) > P(VP-APS)(98/2) > P(VP-APS)(100/0)순이다. In summary, the rate of increase in the droplet diameter of the emulsion using the homopolymer or copolymer of the present invention as an emulsifier is P(VP-APS)(100/0) Emulsion containing emulsifier > P(VP-APS)(98/2) emulsifier Emulsions with > P(VP-APS) (97.5/2.5) Emulsions with emulsifiers > P(VP-APS) (96/4) Emulsions with emulsifiers > P(VP-APS) (100/0) It is confirmed that the emulsion containing the emulsifier is in order. Thus, the efficacy of the homopolymer or copolymer of the present invention to stabilize droplets as an emulsifier is P(VP-APS) (94/4) > P(VP-APS) (97.5/2.5) > P(VP-APS) (98 /2) > P(VP-APS)(100/0). In general, the higher the surfactant, the higher the droplet stabilization efficacy of the surfactant. According to the results of Figure 5, the surface activity of the homopolymer or copolymer of the present invention is P(VP-APS) (96/4) > P(VP-APS) (97.5/2.5) > P(VP-APS) ( 98/2) > P(VP-APS)(100/0).

도 6의 패널(B)는 미네랄 오일을 유상(oil phase)으로 사용하고 10% H2O2 용액을 수상(water phase)으로 사용하며 본 발명의 P(VP-APS)(100/0), P(VP-APS)(98/2), P(VP-APS)(97.5/2.5) 또는 P(VP-APS)(96/4)를 유화제로 사용하여 안정화시킨 O/W 유화액의 시간에 따른 액적 직경(droplet diameter) 변화를 측정한 결과를 보여준다. 상기 도 6의 패널(B)는 수상으로서 10% H2O2 용액을 사용하므로 유화제로서 첨가된 P(VP-APS)(100/0), P(VP-APS)(98/2), P(VP-APS)(97.5/2.5) 또는 P(VP-APS)(96/4)는 산화된 형태로서 존재하게 된다. Panel (B) of Figure 6 uses mineral oil as an oil phase and a 10% H 2 O 2 solution as a water phase, and P(VP-APS) (100/0) of the present invention (100/0), Time dependence of O/W emulsions stabilized using P(VP-APS)(98/2), P(VP-APS)(97.5/2.5) or P(VP-APS)(96/4) as emulsifiers The measurement result of the droplet diameter change is shown. The panel (B) of FIG. 6 uses a 10% H 2 O 2 solution as an aqueous phase, so P(VP-APS)(100/0), P(VP-APS)(98/2), P added as an emulsifier (VP-APS) (97.5/2.5) or P(VP-APS) (96/4) exists as an oxidized form.

증류수를 수상으로 사용했을 때와 마찬가지로 Oxi-P(VP-APS)(100/0)을 유화제로 포함하는 유화액(실시예 2-1)의 액적직경은 P(VP-APS)의 낮은 안정화 효능으로 인해 액적 직경이 24시간 동안 2㎛에서 51㎛로 빠르게 증가하는 것이 확인되었다. Oxi-P(VP-APS)(98/2)를 유화제로 포함하는 유화액(실시예 4-1)의 액적 직경은 처음 170시간 동안 2㎛에서 16㎛로 서서히 증가한 다음 나머지 기간 동안 73㎛까지 급격히 증가하였다. 또한 Oxi-P(VP-APS)(97.5/2.5)를 유화제로 포함하는 유화액(실시예 5-1)의 액적 직경은 Oxi-P(VP-APS)(98/2)를 유화제로 포함하는 유화액과 유사한 방식으로 증가했으며 액적 직경 증가 프로파일은 Oxi-P(VP-APS)(98/2)를 유화제로 포함하는 유화액과 거의 동일하였다.As in the case of using distilled water as the aqueous phase, the droplet diameter of the emulsion (Example 2-1) containing Oxi-P (VP-APS) (100/0) as an emulsifier is due to the low stabilization efficacy of P (VP-APS). As a result, it was confirmed that the droplet diameter rapidly increased from 2 μm to 51 μm in 24 hours. The droplet diameter of the emulsion containing Oxi-P(VP-APS) (98/2) (98/2) as an emulsifier (Example 4-1) slowly increased from 2 μm to 16 μm during the first 170 hours, and then rapidly increased to 73 μm during the rest of the period. increased. In addition, the droplet diameter of the emulsion (Example 5-1) containing Oxi-P (VP-APS) (97.5/2.5) as an emulsifier is the emulsion containing Oxi-P (VP-APS) (98/2) as an emulsifier. and the droplet diameter increase profile was almost identical to that of the emulsion containing Oxi-P(VP-APS) (98/2) as an emulsifier.

Oxi-P(VP-APS)(96/4)를 유화제로 포함하는 유화액(실시예 6-1)의 액적 직경은 상기 Ox-P(VP-APS)(98/2)를 유화제로 포함하는 유화액 및 Oxi-P(VP-APS)(97.5/2.5)를 유화제로 포함하는 유화액과 유사한 패턴으로 증가하는 것이 확인되었으나 증가율은 Oxi-P(VP-APS)(98/2)를 유화제로 포함하는 유화액 및 Oxi-P(VP-APS)(97.5/2.5)를 유화제로 포함하는 유화액의 증가율보다 낮은 것으로 확인되었다. 상기 결과는 P(VP-APS)(96/4)에 포함된 APS의 함량이 P(VP-APS)(98/2) 및 P(VP-APS)(97.5/2.5)의 포함된 APS 함량보다 높아 더 강한 계면활성(interfacial activity)을 가지기 때문으로 판단된다(도 5 참조). H2O2용액을 수상으로 사용하여 제조한 유화액의 액적 직경 증가율은 증류수를 사용하여 제조한 유화액보다 높은 것으로 확인되었다(도 6 참조). H2O2용액을 처리하면 공중합체에 포함된 APS의 설폭사이드 잔기는 설폰으로 산화되므로 공중합체의 계면활성이 크게 감소한다(도 3 및 5 참조). 따라서 본 발명의 공중합체와 H2O2용액을 사용하여 유화액을 제조하게 되면 상기 공중합체는 산화되므로 본 발명의 공중합체와 증류수를 사용하여 제조한 유화액에 함유된 공중합체보다 낮은 계면활성을 보일 것으로 판단된다. 상기 결과는 H2O2용액을 사용하여 제조한 유화액이 증류수를 사용하여 제조한 유화액보다 불안정하여 더 높은 액적 직경 증가율을 보이는 이유를 설명해준다. The droplet diameter of the emulsion (Example 6-1) containing Oxi-P (VP-APS) (96/4) as an emulsifier is the emulsion containing Ox-P (VP-APS) (98/2) as an emulsifier. and Oxi-P (VP-APS) (97.5/2.5) as an emulsifier increased in a pattern similar to that of the emulsifier, but the rate of increase was the emulsion containing Oxi-P (VP-APS) (98/2) as an emulsifier. and Oxi-P(VP-APS) (97.5/2.5) as an emulsifier. The results show that the content of APS contained in P(VP-APS) (96/4) is higher than the content of APS contained in P(VP-APS) (98/2) and P(VP-APS) (97.5/2.5). It is determined that this is because it has a higher interfacial activity (see FIG. 5). The droplet diameter increase rate of the emulsion prepared by using the H 2 O 2 solution as the aqueous phase was confirmed to be higher than that of the emulsion prepared using distilled water (see FIG. 6 ). When the H 2 O 2 solution is treated, the sulfoxide residue of the APS contained in the copolymer is oxidized to sulfone, so that the surface activity of the copolymer is greatly reduced (see FIGS. 3 and 5 ). Therefore, when an emulsion is prepared using the copolymer of the present invention and a H 2 O 2 solution, the copolymer is oxidized, so it will show lower surface activity than the copolymer contained in the emulsion prepared using the copolymer of the present invention and distilled water. is judged to be The above result explains why the emulsion prepared using the H 2 O 2 solution is unstable than the emulsion prepared using distilled water and shows a higher droplet diameter increase rate.

도 7의 패널(A)는 미네랄 오일을 유상(oil phase)으로 사용하고 증류수를 수상(water pahse)으로 사용하며 본 발명의 P(VP-APS)(100/0), P(VP-APS)(98/2), P(VP-APS)(97.5/2.5) 및 P (VP-APS) (96/4)을 유화제로 사용하여 안정화시킨 O/W 유화액의 안정성(%)을 평가한 결과를 보여준다. P(VP-APS)(100/0)를 유화제로 포함하는 유화액(비교예 2)의 안정성(%)은 동종중합체의 낮은 계면 활성으로 인해 48시간 만에 0%로 매우 빠르게 저하된 것이 확인된다. 상기 P(VP-APS)(100/0)를 유화제로 포함하는 유화액은 오일 액적을 안정화 할 수 없었기 때문에 융착이 쉽게 일어나고 빠른 상분리 즉, 안정성의 감소로 이어진 것으로 판단된다. P(VP-APS)(98/2)를 유화제로 포함하는 유화액(실시예 4), P(VP-APS)(97.5/2.5)를 유화제로 포함하는 유화액(실시예 5) 및 P(VP-APS)(96/4)를 유화제로 포함하는 유화액(실시예 6)은 안정성이 서서히 감소하여 650시간 후에 0%에 도달하였다. P(VP-APS)(a/b)는 계면활성이 있는 것이 확인되었으며 동종중합체(homopolyer)보다 공중합체(copolyer)가 오일 액적을 더 효과적으로 안정화시킨다는 것이 확인되었다(도 5 및 도 6 참조). 상기 결과는 공중합체로 안정화된 유화액의 안정성이 동종중합체로 안정화된 유화액의 안정성보다 더 높은 이유를 설명한다.Panel (A) of Figure 7 uses mineral oil as an oil phase and distilled water as a water phase (water pahse) of the present invention P (VP-APS) (100/0), P (VP-APS) (98/2), P(VP-APS) (97.5/2.5) and P (VP-APS) (96/4) were used as emulsifiers to evaluate the stability (%) of the O/W emulsion stabilized. show It is confirmed that the stability (%) of the emulsion (Comparative Example 2) containing P (VP-APS) (100/0) as an emulsifier fell very rapidly to 0% in 48 hours due to the low surfactant activity of the homopolymer. . Since the emulsion containing P(VP-APS) (100/0) as an emulsifier could not stabilize the oil droplets, fusion occurred easily and it is judged that it led to rapid phase separation, that is, a decrease in stability. Emulsions containing P(VP-APS) (98/2) as emulsifiers (Example 4), emulsions containing P(VP-APS) (97.5/2.5) as emulsifiers (Example 5) and P(VP- The emulsion (Example 6) containing APS) (96/4) as an emulsifier gradually decreased in stability and reached 0% after 650 hours. It was confirmed that P(VP-APS)(a/b) had a surface activity, and it was confirmed that the copolyer stabilized oil droplets more effectively than the homopolyer (see FIGS. 5 and 6 ). The above results explain why the stability of emulsions stabilized with copolymers is higher than that of emulsions stabilized with homopolymers.

도 7에 도시된 곡선의 기울기를 고려하면 본 발명의 공중합체를 포함하는 유화액의 안정성은 다음의 순서인 것으로 판단된다: P(VP-APS)(96/4)를 유화제로 포함하는 유화액 > P(VP-APS)(97.5/2.5)를 유화제로 포함하는 유화액 > P(VP-APS)(98/2)를 유화제로 포함하는 유화액 > P(VP-APS)(100/0)를 유화제로 포함하는 유화액. 분석결과 본 발명의 공중합체를 포함하는 유화액에 대한 상분리를 근거로 평가한 유화안정성과 오일 액적의 융착을 근거로 평가한 안정성은 동일한 순서인 것으로 확인되었다(도 6의 패널(A) 및 도 7의 패널(A) 참조).Considering the slope of the curve shown in Fig. 7, it is determined that the stability of the emulsion containing the copolymer of the present invention is in the following order: Emulsion containing P(VP-APS) (96/4) as an emulsifier > P Emulsion with (VP-APS) (97.5/2.5) as emulsifier > Emulsion with P(VP-APS) (98/2) as emulsifier > With P(VP-APS) (100/0) as emulsifier emulsion that does. As a result of the analysis, it was confirmed that the emulsion stability evaluated based on the phase separation of the emulsion containing the copolymer of the present invention and the stability evaluated based on the fusion of oil droplets were in the same order (panel (A of FIG. 6) and FIG. 7 see panel (A)).

도 7의 패널(B)는 미네랄 오일을 유상(oil phase)으로 사용하고 H2O2용액을 수상(aqueous phase) 사용하며 본 발명의 P(VP-APS)(100/0), P(VP-APS)(98/2), P(VP-APS)(97.5/2.5) 및 P (VP-APS) (96/4)을 유화제로 사용하여 안정화시킨 O/W 유화액의 안정성(%)을 평가한 결과를 보여준다. 유화액의 안정성은 증류수를 수상으로 사용하며 P(VP-APS)(100/0), P(VP-APS)(98/2), P(VP-APS)(97.5/2.5), 또는 P(VP-APS)(96/4)을 포함하는 O/W 유화액의 안정성 평가 결과와 유사한 패턴을 보이는 것으로 확인되었다. 그러나 H2O2용액을 사용한 유화액의 안정성은 증류수를 사용한 유화액보다 더 빠르게 감소하는 것이 확인되었다. 상세하게는 증류수를 수상으로 하고 P(VP-APS)(98/2)을 포함하는 유화액은 350시간 후에 안정성이 45%로 저하된 것이 확인된 반면, H2O2를 수상으로 하고 P(VP-APS)(98/2)을 포함하는 유화액(실시예 4-1)은 350시간 후에 안정성이 0%로 저하된 것이 확인되었다. 상기에서 설명한 바와 같이, H2O2용액을 사용하고 P(VP-APS)(a/b)을 포함하는 유화액은 상기 P(VP-APS)(a/b)에 포함된 APS의 설파이드가 설폰으로 산화되어 공중합체의 표면활성 및 액적 안정화 능력이 저하되므로 액적의 융착(coalescence)과 상분리(phase separation)가 유도된다.Panel (B) of Figure 7 uses mineral oil as an oil phase and H 2 O 2 solution as an aqueous phase, and P(VP-APS)(100/0), P(VP) of the present invention Evaluate the stability (%) of O/W emulsions stabilized using -APS)(98/2), P(VP-APS)(97.5/2.5) and P(VP-APS)(96/4) as emulsifiers show one result. The stability of the emulsion is determined by using distilled water as the aqueous phase, P(VP-APS)(100/0), P(VP-APS)(98/2), P(VP-APS)(97.5/2.5), or P(VP -APS) (96/4) was confirmed to show a similar pattern to the stability evaluation results of the O/W emulsion. However, it was confirmed that the stability of the emulsion using the H 2 O 2 solution decreased more rapidly than the emulsion using distilled water. Specifically, while it was confirmed that the emulsion containing distilled water and P(VP-APS)(98/2) had decreased stability to 45% after 350 hours, H 2 O 2 as an aqueous phase and P(VP) It was confirmed that the emulsion (Example 4-1) containing -APS) (98/2) had decreased stability to 0% after 350 hours. As described above, using H 2 O 2 solution and emulsion containing P(VP-APS)(a/b), the sulfide of APS contained in P(VP-APS)(a/b) is sulfone oxidized to lower the surface activity and droplet stabilization ability of the copolymer, so coalescence and phase separation of the droplets are induced.

3. 결론3. Conclusion

본 발명의 산화 응답성 유화액은 산화가능 공중합체 예를 들어, P(VP-APS)(a/b)를 유화제로서 사용하여 제조한다. 본 발명의 P(VP-APS)(a/b)를 유화제로서 포함한 유화액은 산화환경에 노출되면 P(VP-APS)(a/b)에 포함된 APS가 산화되어 표면활성 및 액적 안정화 능력이 저하되므로 액적의 융착(coalescence)과 상분리(phase separation)가 유도되는 특징이 있다.The oxidation responsive emulsions of the present invention are prepared using an oxidizable copolymer such as P(VP-APS)(a/b) as the emulsifier. When the emulsion containing P(VP-APS)(a/b) of the present invention as an emulsifier is exposed to an oxidizing environment, the APS contained in P(VP-APS)(a/b) is oxidized, resulting in improved surface activity and droplet stabilization ability. As it is lowered, coalescence of droplets and phase separation are induced.

수소핵자기공명 및 X선 광전자 분광법 분석결과, H2O2를 이용한 산화처리결과 APS의 설파이드가 설폰으로 산화된 것이 확인되었다. UV 분광기와 장력계 연구를 통해 공중합체의 양친매성과 계면 활성이 산화제에 의해 현저하게 약화되는 것이 확인 되었다. P(VP-APS)(a/b)로 안정화된 유화액의 불안정화는 H2O2용액 (10%, v/v)이 수상으로 사용되었을 때 가속화되었으며, 이는 APS의 산화로 인하여 약화된 계면활성 때문인 것으로 판단된다.As a result of hydrogen nuclear magnetic resonance and X-ray photoelectron spectroscopy analysis, it was confirmed that the sulfide of APS was oxidized to sulfone as a result of oxidation treatment using H 2 O 2 . Through UV spectroscopy and tensiometer studies, it was confirmed that the amphiphilic properties and surface activity of the copolymer were significantly weakened by the oxidizing agent. The destabilization of the emulsion stabilized with P(VP-APS)(a/b) was accelerated when a H 2 O 2 solution (10%, v/v) was used as the aqueous phase, which resulted in the weakened surfactant activity due to oxidation of APS. is considered to be due to

본 발명의 P(VP-APS)(a/b)를 산화 가능한 유화제로 사용하면 필요에 따라 쉽게 해유화되는 O/W 유화액을 제조할 수 있다. 본 발명의 P(VP-APS)(a/b)를 유화제로서 사용하여 제조한 O/W 유화액은 산화환경에 노출되면 양친매성과 계면활성이 저하되어 오일 액적의 안정화 능력이 감소하므로 상기 오일 액적이 서로 뭉치면서 상분리더 일어나 방출된다. 따라서 상기 오일 액적에 유효성분을 포함시키거나 상기 오일 액적을 소수성 유효성분으로 대체하게 되면 산화에 응답하여 성기 유효성분을 방출하는 O/W 유화액을 제조할 수 있다.When the P(VP-APS)(a/b) of the present invention is used as an oxidizable emulsifier, an O/W emulsion that can be easily demulsified as needed can be prepared. The O/W emulsion prepared by using P(VP-APS)(a/b) of the present invention as an emulsifier decreases amphiphilicity and surface activity when exposed to an oxidizing environment, thereby reducing the stabilization ability of oil droplets. As enemies coalesce, more phase separation occurs and they are released. Therefore, when an active ingredient is included in the oil droplet or the oil droplet is replaced with a hydrophobic active ingredient, it is possible to prepare an O/W emulsion that releases the sexual active ingredient in response to oxidation.

본 명세서에서 설명된 구체적인 실시예는 본 발명의 바람직한 구현예 또는 예시를 대표하는 의미이며, 이에 의해 본 발명의 범위가 한정되지는 않는다. 본 발명의 변형과 다른 용도가 본 명세서 특허청구범위에 기재된 발명의 범위로부터 벗어나지 않는다는 것은 당업자에게 명백하다. Specific examples described herein are meant to represent preferred embodiments or examples of the present invention, and the scope of the present invention is not limited thereby. It will be apparent to those skilled in the art that modifications and other uses of the present invention do not depart from the scope of the invention as set forth in the claims herein.

Claims (7)

폴리(비닐피롤리돈-코-알릴페닐설파이드)(poly(vinyl pyrrolidone-co-allyl phenyl sulfide)를 유화제로 포함하는 산화 응답성 유화액.
An oxidation-responsive emulsion comprising poly(vinyl pyrrolidone-co-allyl phenyl sulfide) as an emulsifier.
제 1 항에 있어서, 상기 폴리(비닐피롤리돈-코-알릴페닐설파이드)(poly(vinyl pyrrolidone-co-allyl phenyl sulfide)는 유화제로서 양친매성을 가지며 산화환경에서 알릴페닐설파이드 잔기가 알릴페닐설폰 잔기로 산화되어 양친매성이 감소하므로 액적의 융착과 상분리가 유도되는 것을 특징으로 하는 산화 응답성 유화액.
The method of claim 1, wherein the poly(vinyl pyrrolidone-co-allyl phenyl sulfide) (poly (vinyl pyrrolidone-co-allyl phenyl sulfide) is an emulsifier and is amphiphilic and in an oxidizing environment, the allylphenylsulfide residue is allylphenylsulfone. Oxidation-responsive emulsion, characterized in that the fusion of droplets and phase separation are induced because the amphiphilicity is reduced by oxidation to a residue.
제 2 항에 있어서, 상기 폴리(비닐피롤리돈-코-알릴페닐설파이드)는 비닐피롤리돈 단량체와 알릴페닐설파이드 단량체가 100 : 3 내지 10의 몰비로 구성된 것을 특징으로 하는 산화 응답성 유화액.
The oxidation-responsive emulsion according to claim 2, wherein the poly(vinylpyrrolidone-co-allylphenylsulfide) contains a vinylpyrrolidone monomer and an allylphenylsulfide monomer in a molar ratio of 100:3 to 10.
제 3 항에 있어서 상기 폴리(비닐피롤리돈-코-알릴페닐설파이드)는 수용액상에서 안정기 계면장력이 55 내지 66 dyne/㎝인 것을 특징으로 하는 산화 응답성 유화액.
[4] The oxidation-responsive emulsion according to claim 3, wherein the poly(vinylpyrrolidone-co-allylphenylsulfide) has a stable interfacial tension of 55 to 66 dyne/cm in an aqueous phase.
제 1 항에 있어서, 상기 산화 응답성 유화액은 수상(water phase)으로서 0.5% 폴리(비닐피롤리돈-코-알릴페닐설파이드) 유화제를 포함하는 친수성 용액을 포함하며 오일상(oil phase)으로서 오일을 포함하는 oil in water (O/W) 타입의 유화액인 것을 특징으로 하는 산화 응답성 유화액.
The oxidation responsive emulsion of claim 1, wherein the oxidation responsive emulsion comprises a hydrophilic solution comprising 0.5% poly(vinylpyrrolidone-co-allylphenylsulfide) emulsifier as water phase and oil as oil phase. Oxidation-responsive emulsion, characterized in that it is an oil in water (O/W) type emulsion containing
제 5 항에 있어서 상기 산화 응답성 유화액은 환원환경의 경우 오일 액적의 직경이 3 내지 4㎛ 수준이었다가 300시간 이후 30 내지 15 내지 35㎛으로 증가하며, 산화환경의 경우 오일 액적의 직경이 3 내지 4㎛ 수준이었다가 300시간 이후 30 내지 40 내지 100㎛으로 증가하는 것을 특징으로 하는 산화 응답성 유화액.
[Claim 6] The oxidation-responsive emulsion according to claim 5, wherein, in the case of a reducing environment, the diameter of oil droplets is at a level of 3 to 4 μm, and increases to 30 to 15 to 35 μm after 300 hours, and in an oxidizing environment, the diameter of oil droplets is 3 Oxidation-responsive emulsion, characterized in that the level of ∼ 4 µm increases to 30 to 40 µm to 100 µm after 300 hours.
제 5 항에 있어서 상기 산화 응답성 유화액은 산화환경의 상분리 안정성(stability, 50%)이 환원환경의 상분리 안정성(stability, 50%)의 55 내지 80% 수준으로 감소되는 것을 특징으로 하는 산화 응답성 유화액.The oxidation responsiveness of claim 5, wherein the oxidation responsive emulsion has a phase separation stability (stability, 50%) in an oxidizing environment is reduced to a level of 55 to 80% of a phase separation stability (stability, 50%) in a reducing environment. emulsion.
KR1020200130150A 2020-10-08 2020-10-08 Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer KR102418116B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200130150A KR102418116B1 (en) 2020-10-08 2020-10-08 Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200130150A KR102418116B1 (en) 2020-10-08 2020-10-08 Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer

Publications (2)

Publication Number Publication Date
KR20220046900A true KR20220046900A (en) 2022-04-15
KR102418116B1 KR102418116B1 (en) 2022-07-06

Family

ID=81212017

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200130150A KR102418116B1 (en) 2020-10-08 2020-10-08 Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer

Country Status (1)

Country Link
KR (1) KR102418116B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223217A1 (en) * 2008-11-25 2011-09-15 Ecole Polytechnique Federale De Lausanne (Epfl) Block copolymers and uses thereof
CN108904446A (en) * 2018-06-11 2018-11-30 中山大学 A kind of preparation method and application of the medicament-carried nano micelle of artery plaque microenvironment response
KR20190028313A (en) * 2017-09-08 2019-03-18 연세대학교 산학협력단 Amphipathic nanoparticles and method for preparing the same
KR20200050141A (en) * 2018-11-01 2020-05-11 강원대학교산학협력단 Oxidation-sensitive liposomes incorporating sulfide compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223217A1 (en) * 2008-11-25 2011-09-15 Ecole Polytechnique Federale De Lausanne (Epfl) Block copolymers and uses thereof
KR20190028313A (en) * 2017-09-08 2019-03-18 연세대학교 산학협력단 Amphipathic nanoparticles and method for preparing the same
CN108904446A (en) * 2018-06-11 2018-11-30 中山大学 A kind of preparation method and application of the medicament-carried nano micelle of artery plaque microenvironment response
KR20200050141A (en) * 2018-11-01 2020-05-11 강원대학교산학협력단 Oxidation-sensitive liposomes incorporating sulfide compounds

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
Besnard, L., Marchal, F., Paredes, J. F., Daillant, J., Pantoustier, N., Perrin, P. and Guenoun, P. Adv. Mater. 2013, 25, 2844-2848.
Brugger, B. and Richtering, W. Adv. Mater. 2007, 19, 2973-2978.
Brugger, B., Rosen, B. A. and Richtering, W. Langmuir. 2008, 24, 12202-12208.
Busico, V., Ferraro, A. and Vacatello, M. Mol. Cryst. Liq. Cryst. 1985, 128, 243-261.
Chung, S. L. and Ferrier, L. K. J. Food. Sci. 1992, 57, 40-42.
Israelachvili, J. N. and Wennerstroem, H. J. Phys. Chem. 1992, 96, 520-531.
Khoukh, S., Perrin, P., Bes de Berc, F.,Tribet, C. Chem. Phys. Chem. 2005, 6, 2009-2012.
Kwon, K. and Kim, J. C. J. Disper. Sci. Technol. 2018, 39, 333-340.
Li, Z. and Ngai, T. Colloid. Polym. Sci. 2011, 289, 489-496.
Liu, Y., Bhatnagar, A., Ji, Q., Riffle, J. S.,McGrath, J. E., Geibel, J. F. and Kashiwagi, T. Polymer. 2000, 41, 5137-5146.
Maltesh, C., Xu, Q., Somasundaran, P., Benton, W. J. and Hung, N. Langmuir. 1992, 8, 1511-1513.
Mondal, J. and Yethiraj, A. J. Phys. Chem. Lett. 2011, 2, 2391-2395.
Nie, Z., Fava, D., Kumacheva, E., Zou, S., Walker, G. C. and Rubinstein, M. Nat. Mater. 2007, 6, 609.
Park, S. H. and Kim, J. C. J. Disper. Sci. Technol. 2018, 39, 961-969.
Seo, S. R. and Kim, J. C. J. Macromol. Sci. A. 2013, 50, 855-860.
Seo, S. R., Lee, H. Y. and Kim, J. C. J. Disper. Sci. Technol. 2013, 34, 1280-1285.
Tang, J., Quinlan, P. J. and Tam, K. C. Soft Matter. 2015, 11, 3512-3529.
Wessln, B., Kober, M., Freij-Larsson, C., Ljungh, Å. And Paulsson, M. Biomaterials. 1994, 15, 278-284.
Zhunuspayev, D. E., Mun, G. A. and Khutoryanskiy, V. V. Langmuir. 2010, 26, 7590-7597.
Zilman, A., Tlusty, T. and Safran, S. A. J. Phys. Condens. Mat. 2002, 15, S57.
Zorba, O. Food hydrocolloids. 2006, 20, 698-702.

Also Published As

Publication number Publication date
KR102418116B1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
Ngai et al. Novel emulsions stabilized by pH and temperature sensitive microgels
Sadurní et al. Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications
EP1727865B1 (en) Particle-stabilised emulsions
Pandey et al. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation
Henry et al. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters
Amrutkar et al. Study on self nano emulsifying drug delivery system of poorly water soluble drug rosuvastatin calcium
Galindo-Alvarez et al. Enhanced stability of nanoemulsions using mixtures of non-ionic surfactant and amphiphilic polyelectrolyte
Calderó et al. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions
Malakar et al. Candesartan cilexetil microemulsions for transdermal delivery: formulation, in-vitro skin permeation and stability assessment
Atanase et al. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications
DE102004039212A1 (en) Rheology control of Pickering emulsion by electrolytes
US6197283B1 (en) Using without emulsions as thickeners in cosmetic and pharmaceutical formulations
KR102418116B1 (en) Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer
Zhang et al. Impact of electrolytes on double emulsion systems (W/O/W) stabilized by an amphiphilic block copolymer
Khan et al. Microfluidic conceived Trojan microcarriers for oral delivery of nanoparticles
Zhang et al. Controlled synthesis and association behavior of graft Pluronic in aqueous solutions
US20060222670A1 (en) Nanocomposite microgel particles and uses thereof
Beija et al. Control of the catalytic properties and directed assembly on surfaces of MADIX/RAFT polymer-coated gold nanoparticles by tuning polymeric shell charge
Giliomee et al. Smart block copolymers of PVP and an alkylated PVP derivative: synthesis, characterization, thermoresponsive behaviour and self-assembly
Calderó et al. Biomedical perfluorohexane-loaded nanocapsules prepared by low-energy emulsification and selective solvent diffusion
Scherlund et al. Stabilization of a thermosetting emulsion system using ionic and nonionic surfactants
Narukulla et al. Stable & re-dispersible polyacryloyl hydrazide–Ag nanocomposite Pickering emulsions
Payghan et al. Anhydrous emulsion: Vehicles for topical delivery of ketoconazole
Khan et al. Tensiometric and conductometric studies of the effect of polymers on the aggregation behavior of cationic amphiphilic drugs IMP and PMT
Capek The inverse mini-emulsion polymerization of acrylamide

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant