KR20220046223A - Cementitious composites and method for manufacturing the cementitious composites - Google Patents

Cementitious composites and method for manufacturing the cementitious composites Download PDF

Info

Publication number
KR20220046223A
KR20220046223A KR1020200129383A KR20200129383A KR20220046223A KR 20220046223 A KR20220046223 A KR 20220046223A KR 1020200129383 A KR1020200129383 A KR 1020200129383A KR 20200129383 A KR20200129383 A KR 20200129383A KR 20220046223 A KR20220046223 A KR 20220046223A
Authority
KR
South Korea
Prior art keywords
weight
cement composite
parts
binder
cement
Prior art date
Application number
KR1020200129383A
Other languages
Korean (ko)
Other versions
KR102566467B1 (en
Inventor
류두열
김민재
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020200129383A priority Critical patent/KR102566467B1/en
Publication of KR20220046223A publication Critical patent/KR20220046223A/en
Application granted granted Critical
Publication of KR102566467B1 publication Critical patent/KR102566467B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0691Polyamides; Polyaramides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

A cement composite is disclosed. The cement composite is obtained by mixing a binder and a reinforcing fiber. The binder is blended with 50-100 parts by weight of fine blast furnace slag powder, 30-50 parts by weight of silica sand, and 2-6 parts by weight of a water reducing agent based on 100 parts by weight of Portland cement. The reinforcing fiber is blended at a volume ratio of 1 to 3% with respect to the cement composite.

Description

시멘트 복합체 및 이의 제조 방법{Cementitious composites and method for manufacturing the cementitious composites}Cement composites and method for manufacturing the cementitious composites

본 발명은 시멘트 복합체 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 80 내지 120MPa 압축강도, 7 내지 14MPa 인장강도, 6 내지 9% 변형성능, 그리고 600 내지 800 kJ/m3 에너지흡수성능을 갖는 시멘트 복합체 및 이의 제조 방법에 관한 것이다.The present invention relates to a cement composite and a method for manufacturing the same, and more particularly, a cement having 80 to 120 MPa compressive strength, 7 to 14 MPa tensile strength, 6 to 9% deformability, and 600 to 800 kJ/m 3 energy absorption performance. It relates to a composite and a method for preparing the same.

초고성능 콘크리트(UHPC)는 구성재료를 미세화하고 시멘트를 포함한 결합재의 물리화학적인 수화반응을 극대화하여 시멘트 매트릭스를 고강도화하며, 여기에 작은 직경 및 큰 길이/직경비(Aspect ratio)를 지닌 섬유(Fiber)를 혼입하여 균열응력에 저항하는 콘크리트이다. Ultra-high performance concrete (UHPC) strengthens the cement matrix by refining the constituent materials and maximizing the physicochemical hydration reaction of the binder including cement. ) to resist cracking stress.

초고성능 콘크리트(UHPC)는 높은 압축강도의 시멘트 매트릭스 구조를 갖는 반면에, 섬유를 혼입하지 않은 상태에서는 높은 인장강도를 지니지 못하고 취성 파괴를 한다. 이에 따라 이러한 초고성능 콘크리트(UHPC)에 섬유(Fiber)를 첨가함으로써, 압축강도와 더불어 인장강도를 증진시킬 수 있으며, 구조체의 파괴거동도 유사연성거동(Pseudo-ductile behavior) 또는 연성거동이 가능하게 할 수 있다.Ultra-high-performance concrete (UHPC) has a cement matrix structure of high compressive strength, but does not have high tensile strength and brittle fracture without fibers. Accordingly, by adding fiber to this ultra-high-performance concrete (UHPC), it is possible to increase the tensile strength as well as the compressive strength, and the fracture behavior of the structure is also possible to achieve pseudo-ductile behavior or ductile behavior. can do.

초고성능 콘크리트(UHPC)에서는 골재와 시멘트 수화물 사이의 계면 확장의 영향을 최소화하고, 초고성능 콘크리트(UHPC)에 사용하는 섬유의 분리저항성을 향상시키기 위하여 굵은골재를 사용하지 않거나 골재의 최대치수를 작게 하고 분체량이 많은 부배합을 사용한다. 그리고 일반 콘크리트와 달리 물-결합재비가 매우 낮고 고분말 충전제 및 혼화제를 혼입하며, 굵은골재도 사용하지 않기 때문에 블리딩(Bleeding) 현상이 발생되지 않고 높은 점성을 갖는다는 특징이 있다.In ultra-high-performance concrete (UHPC), coarse aggregate is not used or the maximum size of aggregate is reduced to minimize the effect of interfacial expansion between aggregate and cement hydrate and to improve the separation resistance of fibers used in ultra-high-performance concrete (UHPC). and use a sub-mix with a large amount of powder. And unlike general concrete, the water-binding material ratio is very low, high powder fillers and admixtures are mixed, and since coarse aggregates are not used, bleeding does not occur and it has high viscosity.

이러한 이유에서 초고성능 콘크리트는 결합재와 섬유가 균일하게 배합되지 못하는 한계를 가진다.For this reason, ultra-high-performance concrete has a limitation in that the binder and fiber cannot be uniformly mixed.

본 발명은 결합재와 물의 높은 배합 유동성을 확보할 수 있는 시멘트 복합체 및 이의 제조 방법을 제공한다.The present invention provides a cement composite capable of ensuring high mixing fluidity of a binder and water, and a method for manufacturing the same.

본 발명에 따른 시멘트 복합체는 결합재와 보강 섬유가 혼합되며, 상기 결합재는 포틀랜드 시멘트 100중량부에 대하여 고로슬래그미분말 50~100 중량부, 실리카샌드 30~50 중량부, 그리고 감수제 2 내지 6 중량부로 배합되고, 상기 보강 섬유는 상기 시멘트 복합체에 대해 1 내지 3% 체적비로 배합된다.In the cement composite according to the present invention, a binder and reinforcing fibers are mixed, and the binder is blended with 50 to 100 parts by weight of fine blast furnace slag powder, 30 to 50 parts by weight of silica sand, and 2 to 6 parts by weight of a water reducing agent based on 100 parts by weight of Portland cement. and the reinforcing fibers are blended in a volume ratio of 1 to 3% with respect to the cement composite.

또한, 상기 시멘트 복합체는 80 내지 120MPa 압축강도, 7 내지 14MPa 인장강도, 6 내지 9% 변형성능, 그리고 600 내지 800 kJ/m3 에너지흡수성능을 가질 수 있다.In addition, the cement composite may have a compressive strength of 80 to 120 MPa, a tensile strength of 7 to 14 MPa, a deformability of 6 to 9%, and an energy absorption performance of 600 to 800 kJ/m 3 .

또한, 상기 보강 섬유는 폴리에틸렌 섬유, 폴리비닐알코올 섬유, 나일론 섬유, 그리고 폴리프로필렌 섬유 중에서 선택될 수 있다.In addition, the reinforcing fibers may be selected from polyethylene fibers, polyvinyl alcohol fibers, nylon fibers, and polypropylene fibers.

본 발명에 따른 시멘트 복합체의 제조 방법은 포틀랜드 시멘트, 상기 포틀랜드 시멘트 100 중량부에 대해 고로슬래그미분말 50~100 중량부, 실리카샌드 30~50 중량부, 그리고 감수제 2 내지 6 중량부로 혼합기에 투입하고, 배합하여 결합재를 생성하는 단계; 상기 결합재에 대해 물을 0.16 내지 0.20 중량비로 상기 혼합기에 투입하여 배합하는 단계; 및 보강 섬유를 1 내지 3% 체적비로 상기 혼합기에 투입하고 배합하는 단계를 포함한다.In the method for producing a cement composite according to the present invention, Portland cement, 50 to 100 parts by weight of fine blast furnace slag powder, 30 to 50 parts by weight of silica sand, and 2 to 6 parts by weight of a water reducing agent with respect to 100 parts by weight of the Portland cement are added to the mixer, mixing to produce a binder; adding water to the binder in a weight ratio of 0.16 to 0.20 to the binder and blending; and adding reinforcing fibers to the mixer in a volume ratio of 1 to 3% and blending.

또한, 상기 보강 섬유는 폴리에틸렌 섬유, 폴리비닐알코올 섬유, 나일론 섬유, 그리고 폴리프로필렌 섬유 중에서 선택될 수 있다.In addition, the reinforcing fibers may be selected from polyethylene fibers, polyvinyl alcohol fibers, nylon fibers, and polypropylene fibers.

본 발명에 의하면, 결합재에 대해 물이 0.16 내지 0.20 중량비로 배합되어 높은 배합 유동성이 확보되고, 폴리머 계열의 보강 섬유가 균일하게 분산됨으로써, 시멘트 복합체는 80 내지 120MPa 압축강도, 7 내지 14MPa 인장강도, 6 내지 9% 변형성능, 그리고 600 내지 800 kJ/m3 에너지흡수성능을 가질 수 있다.According to the present invention, water is blended in a weight ratio of 0.16 to 0.20 to the binder to ensure high mixing fluidity, and the polymer-based reinforcing fibers are uniformly dispersed, so that the cement composite has 80 to 120 MPa compressive strength, 7 to 14 MPa tensile strength, 6 to 9% strain performance, and 600 to 800 kJ/m 3 energy absorption performance.

도 1은 본 발명의 실시 예에 따른 시멘트 복합체의 제조 방법을 나타내는 순서도이다.
도 2는 상술한 시멘트 복합체의 제조 방법에 따라 제조된 시멘트 복합체의 인장강도와 변형성능을 측정한 그래프이다.
도 3은 본 발명의 실시 예에 따라 제조된 시멘트 복합체를 전자현미경으로 촬영한 이미지를 나타낸다.
도 4는 비교예에 따라 제조된 시멘트 복합체를 전자현미경으로 촬영한 이미지를 나타낸다.
1 is a flowchart illustrating a method for manufacturing a cement composite according to an embodiment of the present invention.
2 is a graph measuring the tensile strength and deformability of the cement composite prepared according to the method for manufacturing the cement composite described above.
3 shows an image taken with an electron microscope of the cement composite prepared according to an embodiment of the present invention.
4 shows an image taken with an electron microscope of the cement composite prepared according to Comparative Example.

이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical spirit of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content may be thorough and complete, and the spirit of the present invention may be sufficiently conveyed to those skilled in the art.

본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In this specification, when a component is referred to as being on another component, it means that it may be directly formed on the other component or a third component may be interposed therebetween. In addition, in the drawings, thicknesses of films and regions are exaggerated for effective description of technical content.

또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.Also, in various embodiments of the present specification, terms such as first, second, third, etc. are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Accordingly, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment. Each embodiment described and illustrated herein also includes a complementary embodiment thereof. In addition, in this specification, 'and/or' is used in the sense of including at least one of the components listed before and after.

명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다. In the specification, the singular expression includes the plural expression unless the context clearly dictates otherwise. In addition, terms such as "comprise" or "have" are intended to designate that a feature, number, step, element, or a combination thereof described in the specification exists, but one or more other features, number, step, configuration It should not be construed as excluding the possibility of the presence or addition of elements or combinations thereof. In addition, in this specification, "connection" is used in a meaning including both indirectly connecting a plurality of components and directly connecting a plurality of components.

또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명의 실시 예에 따른 시멘트 복합체는 결합재와 보강 섬유가 배합되어 제공된다. The cement composite according to an embodiment of the present invention is provided by mixing a binder and a reinforcing fiber.

결합재는 포틀랜드 시멘트, 그리고 포틀랜스 시멘트 100중량부에 대하여 고로슬래그미분말 50~100 중량부, 실리카샌드 30~50 중량부, 그리고 감수제 2 내지 6 중량부로 배합된다.The binder is mixed with Portland cement, and 50-100 parts by weight of fine blast furnace slag powder, 30-50 parts by weight of silica sand, and 2-6 parts by weight of a water reducing agent based on 100 parts by weight of Portland cement.

본 발명에 사용된 포틀랜드 시멘트, 고로슬래그미분말, 실리카 샌드는 표 1에 나타난 성분을 갖는다.Portland cement, blast furnace slag fine powder, and silica sand used in the present invention have the components shown in Table 1.

구분division 밀도 (g/cm3)Density (g/cm 3 ) 비표면적
(cm2/g)
specific surface area
(cm 2 /g)
재료성분(%중량비)Ingredients (% by weight)
SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO SO3 SO 3 K2OK 2 O Na2ONa 2 O 포틀랜드 시멘트portland cement 3.153.15 3,3503,350 21.0121.01 6.406.40 3.123.12 61.3361.33 3.023.02 2.302.30 -- -- 고로슬래그미분말Blast Furnace Slag Powder 2.902.90 4,3604,360 33.0033.00 14.0014.00 0.500.50 42.0042.00 6.316.31 2.012.01 -- -- 실리카 샌드silica sand 2.652.65 -- 99.5099.50 0.080.08 0.020.02 0.020.02 0.020.02 -- -- --

보강 섬유는 시멘트 복합체에 대해 1 내지 3% 체적비로 배합된다. 실시 예에 의하면, 보강 섬유는 폴리머 계열의 섬유가 사용될 수 있다. 보강 섬유는 폴리에틸렌 섬유, 폴리비닐알코올 섬유, 나일론 섬유, 그리고 폴리프로필렌 섬유 중에서 선택될 수 있다.The reinforcing fibers are blended in a ratio of 1 to 3% by volume to the cement composite. According to an embodiment, a polymer-based fiber may be used as the reinforcing fiber. The reinforcing fibers may be selected from polyethylene fibers, polyvinyl alcohol fibers, nylon fibers, and polypropylene fibers.

상술한 시멘트 복합체로 시편을 제작하여 평가한 성능은 아래 표 2로 나타난다.The performance evaluated by producing a specimen using the above-described cement composite is shown in Table 2 below.

구분division 시멘트 복합체 성능Cement Composite Performance 압축강도(Compressive strength, MPa)Compressive strength (MPa) 80-12080-120 인장강도(Tensile strength, MPa)Tensile strength (MPa) 7-147-14 변형성능(Strain capacity, %)Strain capacity (%) 6-96-9 에너지 흡수성능(Energy absorption capacity, kJ/mm3)Energy absorption capacity, kJ/mm 3 ) 600-800600-800

이하, 상술한 시멘트 복합체의 제조 방법에 대해 설명한다.Hereinafter, a method for producing the above-described cement composite will be described.

도 1은 본 발명의 실시 예에 따른 시멘트 복합체의 제조 방법을 나타내는 순서도이다. 1 is a flowchart illustrating a method for manufacturing a cement composite according to an embodiment of the present invention.

도 1을 참조하면, 시멘트 복합체의 제조 방법은 결합재를 생성하는 단계(S10), 결합재와 물을 배합하여 혼합재를 생성하는 단계(S20), 보강 섬유를 투입하여 배합하는 단계(S30), 시멘트 복합재를 성형하는 단계(S40), 시멘트 복합재를 1차 양생하는 단계(S50), 그리고 시멘트 복합재를 2차 양생하는 단계(S60)를 포함한다.Referring to FIG. 1 , the method for manufacturing a cement composite includes a step of producing a binder (S10), a step of mixing the binder and water to create a mixture (S20), a step of mixing by adding reinforcing fibers (S30), a cement composite material It includes a step (S40) of molding, a step of first curing the cement composite (S50), and a step (S60) of second curing the cement composite.

결합재를 생성하는 단계(S10)는 포틀랜드 시멘트, 상기 포틀랜드 시멘트 100 중량부에 대해 고로슬래그미분말 50~100 중량부, 실리카샌드 30~50 중량부, 그리고 감수제 2 내지 6 중량부로 혼합기에 투입하고, 건비빔한다.The step of generating the binder (S10) is Portland cement, 50 to 100 parts by weight of fine blast furnace slag powder, 30 to 50 parts by weight of silica sand, and 2 to 6 parts by weight of a water reducing agent with respect to 100 parts by weight of the Portland cement. Bibimbap

혼합재를 생성하는 단계(S20)는 혼합기에 물을 투입하여 물과 결합재를 배합하여 혼합재를 제조한다. 물은 결합재에 대해 0.16 내지 0.20 중량비로 혼합기에 투입된다. 상기 물과 결합재의 비율은 적정 수준의 배합 유동성을 확보하여 물과 결합재가 균일하게 배합될 수 있다.In the step (S20) of generating the mixture, water is added to the mixer to mix the water and the binder to prepare the mixture. Water is added to the mixer in a weight ratio of 0.16 to 0.20 with respect to the binder. The ratio of the water and the binder can ensure an appropriate level of mixing fluidity, so that the water and the binder can be uniformly blended.

보강 섬유를 투입하여 배합하는 단계(S30)는 혼합기에 보강 섬유를 투입하고, 혼합재와 보강 섬유를 배합한다. 보강 섬유는 시멘트 복합체에 대해 1 내지 3% 체적비로 투입된다.In the step (S30) of adding and blending the reinforcing fibers, the reinforcing fibers are added to the mixer, and the mixture material and the reinforcing fibers are mixed. The reinforcing fibers are added in a volume ratio of 1 to 3% with respect to the cement composite.

시멘트 복합재를 성형하는 단계(S40)는 혼합재와 보강 섬유가 배합된 시멘트 복합재를 몰드에 투입하고, 소정 형상으로 성형한다.In the forming of the cement composite material (S40), the cement composite material in which the mixture material and the reinforcing fibers are mixed is put into a mold, and the cement composite material is molded into a predetermined shape.

시멘트 복합재를 1차 양생하는 단계(S50)는 수분 증발이 최소화되도록 시멘트 복합재를 비닐로 덮고 상온에서 양생한다. 1차 양생은 2~3일 동안 진행될 수 있다.In the first curing step (S50) of the cement composite, the cement composite is covered with a vinyl and cured at room temperature to minimize moisture evaporation. The first curing can be carried out for 2-3 days.

시멘트 복합재를 2차 양생하는 단계(S60)는 비닐을 제거한 상태에서 상온에서 양생한다. 2차 양생은 20~30일 동안 진행될 수 있다.The second curing step (S60) of the cement composite material is cured at room temperature with the vinyl removed. The second curing can be carried out for 20 to 30 days.

도 2는 상술한 시멘트 복합체의 제조 방법에 따라 제조된 시멘트 복합체의 인장강도와 변형성능을 측정한 그래프이다. 제1그래프는 결합재에 대해 물이 0.16중량비로 배합된 시멘트 복합체를 대상으로 측정한 그래프이고, 제2그래프는 결합재에 대해 물이 0.18중량비로 배합된 시멘트 복합체를 대상으로 측정한 그래프이고, 제3그래프는 결합재에 대해 물이 0.20중량비로 배합된 시멘트 복합체를 대상으로 측정한 그래프이다. 제1 내지 제3그래프를 살펴보면, 본 발명에 따라 제조된 시멘트 복합체는 인장강도 7 내지 14MPa, 변형성능 6 내지 9%를 보임을 확인할 수 있다.2 is a graph measuring the tensile strength and deformability of the cement composite prepared according to the method for manufacturing the cement composite described above. The first graph is a graph measured for the cement composite in which water is mixed in a 0.16 weight ratio to the binder, the second graph is a graph measured by the cement composite in which water is mixed in a 0.18 weight ratio to the binder, and the third graph is The graph is a graph measured for a cement composite in which water is mixed in a weight ratio of 0.20 to the binder. Looking at the first to third graphs, it can be seen that the cement composite prepared according to the present invention has a tensile strength of 7 to 14 MPa and a deformability of 6 to 9%.

도 3은 본 발명의 실시 예에 따라 제조된 시멘트 복합체를 전자현미경으로 촬영한 이미지를 나타내고, 도 4는 비교예에 따라 제조된 시멘트 복합체를 전자현미경으로 촬영한 이미지를 나타낸다. 도 3 및 도 4에서 좌측 이미지 (A)는 시멘트 복합체의 이미지를 나타내고, 우측 이미지 (B)는 시멘트 복합체에 포함된 보강 섬유의 확대 이미지이다. 도 3의 시멘트 복합체는 결합재에 대해 물을 0.18 중량비로 배합하였고, 도 4의 시멘트 복합체는 결합재에 대해 물을 0.22 중량비로 배합하였다.3 shows an image taken with an electron microscope of the cement composite prepared according to an embodiment of the present invention, and FIG. 4 shows an image taken with an electron microscope of the cement composite prepared according to a comparative example. 3 and 4, the left image (A) shows an image of the cement composite, and the right image (B) is an enlarged image of the reinforcing fibers included in the cement composite. In the cement composite of FIG. 3, water was mixed in a weight ratio of 0.18 to the binder, and in the cement composite of FIG. 4, water was mixed in a weight ratio of 0.22 by weight to the binder.

도 3 및 도 4를 비교해보면, 결합재와 물의 배합비에 따라 시멘트 복합체의 미세구조 발달정도가 확연한 차이를 보인다. 이러한 미세구조의 특성은 우측 이미지 (B)에 보이듯이 인발된 보강 섬유의 표면 손상 형태와 정도에서 명확한 차이를 유발한다. 도 4의 우측 이미지 (B)에서는 시멘트 복합체의 인발 시, 보강 섬유의 표면이 보다 길고 강하게 손상된 모습을 확인할 수 있다. 이와 같이 본 발명에 따른 결합재와 물의 배합비는 높은 배합 유동성을 확보하여 보강 섬유가 시멘트 복합체 내에 균일하게 배합되어 보강 섬유들 개개의 인발 성능이 강화됨으로써, 우수한 에너지흡수성능을 확보할 수 있다.3 and 4, the degree of microstructure development of the cement composite according to the mixing ratio of the binder and water is clearly different. These microstructure characteristics cause a clear difference in the type and extent of surface damage of the drawn reinforcing fibers as shown in the right image (B). In the right image (B) of FIG. 4 , it can be seen that the surface of the reinforcing fibers is longer and strongly damaged when the cement composite is pulled out. As described above, the blending ratio of the binder and water according to the present invention secures high mixing fluidity, so that the reinforcing fibers are uniformly blended in the cement composite to enhance the drawing performance of the reinforcing fibers, thereby securing excellent energy absorption performance.

이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although the present invention has been described in detail using preferred embodiments, the scope of the present invention is not limited to specific embodiments and should be construed according to the appended claims. In addition, those skilled in the art will understand that many modifications and variations are possible without departing from the scope of the present invention.

Claims (5)

결합재와 보강 섬유가 혼합된 시멘트 복합체에 있어서,
상기 결합재는 포틀랜드 시멘트 100중량부에 대하여 고로슬래그미분말 50~100 중량부, 실리카샌드 30~50 중량부, 그리고 감수제 2 내지 6 중량부로 배합되고,
상기 보강 섬유는 상기 시멘트 복합체에 대해 1 내지 3% 체적비로 배합되는 시멘트 복합체.
In the cement composite in which the binder and the reinforcing fibers are mixed,
The binder is blended with 50-100 parts by weight of fine blast furnace slag powder, 30-50 parts by weight of silica sand, and 2-6 parts by weight of a water reducing agent based on 100 parts by weight of Portland cement,
The cement composite wherein the reinforcing fibers are blended in a volume ratio of 1 to 3% with respect to the cement composite.
제 1 항에 있어서,
상기 시멘트 복합체는 80 내지 120MPa 압축강도, 7 내지 14MPa 인장강도, 6 내지 9% 변형성능, 그리고 600 내지 800 kJ/m3 에너지흡수성능을 갖는 시멘트 복합체.
The method of claim 1,
The cement composite has 80 to 120 MPa compressive strength, 7 to 14 MPa tensile strength, 6 to 9% deformability, and 600 to 800 kJ/m 3 Cement composite having energy absorption performance.
제 1 항에 있어서,
상기 보강 섬유는 폴리에틸렌 섬유, 폴리비닐알코올 섬유, 나일론 섬유, 그리고 폴리프로필렌 섬유 중에서 선택되는 시멘트 복합체.
The method of claim 1,
The reinforcing fiber is a cement composite selected from polyethylene fiber, polyvinyl alcohol fiber, nylon fiber, and polypropylene fiber.
포틀랜드 시멘트, 상기 포틀랜드 시멘트 100 중량부에 대해 고로슬래그미분말 50~100 중량부, 실리카샌드 30~50 중량부, 그리고 감수제 2 내지 6 중량부로 혼합기에 투입하고, 배합하여 결합재를 생성하는 단계;
상기 결합재에 대해 물을 0.16 내지 0.20 중량비로 상기 혼합기에 투입하여 배합하는 단계; 및
보강 섬유를 1 내지 3% 체적비로 상기 혼합기에 투입하고 배합하는 단계를 포함하는 시멘트 복합체 제조 방법.
Portland cement, 50 to 100 parts by weight of blast furnace slag fine powder, 30 to 50 parts by weight of silica sand, and 2 to 6 parts by weight of a water reducing agent with respect to 100 parts by weight of the Portland cement are added to a mixer and mixed to produce a binder;
adding water to the binder in a weight ratio of 0.16 to 0.20 to the binder and blending; and
A method for producing a cement composite comprising the step of introducing and blending reinforcing fibers into the mixer at a volume ratio of 1 to 3%.
제 4 항에 있어서,
상기 보강 섬유는 폴리에틸렌 섬유, 폴리비닐알코올 섬유, 나일론 섬유, 그리고 폴리프로필렌 섬유 중에서 선택되는 시멘트 복합체 제조 방법.
5. The method of claim 4,
The method for manufacturing a cement composite wherein the reinforcing fiber is selected from polyethylene fiber, polyvinyl alcohol fiber, nylon fiber, and polypropylene fiber.
KR1020200129383A 2020-10-07 2020-10-07 Cementitious composites and method for manufacturing the cementitious composites KR102566467B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200129383A KR102566467B1 (en) 2020-10-07 2020-10-07 Cementitious composites and method for manufacturing the cementitious composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200129383A KR102566467B1 (en) 2020-10-07 2020-10-07 Cementitious composites and method for manufacturing the cementitious composites

Publications (2)

Publication Number Publication Date
KR20220046223A true KR20220046223A (en) 2022-04-14
KR102566467B1 KR102566467B1 (en) 2023-08-10

Family

ID=81211444

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200129383A KR102566467B1 (en) 2020-10-07 2020-10-07 Cementitious composites and method for manufacturing the cementitious composites

Country Status (1)

Country Link
KR (1) KR102566467B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120001584A (en) * 2010-06-28 2012-01-04 가부시키가이샤 비루도란도 Fiber-reinforced cement mortar for spraying
KR101446245B1 (en) * 2014-05-30 2014-10-01 주식회사 지엔시에코 Color cement mortar composition with excellent durability for repairing concrete structure and method for repairing concrete structure using the composition
KR101447124B1 (en) * 2014-05-19 2014-10-06 임펙트디엔씨 주식회사 Composition for protecting the surface of concrete structure having salt resistance, freezing resistanc and wear resistance and repairing method of concrete structure using the composite
KR101911313B1 (en) * 2018-02-28 2018-10-25 주식회사 대호이엔씨 Anti-wash concrete mortar composition for repairing floor of concrete structure and method for repairing concrete structure therewith
KR20190050409A (en) * 2017-11-03 2019-05-13 한국철도기술연구원 Ultra high performance concrete composite having separated aggregate of 5㎜ class, and ultra high performance concrete sleeper for railroad using the same
KR102102814B1 (en) * 2019-07-19 2020-04-22 한국건설기술연구원 High Early Strength-Ultra High Performance Concrete, Manufacturing Method thereof, and Premixing Binder therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120001584A (en) * 2010-06-28 2012-01-04 가부시키가이샤 비루도란도 Fiber-reinforced cement mortar for spraying
KR101447124B1 (en) * 2014-05-19 2014-10-06 임펙트디엔씨 주식회사 Composition for protecting the surface of concrete structure having salt resistance, freezing resistanc and wear resistance and repairing method of concrete structure using the composite
KR101446245B1 (en) * 2014-05-30 2014-10-01 주식회사 지엔시에코 Color cement mortar composition with excellent durability for repairing concrete structure and method for repairing concrete structure using the composition
KR20190050409A (en) * 2017-11-03 2019-05-13 한국철도기술연구원 Ultra high performance concrete composite having separated aggregate of 5㎜ class, and ultra high performance concrete sleeper for railroad using the same
KR101911313B1 (en) * 2018-02-28 2018-10-25 주식회사 대호이엔씨 Anti-wash concrete mortar composition for repairing floor of concrete structure and method for repairing concrete structure therewith
KR102102814B1 (en) * 2019-07-19 2020-04-22 한국건설기술연구원 High Early Strength-Ultra High Performance Concrete, Manufacturing Method thereof, and Premixing Binder therefor

Also Published As

Publication number Publication date
KR102566467B1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
KR101751479B1 (en) Ultra high performance fiber reinforced concrete and manufacturing method of the same
Toutanji et al. The influence of silica fume on the compressive strength of cement paste and mortar
KR101253249B1 (en) Manufacturing methods of ultra-high performance fiber reinforecd concrete mixing the steel fiber of wave and straight type
KR102102814B1 (en) High Early Strength-Ultra High Performance Concrete, Manufacturing Method thereof, and Premixing Binder therefor
KR100970171B1 (en) Concrete composition comprising polyamide reinforcing fibers
CN113816685A (en) Ultrahigh-strength and ultrahigh-toughness concrete and preparation method thereof
EP0261971B1 (en) Fiber-reinforced cement material and molded article comprising hardened product thereof
KR100613902B1 (en) Mortar composition having improved strength and durability
KR101498986B1 (en) Low moisture content plastic composition comprising hydraulic cement and manufacturing method thereof
KR20120060439A (en) Ultra-high performance fiber reinforced cementitious composites and manufacturing method
KR100697221B1 (en) Composition for Shotcrete Having Excellent Performance Using Metakaolin
Naik et al. Enhancement in mechanical properties of concrete due to blended ash
KR102237816B1 (en) SBR Latex Modified Polymer Cement Mixtures for 3D Concrete Printing and Its Manufacturing Method
KR102566467B1 (en) Cementitious composites and method for manufacturing the cementitious composites
KR100927377B1 (en) A method for producing high performance concrete
KR100755423B1 (en) A method for manufacturing self-compacting fiber reinforced cement composites
EP2883852A1 (en) A method for manufacturing concrete filled with carbon fibers
KR102024036B1 (en) Composition for repair mortar comprising mineral fiber
KR102342009B1 (en) Manufacturing method of geopolymer concrete with enhanced flowability and geopolymer concrete composition with enhanced flowability
KR102372241B1 (en) Composition for grouting
KR102189147B1 (en) Cement additive composition for crack prevention and construction method of crack-preventing building using the same
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
KR102011335B1 (en) Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar
JPH05294701A (en) Quick hardening cement compound
JPH07291765A (en) Aging method of cement molding

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant