KR20200050141A - Oxidation-sensitive liposomes incorporating sulfide compounds - Google Patents

Oxidation-sensitive liposomes incorporating sulfide compounds Download PDF

Info

Publication number
KR20200050141A
KR20200050141A KR1020180132763A KR20180132763A KR20200050141A KR 20200050141 A KR20200050141 A KR 20200050141A KR 1020180132763 A KR1020180132763 A KR 1020180132763A KR 20180132763 A KR20180132763 A KR 20180132763A KR 20200050141 A KR20200050141 A KR 20200050141A
Authority
KR
South Korea
Prior art keywords
oxidation
sensitive
liposome
hea
liposomes
Prior art date
Application number
KR1020180132763A
Other languages
Korean (ko)
Other versions
KR102155808B1 (en
Inventor
김진철
김진아
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020180132763A priority Critical patent/KR102155808B1/en
Publication of KR20200050141A publication Critical patent/KR20200050141A/en
Application granted granted Critical
Publication of KR102155808B1 publication Critical patent/KR102155808B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to an oxidation-sensitive liposome containing sulfide. Particularly, the oxidation-sensitive liposome containing sulfide includes: an oxidation-sensitive polymer comprising a hydrophilic monomer and a hydrophobic monomer; and dioleoyl phosphatidylethanolamine (DOPE) stabilized with the polymer. More particularly, the hydrophilic monomer is hydroxyethyl acrylate (HEA), and the hydrophobic monomer is sulfur-containing aryl methyl sulfide (AMS). The liposome shows an increase in average hydraulic diameter and more strongly depends on the concentration of an oxidizing agent, when the weight ratio of dioleoyl phosphatidyl ethanol amine based on the oxidation-sensitive polymer is increased.

Description

황화물을 함유한 산화 민감성 리포솜{Oxidation-sensitive liposomes incorporating sulfide compounds} Oxidation-sensitive liposomes incorporating sulfide compounds}

본 발명은 황화물을 함유한 산화 민감성 리포솜에 관한 것이다. The present invention relates to oxidation-sensitive liposomes containing sulfides.

단순 확산(simple diffusion)으로 내부에 탑재된 물질을 방출하는 리포솜은 특정 환경에서 반응하여 탑재된 물질을 방출하지 못하는 문제점이 있었다. 따라서 상기 리포솜에 자극 민감성 고분자를 수식하여, 특정 환경에서 탑재된 물질을 방출케 하여, 효능을 발휘시켜야 한다.Liposomes that emit substances loaded therein by simple diffusion have a problem in that they do not release substances loaded by reacting in a specific environment. Therefore, it is necessary to modify the stimulation-sensitive polymer to the liposome, release the substance loaded in a specific environment, and exert efficacy.

리포솜에 탑재된 물질의 효능을 효과적으로 발휘시키기 위해서는 리포솜이 작용 부위의 특정 조건에서 많은 양의 내용물을 방출시켜야 한다. 예를 들면, 내용물을 세포 내부에 전달하고자 할 경우에, 리포솜은 세포 내에 도달되기 전까지의 과정에서는 내용물을 적게 방출하고, 세포 내에 도달된 후에는 내용물을 많이 방출하는 특성을 나타내어야 내용물의 효능을 효과적으로 발휘시킨다. In order to effectively exert the efficacy of substances loaded on liposomes, liposomes must release a large amount of contents under specific conditions of the site of action. For example, in order to deliver the contents to the inside of cells, liposomes should release the contents in the process until reaching the cells, and release the contents after reaching the cells to exhibit the characteristics of releasing the contents in order to increase the efficacy of the contents. Effectively.

 한편, 자극 민감성 리포솜은, 리포솜에 자극 민감성 물질들(stimuli-sensitive materials)을 결합시킴으로써 리포솜이 pH 변화, 온도 변화, 그리고 광 조사에 반응하여 내용물을 방출하도록 설계된 것으로, 대한민국 등록특허 제10-1978934호, 대한민국 공개특허 제10-2011-7023505호에는 pH 자극 민감성 리포솜에 대한 내용이, 대한민국 등록특허 제10-1378934호에는 광 응답성 및 온도 응답성 리포솜에 대한 내용이, 대한민국 등록특허 제10-1652126호에는 온도 응답성 리포솜에 대한 내용이 기재되어 있다.On the other hand, stimulation-sensitive liposomes are designed to release the contents of liposomes in response to pH changes, temperature changes, and light irradiation by combining stimuli-sensitive materials with the liposomes, Korea Patent Registration No. 10-1978934 No. 10-2011-7023505, Republic of Korea Patent No. 10-2011-7023505, the contents of the pH-stimulating sensitive liposomes, Republic of Korea Patent No. 10-1378934, the content of light-responsive and temperature-responsive liposomes, Republic of Korea Patent No. 10- No. 1652126 describes a temperature-responsive liposome.

대한민국특허청 공개특허공보, 10-2017-0041509, 의약용 단백질의 지속방출을 위한 약물전달체 및 이의 제조방법, 2017. 04. 17. 공개Republic of Korea Patent Office Publication Patent Publication, 10-2017-0041509, drug delivery system for sustained release of pharmaceutical protein and its manufacturing method, published on April 17, 2017 대한민국특허청 공개특허공보, 10-2018-0088569, 소수성 이황화물을 함유한 환원 응답성 리포솜, 2018. 08. 06. 공개Republic of Korea Patent Office Publication Patent Publication, 10-2018-0088569, Reducing responsive liposome containing hydrophobic disulfide, published August 8, 2018

Marsh D. Thermodynamics of phospholipid self-assembly. Biophys J. 2012;102(5):1079-87. Marsh D. Thermodynamics of phospholipid self-assembly. Biophys J. 2012; 102 (5): 1079-87. Alexandridis P, Lindman B. Amphiphilic block copolymers: self-assembly and applications. New York: Elsevier; 2000. Alexandridis P, Lindman B. Amphiphilic block copolymers: self-assembly and applications. New York: Elsevier; 2000. Ng CC, Cheng Y-L, Pennefather PS. Properties of a self-assembled phospholipid membrane supported on lipobeads. Biophys J. 2004;87(1):323-31. Ng CC, Cheng Y-L, Pennefather PS. Properties of a self-assembled phospholipid membrane supported on lipobeads. Biophys J. 2004; 87 (1): 323-31. Noguchi H, Takasu M. Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Phys Rev E. 2001;64(4):041913. Noguchi H, Takasu M. Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Phys Rev E. 2001; 64 (4): 041913. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm. 2015;10(2):81-98. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm. 2015; 10 (2): 81-98. Kumar V. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci USA. 1991;88(2):444-8. Kumar V. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci USA. 1991; 88 (2): 444-8. Ho RJ, Rouse BT, Huang L. Target-sensitive immunoliposomes: preparation and characterization. Biochemistry. 1986;25(19):5500-6. Ho RJ, Rouse BT, Huang L. Target-sensitive immunoliposomes: preparation and characterization. Biochemistry. 1986; 25 (19): 5500-6. Sudimack JJ, Guo W, Tjarks W, Lee RJ. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta, Biomembr. 2002;1564(1):31-7. Sudimack JJ, Guo W, Tjarks W, Lee RJ. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta, Biomembr. 2002; 1564 (1): 31-7. Kim J-C, Bae SK, Kim J-D. Temperature-sensitivity of liposomal lipid bilayers mixed with poly (N-isopropylacrylamide-co-acrylic acid). J Biochem. 1997;121(1):15-9. Kim J-C, Bae SK, Kim J-D. Temperature-sensitivity of liposomal lipid bilayers mixed with poly (N-isopropylacrylamide-co-acrylic acid). J Biochem. 1997; 121 (1): 15-9. Kim J-C, Kim M-S, Kim J-D. Temperature-sensitive releases from liposomes containing hydrophobically modified poly (N-isopropylacrylamide). Korean J Chem Eng. 1999;16(1):28-33. Kim J-C, Kim M-S, Kim J-D. Temperature-sensitive releases from liposomes containing hydrophobically modified poly (N-isopropylacrylamide). Korean J Chem Eng. 1999; 16 (1): 28-33. Chu C-J, Dijkstra J, Lai M-Z, Hong K, Szoka FC. Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharm Res. 1990;7(8):824-34. Chu C-J, Dijkstra J, Lai M-Z, Hong K, Szoka FC. Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharm Res. 1990; 7 (8): 824-34. Ellens H, Bentz J, Szoka FC. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984;23(7):1532-8. Ellens H, Bentz J, Szoka FC. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984; 23 (7): 1532-8. Lai MZ, Vail WJ, Szoka FC. Acid-and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate. Biochemistry. 1985;24(7):1654-61. Lai MZ, Vail WJ, Szoka FC. Acid-and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate. Biochemistry. 1985; 24 (7): 1654-61. Lee E-O, Kim J-G, Kim J-D. Induction of vesicle-to-micelle transition by bile salts for DOPE vesicles incorporating immunoglobulin G. J Biochem. 1992;112(5):671-6. Lee E-O, Kim J-G, Kim J-D. Induction of vesicle-to-micelle transition by bile salts for DOPE vesicles incorporating immunoglobulin G. J Biochem. 1992; 112 (5): 671-6. Jo S-M, Lee HY, Kim J-C. Glucose-sensitive liposomes incorporating hydrophobically modified glucose oxidase. Lipids. 2008;43(10):937-43. Jo S-M, Lee HY, Kim J-C. Glucose-sensitive liposomes incorporating hydrophobically modified glucose oxidase. Lipids. 2008; 43 (10): 937-43. White J, Helenius A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci USA. 1980;77(6):3273-7. White J, Helenius A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci USA. 1980; 77 (6): 3273-7. Bangham AD, Horne R. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964;8(5):660IN2-8IN10. Bangham AD, Horne R. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964; 8 (5): 660IN2-8IN10. YashRoy R. Lamellar dispersion and phase separation of chloroplast membrane lipids by negative staining electron microscopy. J Biosci. 1990;15(2):93-8. YashRoy R. Lamellar dispersion and phase separation of chloroplast membrane lipids by negative staining electron microscopy. J Biosci. 1990; 15 (2): 93-8. Were LM, Bruce BD, Davidson PM, Weiss J. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem. 2003;51(27):8073-9. Were LM, Bruce BD, Davidson PM, Weiss J. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem. 2003; 51 (27): 8073-9. Anabousi S, Kleemann E, Bakowsky U, Kissel T, Schmehl T, Gessler T, et al. Effect of PEGylation on the stability of liposomes during nebulisation and in lung surfactant. J Nanosci Nanotechnol. 2006;6(9-1):3010-6. Anabousi S, Kleemann E, Bakowsky U, Kissel T, Schmehl T, Gessler T, et al. Effect of PEGylation on the stability of liposomes during nebulisation and in lung surfactant. J Nanosci Nanotechnol. 2006; 6 (9-1): 3010-6. Hong YJ, Kim J-C. pH-and calcium ion-dependent release from egg phosphatidylcholine liposomes incorporating hydrophobically modified alginate. J Nanosci Nanotechnol. 2010;10(12):8380-6. Hong YJ, Kim J-C. pH-and calcium ion-dependent release from egg phosphatidylcholine liposomes incorporating hydrophobically modified alginate. J Nanosci Nanotechnol. 2010; 10 (12): 8380-6. Jo S-M, Xia Y, Lee HY, Kim YC, Kim J-C. Liposomes incorporating hydrophobically modified glucose oxidase. Korean J Chem Eng. 2008;25(5):1221-5. Jo S-M, Xia Y, Lee HY, Kim YC, Kim J-C. Liposomes incorporating hydrophobically modified glucose oxidase. Korean J Chem Eng. 2008; 25 (5): 1221-5. B¹k A, Podgσrska W. Interfacial and surface tensions of toluene/water and air/water systems with nonionic surfactants Tween 20 and Tween 80. Colloids Surf A Physicochem Eng Asp. 2016;504:414-25. B¹k A, Podgσrska W. Interfacial and surface tensions of toluene / water and air / water systems with nonionic surfactants Tween 20 and Tween 80. Colloids Surf A Physicochem Eng Asp. 2016; 504: 414-25. Schick M. Surface films of nonionic detergents―I. Surface tension study. J Colloid Sci. 1962;17(9):801-13. Schick M. Surface films of nonionic detergents―I. Surface tension study. J Colloid Sci. 1962; 17 (9): 801-13. Shinoda K, Nakagawa T, Tamamushi B-I. Colloidal surfactants: some physicochemical properties. New York: Elsevier; 1963. Shinoda K, Nakagawa T, Tamamushi B-I. Colloidal surfactants: some physicochemical properties. New York: Elsevier; 1963. Patist A, Bhagwat S, Penfield K, Aikens P, Shah D. On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfactants Deterg. 2000;3(1):53-8. Patist A, Bhagwat S, Penfield K, Aikens P, Shah D. On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfactants Deterg. 2000; 3 (1): 53-8. Johnsson M, Edwards K. Phase behavior and aggregate structure in mixtures of dioleoylphosphatidylethanolamine and poly (ethylene glycol)-lipids. Biophys J. 2001;80(1):313-23. Johnsson M, Edwards K. Phase behavior and aggregate structure in mixtures of dioleoylphosphatidylethanolamine and poly (ethylene glycol) -lipids. Biophys J. 2001; 80 (1): 313-23. Cullis Pt, De Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta, Rev Biomembr. 1979;559(4):399-420. Cullis Pt, De Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta, Rev Biomembr. 1979; 559 (4): 399-420. Kono K, Zenitani K-i, Takagishi T. Novel pH-sensitive liposomes: liposomes bearing a poly (ethylene glycol) derivative with carboxyl groups. Biochim Biophys Acta, Biomembr. 1994;1193(1):1-9. Kono K, Zenitani K-i, Takagishi T. Novel pH-sensitive liposomes: liposomes bearing a poly (ethylene glycol) derivative with carboxyl groups. Biochim Biophys Acta, Biomembr. 1994; 1193 (1): 1-9. Ishida T, Kirchmeier M, Moase E, Zalipsky S, Allen T. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta, Biomembr. 2001;1515(2):144-58. Ishida T, Kirchmeier M, Moase E, Zalipsky S, Allen T. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta, Biomembr. 2001; 1515 (2): 144-58. Khandelia H, Mouritsen OG. Lipid gymnastics: evidence of complete acyl chain reversal in oxidized phospholipids from molecular simulations. Biophys J. 2009;96(7):2734-43. Khandelia H, Mouritsen OG. Lipid gymnastics: evidence of complete acyl chain reversal in oxidized phospholipids from molecular simulations. Biophys J. 2009; 96 (7): 2734-43. Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta, Mol Basis Dis. 2007;1772(7):718-36. Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta, Mol Basis Dis. 2007; 1772 (7): 718-36. Trost BM, Curran DP. Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate. Tetrahedron Lett. 1981;22(14):1287-90. Trost BM, Curran DP. Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate. Tetrahedron Lett. 1981; 22 (14): 1287-90. Sato K, Hyodo M, Aoki M, Zheng X-Q, Noyori R. Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent-and halogen-free conditions. Tetrahedron. 2001;57(13):2469-76. Sato K, Hyodo M, Aoki M, Zheng X-Q, Noyori R. Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent-and halogen-free conditions. Tetrahedron. 2001; 57 (13): 2469-76.

상기 서술한 바와 같이, 단순 확산으로는 탑재된 내용물을 방출케 하지 못하는 리포솜은 특정 환경에 반응하여 탑재된 내용물을 방출하지 못하는 문제점이 있어온 바, 이러한 리포솜에 자극 민감성 고분자를 수식하여, 특정 환경에서 그 리포솜에 탑재된 내용물을 방출하여 효능을 발휘하게끔 한다. 특히 본 발명에서는 산화 조건(Oxidation condition)에서 탑재된 내용물을 방출케 할 수 있게끔 한다.As described above, the liposomes that do not release the loaded contents by simple diffusion have a problem of not releasing the loaded contents in response to a specific environment, and the stimulation-sensitive polymers are modified to these liposomes, so that the specific environment To release the contents loaded on the liposomes to exert its efficacy. In particular, in the present invention, it is possible to release the contents loaded in an oxidation condition.

본 발명에서는 친수성 모노머, 소수성 모노머로 산화 민감성을 가지는 고분자를 제조하고, 산화 민감성 고분자로 디올레오일 포스파티딜 에탄올아민 (DOPE, dioleoylphosphatidylethanolamine)을 안정화시켜 산화 민감성 리포솜을 개발하였다. In the present invention, an oxidation-sensitive liposome was developed by preparing a polymer having an oxidation sensitivity with a hydrophilic monomer and a hydrophobic monomer, and stabilizing dioleoylphosphatidylethanolamine (DOPE) as an oxidation-sensitive polymer.

상기 고분자는 친수성 모노머인 하이드록시에틸 아크릴레이트(HEA, hydroxyethyl acrylate)와 황을 가진 소수성 모노머인 알릴 메틸 설파이드(AMS, allyl methyl sulfide)를 이용하여 산화 민감성 고분자를 제조하였다. The polymer was prepared by using an hydroxyethyl acrylate (HEA) hydrophilic monomer and an allyl methyl sulfide (AMS) hydrophobic monomer having sulfur.

상기의 산화 민감성 고분자로 DOPE 인지질을 안정화시키고, 산화 환경에 민감히 반응하여 내용물을 방출하는 특징이 있는 리포솜과 그 제조 방법에 관한 것이다. 리포솜이 산화 환경에 놓이게 되면 리포솜을 안정화시키는 고분자가 산화되고 리포솜에서 빠져나와, DOPE 리포솜이 불안정화 되어 함유한 내용물을 방출한다. It relates to a liposome characterized by stabilizing DOPE phospholipids with the oxidation-sensitive polymer and releasing its contents by reacting sensitively to an oxidizing environment. When the liposome is placed in an oxidizing environment, the polymer that stabilizes the liposome is oxidized and escapes from the liposome, and the DOPE liposome is destabilized and releases its contents.

본 발명은 산화 민감성 고분자를 이용하여 제조한 산화 민감성 리포솜 (Oxidation-sensitive liposome)에 관한 것으로서, 리포솜이 산화 환경에 놓이게 되면 인지질을 안정화시키는 고분자가 산화되어 불안정화된 리포솜에 의해 탑재된 내용물 방출이 되는 효과가 있다. The present invention relates to an oxidation-sensitive liposome (Oxidation-sensitive liposome) prepared using an oxidation-sensitive polymer, when the liposome is placed in an oxidizing environment, the polymer stabilizing phospholipids is oxidized to release the contents loaded by the destabilized liposome It works.

본 발명의 산화 민감성 리포솜은 비산화적 환경에서는 내용물을 방출하지 않고 산화적 환경에서는 내용물을 비교적 많이 방출하는 효과를 발휘한다. The oxidation-sensitive liposome of the present invention exhibits an effect of releasing contents in a non-oxidizing environment and relatively releasing contents in an oxidizing environment.

산화 민감성 리포솜이 산화적 조건에 놓이게 되면, 리포솜을 안정화시키는 산화 민감성 고분자가 탈착되어 리포솜이 불안정화되어 함유한 내용물이 방출되는 특징이 있다. When the oxidation-sensitive liposomes are placed in oxidative conditions, the oxidation-sensitive polymer that stabilizes the liposomes is desorbed and the liposomes are destabilized and the contents contained therein are released.

질병 부위는 정상세포보다 더 많은 활성산소종을 가지고 있다. 따라서 산화적 환경을 가진 질병 부위에서 약물을 방출하여 약물 유효성분 전달체로 사용할 수 있다. 이는 항암 약물 전달체 시장에서 그 효과를 발휘하여 시장 점유율을 더 넓힐 수 있다. The disease site has more reactive oxygen species than normal cells. Therefore, the drug can be released from a diseased site with an oxidative environment to be used as a drug delivery agent. This can exert its effect in the anticancer drug delivery system market, thereby broadening the market share.

본 발명의 산화 민감성 리포솜은 탑재된 유효성분이 특정하지 않은 환경에서 단순 확산에 의해 방출되는 것이 아닌 질병 부위에서의 산화적 환경에 의해 방출되어 유효성분의 효능을 효과적으로 발휘할 수 있는 장점이 있어 제약 업계로의 기술이전 가능성이 매우 높다. The oxidative sensitive liposome of the present invention has the advantage of being able to effectively exert the efficacy of the active ingredient by being released by the oxidative environment at the disease site rather than by simple diffusion in an environment where the loaded active ingredient is not specified. Is very likely to transfer technology.

도 1은 P(HEA-AMS)와 결합된 리포솜으로 안정화된 산화 민감성 DOPE 리포솜의 개요도이다.
도 2는 P(HEA-BMA)(패널 A)와 P(HEA-AMS)(패널 B)의 1H NMR 스펙트럼을 도시한 것이다.
도 3은 P(HEA-BMA)(패널 A)와 P(HEA-AMS)(패널 B)의 FT-IR 스펙트럼을 도시한 것이다.
도 4는 P(HEA-BMA)( ●)와 P(HEA-AMS)( ○)의 공기/물 계면장력을 도시한 것이다.
도 5는 리포솜/P(HEA-BMA)(200/1) (A), 리포솜/P(HEA-BMA) (100/1) (B), 리포솜/P(HEA-BMA)(50/1) (C), 리포솜/P(HEA-AMS)(200/1) (D), 리포솜/P(HEA-AMS) (100/1) (E) 및 리포솜/P(HEA-AMS)(50/1) (F)의 투과 전자 현미경 사진이다.
도 6은 과산화수소의 농도에 의존하는 칼세인의 방출 프로파일을 도시한 것으로 칼세인은 다음 리포솜에 탑재된 것이다: 리포솜/P(HEA-BMA)(200/1) (A), 리포솜 /P(HEA-BMA)(100/1) (B) 및 리포솜/P(HEA- BMA)(50/1) (C) 를 각각 0 % (●), 1.5 % (○), 3.0 % (▼) 및 6.0 %. (△)로 하였다.
도 7은 과산화수소의 농도에 의존하는 칼세인의 방출 프로파일을 도시한 것으로 칼세인은 다음 리포솜에 탑재된 것이다: 리포솜/P(HEA-AMS)(200/1) (A), 리포솜/P(HEA-AMS)(100/1) (B) 및 리포솜/P(HEA-AMS)(50/1) (C) 를 각각 0 % (●), 1.5 % (○), 3.0 % (▼), and 6.0 % (△)로 하였다.
1 is a schematic diagram of an oxidation-sensitive DOPE liposome stabilized with liposomes bound to P (HEA-AMS).
FIG. 2 shows the 1 H NMR spectrum of P (HEA-BMA) (Panel A) and P (HEA-AMS) (Panel B).
Figure 3 shows the FT-IR spectrum of P (HEA-BMA) (panel A) and P (HEA-AMS) (panel B).
Figure 4 shows the air / water interface tension of P (HEA-BMA) (●) and P (HEA-AMS) (○).
5 is liposome / P (HEA-BMA) (200/1) (A), liposome / P (HEA-BMA) (100/1) (B), liposome / P (HEA-BMA) (50/1) (C), liposome / P (HEA-AMS) (200/1) (D), liposome / P (HEA-AMS) (100/1) (E) and liposome / P (HEA-AMS) (50/1 ) (F) is a transmission electron micrograph.
Figure 6 shows the release profile of calcein dependent on the concentration of hydrogen peroxide, which is mounted on the following liposomes: liposome / P (HEA-BMA) (200/1) (A), liposome / P (HEA) -BMA) (100/1) (B) and liposome / P (HEA-BMA) (50/1) (C) were 0% (●), 1.5% (○), 3.0% (▼) and 6.0%, respectively. . (△).
Figure 7 shows the release profile of calcein dependent on the concentration of hydrogen peroxide, which is mounted on the following liposomes: liposome / P (HEA-AMS) (200/1) (A), liposome / P (HEA) -AMS) (100/1) (B) and liposome / P (HEA-AMS) (50/1) (C) 0% (●), 1.5% (○), 3.0% (▼), and 6.0, respectively % (△).

이하 첨부한 도면들을 참조하여 본 발명인 황화물을 함유한 산화 민감성 리포솜을 상세히 설명한다. 다음에 소개되는 도면들은 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한 명세서 전체에 거쳐서 동일한 참조번호들은 동일한 구성요소를 나타낸다.Hereinafter, an oxidation-sensitive liposome containing sulfide according to the present invention will be described in detail with reference to the accompanying drawings. The drawings introduced below are provided as examples in order to sufficiently transfer the spirit of the present invention to those skilled in the art. Therefore, the present invention is not limited to the drawings presented below and may be embodied in other forms. In addition, the same reference numbers throughout the specification indicate the same components.

이 때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.At this time, unless there are other definitions in the technical terms and scientific terms used, it has the meanings commonly understood by those of ordinary skill in the art to which this invention belongs, and the subject matter of the present invention in the following description and the accompanying drawings Descriptions of well-known functions and configurations that may unnecessarily obscure are omitted.

긴 영문 표현 및 이의 한글 명칭을 기재하여야 하는 경우에 있어서, 보다 설명의 편의 및 읽기 편의성을 위해, 영문 표현 및 이의 한글 명칭을 처음 기재할 때에는 병기하고, 그 이후부터는 영문 표현의 약어로 표현한다. 이를테면, 디올레오일 포스파티딜 에탄올아민(dioleoyl phosphatidyl ethanolamine. DOPE)는 아래에서 DOPE로 약어로 기재한다.In the case where a long English expression and its Korean name must be written, for more convenience of description and convenience of reading, when the English expression and its Korean name are first written, it is written together, and thereafter, it is expressed as an abbreviation of the English expression. For example, dioleoyl phosphatidyl ethanolamine (DOPE) is abbreviated as DOPE below.

이하 본 발명에 대한 구체적인 내용을 살펴본다.Hereinafter, a detailed description of the present invention.

1.One. 서론Introduction

지질(Phospholipid)는 양친매성 분자인데, 이는 엔트로피-유도 과정(entropy-driven process)의해 수상(aqueous phase, 水象)에서 자체적인 결합을 한다.Lipid (Phospholipid) is an amphipathic molecule, which binds itself in the aqueous phase by the entropy-driven process.

포스파티딜콜린(PC, phosphatidylcholine)는 직사각형의 모양으로, 이들의 패킹 파라미터(packing parameter)는 약 1 이어서 리포솜과 같은 이중층 소포체처럼 같이 결합될 수 있다. Phosphatidylcholine (PC, phosphatidylcholine) has a rectangular shape, and their packing parameters are about 1, so that they can be combined together as a bilayer vesicle such as a liposome.

포스파티딜에탄올아민(PE, phosphatidylethanolamine)은 콘 모양(conical)의 화합물인데, 패킹 파라미터가 1 보다 커, 뒤집어진 6각형 상(reversed hexagonal phase)처럼 비-이중층(non-bilayer)으로 결합한다. Phosphatidylethanolamine (PE) is a cone-shaped compound with a packing parameter greater than 1, which binds to a non-bilayer like an inverted hexagonal phase.

만약 양친매성 상보적인 분자(complementary molecules)들이 이러한 PE 분자들의 머리 부분 사이로 삽입될 경우에 리포솜이 형성될 수 있다.If amphiphilic complementary molecules are inserted between the heads of these PE molecules, liposomes can form.

소수성로 처리된 폴리(N-아이소프로필 아크릴아마이드)(Poly(N-isopropyl acrylamide))는 DOPE 리포솜 형성의 안정제로 채택되었다.Poly (N-isopropyl acrylamide) (Poly (N-isopropyl acrylamide)) treated with hydrophobicity was adopted as a stabilizer for DOPE liposome formation.

만약 리포솜이 중합체의 상 전이 온도(phase-transition temperature)보다 높은 온도에 놓이게 된 경우에는 상기 중합체의 사슬이 줄어들게 되는데, 이러한 사슬들이 덮고 있어 안정한 상태를 유지하고 있는 이중층 도메인도 줄어들게 된다. If the liposome is placed at a temperature higher than the phase-transition temperature of the polymer, the chains of the polymer are reduced, and the double-layer domains that are in a stable state because the chains are covered are also reduced.

이는 곧 리포솜의 분해(deintergration)를 초래하며, 나아가 열역학적으로 촉진되어 내부의 페이로드(payload, 내용물)를 방출케 한다. This results in deintergration of liposomes, and is further accelerated thermodynamically to release the payload (content) inside.

콜레스테릴 헤미석시네이트(CHEMS, Cholesteryl hemisuccinate)는 DOPE 리포솜의 안정화를 위한 상보적 분자로 사용된다. Cholesteryl hemisuccinate (CHEMS) is used as a complementary molecule for stabilizing DOPE liposomes.

만약 리포솜 현탁액이 산성화될 경우, CHEMS의 머리부분(이를 테면, 카르복시기)은 이온화되지 않고, 이의 유효 크기는 줄어들게 되어, 상보적인 분자는 DOPE 이중층을 안정케 하는 기능을 상실하게 될 것이며, 이로 인해 이른바 산성화로 촉진된 방출을 초래할 것이다.If the liposomal suspension is acidified, the head of the CHEMS (such as the carboxyl group) is not ionized, its effective size is reduced, and the complementary molecule will lose the ability to stabilize the DOPE bilayer, thereby causing the so-called Acidification will result in accelerated release.

소수성으로 처리된 면역글로불린 G(Hydrophobically modified immunoglobulin G, HmIgG)는 DOPE 이중층을 안정화시킬 수 있는데, 이는 타겟 약물 운반체(targetable drug carrier)로 사용된다. Hydrophobically modified immunoglobulin G (HmIgG) treated with hydrophobicity can stabilize the DOPE bilayer, which is used as a targetable drug carrier.

만약 리포솜이 목표물의 특정 위치와 접하게 된다면, HmIgG 분자는 리포솜 표면을 향하여 확산케 하게끔 되어 있고, 리포솜의 분해를 야기시킨다.If the liposome comes into contact with a specific location of the target, the HmIgG molecule is supposed to diffuse toward the liposome surface, causing liposome degradation.

글루코오스 옥시다아제(Glucose oxiase)는, CHEMS 에 의해 안정화된 DOPE 리포솜 표면에 고정되어 있는데, 이는 상기 DOPE 리포솜이 글루코오스에 반응하게끔 한다. Glucose oxidase is immobilized on the surface of DOPE liposomes stabilized by CHEMS, which causes the DOPE liposomes to react with glucose.

효소는 글루코오스를 글루콘산(gluconic acid)로 변하게끔 하여, 미디움(medium)을 산성화시켜, pH-민감성 리포솜으로부터 내부 탑재물의 방출을 촉발시킨다. Enzymes turn glucose into gluconic acid, acidifying the medium, triggering the release of internal payloads from pH-sensitive liposomes.

본 발명에서는 DOPE 리포솜과 폴리(하이드록시에틸 아크릴레이트-코-알릴 메틸 설파이드)(Poly(Hydroxyethyl acrylate-co-Aryl Methyl Sulfide)(P(HEA-AMS))에 의해 안정화된 산화 민감성 리포솜에 관한 것이다. The present invention relates to an oxidative sensitive liposome stabilized by DOPE liposome and poly (Hydroxyethyl acrylate-co-Aryl Methyl Sulfide (P (HEA-AMS))) .

상기 하이드록시에틸 아크릴레이트(HEA)는 친수성이고, 상기 알릴 메틸 설파이드(AMS)는 친유성이기 때문에, 폴리(하이드록시에틸 아크릴레이트-코-알릴 메틸 설파이드)(P(HEA-AMS))는 양친매성 중합체의 한 종류이다. Since the hydroxyethyl acrylate (HEA) is hydrophilic and the allyl methyl sulfide (AMS) is lipophilic, poly (hydroxyethyl acrylate-co-allyl methyl sulfide) (P (HEA-AMS)) is a parent It is a kind of ionic polymer.

상기 AMS는 소수성 앵커(hydrophobic anchor)로 기능하고, 수상 벌크 상(aqueous bulk phase)을 향하고 있는 상기 HEA 부분의 이중층에 소수적으로 삽입되어 있다. The AMS functions as a hydrophobic anchor, and is hydrophobically inserted into the bilayer of the HEA portion facing the aqueous bulk phase.

이에, 상기 공중합체는 DOPE 리포솜을 안정화시킬 수 있다(도 1의 A 참조). Thus, the copolymer can stabilize DOPE liposomes (see A in Figure 1).

상기 안정화된 DOPE 리포솜이 산화 조건에 노출되는 경우, AMS의 메틸 설파이드(methyl sulfide)는 메틸 설폰(methyl sulfone)으로 산화되는데, 메틸 설폰은 소수성 앵커로 기능하기 어려워진다. When the stabilized DOPE liposome is exposed to oxidizing conditions, methyl sulfide of AMS is oxidized to methyl sulfone, and methyl sulfone becomes difficult to function as a hydrophobic anchor.

그 결과, 중합에 의한 안정화제는 리포솜의 막에서 제거되어 리포솜의 분해를 야기하며, 리포솜으로부터 내부에 탑재된 물질의 방출을 초래한다(도 1의 B 참조). As a result, the stabilizing agent by polymerization is removed from the membrane of the liposome, causing the decomposition of the liposome, and the release of a substance loaded therein from the liposome (see FIG. 1B).

2.2. 재료 및 방법Materials and methods

2.1.2.1. 재료material

1,2-디올레오일-주석-글리세로-3-포스포에탄올아민(DOPE), 2-하이드록시에틸 아크릴레이트(HEA), 뷰틸 메틸아크릴레이트(BMA), N,N-디메틸폼아마이드(DMF), 디옥시콜릭 산(DOC, 나트륨 염), 칼세인, 트리톤 X-100(Triton X-100), 포스페이트 버퍼 용액(PBS, phosphate buffer solution), 포스포텅스틱 산(PTA, phosphotungstic acid), 듀테륨 옥사이드(D2O), 알릴 메틸 설파이드(AMS), 아조비스아이소뷰티로나이트릴(AIBN), 포스포러스 펜톡사이드(P2O5), 디에틸 에테르, 과산화수소를 준비하고, 세파덱스 G-100(SephadexG-100)을 준비한다. 나머지 시약은 분석용 품위(analytical grade)이다.1,2-dioleoyl-tin-glycero-3-phosphoethanolamine (DOPE), 2-hydroxyethyl acrylate (HEA), butyl methylacrylate (BMA), N, N-dimethylformamide ( DMF), deoxycholic acid (DOC, sodium salt), calcein, Triton X-100, phosphate buffer solution (PBS), phosphotungstic acid (PTA), Deuterium oxide (D 2 O), allyl methyl sulfide (AMS), azobisisobutyronitrile (AIBN), phosphorus pentoxide (P 2 O 5 ), diethyl ether, hydrogen peroxide were prepared, and Sephadex G- Prepare 100 (SephadexG-100). The remaining reagents are analytical grade.

2.2.2.2. 폴리Poly (하이드록시에틸 (Hydroxyethyl 아크릴레이트Acrylate -코-알릴 -Nose-Allyl 메틸methyl 설파이드Sulfide )(P() (P ( HEAHEA -co-AMS) 및 -co-AMS) and 폴리Poly (하이드록시에틸 (Hydroxyethyl 아크릴레이트Acrylate -코--nose- 뷰틸Butyl 메틸methyl 아크릴레이트Acrylate )() ( P(HEA-co-BMA)준비Preparation for P (HEA-co-BMA)

폴리(하이드록시에틸 아크릴레이트-코-알릴 메틸 설파이드)(P(HEA-AMS)) 및 폴리(HEA-co-BMA), P(HEA-BMA)를 자유 라디칼 반응을 이용하여 준비하였다.Poly (hydroxyethyl acrylate-co-allyl methyl sulfide) (P (HEA-AMS)) and poly (HEA-co-BMA), P (HEA-BMA) were prepared using a free radical reaction.

3-넥 라운드 바텀 플라스크(3-neck round bottom flask, 100ml)에 5g의 HEA를 50ml의 DMF에 용해되게끔 한다.5 g of HEA was dissolved in 50 ml of DMF in a 3-neck round bottom flask (100 ml).

그리고 소수성 코모노머(hydrophobic comonomer)인 AMS와 BMA를 HEA 용액에 녹여, 상기 코모노머 대비 HEA의 몰비를 80:20로 하였다.And the hydrophobic comonomer (hydrophobic comonomer) AMS and BMA were dissolved in a HEA solution, and the molar ratio of HEA to the comonomer was 80:20.

40mg의 아조비스아이소뷰티로나이트릴(AIBN)을 상기 코모노머가 혼합된 HEA 용액에 첨가한 뒤, 30분동안 질소가스 하에서 반응물을 제거하였다.After adding 40 mg of azobisisobutyronitrile (AIBN) to the HEA solution mixed with the comonomer, the reactant was removed under nitrogen gas for 30 minutes.

상기 모노머들을 75도에서 12시간 동안 공중합되게끔 하였다.The monomers were allowed to copolymerize at 75 degrees for 12 hours.

그리고 상온에 이를 때까지 상기 혼합물을 포함하는 플라스크를 세워둔 후에, 상기 공중합체를 비용매(non-solvent)인 디에틸에테르를 이용하여 침전케 하였고, 이러한 침전물을 재침전(re-precipitation)시켜 순도를 높였다. 이후 순도가 높아진 침전물을 상온에서의 건조 및 여과를 통해 분리하였다.And after standing the flask containing the mixture until it reached room temperature, the copolymer was precipitated using non-solvent (non-solvent) diethyl ether, and the precipitate was reprecipitated (re-precipitation) to purify it. Increased. Subsequently, the precipitate having increased purity was separated through drying and filtration at room temperature.

2.3.2.3. 1One H NMR spectroscopyH NMR spectroscopy

45도로 조절된 진공 인큐베이터에서 P2O5와 함께 공중합체를 인큐베이팅하여 잔여용액 및 물을 제거하였다.The remaining solution and water were removed by incubating the copolymer with P 2 O 5 in a vacuum incubator adjusted to 45 degrees.

각 건조된 공중합체를 D2O에 용해시켰으며, 공중합체 용액을 10mm NMR 튜브에 넣고, 캡으로 밀봉하였다.Each dried copolymer was dissolved in D 2 O, and the copolymer solution was placed in a 10 mm NMR tube and sealed with a cap.

NMR 분광기(400MHz)를 이용하여 상기 공중합체 용액을 스캐닝 함으로써 1H NMR 스펙트럼을 획득하였다. 1 H NMR spectrum was obtained by scanning the copolymer solution using an NMR spectrometer (400 MHz).

2.4.2.4. FT-IR 분광법FT-IR spectroscopy

각 건조된 공중합체를 KBr, 막자사발과 막자를 이용하여 분쇄하였다. 혼합 파우더를 프레스를 이용하여 펠렛 형태로 압착시켰고, 상기 압착된 펠렛을 FT-IR 분광기로 스캔하였다.Each dried copolymer was pulverized using KBr, mortar and pestle. The mixed powder was compressed into a pellet form using a press, and the compressed pellet was scanned with an FT-IR spectrometer.

2.5.2.5. 계면장력(interfacial tension) 측정Measurement of interfacial tension

농도가 0.01mg/ml 에서 1.0mg/ml인 각 공중합체 용액에 대하여 공기/물 계면장력을 측정하였다. 이 용액들은 수상 공중합체 용액(1.0mg/ml)의 연속 2배 희석하였으며, 장력계(tensionmeter)의 환철법(ring method)로 표면장력을 결정하였다.The air / water interfacial tension was measured for each copolymer solution having a concentration of 0.01 mg / ml to 1.0 mg / ml. These solutions were serially diluted twice in aqueous copolymer solution (1.0 mg / ml), and surface tension was determined by a ring method of a tension meter.

2.6.2.6. 공중합체로 안정화된 DOPE 리포솜의 준비Preparation of copolymer-stabilized DOPE liposomes

음파 처리 및 세제 제거 방법(sonication and detergent removal method)을 이용하여 P(HEA-BMA) 및 P(HEA-AMS)로 안정화된 DOPE 리포솜을 준비하였다.DOPE liposomes stabilized with P (HEA-BMA) and P (HEA-AMS) were prepared using a sonication and detergent removal method.

우선, DOPE의 건조 박막을 2ml의 25ml 3-목 둥근바닥플라스크(3-neck round bottom flask)에 담은 DOPE 용액으로부터 150rpm의 회전식 증발기로 감압된 조건 하에서 유기용매를 제거하여 준비하였다.First, a dry thin film of DOPE was prepared by removing the organic solvent under reduced pressure with a 150 rpm rotary evaporator from a DOPE solution contained in 2 ml of a 25 ml 3-neck round bottom flask.

이후, 공중합체 용액(5mg/ml, PBS(10mM, pH 7.4))로부터 0.02ml, 0.04ml 및 0.08ml를 각각 준비하여, 0.09ml의 DOC 용액(동일한 버퍼 용액에서 2%(w/v)), 1ml 칼세인 용액을 10ml 바이알에서 섞되, 버퍼 용액을 추가로 넣어 혼합용액의 부피를 2ml로 하였다.Then, 0.02 ml, 0.04 ml, and 0.08 ml were prepared from the copolymer solution (5 mg / ml, PBS (10 mM, pH 7.4)), respectively, and 0.09 ml of DOC solution (2% (w / v) in the same buffer solution) , 1 ml calcein solution was mixed in a 10 ml vial, and a buffer solution was added to make the volume of the mixed solution 2 ml.

상기 혼합용액에 있어서, 공중합체의 농도는 0.05mg/ml, 0.1mg/ml 또는 0.2mg/ml이었고, DOC와 칼세인의 농도는 각각 0.09%, 50mM였다. In the mixed solution, the concentration of the copolymer was 0.05 mg / ml, 0.1 mg / ml or 0.2 mg / ml, and the concentrations of DOC and calcein were 0.09% and 50 mM, respectively.

내측 벽에 DOPE 박막을 붙여 둥근 바닥 플라스크에 2ml의 혼합용액을 붓고, 손으로 교반하여 혼합용액 내 인지질이 부유되게끔 한다.DOPE thin film is attached to the inner wall and 2 ml of the mixed solution is poured into a round bottom flask, and stirred by hand to make the phospholipid in the mixed solution float.

DOPE 현탁액에 대하여 상온에서 20분 간 음파처리(10초 동안 펄스를 가하고, 10초 동안 펄스를 멈추는 것을 반복)하였다.The DOPE suspension was sonicated for 20 minutes at room temperature (pulsed for 10 seconds, and then stopped for 10 seconds).

겔 투과 크로마토 그래피를 이용하여 자유로운(unentrapped) 칼세인과 DOC 로부터 칼세인과 공중합체를 포함하는 DOPE 리포솜을 분리해냈다.DOPE liposomes containing calcein and copolymer were isolated from uncemented calcein and DOC using gel permeation chromatography.

공중합체 대비 DOPE의 질량비를 x/y로 표시하고, 이에 의해 준비된 혼합물을 리포솜/공중합체 이름(x/y)로 표시한다.The mass ratio of DOPE to copolymer is indicated as x / y, and the mixture prepared thereby is indicated as liposome / copolymer name (x / y).

2.7.2.7. 공중합체에 의해 안정화된 DOPE 리포솜의 특징Characteristics of DOPE liposomes stabilized by copolymer

공중합체에 의해 안정화된 DOPE 리포솜의 구조를 투과 전자 현미경(TEM)으로 조사하였다.The structure of the DOPE liposome stabilized by the copolymer was examined by transmission electron microscopy (TEM).

이중층과 라멜라 구조를 시각화하기 위해, 리포솜을 음성 염색하였다.To visualize the bilayer and lamella structures, liposomes were negatively stained.

상기 공중합체에 의해 안정화된 DOPE 리포솜의 현탁액 100ul를 동량의 포스포텅스틱 산(phosphotungstic acid) 용액(2%(w/v))과 혼합시켰고, 상기 리포솜이 염색되게끔 혼합물을 상온에서 3시간 동안 방치하였다.100 ul of a suspension of DOPE liposomes stabilized by the copolymer was mixed with an equal amount of a phosphotungstic acid solution (2% (w / v)), and the mixture was allowed to dye for 3 hours at room temperature so that the liposomes were dyed. Left unattended.

염색된 리포솜 현탁액의 일부 표본을 포름바/구리-코팅된 그리드(formvar/copper-coated grid)에 부었고, 상온에서 밤새 건조시켰다.Some samples of the stained liposomal suspension were poured into a formvar / copper-coated grid and dried overnight at room temperature.

이를 투과 전자 현미경을 이용하여 관찰하였다.This was observed using a transmission electron microscope.

상기 리포솜에 탑재된 칼세인의 형광 ?칭은 하기 수학식 1에 의해 결정되었다.The fluorescence quenching of calcein mounted on the liposome was determined by Equation 1 below.

[수학식 1] [Equation 1]

?칭도(%) = (Ft - Fi)/Ft? Qing (%) = (Ft-Fi) / Ft

상기 수학식 1에서 Ft는 리포솜이 트리톤 X100에 의해 완전히 안정화된 이후의 형광 강도를 말하고, Fi는 용해되기 전의 형광 강도이다.In Equation 1, Ft refers to the fluorescence intensity after the liposome is completely stabilized by Triton X100, and Fi is the fluorescence intensity before dissolution.

형광 강도는 형광 분광 광도계를 사용하여 495 nm에서 여기(excited)시키면서 514 nm에서 측정 하였다. Fluorescence intensity was measured at 514 nm while excited at 495 nm using a fluorescence spectrophotometer.

또한, 공중합체에 의해 안정화된 DOPE 리포솜에 있어서 평균 수력학적 지름(mean hydrodynamic diameter)을 측정하기 위하여 동적 광 산란법(Dynamic light scattering method)을 사용하였다.In addition, a dynamic light scattering method was used to measure the mean hydrodynamic diameter of the DOPE liposome stabilized by the copolymer.

빛의 산란 광도가 50 내지 200kcps가 되게끔 하기 위해 리포솜 현탁액에 PBS(10mM, pH 7.4)를 희석하였다.PBS (10 mM, pH 7.4) was diluted in the liposome suspension to ensure that the light scattering intensity was 50 to 200 kCps.

2.8.2.8. 산화-민감성 방출의 관찰Observation of oxidation-sensitive release

과산화수소(30%(v/v))를 PBS(10mM, pH 7.4)와 혼합하되, 그 혼합 농도를 각각 0%(v/v), 1.5%(v/v), 3.0%(v/v) 및 6.0%(v/v)가 되게끔 하였다.Hydrogen peroxide (30% (v / v)) was mixed with PBS (10 mM, pH 7.4), but the mixed concentrations were 0% (v / v), 1.5% (v / v), and 3.0% (v / v), respectively. And 6.0% (v / v).

0.1ml의 리포솜 현탁액을 형광 광도계의 큐벳 홀더 내 유리 큐벳의 1.9ml 과산화수소 용액에 주입하였다.0.1 ml of the liposome suspension was injected into a 1.9 ml hydrogen peroxide solution of a glass cuvette in a cuvette holder of a fluorescent photometer.

이후, 60초 동안 형광 강도를 측정하였는데, 여기 파장 및 방출 파장은 각각 495nm와 514nm였다. 이에, 방출도(%)는 다음의 수학식 2를 통해 계산하였다.Thereafter, the fluorescence intensity was measured for 60 seconds, and the excitation wavelength and emission wavelength were 495 nm and 514 nm, respectively. Accordingly, the emission degree (%) was calculated through Equation 2 below.

[수학식 2][Equation 2]

방출도% = (Ft - Fi)/(Ff - Fi) x 100Emission% = (Ft-Fi) / (Ff-Fi) x 100

여기서 Fi는 리포솜 현탁액의 초기 형광 강도이고, Ff는 리포솜이 트리톤 X100에 의해 완전히 용해된 다음의 형광 강도이며, Ft는 주어진 시간에서의 리포솜 현탁액의 형광 강도이다.Where Fi is the initial fluorescence intensity of the liposome suspension, Ff is the fluorescence intensity after the liposome is completely dissolved by Triton X100, and Ft is the fluorescence intensity of the liposome suspension at a given time.

3.3. 결과 및 논의Results and discussion

3.1.3.1. 1One H NMR 분광법H NMR spectroscopy

도 2는 P(HEA-BMA) 및 P(HEA-AMS)의 1H NMR 스펙트럼을 도시한 것이다.2 shows the 1H NMR spectrum of P (HEA-BMA) and P (HEA-AMS).

P(HEA-BMA)의 1H NMR 스펙트럼에 있어서, BMA의 메틸 그룹은 0.92~1.06ppm에서 발견되었고, 메틸 그룹 옆의 2개의 메틸렌 그룹은 1.35~2.14ppm에서 발견되었으며, 3차 탄소 옆의 메틸 그룹은 1.35 ~ 2.14ppm을 보였으며, 바이닐 메틸렌 그룹은 1.35~2.14ppm, HEA의 하이드록시 그룹은 4.80ppm을 보였으며, 하이드록시 그룹 옆 메틸렌 그룹은 3.76ppm, 에스터 결합 옆의 메틸렌 그룹은 4.16ppm, 메싸인 그룹은 약 2.14ppm, 바이닐 메틸렌 그룹은 1.35~2.14ppm을 보였다.In the 1 H NMR spectrum of P (HEA-BMA), the methyl group of BMA was found at 0.92 to 1.06 ppm, the two methylene groups next to the methyl group were found at 1.35 to 2.14 ppm, and the methyl next to the tertiary carbon. The group showed 1.35 to 2.14 ppm, the vinyl methylene group showed 1.35 to 2.14 ppm, the hydroxy group of HEA showed 4.80 ppm, the methylene group next to the hydroxy group was 3.76 ppm, and the methylene group next to the ester bond was 4.16 ppm. , Messine group was about 2.14ppm, vinyl methylene group was 1.35 ~ 2.14ppm.

BMA의 메틸 그룹의 시그널은 다른 시그널과는 겹치지 않았는데, HEA의 하이드록시 그룹의 옆에 위치한 메틸렌 그룹의 시그널도 마찬가지였다.The signal of the methyl group of BMA did not overlap with other signals, and so did the signal of the methylene group located next to the hydroxy group of HEA.

이러한 시그널의 면적을 이용하여, BMA 대비 HEA의 몰비를 계산하면, 100:3.5였다.When the molar ratio of HEA to BMA was calculated using the area of this signal, it was 100: 3.5.

P(HEA-AMS)의 1H NMR 스펙트럼에 있어서, AMS의 메틸 그룹은 1.63~1.99ppm, 황 옆의 메틸렌 그룹은 2.69ppm, 메싸인 그룹은 2.42ppm에서 발견되었다.In the 1 H NMR spectrum of P (HEA-AMS), the methyl group of AMS was found to be 1.63 to 1.99 ppm, the methylene group next to sulfur was 2.69 ppm, and the mesane group was found to be 2.42 ppm.

P(HEA-AMS)의 HEA 시그널은 P(HEA-BMA)의 HEA에서의 시그널과 거의 비슷하게 보였다.The HEA signal of P (HEA-AMS) looked almost the same as the signal of HEA of P (HEA-BMA).

AMS의 메틸렌 그룹은 다른 어느 시그널과도 겹치지 않았고, HEA의 하이드록시 그룹 옆 메틸렌 그룹도 마찬가지였다.The methylene group of AMS did not overlap with any other signal, as did the methylene group next to the hydroxy group of HEA.

이러한 시그널 면적을 이용하였을 때, AMS 대비 HEA의 몰비는 100:5.2로 계산되었다.When this signal area was used, the molar ratio of HEA to AMS was calculated as 100: 5.2.

3.2.3.2. FT-IR 분광법FT-IR spectroscopy

도 3은 P(HEA-BMA) 및 P(HEA-AMS)의 FT-IR 스펙트럼을 도시한 것이다.Figure 3 shows the FT-IR spectrum of P (HEA-BMA) and P (HEA-AMS).

P(HEA-BMA) 스펙트럼에 있어서, HEA의 하이드록시 그룹은 3200 ~ 3400 cm-1에서 발견되었고, HEA 및 BMA의 메틸 그룹은 2850 ~ 3000 cm-1에서 발견되었으며, HEA 및 BMA의 카보닐 그룹은 1655 ~ 1710 cm-1에서 발견되었으며, HEA 및 BMA의 메틸렌 그룹은 1350 ~ 1480cm-1에서 발견되었다.In the P (HEA-BMA) spectrum, hydroxy groups of HEA were found at 3200-3400 cm-1, methyl groups of HEA and BMA were found at 2850-3000 cm-1, and carbonyl groups of HEA and BMA Was found between 1655 and 1710 cm-1, and methylene groups of HEA and BMA were found between 1350 and 1480 cm-1.

P(HEA-AMS) 스펙트럼에 있어서, 대부분의 시그널은 P(HEA-BMA)와 거의 동일하였으나, 카보닐 그룹의 시그널 강도는 약했다. 이는 BMA의 카보닐 그룹이 AMS에는 없기 때문이다.In the P (HEA-AMS) spectrum, most signals were almost the same as P (HEA-BMA), but the signal strength of the carbonyl group was weak. This is because the carbonyl group of BMA is not present in AMS.

3.3.3.3. 계면장력측정Interface tension measurement

도 4는 P(HEA-MA) 및 P(HEA-AMS) 용액의 공기/물 계면장력을 도시한 것이다.Figure 4 shows the air / water interfacial tension of the P (HEA-MA) and P (HEA-AMS) solutions.

P(HEA-BMA) 용액의 계면장력은 0 내지 0.02mg/ml의 범위에서 농도가 증가함에 따라 73 dyne/cm에서 56 dyne/cm으로 가파르게 감소하였고, 0.02~0.5mg/ml 농도 범위에서는 57 dyne/cm 에서 56 dyne/cm으로 점진적으로 감소하였다. 그리고 나머지 농도 범위에서는 아무런 표면장력의 감소가 발견되지 아니하였다.The interfacial tension of the P (HEA-BMA) solution rapidly decreased from 73 dyne / cm to 56 dyne / cm as the concentration increased in the range of 0 to 0.02 mg / ml, and 57 dyne in the concentration range of 0.02 to 0.5 mg / ml. It gradually decreased from / cm to 56 dyne / cm. And no reduction in surface tension was found in the remaining concentration range.

L-형 표면장력 프로파일은 표면-활성제에 전형적인 형태로서, 두 개의 접선이 서로 교차하는 농도 값을 임계 미셀화 농도(critical micellization concentration, CMC)라 한다.The L-type surface tension profile is a typical form for surface-active agents, and the concentration value at which two tangent lines cross each other is called a critical micellization concentration (CMC).

P(HEA-BMA) 용액의 CMC는 0.0156mg/ml으로 추정되었다.The CMC of the P (HEA-BMA) solution was estimated to be 0.0156 mg / ml.

BMA는 소수성 모노머이고, 친수성 모노머(이를 테면, HEA)와의 공중합은 양친매성 및 계면-활성 공중합체를 만든다.BMA is a hydrophobic monomer, and copolymerization with a hydrophilic monomer (such as HEA) creates an amphiphilic and interfacial-active copolymer.

상기 공중합체의 양친매성에 의해, 공중합체 사슬은 공기/물의 계면에 나란하게 위치한다(HEA는 물 쪽으로, BMA는 공기를 마주하면서, 계면장력을 낮춘다).Due to the amphiphilicity of the copolymers, the copolymer chains are located side by side at the air / water interface (HEA lowers the interfacial tension while facing water, BMA facing the air).

P(HEA-AMS) 용액 또한 L 형의 계면장력 프로파일을 보였다.The P (HEA-AMS) solution also showed an L-type interfacial tension profile.

안정기 계면 값(the plateau interfacial value)은 61 dyne/cm이었는데, 이는 P(HEA-BMA)의 값보다 더 높았다. The plateau interfacial value was 61 dyne / cm, which was higher than the value of P (HEA-BMA).

이는 P(HEA-AMS)가 P(HEA-BMA)에 비해 덜 계면-활성적인 것을 가리킨다.This indicates that P (HEA-AMS) is less interface-active than P (HEA-BMA).

1H NMR 분광법을 통해 (P-HEA-AMS)의 소수성 모노머(이를 테면, AMS)의 몰 함량은 약 4.9%였고, 이는 P(HEA-BMA)의 소수성 모노머인 BMA의 2.4%보다도 더 많은 몰 함량을 보였다. Through 1 H NMR spectroscopy, the molar content of the hydrophobic monomer (eg, AMS) of (P-HEA-AMS) was about 4.9%, which is more molar than 2.4% of BMA, the hydrophobic monomer of P (HEA-BMA). Showed content.

그럼에도 불구하고, P(HEA-AMS)는 덜 계면-활성적이었다.Nevertheless, P (HEA-AMS) was less interfacial-active.

AMS는 메틸렌 메틸 설파이드(CH3-S-CH2-)를 바이닐 그룹 쪽에 위치해 있고, BMA는 뷰톡시 카보닐 그룹(CH3-(CH2)3-O-C=O-) 및 메틸 그룹이 있다.AMS has methylene methyl sulfide (CH 3 -S-CH 2- ) located on the vinyl group side, and BMA has a butoxy carbonyl group (CH 3- (CH 2 ) 3 -OC = O-) and a methyl group.

이에, AMS는 BMA에 비해 덜 소수적으로 보이고, 공중합체가 양친매성을 갖게끔 하는 데 덜 효과적인 것처럼 보인다.As such, AMS seems less hydrophobic than BMA and seems less effective in making the copolymer amphiphilic.

이는 P(HEA-AMS)의 계면활성도가 P(HEA-BMA)에 ?해 더 낮은 이유를 설명할 수 있다.This may explain why the surface activity of P (HEA-AMS) is lower due to P (HEA-BMA).

2개의 접선의 교차점에 의해 추정된 P(HEA-AMS)의 CMC는 약 0.025mg/ml였는데, 이는 P(HEA-BMA)의 0.0156mg/ml보다 더 높았다. The CMC of P (HEA-AMS) estimated by the intersection of the two tangents was about 0.025 mg / ml, which was higher than 0.0156 mg / ml of P (HEA-BMA).

이는 또한 P(HEA-AMS)가 덜 표면-활성적이고, 덜 양친매성임을 보여준다.This also shows that P (HEA-AMS) is less surface-active and less amphiphilic.

3.4.3.4. 공중합체에 의해 안정화된 DOPE 리포솜의 특징Characteristics of DOPE liposomes stabilized by copolymer

도 5는 리포솜/P(HEA-BMA((200/1), 리포솜/P(HEA-BMA)(100/1), 리포솜/P(HEA-BMA)(50/1), 리포솜/P(HEA-AMS)(200/1), 리포솜/P(HEA-AMS)(100/1) 및 리포솜/P(HEA-AMS)(50/1)에 대한 투과성 전자현미경 촬영 사진을 도시한 것이다. 5 is liposomes / P (HEA-BMA ((200/1), liposomes / P (HEA-BMA) (100/1), liposomes / P (HEA-BMA) (50/1), liposomes / P (HEA) -AMS) (200/1), liposomes / P (HEA-AMS) (100/1) and liposomes / P (HEA-AMS) (50/1) shows the transmission electron microscope photograph.

이러한 리포솜들은 안정화제가 P(HEA-BMA) 또는 P(HEA-AMS)인지에 상관없이 멀티-라멜라 소포체(multi-lamella vesicle)이다. These liposomes are multi-lamella vesicles regardless of whether the stabilizer is P (HEA-BMA) or P (HEA-AMS).

DOPE는 이의 머리 부분(에탄올아민)이 꼬리(디올레오일 그룹)에 비해 훨씬 작기 때문에 콘 형태를 갖는데, 패킹 파라미터는 1보다 크다. DOPE has a cone shape because its head (ethanolamine) is much smaller than the tail (dioleoyl group), with a packing parameter greater than one.

수용액에 분산된 경우, DOPE 분자는 뒤집어진 육각형 상(reversed hexagonal phase)으로 결합이 된다. When dispersed in an aqueous solution, DOPE molecules are bound in an inverted hexagonal phase.

한편, 양친매성 분자는 아주 큰 친수성 머리와 작은 소수성 꼬리를 갖는 상호 보완적인 분자로서, 리포솜 이중층으로 결합되게끔 하는데, 이러한 분자의 소수성 꼬리는 소수성 상호작용을 통해 DOPE 분자들의 꼬리 사이로 삽입되기 쉽게 되며, 친수성 머리는 DOPE 분자의 머리 부분 사이 공간을 채우게 된다. On the other hand, the amphipathic molecule is a complementary molecule with a very large hydrophilic head and a small hydrophobic tail, allowing it to be bound by a liposomal bilayer, and the hydrophobic tail of these molecules is easily inserted between the tails of DOPE molecules through hydrophobic interaction. The hydrophilic head fills the space between the heads of the DOPE molecule.

P(HEA-BMA) 및 P(HEA-AMS)는 DOPE 리포솜 이중층을 안정화시키는 상호 보완적인 분자로 기능하는데, 구체적으로 보면 상기 공중합체에서 HEA 부분은 DOPE 분자의 머리 부분의 공간을 채우는 반면, 소수성 앵커(BMA 또는 AMS)는 꼬리 사이에 앵커링을 하게 된다. 이는 공중합체가 리포솜 이중층으로 결합된 DOPE 분자들을 갖게 되는 메커니즘이라고 할 것이다. P (HEA-BMA) and P (HEA-AMS) function as complementary molecules that stabilize the DOPE liposome bilayer. Specifically, in the copolymer, the HEA portion fills the space of the head portion of the DOPE molecule, whereas it is hydrophobic. The anchor (BMA or AMS) is anchored between the tails. This will be the mechanism by which the copolymer will have DOPE molecules bound to the liposome bilayer.

리포솜 내 탑재된 칼세인의 ?칭도(%)는, 공중합체의 양이 증가할수록, 감소하게 된다. 이를테면, 리포솜/P(HEA-BMA)(200/1), 리포솜/P(HEA-BMA(100/1) 및 리포솜/P(HEA-BMA)(50/1)에서 탑재된 칼세인의 ?칭 %는 각각 55.6%, 51.0% 및 46.2%였다. 그리고 리포솜/P(HEA-AMS)(200/1), 리포솜/P(HEA -AMS)(100/1) 및 리포솜/P(HEA-AMS)(50/1)에서는 그 ?칭 %가 각각 57.7%, 55.6% 및 53.9%였다. The quenching degree (%) of calcein loaded in liposomes decreases as the amount of the copolymer increases. For example, calcein loaded with liposome / P (HEA-BMA) (200/1), liposome / P (HEA-BMA (100/1) and liposome / P (HEA-BMA) (50/1)) % Were 55.6%, 51.0% and 46.2%, respectively, and liposome / P (HEA-AMS) (200/1), liposome / P (HEA-AMS) (100/1) and liposome / P (HEA-AMS) In (50/1), the nominal% was 57.7%, 55.6%, and 53.9%, respectively.

그럼에도 불구하고, 리포솜의 평균 지름은 공중합체의 양이 늘어날수록 같이 증가하였다. 이를 테면, 리포솜/P(HEA-BMA)(200/1), 리포솜/P(HEA-BMA)(100/1) 및 리포솜/P(HEA- BMA)(50/1)의 수력학적 평균 지름은 각각 163nm, 273nm 및 283nm였다. 또한, 리포솜/P(HEA-AMS)(200/1), 리포솜/P(HEA-BMA)(100/1) 및 리포솜/P(HEA- BMA)(50/1)은 약 169nm, 176nm 및 262nm였다. Nevertheless, the average diameter of liposomes increased as the amount of copolymer increased. For example, the hydrodynamic mean diameter of liposome / P (HEA-BMA) (200/1), liposome / P (HEA-BMA) (100/1) and liposome / P (HEA-BMA) (50/1) is 163nm, 273nm and 283nm, respectively. In addition, liposomes / P (HEA-AMS) (200/1), liposomes / P (HEA-BMA) (100/1) and liposomes / P (HEA-BMA) (50/1) are about 169nm, 176nm and 262nm It was.

공중합체의 양이 늘어날수록, 형성된 DOPE 이중층의 양이 늘어나게 되는데, 이는 공중합체가 DOPE 이중층을 안정화시키기 때문이다. As the amount of the copolymer increases, the amount of the formed DOPE bilayer increases, because the copolymer stabilizes the DOPE bilayer.

이중층의 양이 증가할 경우 리포솜 입자 수가 증가되거나 리포솜 입자 1개당 이중층의 수를 증가하는 것이다. When the amount of the bilayer increases, the number of liposome particles increases or the number of bilayers per one liposome particle increases.

평균 지름이 공중합체의 양이 비례하기 때문에, 입자 1개당 이중층의 수가 증가되는 경우가 리포솜 입자 수가 증가하는 경우에 비해 더 쉽게 일어날 수 있다. Since the average diameter is proportional to the amount of the copolymer, the increase in the number of bilayers per particle can occur more easily than the increase in the number of liposome particles.

실은 공중합체의 양이 높아질수록, 지름도 더 커지게 되고, 리포솜 입자당 이중층 수도 더 커지는 것을 볼 수 있다(도 5 참조). In fact, it can be seen that the higher the amount of the copolymer, the larger the diameter, and the larger the number of double layers per liposome particle (see FIG. 5).

3.5.3.5. 산화-민감성 방출의 관찰Observation of oxidation-sensitive release

도 6은 과산화수소 농도 의존성 칼세인의 방출 프로파일을 보여준다. 6 shows the release profile of the hydrogen peroxide concentration dependent calcein.

상기 칼세인은 리포솜/P(HEA-BMA)(200/1), 리포솜/P(HEA-BMA)(100/1) 및 리포솜/P(HEA- BMA)(50/1)에 탑재된 것이다. The calcein is mounted on liposomes / P (HEA-BMA) (200/1), liposomes / P (HEA-BMA) (100/1) and liposomes / P (HEA-BMA) (50/1).

상기 리포솜/P(HEA-BMA)(200/1)에 탑재된 형광 염료의 방출도(%)는 과산화수소의 농도에 상관없이 타임랩스(time lapse, 미속촬영)에 따라 눈에 띄게 증가하는 것은 없었고, 과산화수소의 농도에 아주 강하게 의존성을 보이지도 않았다. The release rate (%) of the fluorescent dye mounted on the liposome / P (HEA-BMA) (200/1) was not significantly increased with time lapse regardless of the concentration of hydrogen peroxide. , It was not very strongly dependent on the concentration of hydrogen peroxide.

이를 테면, 과산화수소의 농도가 0%, 1.5%, 3.0% 및 6.0%일 때, 최대 방출도(%)는 각각 약 0.2%, 3.4%, 5.8% 및 7.8%였다. For example, when the concentrations of hydrogen peroxide were 0%, 1.5%, 3.0%, and 6.0%, the maximum emission (%) was about 0.2%, 3.4%, 5.8%, and 7.8%, respectively.

과산화수소 농도가 증가함에 따라 방출도(%)는 아주 작은 증가량을 보였는데, 이는 과산화수소가 DOPE분자의 산화를 유도했기 때문일 것이다. As the hydrogen peroxide concentration increased, the release rate (%) showed a very small increase, probably because hydrogen peroxide induced the oxidation of DOPE molecules.

한편, 인지질 꼬리에는 2개의 이중 결합이 있는데, 이는 산화에 영향을 쉽게 받는데, 이를테면, 과산화수소로 촉발된 산화 직후, DOPE의 이중 결합은 깨지게 되고, 소수성 사슬(올레오일 그룹)은 짧아지게 되며, DOPE 이중층의 불안정화 및 이를 통한 염료 방출이라는 결과를 초래한다. On the other hand, there are two double bonds on the phospholipid tail, which are easily affected by oxidation, for example, immediately after oxidation triggered by hydrogen peroxide, the double bond of DOPE is broken, and the hydrophobic chain (oleoyl group) is shortened, DOPE This results in destabilization of the bilayer and dye release through it.

P(HEA-BMA)는 산화에 민감한 그룹이 없기에 과산화 수소의 농도 의존성 방출에 아무런 영향을 받지 않는다. P (HEA-BMA) is not affected by the concentration-dependent release of hydrogen peroxide because there are no oxidation-sensitive groups.

과산화수소 농도 의존성 방출 프로파일 및 리포솜/P(HEA-BMA)(100/1) 및 리포솜/P(HEA-BMA)(50/1)에 의해 탑재된 칼세인의 방출도(%)는 리포솜(200:1)에 탑재된 염료에 대한 방출 프로파일 및 방출 %와 거의 동일하다. Hydrogen peroxide concentration dependent release profile and release rate (%) of calcein loaded with liposomes / P (HEA-BMA) (100/1) and liposomes / P (HEA-BMA) (50/1) are liposomes (200: It is almost the same as the release profile and% release for the dye mounted on 1).

이는 곧 공중합체가 과산화수소 농도 의존성 방출에 큰 영향을 미칠 수 없는 것을 암시하는데, 사실상 상기 공중합체에 산화-민감성 그룹이 없다. This soon suggests that the copolymer cannot have a significant effect on the hydrogen peroxide concentration dependent release, in fact there are no oxidation-sensitive groups in the copolymer.

도 7은 리포솜/P(HEA-AMS(200/1), 리포솜/P(HEA-AMS)(100/1) 및 리포솜/P(HEA-AMS)(50/1)에 탑재된 칼세인의 과산화수소 농도-의존성 방출 프로파일을 도시한 것이다. Figure 7 is a liposome / P (HEA-AMS (200/1), liposome / P (HEA-AMS) (100/1) and liposome / P (HEA-AMS) (50/1) of the hydrogen peroxide of calcein Concentration-dependent release profiles are shown.

리포솜/P(HEA-AMS(200/1)은 방출 실험 60초 동안 과산화수소가 방출 미디움에 포함되어 있지 않았을 때에도 주목할 만한 방출 결과를 보여주지 않았다. Liposomes / P (HEA-AMS (200/1) did not show remarkable release results even when hydrogen peroxide was not included in the release medium during 60 seconds of the release experiment.

이는 상기 리포솜이 산화제 없는 버퍼 용액에서 안정적인 것을 말해준다. This indicates that the liposome is stable in a buffer solution without oxidizing agent.

산화제를 1.5%로 하였을 때에, 상기 리포솜은 처음 몇 초간 빠르게 탑재된 내용물을 방출하였고, 그 이후에는 아주 느리게 내용물을 방출하였다. 특히, 3초에서 방출도는 43%를 보였고, 남은 57초동안 서서히 50.8%로 증가하였다. When the oxidizing agent was set to 1.5%, the liposome released the contents quickly loaded for the first few seconds, and then the contents were released very slowly. In particular, the emission rate was 43% at 3 seconds, and gradually increased to 50.8% for the remaining 57 seconds.

공중합체의 소수성 사슬(메틸렌 메틸 설파이드)이 소수성 상호작용을 통해 DOPE 분자 간에 앵커링 할 수 있는 반면, 친수성 HEA 부분은 수상 벌크 상(aqueous bulk phase)을 향하였다. The hydrophobic chain of the copolymer (methylene methyl sulfide) is able to anchor between DOPE molecules through hydrophobic interactions, while the hydrophilic HEA portion is directed towards the aqueous bulk phase.

이는 DOPE 리포솜이 공중합체에 의해 안정화되는 메커니즘으로 생각된다. This is thought to be the mechanism by which DOPE liposomes are stabilized by the copolymer.

공중합체가 산화 조건에 노출되면, 설파이드는 설폰으로 산화된다. 그리고 산화가 되는 즉시, 소수성 앵커는 친수성으로 바뀌게 되고, 이로 인해 리포솜 이중층에 앵커링을 유지하는 것이 어려워지며, 공중합체는 리포솜 이중층으로부터 제거되는 것이다. 이로 인해 리포솜의 분해가 일어나고, 리포솜에 탑재된 내용물의 방출하는 계기가 된다. When the copolymer is exposed to oxidizing conditions, sulfide is oxidized to sulfone. And as soon as it is oxidized, the hydrophobic anchor becomes hydrophilic, which makes it difficult to maintain anchoring in the liposome bilayer, and the copolymer is removed from the liposome bilayer. This causes the degradation of liposomes, which is a trigger for the release of the contents mounted on the liposomes.

과산화수소의 농도가 3.0%일 때에, 그 방출 패턴은, 과산화수소의 농도가 1.5%일 때와 비슷하였다. 그러나, 방출 실험 내 방출 시간 동안 더 높은 농도에서 더 높은 방출도를 보였다. 이를 테면, 과산화수소 3.0%에서 최대 방출도는 약 78.0%였고, 이는 과산화수소 1.5%일 때 얻은 최대 방출도인 약 50.8%에 비해 훨씬 높았다. When the concentration of hydrogen peroxide was 3.0%, the release pattern was similar to that when the concentration of hydrogen peroxide was 1.5%. However, it showed higher release at higher concentrations during the release time in the release experiment. For example, the maximum release rate at 3.0% hydrogen peroxide was about 78.0%, which was much higher than the maximum release rate obtained at 1.5% hydrogen peroxide, about 50.8%.

과산화수소의 농도가 높아질수록, 설파이드 공중합체는 더 쉽게 산화되고, DOPE 리포솜은 더 광범위하게 불안정화되어, 더 높은 방출도(%)를 보이는 것이다.The higher the concentration of hydrogen peroxide, the more easily the sulfide copolymer oxidizes, and the DOPE liposomes become more widely destabilized, showing a higher release (%).

한편, 과산화수소의 농도가 6.0%일 때에는, 방출%가 약 78.4%였고, 이는 과산화수소의 농도가 3.0%일 때 관찰된 것과 거의 동일하였다. On the other hand, when the concentration of hydrogen peroxide was 6.0%, the release percentage was about 78.4%, which was almost the same as that observed when the concentration of hydrogen peroxide was 3.0%.

과산화수소의 농도가 3.0%일 때 설파이드 공중합체의 산화 정도가, 리포솜을 분해하는 데 이미 충분히 높았기 때문이다. This is because the degree of oxidation of the sulfide copolymer was already high enough to decompose liposomes when the concentration of hydrogen peroxide was 3.0%.

리포솜/P(HEA-AMS)(100/1)에 탑재된 염료의 과산화수소 농도 의존성 방출 프로파일은 리포솜/P(HEA-AMS)(200/1)와 비슷하였다. The concentration of the hydrogen peroxide concentration-dependent release profile of the dye mounted on liposome / P (HEA-AMS) (100/1) was similar to that of liposome / P (HEA-AMS) (200/1).

리포솜/P(HEA-AMS)(100/1)는 방출 미디움에 과산화수소가 없을 때에 특별한 방출 현상을 보이지 않았다. 그러나 방출 미디움에 산화제가 포함되면 방출 현상의 계기(방아쇠를 당김)에 대해 보여주었다. 이를 테면, 산화제의 농도가 각각 0%, 1.5%, 3.0% 및 6.0%일 때에, 최대 방출도는 각각 약 0.5%, 60.6%, 79.3% 및 80.2% 정도였다. Liposomes / P (HEA-AMS) (100/1) showed no specific release phenomenon when the release medium had no hydrogen peroxide. However, when the release medium contained an oxidizing agent, it showed the trigger of the release phenomenon (trigger trigger). For example, when the concentrations of the oxidizing agents were 0%, 1.5%, 3.0% and 6.0%, respectively, the maximum emissivity was about 0.5%, 60.6%, 79.3% and 80.2%, respectively.

리포솜/P(HEA-AMS)(200/1)인 경우에, 산화제의 농도가 3.0%에서의 방출도는, 산화제의 농도가 1.5%일 때에 관찰된 것에 비해 높았으나, 3.0% 및 6.0%에서 관찰된 방출 도와는 큰 차이가 없었다. In the case of liposome / P (HEA-AMS) (200/1), the release rate at the concentration of the oxidizing agent at 3.0% was higher than that observed at the concentration of the oxidizing agent at 1.5%, but at 3.0% and 6.0%. There was no significant difference in the degree of release observed.

이는 곧 3.0%에서의 산화는 리포솜의 분해를 야기시키기에 이미 충분하다는 것을 암시한다. This suggests that oxidation at 3.0% is already sufficient to cause liposome degradation.

1.5%일 때에 리포솜/P(HEA-AMS)(100/1)은 리포솜/P(HEA-AMS)(200/1)에 비해 높은 방출도를 보여주었다. At 1.5%, the liposomes / P (HEA-AMS) (100/1) showed higher release than the liposomes / P (HEA-AMS) (200/1).

리포솜/P(HEA-AMS)(100/1)이 리포솜/P(HEA-AMS)(200/1)에 비해 더 많은 설파이드 공중합체와 결합되어 있기 때문에, 산화에 의해 야기된 불안정성에 더 쉽게 영향을 받는다고 할 것이다. Liposome / P (HEA-AMS) (100/1) is more easily combined with more sulfide copolymers than liposome / P (HEA-AMS) (200/1), making it easier to influence the instability caused by oxidation. Would say

리포솜/P(HEA-AMS)(50/1)에 탑재된 염료의 과산화수소 농도 의존성 방출 프로파일은 다른 리포솜에 탑재된 염료의 방출 프로파일과 역시 비슷하였다. The concentration of the hydrogen peroxide concentration-dependent release profile of the dye mounted on liposome / P (HEA-AMS) (50/1) was similar to that of the dye loaded on other liposomes.

과산화수소의 농도가 0%, 1.5%, 3.0% 및 6.0%일 때에, 최대 방출도는 각각 0.6%, 77.2%, 83.2% 및 83.7%였다. When the concentrations of hydrogen peroxide were 0%, 1.5%, 3.0% and 6.0%, the maximum release rates were 0.6%, 77.2%, 83.2% and 83.7%, respectively.

다른 리포솜의 경우와 마찬가지로, 3.0% 및 6.0%의 사이 농도에서는 별다른 차이를 보이지 않았다. As with the other liposomes, there was no significant difference in concentrations between 3.0% and 6.0%.

심지어 그 농도가 1.5%일 때에도 방출 정도가 3.0% 및 6.0%일 때에 비해 큰 차이가 발견되지 않았다. 게다가, 리포솜/P(HEA-AMS)(50/1)은 특히 1.5%에서 다른 리포솜에 비해 더 높은 방출 정도를 보였다. Even when the concentration was 1.5%, no significant difference was found compared to when the release degree was 3.0% and 6.0%. Moreover, liposomes / P (HEA-AMS) (50/1) showed a higher release degree compared to other liposomes, especially at 1.5%.

이는 리포솜/P(HEA-AMS)(50/1)은 시험된 다양한 리포솜 중에서도 과산화수소에 가장 민감하다는 것을 보여주었다. This showed that liposome / P (HEA-AMS) (50/1) was the most sensitive to hydrogen peroxide among the various liposomes tested.

리포솜/P(HEA-AMS)(50/1)은 다른 두 종류의 리포솜에 비해 설파이드 공중합체를 더 많이 결합하고 있어, 산화 되는 공중합체의 양 또한 훨씬 많고, 산화조건에서 더 쉽게 불안정화되기 때문이다. This is because liposome / P (HEA-AMS) (50/1) binds more sulfide copolymers than the other two types of liposomes, so the amount of copolymers to be oxidized is much higher and it is more easily destabilized under oxidizing conditions. .

이는 리포솜/P(HEA-AMS)(50/1)이 리포솜/P(HEA-AMS)(200/1) 및 리포솜/P(HEA-AMS)(100/1)에 비해 더 산화제에 민감하게 반응하는 이유를 제시하는 것이다. This makes liposomes / P (HEA-AMS) (50/1) more sensitive to oxidizing agents than liposomes / P (HEA-AMS) (200/1) and liposomes / P (HEA-AMS) (100/1). Is to give a reason.

4.4. 결론conclusion

신규한 산화 민감성 리포솜은 P(HEA-AMS)으로 하여금 DOPE 이중층을 안정케 함으로써 개발되었다. 대조군 DOPE 리포솜을 P(HEA-AMS)를 이용하여 준비하였다. 모노머들이 공중합되어 자유 라디칼 중합 반응에 의해 공중합체를 획득하였다. 1H NMR 분광법에 의해, P(HEA-AMS)에서 AMS 대비 HEA의 몰 비 및 P(HEA-BMA)에서 BMA 대비 HEA의 몰비는 각각 100:5.2 와 100:3.5였다. 이러한 공중합은 FT-IR 분광법에 의해 재확인되었다. A novel oxidation-sensitive liposome was developed by making P (HEA-AMS) stabilize the DOPE bilayer. Control DOPE liposomes were prepared using P (HEA-AMS). The monomers were copolymerized to obtain a copolymer by free radical polymerization reaction. By 1H NMR spectroscopy, the molar ratio of HEA to AMS in P (HEA-AMS) and the molar ratio of HEA to BMA in P (HEA-BMA) were 100: 5.2 and 100: 3.5, respectively. This copolymerization was reconfirmed by FT-IR spectroscopy.

공기/물 계면장력 측정 결과, 공중합체는 표면-활성적이고, 양친매성임을 확인하였고, 아울러 공중합체에 의한 안정화된 DOPE 리포솜을 준비하기 위해 음파 처리 및 세제 제거 방법을 이용하였으며, 투과 전자 현미경을 통해 멀티-라멜라 소포체임을 발견하였다. As a result of measuring the air / water interfacial tension, it was confirmed that the copolymer was surface-active and amphiphilic. In addition, a sound wave treatment and detergent removal method were used to prepare a stabilized DOPE liposome by the copolymer, and through a transmission electron microscope. It was found to be a multi-lamellar vesicle.

공중합체 대비 DOPE의 몰 비에 상관없이, P(HEA-BMA)에 의해 안정화된 DOPE 리포솜에 봉해진 칼세인의 60초 방출 정도는 (과산화수소가 0에서 6%로 증가할 때에) 약간 증가하였다. 아마도 DOPE의 꼬리 부분이 짧아진 이중 결합에 의해 산화되기 때문인 것으로 보인다. Regardless of the molar ratio of DOPE to copolymer, the 60-second release degree of calcein sealed in DOPE liposomes stabilized by P (HEA-BMA) increased slightly (when hydrogen peroxide increased from 0 to 6%). This is probably because the tail of the DOPE is oxidized by a shortened double bond.

한편, 과산화수소가 P(HEA-AMS)에 의해 안정화된 DOPE 리포솜 내 봉해진 염료의 방출도에 아주 큰 영향을 미쳤다. 이를테면, 산화제 농도가 0%, 1.5%, 3.0% 및 6.0%일 때에, P(HEA-AMS)(200/1)에 의해 안정화된 DOPE 리포솜 내 봉해진 염료의 방출도는 각각 0.5%, 50.8%, 78.0% 및 78.4%였다. 공중합체의 소수성 앵커(이를 테면, 메틸렌 메틸 설파이드 그룹)는 산화되어 친수성이 되기 쉬웠기 때문이며, 이는 DOPE 이중층에서 제거되어 리포솜의 분해를 가져왔을 것이기 때문이다. On the other hand, hydrogen peroxide had a great influence on the release degree of the sealed dye in the DOPE liposome stabilized by P (HEA-AMS). For example, when the concentration of the oxidizing agent is 0%, 1.5%, 3.0% and 6.0%, the release degree of the sealed dye in the DOPE liposome stabilized by P (HEA-AMS) (200/1) is 0.5%, 50.8%, respectively. 78.0% and 78.4%. This is because the hydrophobic anchor of the copolymer (such as the methylene methyl sulfide group) was oxidized and was likely to become hydrophilic, since it would have been removed from the DOPE bilayer, resulting in degradation of liposomes.

공중합체 대비 DOPE의 몰비가 높을수록 보다 민감한 방출이 일어나는 바, 본 발명에서 연구, 개발된 산화-민감성 리포솜은 산화 조건 하에서 민감하게 내부의 물질을 방출할 수 있는 약물 전달체로 활용될 수 있다. The higher the molar ratio of DOPE compared to the copolymer, the more sensitive release occurs, and the oxidation-sensitive liposomes researched and developed in the present invention can be used as a drug delivery system capable of sensitively releasing internal substances under oxidizing conditions.

이상, 본 발명의 내용을 살펴본 바, 이에 근거하여 본 발명에 따른 과제의 해결 수단을 본다. As described above, the contents of the present invention have been looked at, and based on this, solutions for solving the problems according to the present invention are described.

본 발명에 따른 일 수단은 황화물을 함유한 산화 민감성 리포솜이다. One means according to the invention is an oxidation sensitive liposome containing sulfide.

바람직하게는 상기 산화 민감성 리포솜은, 친수성 모노머, 소수성 모노머로 구성된 산화 민감성 고분자; 및 상기 고분자로 안정화된 디올레오일 포스파티딜 에탄올아민(dioleoyl phosphatidyl ethanolamine, DOPE);을 포함하는 것을 특징으로 하는 황화물을 함유한 산화 민감성 리포솜이다.Preferably, the oxidation-sensitive liposome includes an oxidation-sensitive polymer composed of a hydrophilic monomer and a hydrophobic monomer; And a diolyl phosphatidyl ethanolamine (DOPE) stabilized with the polymer; is an oxidation-sensitive liposome containing sulfide.

보다 바람직하게는 상기 친수성 모노머는 하이드록시에틸 아크릴레이트(hydroxyethyl Acrylate, HEA), 상기 소수성 모노머는 황을 가진 것으로 알릴 메틸 설파이드(Aryl methyl sulfide, AMS)인 것을 특징으로 하는 황화물을 함유한 산화 민감성 리포솜이다.More preferably, the hydrophilic monomer is hydroxyethyl acrylate (hydroxyethyl acrylate, HEA), the hydrophobic monomer is sulfur, and allyl methyl sulfide (Aryl methyl sulfide, AMS), characterized in that the oxidation-sensitive liposome containing sulfide to be.

이러한 리포솜은 산화 조건에 놓이게 되면 상기 산화 민감성 고분자가 산화 되고, 리포솜에서 빠져나와, 상기 리포솜이 불안정한 상태가 되어 탑재된 내용물을 방출하는 것을 특징으로 한다.These liposomes are characterized by oxidizing the oxidative sensitive polymer when released under oxidizing conditions, escaping from the liposomes, and causing the liposomes to become unstable and to release the loaded contents.

상기 산화 민감성 고분자는 자유 라디칼 반응에 의해 생성된다.The oxidation-sensitive polymer is produced by a free radical reaction.

상기 산화 민감성 고분자는 계면-활성적(surface-active)이고, 양친매성(amphipathic)인 것을 특징으로 한다. 아울러 상기 산화 민감성 리포솜은 초음파 처리(sonication) 및 세제 제거법(detergent removal method)에 의해 제조된다. The oxidation-sensitive polymer is characterized by being surface-active and amphipathic. In addition, the oxidation-sensitive liposomes are prepared by sonication and detergent removal methods.

한편, 상기 산화 민감성 리포솜 내에 형광 염료(dye)를 탑재할 경우 ?칭 수준(quenching degree)은 46.2% 내지 57.7%이다. On the other hand, when a fluorescent dye (dye) is mounted in the oxidation-sensitive liposome, the quenching degree is 46.2% to 57.7%.

그리고 상기 산화 민감성 고분자 대비 디올레오일 포스파티딜 에탄올아민의 질량비(mass ratio)가 200:1에서 50:1로 증가할 때에 평균 수력학적 지름(mean hydrodynamic diameter)가 증가한다. And when the mass ratio of the dioleyl phosphatidyl ethanolamine compared to the oxidation-sensitive polymer increases from 200: 1 to 50: 1, the mean hydrodynamic diameter increases.

다른 한편, 상기 산화 민감성 리포솜 내에 염료를 탑재할 경우, 상기 염료의 방출도(release degree)는 산화제의 농도에 의존하되(이를테면, P(HEA-AMS) 대비 DOPE의 질량비가 200:1로 준비된 리포솜에 있어서, 염료의 60초 방출도(%)는 산화제의 농도가 0%, 1.5%, 3.0% 및 6.0%였을 때, 각각 0.5%, 50.8%, 78.0% 및 78.4%였다. 상기 리포솜은 상기 산화 민감성 고분자 대비 디올레오일 포스파티딜 에탄올아민의 질량비가 클수록 산화제에 더 민감하게 반응한다. On the other hand, when a dye is mounted in the oxidation-sensitive liposome, the release degree of the dye depends on the concentration of the oxidizing agent (for example, a liposome prepared with a mass ratio of DOPE to 200: 1 compared to P (HEA-AMS)). In, the 60-second release rate (%) of the dye was 0.5%, 50.8%, 78.0% and 78.4%, respectively, when the concentration of the oxidizing agent was 0%, 1.5%, 3.0% and 6.0%. The larger the mass ratio of dioleyl phosphatidyl ethanolamine compared to sensitive polymers, the more sensitive it is to oxidizing agents.

Claims (11)

황화물을 함유한 산화 민감성 리포솜.Oxidative sensitive liposomes containing sulfides. 제1항에 있어서, 상기 산화 민감성 리포솜은,
(a) 친수성 모노머, 소수성 모노머로 구성된 산화 민감성 고분자; 및
(b) 상기 고분자로 안정화된 디올레오일 포스파티딜 에탄올아민(dioleoyl phosphatidyl ethanolamine, DOPE);을 포함하는 것을 특징으로 하는 황화물을 함유한 산화 민감성 리포솜.
The method of claim 1, wherein the oxidation-sensitive liposome,
(a) an oxidation-sensitive polymer composed of a hydrophilic monomer and a hydrophobic monomer; And
(b) Dioleyl phosphatidyl ethanolamine stabilized with the polymer (dioleoyl phosphatidyl ethanolamine, DOPE); oxidation-sensitive liposomes containing sulfide, characterized in that it comprises a.
제2항에 있어서, 상기 친수성 모노머는 하이드록시에틸 아크릴레이트(hydroxyethyl Acrylate, HEA), 상기 소수성 모노머는 황을 가진 것으로 알릴 메틸 설파이드(Aryl methyl sulfide, AMS)인 것을 특징으로 하는 황화물을 함유한 산화 민감성 리포솜.According to claim 2, wherein the hydrophilic monomer is hydroxyethyl acrylate (hydroxyethyl Acrylate, HEA), the hydrophobic monomer is sulfur and sulfuric acid containing sulfide, characterized in that allyl methyl sulfide (Aryl methyl sulfide, AMS) Sensitive liposomes. 제2항에 있어서, 산화 조건에 놓이게 되면 상기 산화 민감성 고분자가 산화 되고, 리포솜에서 빠져나와, 상기 리포솜이 불안정한 상태가 되어 탑재된 내용물을 방출하는 것을 특징으로 하는 황화물을 함유한 산화 민감성 리포솜.The oxidation-sensitive liposome containing sulfide according to claim 2, wherein the oxidation-sensitive polymer is oxidized and released from the liposome when subjected to oxidizing conditions, and the liposome becomes unstable and releases the loaded contents. 제2항에 있어서, 상기 산화 민감성 고분자는 자유 라디칼 반응에 의해 생성되는 것을 특징으로 하는 황화물을 함유한 산화 민감성 리포솜.3. The oxidation-sensitive liposome containing sulfide according to claim 2, wherein the oxidation-sensitive polymer is produced by a free radical reaction. 제2항에 있어서, 상기 산화 민감성 고분자는 계면-활성적(surface-active)이고, 양친매성(amphipathic)인 것을 특징으로 하는 황화물을 함유한 산화 민감성 리포솜. The oxidation-sensitive liposome containing sulfide according to claim 2, wherein the oxidation-sensitive polymer is surface-active and amphipathic. 제2항에 있어서, 상기 산화 민감성 리포솜은 초음파 처리(sonication) 및 세제 제거법(detergent removal method)에 의해 제조되는 것을 특징으로 하는 황화물을 포함하는 산화 민감성 리포솜.[3] The oxidation-sensitive liposome of claim 2, wherein the oxidation-sensitive liposome is produced by sonication and detergent removal method. 제2항에 있어서, 상기 산화 민감성 리포솜 내에 형광 염료를 탑재할 경우 ?칭도는 46.2% 내지 57.7%인 것을 특징으로 하는 황화물을 포함하는 산화 민감성 리포솜. The oxidation-sensitive liposome containing sulfide according to claim 2, wherein when the fluorescent dye is mounted in the oxidation-sensitive liposome, the degree of quenching is 46.2% to 57.7%. 제2항에 있어서, 상기 산화 민감성 고분자 대비 디올레오일 포스파티딜 에탄올아민의 질량비(mass ratio)가 200:1에서 50:1로 증가할 때에 평균 수력학적 지름(mean hydrodynamic diameter)가 증가하는 것을 특징으로 하는 황화물을 포함하는 산화 민감성 리포솜. The method according to claim 2, wherein the average hydrodynamic diameter increases when the mass ratio of the dioleyl phosphatidyl ethanolamine compared to the oxidation-sensitive polymer increases from 200: 1 to 50: 1. An oxidation-sensitive liposome containing sulfide. 제2항에 있어서, 상기 산화 민감성 리포솜 내에 염료를 탑재할 경우, 상기 염료의 방출도는 산화제의 농도에 의존하는 것을 특징으로 하는 황화물을 포함하는 산화 민감성 리포솜. 3. The oxidation-sensitive liposome of claim 2, wherein when the dye is mounted in the oxidation-sensitive liposome, the degree of release of the dye depends on the concentration of the oxidizing agent. 제10항에 있어서, 상기 리포솜은 상기 산화 민감성 고분자 대비 디올레오일 포스파티딜 에탄올아민의 질량비가 클수록 산화제에 더 민감하게 반응하는 것을 특징으로 하는 황화물을 포함하는 산화 민감성 리포솜.The oxidation-sensitive liposome containing sulfide according to claim 10, wherein the liposome reacts more sensitively to an oxidizing agent as the mass ratio of dioleyl phosphatidyl ethanolamine to the oxidation-sensitive polymer is larger.
KR1020180132763A 2018-11-01 2018-11-01 Oxidation-sensitive liposomes incorporating sulfide compounds KR102155808B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180132763A KR102155808B1 (en) 2018-11-01 2018-11-01 Oxidation-sensitive liposomes incorporating sulfide compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180132763A KR102155808B1 (en) 2018-11-01 2018-11-01 Oxidation-sensitive liposomes incorporating sulfide compounds

Publications (2)

Publication Number Publication Date
KR20200050141A true KR20200050141A (en) 2020-05-11
KR102155808B1 KR102155808B1 (en) 2020-09-14

Family

ID=70729390

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180132763A KR102155808B1 (en) 2018-11-01 2018-11-01 Oxidation-sensitive liposomes incorporating sulfide compounds

Country Status (1)

Country Link
KR (1) KR102155808B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220046864A (en) * 2020-10-08 2022-04-15 강원대학교산학협력단 Ion-Complex exhibiting temperature and oxidation-responsive property, method for production thereof and dual responsive(temperature and oxidation) active ingredients carrier comprising the same
KR20220046900A (en) * 2020-10-08 2022-04-15 강원대학교산학협력단 Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170041509A (en) 2015-10-07 2017-04-17 강원대학교산학협력단 Drug delivery carrier for sustained release of medicinal proteins and method for production thereof
KR20180088569A (en) 2017-01-26 2018-08-06 (주)에이씨티 Reduction-responsive liposome incorporating a hydrophobic disulfide compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170041509A (en) 2015-10-07 2017-04-17 강원대학교산학협력단 Drug delivery carrier for sustained release of medicinal proteins and method for production thereof
KR20180088569A (en) 2017-01-26 2018-08-06 (주)에이씨티 Reduction-responsive liposome incorporating a hydrophobic disulfide compound

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
Alexandridis P, Lindman B. Amphiphilic block copolymers: self-assembly and applications. New York: Elsevier; 2000.
Anabousi S, Kleemann E, Bakowsky U, Kissel T, Schmehl T, Gessler T, et al. Effect of PEGylation on the stability of liposomes during nebulisation and in lung surfactant. J Nanosci Nanotechnol. 2006;6(9-1):3010-6.
B¹k A, Podgσrska W. Interfacial and surface tensions of toluene/water and air/water systems with nonionic surfactants Tween 20 and Tween 80. Colloids Surf A Physicochem Eng Asp. 2016;504:414-25.
Bangham AD, Horne R. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964;8(5):660IN2-8IN10.
Chu C-J, Dijkstra J, Lai M-Z, Hong K, Szoka FC. Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharm Res. 1990;7(8):824-34.
Cullis Pt, De Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta, Rev Biomembr. 1979;559(4):399-420.
Ellens H, Bentz J, Szoka FC. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984;23(7):1532-8.
Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta, Mol Basis Dis. 2007;1772(7):718-36.
Ho RJ, Rouse BT, Huang L. Target-sensitive immunoliposomes: preparation and characterization. Biochemistry. 1986;25(19):5500-6.
Hong YJ, Kim J-C. pH-and calcium ion-dependent release from egg phosphatidylcholine liposomes incorporating hydrophobically modified alginate. J Nanosci Nanotechnol. 2010;10(12):8380-6.
Ishida T, Kirchmeier M, Moase E, Zalipsky S, Allen T. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta, Biomembr. 2001;1515(2):144-58.
Jo S-M, Lee HY, Kim J-C. Glucose-sensitive liposomes incorporating hydrophobically modified glucose oxidase. Lipids. 2008;43(10):937-43.
Jo S-M, Xia Y, Lee HY, Kim YC, Kim J-C. Liposomes incorporating hydrophobically modified glucose oxidase. Korean J Chem Eng. 2008;25(5):1221-5.
Johnsson M, Edwards K. Phase behavior and aggregate structure in mixtures of dioleoylphosphatidylethanolamine and poly (ethylene glycol)-lipids. Biophys J. 2001;80(1):313-23.
Khandelia H, Mouritsen OG. Lipid gymnastics: evidence of complete acyl chain reversal in oxidized phospholipids from molecular simulations. Biophys J. 2009;96(7):2734-43.
Kim J-C, Bae SK, Kim J-D. Temperature-sensitivity of liposomal lipid bilayers mixed with poly (N-isopropylacrylamide-co-acrylic acid). J Biochem. 1997;121(1):15-9.
Kim J-C, Kim M-S, Kim J-D. Temperature-sensitive releases from liposomes containing hydrophobically modified poly (N-isopropylacrylamide). Korean J Chem Eng. 1999;16(1):28-33.
Kono K, Zenitani K-i, Takagishi T. Novel pH-sensitive liposomes: liposomes bearing a poly (ethylene glycol) derivative with carboxyl groups. Biochim Biophys Acta, Biomembr. 1994;1193(1):1-9.
Kumar V. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci USA. 1991;88(2):444-8.
Lai MZ, Vail WJ, Szoka FC. Acid-and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate. Biochemistry. 1985;24(7):1654-61.
Lee E-O, Kim J-G, Kim J-D. Induction of vesicle-to-micelle transition by bile salts for DOPE vesicles incorporating immunoglobulin G. J Biochem. 1992;112(5):671-6.
Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm. 2015;10(2):81-98.
Marsh D. Thermodynamics of phospholipid self-assembly. Biophys J. 2012;102(5):1079-87.
Ng CC, Cheng Y-L, Pennefather PS. Properties of a self-assembled phospholipid membrane supported on lipobeads. Biophys J. 2004;87(1):323-31.
Noguchi H, Takasu M. Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Phys Rev E. 2001;64(4):041913.
Patist A, Bhagwat S, Penfield K, Aikens P, Shah D. On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfactants Deterg. 2000;3(1):53-8.
PNAS, 2017, Vol. 114, No. 21, pp.5343-5348.* *
Sato K, Hyodo M, Aoki M, Zheng X-Q, Noyori R. Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent-and halogen-free conditions. Tetrahedron. 2001;57(13):2469-76.
Schick M. Surface films of nonionic detergents―I. Surface tension study. J Colloid Sci. 1962;17(9):801-13.
Shinoda K, Nakagawa T, Tamamushi B-I. Colloidal surfactants: some physicochemical properties. New York: Elsevier; 1963.
Sudimack JJ, Guo W, Tjarks W, Lee RJ. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta, Biomembr. 2002;1564(1):31-7.
Trost BM, Curran DP. Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate. Tetrahedron Lett. 1981;22(14):1287-90.
Were LM, Bruce BD, Davidson PM, Weiss J. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem. 2003;51(27):8073-9.
White J, Helenius A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci USA. 1980;77(6):3273-7.
YashRoy R. Lamellar dispersion and phase separation of chloroplast membrane lipids by negative staining electron microscopy. J Biosci. 1990;15(2):93-8.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220046864A (en) * 2020-10-08 2022-04-15 강원대학교산학협력단 Ion-Complex exhibiting temperature and oxidation-responsive property, method for production thereof and dual responsive(temperature and oxidation) active ingredients carrier comprising the same
KR20220046900A (en) * 2020-10-08 2022-04-15 강원대학교산학협력단 Oxidation-Responsive Emulsion Stabilized With Amphiphilic Copolymer

Also Published As

Publication number Publication date
KR102155808B1 (en) 2020-09-14

Similar Documents

Publication Publication Date Title
AU769497B2 (en) Nanocapsules and method of production thereof
Barauskas et al. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes
Kokkona et al. Stability of SUV liposomes in the presence of cholate salts and pancreatic lipases: effect of lipid composition
Chandaroy et al. Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome–cell adhesion
Grit et al. Hydrolysis of partially saturated egg phosphatidylcholine in aqueous liposome dispersions and the effect of cholesterol incorporation on hydrolysis kinetics
Kono et al. Effect of poly (ethylene glycol) grafts on temperature-sensitivity of thermosensitive polymer-modified liposomes
EP1156783B1 (en) Encapsulation of bioactive complexes in liposomes
Mertins et al. Production of soybean phosphatidylcholine–chitosan nanovesicles by reverse phase evaporation: a step by step study
Lam et al. Calcium enhances the transfection potency of plasmid DNA–cationic liposome complexes
Liu et al. Stable polymeric nanoballoons: lyophilization and rehydration of cross-linked liposomes
KR102155808B1 (en) Oxidation-sensitive liposomes incorporating sulfide compounds
Sun et al. A mixed micelle formulation for oral delivery of vitamin K
Fresta et al. 5-Fluorouracil: various kinds of loaded liposomes: encapsulation efficiency, storage stability and fusogenic properties
Shimada et al. Determination of incorporated amounts of poly (ethylene glycol)-derivatized lipids in liposomes for the physicochemical characterization of stealth liposomes
Teo et al. Effect of unsaturation on the stability of C-18 polyunsaturated fatty acids vesicles suspension in aqueous solution
Milhaud et al. Interaction of the polyene antibiotic amphotericin B with model membranes: differences between small and large unilamellar vesicles
Xu et al. Spontaneous vesicle formation and vesicle-to-micelle transition of sodium 2-ketooctanate in water
Paxton et al. Hydroxide ion flux and pH-gradient driven ester hydrolysis in polymer vesicle reactors
Gao et al. Vesicle formation of single-chain amphiphilic 4-dodecylbenzene sulfonic acid in water and micelle-to-vesicle transition induced by wet–dry cycles
Bergstrand et al. Effects of poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) triblock copolymers on structure and stability of liposomal dioleoylphosphatidylethanolamine
Freire et al. Bioinspired Oleic Acid–Triolein Emulsions for Functional Material Design
Vial et al. Long-living channels of well defined radius opened in lipid bilayers by polydisperse, hydrophobically-modified polyacrylic acids
Berkovich et al. Dipole potential as a driving force for the membrane insertion of polyacrylic acid in slightly acidic milieu
Zhang et al. Phase structure of liposome in lipid mixtures
Kono et al. Temperature-sensitive liposomes

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant