KR20220045568A - Method for manufacturing an abdominal cavity structure using 3d-printing - Google Patents

Method for manufacturing an abdominal cavity structure using 3d-printing Download PDF

Info

Publication number
KR20220045568A
KR20220045568A KR1020210182216A KR20210182216A KR20220045568A KR 20220045568 A KR20220045568 A KR 20220045568A KR 1020210182216 A KR1020210182216 A KR 1020210182216A KR 20210182216 A KR20210182216 A KR 20210182216A KR 20220045568 A KR20220045568 A KR 20220045568A
Authority
KR
South Korea
Prior art keywords
abdominal cavity
cavity structure
manufacturing
regions
structures
Prior art date
Application number
KR1020210182216A
Other languages
Korean (ko)
Other versions
KR102415254B1 (en
Inventor
유진수
조재원
최규성
김종만
김미승
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to KR1020210182216A priority Critical patent/KR102415254B1/en
Publication of KR20220045568A publication Critical patent/KR20220045568A/en
Application granted granted Critical
Publication of KR102415254B1 publication Critical patent/KR102415254B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Computer Graphics (AREA)
  • Cardiology (AREA)
  • Software Systems (AREA)
  • Mechanical Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Geometry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention relates to a method for manufacturing an abdominal cavity structure by using 3D printing. According to one embodiment of the present invention, the method for manufacturing the abdominal cavity structure by using the 3D printing includes: obtaining an abdominal cavity structure image through computer image capturing; dividing the obtained image into a plurality of regions in a height direction; obtaining reference lines by varying an interval between the reference lines and a number of reference lines disposed in one region according to a thickness of an abdominal cavity appearing in the regions obtained by the division; and modeling a plurality of first structures based on the obtained reference lines. Accordingly, possibility of success of liver transplantation is increased.

Description

3D 프린팅을 이용한 복강 구조물 제조방법{METHOD FOR MANUFACTURING AN ABDOMINAL CAVITY STRUCTURE USING 3D-PRINTING}Method for manufacturing a abdominal cavity structure using 3D printing

본 발명은 복강 구조물 제조방법에 관한 것으로, 보다 상세하게는 3D 프린팅을 이용하여 복강 구조물을 제조하는 방법과 이에 따라 제조된 복강 구조물에 관한 것이다.The present invention relates to a method for manufacturing a abdominal cavity structure, and more particularly, to a method for manufacturing a abdominal cavity structure using 3D printing and to a abdominal cavity structure manufactured accordingly.

뇌사자 등 공여자로부터 간을 제공받을 이식 예정자를 선정할 때 간 이식이 얼마나 긴급하게 필요한지뿐만 아니라 혈액형이나 신체 크기 등을 종합적으로 고려하여 판단한다. 이때, 공여자의 간 크기나 모양을 정확하게 파악하지 못한 상태에서 수술을 진행하는 경우가 있다. 또는, 공여자의 적출 수술이 이식 예정자가 없는 타 병원에서 진행되어, 간 이식 적합 여부를 적출의의 판단에 전적으로 의존하는 경우가 있다. 이로 인해 공여자로부터 적출한 간 이식편이 이식 예정자의 복강 크기에 비해 너무 크거나 너무 작아, 이식에 실패하는 위험이 있다.When selecting a transplant recipient who will receive a liver from a donor, such as a brain dead, a decision is made by considering not only how urgently a liver transplant is needed, but also blood type and body size. At this time, there are cases in which surgery is performed without accurately determining the size or shape of the donor's liver. Alternatively, there is a case where the transplantation operation of a donor is performed in another hospital without a transplant recipient, and thus whether the liver is suitable for transplantation depends entirely on the judgment of the transplant surgeon. Due to this, there is a risk that the liver graft removed from the donor is too large or too small for the size of the recipient's abdominal cavity, and thus the transplantation fails.

전술한 배경 기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지 기술이라 할 수는 없다.The above-mentioned background art is technical information possessed by the inventor for the derivation of the present invention or acquired in the process of derivation of the present invention, and cannot necessarily be said to be a known technique disclosed to the general public prior to the filing of the present invention.

본 발명은 전술한 문제점을 해결하기 위한 것으로, 이식 예정자의 복강의 모양 또는 크기를 그대로 구현하여 간 이식 수술을 안전하고 효율적으로 진행하도록 하는 3D 프린팅을 이용한 복강 구조물 제조방법을 제공할 수 있다.The present invention is to solve the above problems, and it is possible to provide a method for manufacturing an abdominal cavity structure using 3D printing, which implements the shape or size of the abdominal cavity of a transplant recipient as it is, so that the liver transplantation operation can be safely and efficiently performed.

다만 이러한 과제는 예시적인 것으로, 본 발명의 해결하고자 하는 과제는 이에 한정되지 않는다.However, these problems are exemplary, and the problems to be solved by the present invention are not limited thereto.

본 발명의 일 실시예에 따른 복강 구조물 제조방법은 3D 프린팅을 이용한 복강 구조물 제조방법으로서, 컴퓨터 영상 촬영을 통해 복강 구조 영상을 획득하는 단계, 획득한 상기 영상을 높이 방향을 따라 복수 개의 영역으로 분할하는 단계, 상기 분할된 복수 개의 영역에 나타나는 상기 복강의 두께에 따라, 상기 기준선 간의 간격 및 하나의 영역에 배치되는 기준선의 개수를 달리하여 기준선을 획득하는 단계 및 획득한 상기 복수 개의 기준선에 기초하여, 복수 개의 제1 구조물을 모델링하는 단계를 포함한다.The abdominal cavity structure manufacturing method according to an embodiment of the present invention is a method for manufacturing a abdominal cavity structure using 3D printing, comprising: acquiring an abdominal cavity structure image through computer imaging; dividing the acquired image into a plurality of regions along a height direction according to the thickness of the abdominal cavity appearing in the divided plurality of regions, obtaining a baseline by varying the distance between the baselines and the number of baselines disposed in one region, and based on the acquired plurality of baselines , modeling the plurality of first structures.

본 발명의 일 실시예에 따른 복강 구조물 제조방법에 있어서, 상기 복수 개의 기준선을 획득하는 단계는 상기 복수 개의 영역 중 어느 하나의 영역 및 그와 인접하는 영역에 있어서, 상기 두 영역에서 식별되는 복강의 두께 차이가 클수록 상기 두 영역에 포함된 기준선 간의 간격이 좁아질 수 있다.In the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention, the step of obtaining the plurality of reference lines is a region of the abdominal cavity identified in the two regions in any one of the plurality of regions and an area adjacent thereto. As the thickness difference increases, the interval between the reference lines included in the two regions may become narrower.

본 발명의 일 실시예에 따른 복강 구조물 제조방법에 있어서, 상기 두 영역에서 식별되는 복강의 두께가 일정하게 유지되는 경우, 상기 두 영역에 포함된 기준선 간의 간격은 상대적으로 넓고, 상기 두 영역에서 식별되는 복강의 두께가 변할 경우, 상기 두 영역에 포함된 기준선 간의 간격이 상대적으로 좁을 수 있다.In the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention, when the thickness of the abdominal cavity identified in the two regions is maintained constant, the interval between the reference lines included in the two regions is relatively wide, and the two regions are identified When the thickness of the abdominal cavity is changed, the interval between the reference lines included in the two regions may be relatively narrow.

본 발명의 일 실시예에 따른 복강 구조물 제조방법에 있어서, 상기 복수 개의 기준선을 획득하는 단계는 상기 복강의 두께는 상기 복강 구조 영상에서의 횡단면 두께일 수 있다.In the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention, in the obtaining of the plurality of reference lines, the thickness of the abdominal cavity may be a cross-sectional thickness in the abdominal cavity structure image.

본 발명의 일 실시예에 따른 복강 구조물 제조방법에 있어서, 상기 복수 개의 기준선을 획득하는 단계에서 상기 영상의 횡단면 상에서, 상기 복수 개의 기준선은 횡격막, 흉곽, 하대정맥 및 신장 중 적어도 어느 하나와 중첩될 수 있다.In the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention, in the step of acquiring the plurality of baselines, on the cross section of the image, the plurality of baselines overlap with at least one of the diaphragm, rib cage, inferior vena cava and kidney. can

본 발명의 일 실시예에 따른 복강 구조물 제조방법에 있어서, 상기 복수 개의 제1 구조물을 모델링하는 단계는 획득한 상기 복수 개의 기준선이 상기 복수 개의 제1 구조물 각각의 중심선이 되어 소정의 폭과 너비를 갖도록 적층 제조할 수 있다.In the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention, in the modeling of the plurality of first structures, the obtained plurality of reference lines become the center lines of each of the plurality of first structures to obtain a predetermined width and width It can be laminated to have it.

전술한 것 외의 다른 측면, 특징, 이점은 이하의 발명을 실시하기 위한 구체적인 내용, 청구범위 및 도면으로부터 명확해질 것이다.Other aspects, features and advantages other than those described above will become apparent from the following detailed description, claims and drawings for carrying out the invention.

본 발명의 일 실시예에 따른 복강 구조물 제조방법을 이용해 대상자의 간 주변에 위치하는 주요 신체 구조물을 포함하여, 대상자의 복강 구조를 모사하는 복강 구조물을 간 이식 수술에 이용할 수 있다. 이를 통해, 적출된 간과 복강 구조물을 대조하여 간 이식 수술의 진행 방식을 미리 결정함으로써 간 이식 수술의 성공 가능성을 높일 수 있다.Using the method for manufacturing an abdominal cavity structure according to an embodiment of the present invention, an abdominal cavity structure simulating the abdominal cavity structure of a subject, including major body structures located around the subject's liver, can be used for liver transplantation. Through this, it is possible to increase the probability of success of the liver transplantation surgery by comparing the extracted liver and the abdominal cavity structure to determine in advance how to proceed with the liver transplantation operation.

본 발명의 일 실시예에 따른 복강 구조물 제조방법은 3D 프린팅 기술을 이용해, 간 이식 시 고려해야할 최소한의 주요 신체 구조물을 고려하여 대상자의 복강 구조를 모사함으로써, 간 이식 수술을 신속하고 정확하게 진행할 수 있다.The method for manufacturing an abdominal cavity structure according to an embodiment of the present invention uses 3D printing technology to simulate the abdominal cavity structure of a subject in consideration of the minimum major body structures to be considered during liver transplantation, so that the liver transplantation operation can be performed quickly and accurately. .

도 1은 본 발명의 일 실시예에 따른 복강 구조물 제조방법을 나타낸다.
도 2 및 도 3은 본 발명의 일 실시예에 따라 복강 영상을 획득하는 상태를 대략적으로 나타낸다.
도 4는 본 발명의 일 실시예에 따라 획득한 기준선을 나타낸다.
도 5 및 도 6은 본 발명의 일 실시예에 따른 복강 구조물을 나타낸다.
도 7은 본 발명의 일 실시예에 따른 제3 구조물을 나타낸다.
도 8은 본 발명의 일 실시예에 따른 복강 구조물을 이용한 간 이식 수술 상태를 나타낸다.
1 shows a method for manufacturing a abdominal cavity structure according to an embodiment of the present invention.
2 and 3 schematically show a state in which an abdominal cavity image is acquired according to an embodiment of the present invention.
4 shows a baseline obtained according to an embodiment of the present invention.
5 and 6 show a abdominal cavity structure according to an embodiment of the present invention.
7 shows a third structure according to an embodiment of the present invention.
8 shows a liver transplantation operation using the abdominal cavity structure according to an embodiment of the present invention.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 발명의 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시예로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 다른 실시예에 도시되어 있다 하더라도, 동일한 구성요소에 대하여서는 동일한 식별부호를 사용한다.Since the present invention can apply various transformations and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail in the description of the invention. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In the description of the present invention, even though shown in other embodiments, the same identification numbers are used for the same components.

이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and when described with reference to the drawings, the same or corresponding components are given the same reference numerals, and the overlapping description thereof will be omitted. .

이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. In the following embodiments, terms such as first, second, etc. are used for the purpose of distinguishing one component from another, not in a limiting sense.

이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. In the following examples, the singular expression includes the plural expression unless the context clearly dictates otherwise.

이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following embodiments, terms such as include or have means that the features or components described in the specification are present, and the possibility that one or more other features or components will be added is not excluded in advance.

도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. In the drawings, the size of the components may be exaggerated or reduced for convenience of description. For example, since the size and thickness of each component shown in the drawings are arbitrarily indicated for convenience of description, the present invention is not necessarily limited to the illustrated bar.

이하의 실시예에서, x축, y축 및 z축은 직교 좌표계 상의 세 축으로 한정되지 않고, 이를 포함하는 넓은 의미로 해석될 수 있다. 예를 들어, x축, y축 및 z축은 서로 직교할 수도 있지만, 서로 직교하지 않는 서로 다른 방향을 지칭할 수도 있다. In the following embodiments, the x-axis, the y-axis, and the z-axis are not limited to three axes on a Cartesian coordinate system, and may be interpreted in a broad sense including them. For example, the x-axis, y-axis, and z-axis may be orthogonal to each other, but may refer to different directions that are not orthogonal to each other.

어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.In cases where certain embodiments may be implemented otherwise, a specific process sequence may be performed different from the described sequence. For example, two processes described in succession may be performed substantially simultaneously, or may be performed in an order opposite to the order described.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.

도 1은 본 발명의 일 실시예에 따른 복강 구조물 제조방법을 나타내고, 도 2 및 도 3은 본 발명의 일 실시예에 따라 복강 영상을 획득하는 상태를 대략적으로 나타내고, 도 4는 본 발명의 일 실시예에 따라 획득한 기준선(SL)을 나타내고, 도 5 및 도 6은 본 발명의 일 실시예에 따른 복강 구조물(10)을 나타내고, 도 7은 본 발명의 일 실시예에 따른 제3 구조물(300)을 나타낸다.1 shows a method for manufacturing a abdominal cavity structure according to an embodiment of the present invention, FIGS. 2 and 3 schematically show a state of acquiring an abdominal cavity image according to an embodiment of the present invention, and FIG. 4 is one of the present invention Shows the baseline (SL) obtained in accordance with the embodiment, Figures 5 and 6 shows the abdominal cavity structure 10 according to an embodiment of the present invention, Figure 7 is a third structure according to an embodiment of the present invention ( 300) is shown.

본 발명의 일 실시예에 따른 복강 구조물 제조방법은 대상자의 복강 구조를 모사하는 구조물을 제조하는 방법일 수 있다. 보다 구체적으로, 본 발명의 일 실시예에 따른 복강 구조물 제조방법은 간 이식을 받고자 하는 이식 예정자의 복강 구조를 모사하는 구조물을 제조하는 방법으로서, 복강 구조물(10)은 이식되는 간이 위치하는 이식 예정자의 상복부를 포함할 수 있다.The method of manufacturing a abdominal cavity structure according to an embodiment of the present invention may be a method of manufacturing a structure that mimics the abdominal cavity structure of a subject. More specifically, the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention is a method of manufacturing a structure that mimics the abdominal cavity structure of a prospective transplant recipient who wants to receive a liver transplant, wherein the abdominal cavity structure 10 is a transplant recipient in which the transplanted liver is located may include the upper abdomen of

도 1 내지 도 7을 참조하면, 본 발명의 일 실시예에 따른 복강 구조물 제조방법은 컴퓨터 영상 촬영을 통해 복강 구조 영상을 획득하는 단계(S100)와, 획득한 영상을 복수 개의 영역(A)으로 분할하는 단계(S200)와, 분할된 복수 개의 영역에서 복수 개의 기준선(SL)을 획득하는 단계(S300)와, 획득한 복수 개의 기준선에 기초하여, 복수 개의 제1 구조물을 모델링하는 단계(S400)를 포함할 수 있다.1 to 7 , the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention includes the steps of obtaining an abdominal cavity structure image through computer imaging (S100), and converting the obtained image into a plurality of regions (A) The step of dividing (S200), the step of obtaining a plurality of reference lines (SL) in the plurality of divided regions (S300), and the step of modeling the plurality of first structures based on the obtained plurality of reference lines (S400) may include

먼저, 대상자의 복강 구조 영상을 획득한다. 보다 구체적으로, 도 2 및 도 3에 나타낸 바와 같이, 간 이식을 받고자 하는 대상자의 복강 구조 및 주요 신체 구조물의 위치를 확인할 수 있도록 컴퓨터 영상 촬영을 실시한다. 여기서 컴퓨터 영상 촬영 기법은 특별히 한정하지 않는다. 예를 들어, 컴퓨터 단층 촬영(Computed Tomography; CT) 또는 자기 공명 영상법(Magnetic Resonance Imaging; MRI)을 이용해 대상자의 복강 구조 영상을 획득할 수 있다. First, an image of the abdominal cavity structure of the subject is acquired. More specifically, as shown in FIGS. 2 and 3 , computerized imaging is performed to confirm the location of the abdominal cavity structure and major body structures of the subject who wants to receive a liver transplant. Here, the computer image capturing technique is not particularly limited. For example, an image of the abdominal cavity structure of the subject may be acquired using computed tomography (CT) or magnetic resonance imaging (MRI).

일 실시예로, 획득한 복강 구조 영상은 복강의 단면(시상면(sagittal plane), 관상면(frontal plane), 수평면(transvers plane) 또는 소정의 각도로 기울어진 단면 등)에 대한 영상일 수 있다. 또는, 획득한 복강 구조 영상은 이들 단면 영상을 3차원으로 구현한 영상일 수 있다.In one embodiment, the acquired abdominal structure image may be an image of a cross-section of the abdominal cavity (sagittal plane, coronal plane, transvers plane, or a cross-section inclined at a predetermined angle, etc.). . Alternatively, the acquired abdominal cavity structure image may be an image obtained by implementing these cross-sectional images in three dimensions.

일 실시예로, 획득한 복강 구조 영상은 대상자의 간의 위치를 식별할 수 있는 영상일 수 있다. 일 실시예로, 획득한 복강 구조 영상은 대상자의 흉곽과 기타 주요 신체 구조물의 위치를 식별할 수 있는 영상일 수 있다. 예를 들어, 도 3에 나타낸 바와 같이, 획득한 복강 구조 영상은 우측 신장(K1), 좌측 신장(K2) 및 하대 정맥(IVC)의 위치를 식별할 수 있는 영상일 수 있다. 그 외에도 도면에는 나타내지 않았으나, 획득한 복강 구조 영상은 간의 위치를 중심으로 주변에 위치하는 주요 신체 구조물의 위치를 식별할 수 있는 영상일 수 있다.In an embodiment, the acquired abdominal cavity structure image may be an image capable of identifying the location of the subject's liver. In an embodiment, the acquired abdominal cavity structure image may be an image capable of identifying the location of the subject's chest and other major body structures. For example, as shown in FIG. 3 , the acquired abdominal structure image may be an image capable of identifying positions of the right kidney (K1), the left kidney (K2), and the inferior vena cava (IVC). In addition, although not shown in the drawings, the acquired abdominal cavity structure image may be an image capable of identifying the positions of major body structures located in the vicinity with respect to the position of the liver.

다음, 획득한 복강 구조 영상을 복수 개의 영역(A)으로 분할한다. 보다 구체적으로, 도 2에 나타낸 바와 같이, 획득한 복강 구조 영상을 높이 방향으로 제1 영역(A1)에서 제8 영역(A8)까지 8개의 영역으로 분할할 수 있다. 분할된 영역(A)의 개수는 특별히 한정하지 않는다.Next, the acquired abdominal structure image is divided into a plurality of regions (A). More specifically, as shown in FIG. 2 , the acquired abdominal cavity structure image may be divided into eight regions from the first region A1 to the eighth region A8 in the height direction. The number of the divided regions A is not particularly limited.

일 실시예로, 획득한 복강 구조 영상을 복수 개의 영역(A)으로 분할하는 단계는 대상자의 주요 신체 구조물이 복수 개의 영역(A)에서 식별되도록 획득한 복강 영상을 분할할 수 있다. 여기서 주요 신체 구조물은 대상자의 간의 위치를 중심으로 주변에 위치하는 신체 구조물일 수 있다. 예를 들어, 획득한 복강 구조 영상을 복수 개의 영역(A)으로 분할하는 단계는 횡격막(diaphragm), 흉곽(thorax), 하대정맥(inferior vena cava) 및 신장(kidney) 중 적어도 어느 하나가 상기 복수 개의 영역(A)에서 식별되도록 획득한 복강 구조 영상을 분할할 수 있다.In an embodiment, the step of dividing the acquired abdominal cavity structure image into a plurality of regions (A) may divide the acquired abdominal cavity image so that major body structures of the subject are identified in the plurality of regions (A). Here, the main body structure may be a body structure located around the subject's liver. For example, in the step of dividing the acquired abdominal structure image into a plurality of regions (A), at least one of a diaphragm, a rib cage (thorax), an inferior vena cava, and a kidney (kidney) is the plurality of The acquired abdominal structure image may be segmented so as to be identified in the region (A) of the dog.

보다 구체적으로, 간 이식을 성공적으로 수행하기 위해서는 공여자의 신체에서 적출한 간을 대상자의 신체의 적절한 부위에 이식해야 한다. 이를 위해서는 간을 둘러싸는 주변 신체 구조물의 위치와 크기 및 형상 등을 사전에 파악해야 한다. 간을 둘러싸는 주요 신체 구조물로는, 간의 상방에 위치하는 횡격막과, 간의 외측면과 하방에 위치하는 흉곽(보다 구체적으로는 늑골)과, 간의 내측면과 중심부에 위치하는 하대정맥과, 간의 하방에 위치하는 신장이 있다. 따라서 본 발명의 일 실시예에 따른 복강 구조물 제조방법에서는 획득한 복강 구조 영상을 복수 개의 영역(A)으로 분할하되, 복수 개의 영역(A)에서 횡격막과, 흉곽과, 하대정맥과, 신장 중 적어도 어느 하나가 식별되도록 하여, 대상자의 신체에서 간이 이식되는 위치를 미리 정확하게 파악할 수 있다.More specifically, in order to successfully perform a liver transplant, a liver removed from a donor's body must be transplanted to an appropriate part of the subject's body. For this, the position, size, and shape of the surrounding body structures surrounding the liver must be identified in advance. The main body structures surrounding the liver include the diaphragm located above the liver, the rib cage (more specifically, the ribs) located below and outside the liver, the inferior vena cava located on the medial side and center of the liver, and the lower part of the liver There is a kidney located in Therefore, in the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention, the acquired abdominal cavity structure image is divided into a plurality of regions (A), and in the plurality of regions (A), at least one of the diaphragm, the rib cage, the inferior vena cava, and the kidney By identifying any one, it is possible to accurately grasp the location of the liver transplantation in the subject's body in advance.

다음, 분할된 복수 개의 영역(A)에서 복수 개의 기준선(SL)을 획득한다. 기준선(SL)은 복수 개의 영역(A)에서 추출한 선으로서, 복강 구조물(10)을 모델링하는 기준이 될 수 있다.Next, a plurality of reference lines SL are obtained in the plurality of divided regions A. The reference line SL is a line extracted from the plurality of regions A, and may serve as a reference for modeling the abdominal cavity structure 10 .

일 실시예로, 복수 개의 기준선(SL)을 획득하는 단계에서, 복수 개의 기준선(SL)은 분할된 복수 개의 영역(A)에 기초하여 일 방향으로 이격하여 배치될 수 있다. 일 실시예로, 복수 개의 기준선(SL)을 획득하는 단계에서, 복수 개의 기준선(SL)은 복강의 내벽에 대응되는 복수 개의 프로파일일 수 있다.In an embodiment, in the acquiring of the plurality of reference lines SL, the plurality of reference lines SL may be disposed to be spaced apart from each other in one direction based on the divided plurality of areas A. As shown in FIG. In an embodiment, in the acquiring of the plurality of reference lines SL, the plurality of reference lines SL may be a plurality of profiles corresponding to the inner wall of the abdominal cavity.

보다 구체적으로, 분할된 복수 개의 영역(A)에서 각각 기준선(SL)을 획득한다. 예를 들어, 도 2에 나타낸 바와 같이, 제1 영역(A1)에서 제1 기준선을 획득하고, 제2 영역(A2)에서 제2 기준선을 획득하고, 제3 영역(A3)에서 제3 기준선을 획득하고, 제4 영역(A4)에서 제4 기준선을 획득하고, 제5 영역(A5)에서 제5 기준선을 획득하고, 제6 영역(A6)에서 제6 기준선을 획득하고, 제7 영역(A7)에서 제7 기준선을 획득하고, 제8 영역(A8)에서 제8 기준선을 획득할 수 있다.More specifically, a reference line SL is obtained from each of the plurality of divided regions A. For example, as shown in FIG. 2 , a first reference line is obtained in the first area A1, a second reference line is obtained in the second area A2, and a third reference line is obtained in the third area A3. obtain, obtain a fourth reference line in a fourth area A4, obtain a fifth reference line in a fifth area A5, obtain a sixth reference line in a sixth area A6, and obtain a sixth reference line in a seventh area A7 ), a seventh reference line may be obtained, and an eighth reference line may be obtained from the eighth area A8.

그리고 제1 기준선 내지 제8 기준선은 소정의 간격으로 이격하여 배치될 수 있다. 또한, 제1 기준선 내지 제8 기준선은 모델링하고자 하는 복강의 내벽의 프로파일에 대응될 수 있다.In addition, the first to eighth reference lines may be spaced apart from each other by a predetermined interval. In addition, the first to eighth reference lines may correspond to the profile of the inner wall of the abdominal cavity to be modeled.

일 실시예로, 복수 개의 기준선(SL)을 획득하는 단계는 획득한 영상에서 식별되는 복강의 두께에 따라 기준선(SL)의 간격을 달리할 수 있다. 예를 들어, 기준선(SL) 간의 간격은 2 cm 내지 3.5 cm일 수 있다.In an embodiment, in the acquiring of the plurality of reference lines SL, the distance between the reference lines SL may be varied according to the thickness of the abdominal cavity identified in the acquired image. For example, the interval between the reference lines SL may be 2 cm to 3.5 cm.

즉, 획득한 복수 개의 기준선(SL) 간의 간격은 반드시 일치하지 않을 수 있다. 예를 들어, 제1 기준선과 제2 기준선 간의 간격은 제2 기준선과 제3 기준선 간의 간격과 상이할 수 있다. 이때, 기준선(SL)을 획득하는 기준은 획득한 복강 구조 영상에서 식별되는 복강의 두께일 수 있다.That is, intervals between the plurality of obtained reference lines SL may not necessarily match. For example, the interval between the first reference line and the second reference line may be different from the interval between the second reference line and the third reference line. In this case, the reference for acquiring the reference line SL may be the thickness of the abdominal cavity identified in the acquired abdominal cavity structure image.

보다 구체적으로, 획득한 복강 구조 영상에서 식별되는 복강의 두께가 비교적 일정하게 유지되는 경우, 기준선(SL) 간의 간격이 보다 넓을 수 있다. 반대로, 획득한 복강 구조 영상에서 식별되는 복강의 두께가 급격히 변하는 경우, 기준선(SL) 간의 간격이 보다 좁을 수 있다. 일 실시예로, 획득한 복강 구조 영상에서 식별되는 복강의 두께의 변곡점을 중심으로 기준선(SL)이 보다 밀집되도록 복수 개의 기준선(SL)이 배치될 수 있다.More specifically, when the thickness of the abdominal cavity identified in the acquired abdominal cavity structure image is maintained relatively constant, the interval between the reference lines SL may be wider. Conversely, when the thickness of the abdominal cavity identified in the acquired abdominal cavity structure image changes rapidly, the interval between the reference lines SL may be narrower. In an embodiment, a plurality of reference lines SL may be arranged such that the reference lines SL are more densely focused on the inflection point of the thickness of the abdominal cavity identified in the acquired abdominal cavity structure image.

일 실시예로, 복강의 두께는 획득한 복강 구조 영상에서의 횡단면 두께를 의미할 수 있다.In an embodiment, the thickness of the abdominal cavity may mean a cross-sectional thickness in the acquired abdominal cavity structure image.

일 실시예로, 획득한 기준선(SL)의 개수는 반드시 분할된 영역(A)의 개수에 대응되지 않을 수 있다. 예를 들어, 제1 영역(A1)에서 2개 이상의 기준선(SL)을 획득할 수 있으며, 제2 영역(A2)에서는 기준선을 획득하지 않을 수 있다. 이 경우에도, 기준선(SL)을 획득하는 기준은 획득한 복강 구조 영상에서 식별되는 복강의 두께일 수 있다.As an embodiment, the number of the acquired reference lines SL may not necessarily correspond to the number of the divided regions A. For example, two or more reference lines SL may be obtained in the first area A1 , and no reference lines may be obtained in the second area A2 . Even in this case, the reference for acquiring the reference line SL may be the thickness of the abdominal cavity identified from the acquired abdominal cavity structure image.

일 실시예로, 복수 개의 기준선(SL)을 획득하는 단계에서, 획득한 복강 구조 영상의 횡단면 상에서, 상기 복수 개의 기준선은 횡격막, 흉곽, 하대정맥 및 신장 중 적어도 어느 하나와 중첩될 수 있다.In an embodiment, in the acquiring of the plurality of baselines SL, the plurality of baselines may overlap at least one of the diaphragm, the rib cage, the inferior vena cava, and the kidney on a cross-section of the acquired abdominal structure image.

보다 구체적으로, 도 4는 획득한 복수 개의 기준선(SL) 중 어느 하나의 기준선(SL)을 평면에서 바라본 모습을 나타낸다. 전술한 바와 같이, 기준선(SL)은 복강의 내벽에 대응되는 프로파일, 즉, 복강의 내벽의 횡단면을 나타낼 수 있다. 또한, 기준선(SL)의 내부에는 주요 신체 구조물들(S1, S2, S3 및 S4)이 배치될 수 있다.More specifically, FIG. 4 shows a state in which one of the plurality of obtained reference lines SL is viewed from a plane. As described above, the reference line SL may represent a profile corresponding to the inner wall of the abdominal cavity, that is, a cross-section of the inner wall of the abdominal cavity. Also, main body structures S1 , S2 , S3 , and S4 may be disposed inside the reference line SL.

다시 말해, 획득한 복강 구조 영상의 횡단면 상에서 보았을 때, 획득한 복수 개의 기준선(SL)은 주요 신체 구조물들(S1, S2, S3 및 S4) 중 적어도 어느 하나와 중첩되도록 배치될 수 있다. 또한, 주요 신체 구조물들(S1, S2, S3 및 S4)는 횡격막, 흉곽, 하대정맥 및 신장 중 적어도 어느 하나일 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 복강 구조물 제조방법은 대상자의 간 주변에 위치하는 주요 신체 구조물의 위치를 고려하여 기준선(SL)을 획득할 수 있다.In other words, when viewed in a cross-section of the acquired abdominal cavity structure image, the plurality of acquired reference lines SL may be disposed to overlap at least one of the main body structures S1 , S2 , S3 and S4 . In addition, the main body structures S1 , S2 , S3 and S4 may be at least one of the diaphragm, the rib cage, the inferior vena cava, and the kidney. Accordingly, in the method for manufacturing a abdominal cavity structure according to an embodiment of the present invention, the reference line SL may be obtained in consideration of the location of the main body structure located around the liver of the subject.

도 4에는 기준선(SL)이 원형인 것으로 나타냈으나, 이는 일 예시에 불과하고 기준선(SL)의 형상은 획득한 복강 구조 영상과, 분할된 영역(A)의 개수 및 간격 등에 따라 달라질 수 있다. 또한, 기준선(SL)은 반드시 닫힌 곡선일 필요는 없으며, 열린 곡선일 수도 있다.Although it is shown in FIG. 4 that the reference line SL is circular, this is only an example and the shape of the reference line SL may vary depending on the acquired abdominal cavity structure image, the number and spacing of the divided regions A, etc. . In addition, the reference line SL is not necessarily a closed curve, but may be an open curve.

도 4에는 어느 하나의 기준선(SL)과 주요 신체 구조물들(S1, S2, S3 및 S4) 모두와 중첩되는 것으로 나타냈으나, 이에 한정하지 않는다. 획득한 복수 개의 기준선(SL) 중 일부 기준선(SL)은 주요 신체 구조물들(S1, S2, S3 및 S4)와 중첩되지 않도록 배치될 수도 있다. 획득한 복수 개의 기준선(SL) 전체를 기준으로 했을 때, 주요 신체 구조물들(S1, S2, S3 및 S4)이 기준선(SL)과 중첩되면 충분하다.In FIG. 4 , any one reference line SL and all of the main body structures S1 , S2 , S3 and S4 are shown to overlap, but the present invention is not limited thereto. Some of the obtained reference lines SL may be disposed so as not to overlap the main body structures S1 , S2 , S3 and S4 . It is sufficient if the main body structures S1 , S2 , S3 , and S4 overlap with the reference line SL based on all of the obtained plurality of reference lines SL.

다음, 획득한 복수 개의 기준선(SL)에 기초하여, 복수 개의 제1 구조물(100)을 모델링한다.Next, a plurality of first structures 100 are modeled based on the plurality of obtained reference lines SL.

일 실시예로, 복수 개의 제1 구조물(100)을 모델링하는 단계는 획득한 복수 개의 기준선(SL)이 소정의 폭과 너비를 갖도록 적층 제조할 수 있다. 보다 구체적으로, 획득한 복수 개의 기준선(SL)이 복수 개의 제1 구조물(100)의 중심선(CL)이 되며, 이를 중심으로 직육면체 형상의 단면을 갖는 제1 구조물(100)을 모델링할 수 있다. 일 실시예로, 3D 프린터를 이용해 기준선(SL)을 중심으로 제1 구조물(100)을 적층 제조할 수 있다.As an embodiment, the modeling of the plurality of first structures 100 may include manufacturing by stacking the plurality of obtained reference lines SL to have predetermined widths and widths. More specifically, the plurality of obtained reference lines SL become the center lines CL of the plurality of first structures 100 , and the first structure 100 having a cross-section of a rectangular parallelepiped shape may be modeled based on the obtained plurality of reference lines SL. In an embodiment, the first structure 100 may be manufactured by stacking around the reference line SL using a 3D printer.

제1 구조물(100)의 폭과 너비는 특별히 한정하지 않는다. 예를 들어, 제1 구조물(100)의 폭은 2 mm이고, 너비는 3 mm 내지 4 mm일 수 있다.The width and width of the first structure 100 are not particularly limited. For example, the width of the first structure 100 may be 2 mm, the width may be 3 mm to 4 mm.

다른 실시예로, 복수 개의 제1 구조물(100)은 복수 개의 기준선(SL)을 중심으로 원형 단면을 가질 수 있다.In another embodiment, the plurality of first structures 100 may have a circular cross-section with respect to the plurality of reference lines SL.

일 실시예로, 도 5 및 도 6에 나타낸 바와 같이, 복수 개의 제1 구조물(100)을 획득할 수 있다. 보다 구체적으로, 복수 개의 제1 구조물(100)은 총 8개(제1a 구조물(100a), 제1b 구조물(100b), 제1c 구조물(100c), 제1d 구조물(100d), 제1e 구조물(100e), 제1f 구조물(100f), 제1g 구조물(100g) 및 제1h 구조물(100h))일 수 있으며, 이들 제1 구조물(100)은 높이 방향을 따라 소정의 간격으로 배치될 수 있다.In an embodiment, as shown in FIGS. 5 and 6 , a plurality of first structures 100 may be obtained. More specifically, the plurality of first structures 100 is a total of eight (1a structures 100a, 1b structures 100b, 1c structures 100c, 1d structures 100d, 1e structures 100e). ), a 1f structure 100f, a 1g structure 100g, and a 1h structure 100h), and these first structures 100 may be disposed at predetermined intervals along the height direction.

또한, 제1 구조물(100) 중 제1a 구조물(100a)과 제1b 구조물(100b)은 닫힌 곡선을 이루고, 나머지 제1 구조물(100)은 열린 곡선을 이룰 수 있다.In addition, among the first structures 100 , the 1a structures 100a and 1b structures 100b may form a closed curve, and the remaining first structures 100 may form an open curve.

일 실시예로, 제1 구조물(100)들 간의 간격(d)은 서로 다를 수 있다. 예를 들어, 제1a 구조물(100a)과 제1b 구조물(100b) 간의 간격과, 제1b 구조물(100b)과 제1c 구조물(100c) 간의 간격은 서로 다를 수 있다. 제1 구조물(100) 간의 간격은 획득한 기준선(SL) 간의 간격에 따라 달라질 수 있다.In an embodiment, the spacing d between the first structures 100 may be different from each other. For example, a distance between the 1a structure 100a and the 1b structure 100b and a distance between the 1b structure 100b and the 1c structure 100c may be different from each other. The distance between the first structures 100 may vary depending on the obtained distance between the reference lines SL.

도 5 및 도 6에는 제1 구조물(100)이 8개인 것으로 나타냈으나, 그 개수는 특별히 한정하지 않는다. 예를 들어, 제1 구조물(100)의 개수는 기준선(SL)의 개수에 대응될 수 있다.Although it is shown that the first structure 100 is eight in FIGS. 5 and 6 , the number is not particularly limited. For example, the number of first structures 100 may correspond to the number of reference lines SL.

일 실시예로, 본 발명에 따른 복강 구조물 제조방법은 모델링된 복수 개의 제1 구조물(100) 각각을 지지하는 복수 개의 제2 구조물(200)을 모델링하는 단계(S500)를 더 포함할 수 있다.In one embodiment, the method for manufacturing a abdominal cavity structure according to the present invention may further include modeling the plurality of second structures 200 supporting each of the modeled plurality of first structures 100 ( S500 ).

일 실시예로, 복수 개의 제2 구조물(200)을 모델링하는 단계는 복수 개의 제1 구조물(100) 각각에 대해 적어도 하나 이상의 지지점을 설정하고, 제2 구조물(200)이 지지점에서의 제1 구조물(100)의 곡률에 대응되는 지지홈(210)을 구비하도록 할 수 있다.In one embodiment, in the modeling of the plurality of second structures 200 , at least one support point is set for each of the plurality of first structures 100 , and the second structure 200 is the first structure at the support point. A support groove 210 corresponding to the curvature of 100 may be provided.

보다 구체적으로, 제2 구조물(200)은 제1 구조물(100)을 지지하는 구조물로서, 제1 구조물(100) 각각에 대해 적어도 1개 이상 배치될 수 있다. 예를 들어, 도 5 내지 도 7에 나타낸 바와 같이, 제2 구조물(200)은 각각의 제1 구조물(100)에 대해 일측과 타측에 각각 1개씩 배치되어, 제1 구조물(100)을 지지할 수 있다.More specifically, the second structure 200 is a structure that supports the first structure 100 , and at least one or more of the second structures 200 may be disposed for each of the first structures 100 . For example, as shown in FIGS. 5 to 7 , the second structure 200 is disposed on one side and the other side for each first structure 100 , respectively, to support the first structure 100 . can

일 실시예로, 제2 구조물(200)이 제1 구조물(100)과 접촉하는 위치는 간의 위치를 기준으로 했을 때, 외측면의 paracolic gutter와 내측면의 하대정맥에 대응되는 위치일 수 있다.In one embodiment, the position at which the second structure 200 contacts the first structure 100 may be a position corresponding to the paracolic gutter on the outer surface and the inferior vena cava on the inner surface based on the position of the liver.

일 실시예로, 제2 구조물(200)은 길이 L을 갖는 직육면체 형상의 부재로서, 제1 구조물(100)을 지지하는 일단에는 지지홈(210)이 구비될 수 있다. 보다 구체적으로, 도 7에 나타낸 바와 같이, 지지홈(210)은 직육면체의 일부가 절개되어 형성될 수 있으며, 양단에 지지 가이드(220)를 포함할 수 있다.In one embodiment, the second structure 200 is a rectangular parallelepiped-shaped member having a length L, and one end supporting the first structure 100 may be provided with a support groove 210 . More specifically, as shown in FIG. 7 , the support groove 210 may be formed by cutting a portion of a rectangular parallelepiped, and may include support guides 220 at both ends.

도 7에는 지지홈(210)의 바닥면이 경사진 것으로 나타냈으나, 이는 제2 구조물(200)이 지지하는 제1 구조물(100)의 형상에 따라 달라질 수 있다. 즉, 제2 구조물(200)은 제1 구조물(100)과 접촉하는 위치인 지지점을 기준으로, 제1 구조물(100)의 곡률 또는 외형선에 대응되는 형상을 가질 수 있다. 마찬가지로, 제2 구조물(200)의 지지홈(210)의 깊이도 제2 구조물(200)이 제1 구조물(100)과 접촉하는 위치에서의 제1 구조물(100)의 곡률 또는 외형선에 따라 달라질 수 있다.Although the bottom surface of the support groove 210 is shown to be inclined in FIG. 7 , this may vary depending on the shape of the first structure 100 supported by the second structure 200 . That is, the second structure 200 may have a shape corresponding to the curvature or outline of the first structure 100 based on a support point that is a position in contact with the first structure 100 . Similarly, the depth of the support groove 210 of the second structure 200 also varies depending on the curvature or outline of the first structure 100 at the position where the second structure 200 is in contact with the first structure 100 . can

일 실시예로, 복수 개의 제2 구조물(200)을 모델링하는 단계는 복수 개의 제2 구조물(200)이 소정의 지지면을 구비하고, 제1 구조물(100)과 연결되는 위치에 따라 서로 다른 길이를 갖도록 적층 제조할 수 있다. 일 실시예로, 3D 프린터를 이용해 제2 구조물(200)을 적층 제조할 수 있다.In one embodiment, in the modeling of the plurality of second structures 200 , the plurality of second structures 200 have a predetermined support surface and have different lengths depending on positions connected to the first structures 100 . It can be laminated to have a. In an embodiment, the second structure 200 may be manufactured by additive manufacturing using a 3D printer.

보다 구체적으로, 도 5에 나타낸 바와 같이, 복수 개의 제2 구조물(200)은 모두 동일한 지지면(예를 들어, 후술하는 제4 구조물(200)의 상면)을 구비할 수 있다. 또한, 상기 지지면을 적층 베이스로 하여, 제1 구조물(100)과 연결되는 위치(지지점)에 따라 서로 다른 길이를 갖도록 적층 제조될 수 있다.More specifically, as shown in FIG. 5 , the plurality of second structures 200 may all have the same support surface (eg, the upper surface of the fourth structure 200 to be described later). In addition, using the support surface as a stacking base, stacking may be manufactured to have different lengths depending on a location (support point) connected to the first structure 100 .

일 실시예로, 본 발명에 따른 복강 구조물 제조방법은 모델링된 복수 개의 제2 구조물(200) 각각을 지지하는 복수 개의 제3 구조물(300)을 모델링하는 단계(S600)를 더 포함할 수 있다.In one embodiment, the method for manufacturing a abdominal cavity structure according to the present invention may further include modeling a plurality of third structures 300 supporting each of the modeled plurality of second structures 200 ( S600 ).

보다 구체적으로, 도 5 내지 도 7에 나타낸 바와 같이, 복수 개의 제2 구조물(200)은 복수 개의 제1 구조물(100)을 지지하는 상태에서 일 방향으로 연장 배치된다. 복수 개의 제3 구조물(300)은 복수 개의 제2 구조물(200)의 일 방향으로의 단부에 배치되어, 이들을 지지할 수 있다.More specifically, as shown in FIGS. 5 to 7 , the plurality of second structures 200 are arranged to extend in one direction while supporting the plurality of first structures 100 . The plurality of third structures 300 may be disposed at ends of the plurality of second structures 200 in one direction to support them.

제3 구조물(300)의 형상은 특별히 한정하지 않으며, 예를 들어, 소정의 깊이를 갖는 삽입홈(310)을 구비하는 원기둥 형상일 수 있다. 복수 개의 제2 구조물(200)의 일 단부는 삽입홈(310)에 삽입되어 지지될 수 있다.The shape of the third structure 300 is not particularly limited, and for example, may be a cylindrical shape having an insertion groove 310 having a predetermined depth. One end of the plurality of second structures 200 may be inserted and supported in the insertion groove 310 .

일 실시예로, 3D 프린터를 이용해 제3 구조물(300)을 적층 제조할 수 있다.In an embodiment, the third structure 300 may be manufactured by additive manufacturing using a 3D printer.

일 실시예로, 본 발명에 따른 복강 구조물(10)은 제4 구조물(400)을 더 포함할 수 있다.In an embodiment, the abdominal cavity structure 10 according to the present invention may further include a fourth structure 400 .

보다 구체적으로, 도 5에 나타낸 바와 같이, 제4 구조물(400)은 복수 개의 제3 구조물(300)을 지지하도록 지지면을 구비하는 평판 형상의 부재일 수 있다. 제4 구조물(400)의 형상, 크기 및 재질 등은 특별히 한정하지 않으며, 제1 구조물(100), 제2 구조물(200) 및 제3 구조물(300)을 지지할 수 있는 평평한 지지면을 구비하면 충분하다. 예를 들어, 제4 구조물(400)은 통상의 아크릴 플레이트일 수 있다.More specifically, as shown in FIG. 5 , the fourth structure 400 may be a plate-shaped member having a support surface to support the plurality of third structures 300 . The shape, size, and material of the fourth structure 400 are not particularly limited, and if a flat support surface capable of supporting the first structure 100 , the second structure 200 and the third structure 300 is provided, Suffice. For example, the fourth structure 400 may be a conventional acrylic plate.

도 8은 본 발명의 일 실시예에 따른 복강 구조물(10)을 이용한 간 이식 수술 상태를 나타낸다.8 shows a liver transplantation operation using the abdominal cavity structure 10 according to an embodiment of the present invention.

도 8에 나타낸 바와 같이, 본 발명에 따른 복강 구조물 제조방법과 이를 이용한 복강 구조물(10)을 통해, 간 이식 수술을 진행하기 전에 대상자의 간 주변 복강 구조를 모사할 수 있다. 이를 통해, 의료진은 적출된 간과 복강 구조물(10)을 비교하여, 간 이식 수술을 어떤 방식으로 진행할 지 미리 결정할 수 있다.As shown in FIG. 8 , through the method for manufacturing the abdominal cavity structure according to the present invention and the abdominal cavity structure 10 using the same, the structure of the abdominal cavity around the liver of the subject can be simulated before the liver transplantation operation is performed. Through this, the medical staff can compare the extracted liver with the abdominal cavity structure 10 and determine in advance how to proceed with the liver transplantation operation.

본 발명의 일 실시예에 따른 복강 구조물 제조방법과 이를 이용한 복강 구조물(10)을 이용해, 간 이식에 중요한 주요 신체 구조물을 포함하여, 대상자의 복강 크기, 형상 및 구조 등을 미리 확인함으로써 간 이식 수술을 보다 안전하고 정확하게 진행할 수 있다.Using the method for manufacturing an abdominal cavity structure according to an embodiment of the present invention and the abdominal cavity structure 10 using the same, liver transplantation surgery is performed by checking in advance the size, shape, and structure of the subject's abdominal cavity, including major body structures important for liver transplantation. can be carried out more safely and accurately.

본 발명의 일 실시예에 따른 복강 구조물 제조방법과 이를 이용한 복강 구조물(10)을 이용해, 간 적출 수술 후 간 이식 수술 전에 복강 구조물(10)을 이용하여 미리 간 이식 수술 진행 여부를 결정할 수 있다. Using the abdominal cavity structure manufacturing method according to an embodiment of the present invention and the abdominal cavity structure 10 using the same, it is possible to determine in advance whether to proceed with the liver transplantation operation using the abdominal cavity structure 10 before the liver transplantation operation after the liver removal operation.

본 발명의 일 실시예에 따른 복강 구조물 제조방법과 이를 이용한 복강 구조물(10)을 이용해, 적출된 간과 복강 구조물(10)을 비교하여, 적출된 간을 축소 이식편으로 만들거나, 분할 간 이식 수술을 진행할지 여부를 결정할 수 있다.Using the method for manufacturing the abdominal cavity structure according to an embodiment of the present invention and the abdominal cavity structure 10 using the same, the excised liver and the abdominal cavity structure 10 are compared, and the excised liver is made into a reduced graft, or divided liver transplantation surgery is performed. You can decide whether to proceed or not.

본 발명의 일 실시예에 따른 복강 구조물 제조방법과 이를 이용한 복강 구조물(10)은 간 이식 수술 시 중요한 최소한의 주요 신체 구조물을 중심으로 대상자의 복강 구조를 3D 프린팅 기술을 이용해 구현함으로써, 제조 비용과 시간을 줄이면서도 간 이식 수술에 필요한 대상자의 복강 구조를 정확하게 모사할 수 있다.The abdominal cavity structure manufacturing method and the abdominal cavity structure 10 using the same according to an embodiment of the present invention implement the abdominal cavity structure of the subject using 3D printing technology with a focus on the minimal major body structures that are important during liver transplantation, thereby reducing manufacturing costs and It is possible to accurately simulate the structure of the patient's abdominal cavity required for liver transplantation while reducing time.

이와 같이 도면에 도시된 실시예를 참고로 본 발명을 설명하였으나, 이는 예시에 불과하다. 해당 기술 분야에서 통상의 지식을 갖는 자라면 실시예로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 충분히 이해할 수 있다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위에 기초하여 정해져야 한다.As described above, the present invention has been described with reference to the embodiment shown in the drawings, but this is only an example. Those of ordinary skill in the art can fully understand that various modifications and equivalent other embodiments are possible from the embodiments. Therefore, the true technical protection scope of the present invention should be determined based on the appended claims.

실시예에서 설명하는 특정 기술 내용은 일 실시예들로서, 실시예의 기술 범위를 한정하는 것은 아니다. 발명의 설명을 간결하고 명확하게 기재하기 위해, 종래의 일반적인 기술과 구성에 대한 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재는 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로 표현될 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.Specific technical content described in the embodiment is an embodiment and does not limit the technical scope of the embodiment. In order to concisely and clearly describe the description of the invention, descriptions of conventional general techniques and configurations may be omitted. In addition, the connection or connection member of the lines between the components shown in the drawings exemplarily shows functional connections and/or physical or circuit connections, and in an actual device, various functional connections, physical connections that are replaceable or additional It may be expressed as a connection, or circuit connections. In addition, unless there is a specific reference such as "essential", "importantly", etc., it may not be a necessary component for the application of the present invention.

발명의 설명 및 청구범위에 기재된 "상기" 또는 이와 유사한 지시어는 특별히 한정하지 않는 한, 단수 및 복수 모두를 지칭할 수 있다. 또한, 실시 예에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 발명의 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 또한, 실시예에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 실시예들이 한정되는 것은 아니다. 실시예에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 실시예를 상세히 설명하기 위한 것으로서 청구범위에 의해 한정되지 않는 이상, 상기 예들 또는 예시적인 용어로 인해 실시예의 범위가 한정되는 것은 아니다. 또한, 통상의 기술자는 다양한 수정, 조합 및 변경이 부가된 청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.In the description and claims, "above" or similar referents may refer to both the singular and the plural unless otherwise specified. In addition, when a range is described in the embodiment, it includes the invention to which individual values belonging to the range are applied (unless there is a description to the contrary), and each individual value constituting the range is described in the description of the invention. same. In addition, the steps constituting the method according to the embodiment may be performed in an appropriate order unless the order is clearly stated or there is no description to the contrary. The embodiments are not necessarily limited according to the order of description of the above steps. The use of all examples or exemplary terminology (eg, etc.) in the embodiment is merely for describing the embodiment in detail, and unless it is limited by the claims, the scope of the embodiment is limited by the examples or exemplary terminology. it is not In addition, those skilled in the art will appreciate that various modifications, combinations, and changes can be made in accordance with design conditions and factors within the scope of the appended claims or their equivalents.

10: 복강 구조물10: abdominal cavity structure

Claims (6)

3D 프린팅을 이용한 복강 구조물 제조방법으로서,
컴퓨터 영상 촬영을 통해 복강 구조 영상을 획득하는 단계;
획득한 상기 영상을 높이 방향을 따라 복수 개의 영역으로 분할하는 단계;
상기 분할된 복수 개의 영역에 나타나는 상기 복강의 두께에 따라, 기준선 간의 간격 및 하나의 영역에 배치되는 기준선의 개수를 달리하여 상기 복수 개의 영역에 대해 기준선을 획득하는 단계; 및
획득한 상기 복수 개의 기준선에 기초하여, 복수 개의 제1 구조물을 모델링하는 단계;를 포함하는, 복강 구조물 제조방법.
As a method for manufacturing a abdominal cavity structure using 3D printing,
acquiring an abdominal structure image through computerized imaging;
dividing the acquired image into a plurality of regions along a height direction;
obtaining a baseline for the plurality of regions by varying the distance between baselines and the number of baselines disposed in one region according to the thickness of the abdominal cavity appearing in the divided plurality of regions; and
Based on the obtained plurality of reference lines, modeling a plurality of first structures; Containing, a method of manufacturing a abdominal cavity structure.
제1 항에 있어서,
상기 복수 개의 기준선을 획득하는 단계는
상기 복수 개의 영역 중 어느 하나의 영역 및 그와 인접하는 영역에 있어서, 상기 두 영역에서 식별되는 복강의 두께 차이가 클수록 상기 두 영역에 포함된 기준선 간의 간격이 좁아지는, 복강 구조물 제조방법.
According to claim 1,
The step of acquiring the plurality of baselines
In any one of the plurality of areas and an area adjacent thereto, the greater the difference in thickness of the abdominal cavity identified in the two areas, the narrower the interval between the reference lines included in the two areas, the method of manufacturing a abdominal cavity structure.
제2 항에 있어서,
상기 두 영역에서 식별되는 복강의 두께가 일정하게 유지되는 경우, 상기 두 영역에 포함된 기준선 간의 간격은 상대적으로 넓고, 상기 두 영역에서 식별되는 복강의 두께가 변할 경우, 상기 두 영역에 포함된 기준선 간의 간격이 상대적으로 좁은, 복강 구조물 제조방법.
3. The method of claim 2,
When the thickness of the abdominal cavity identified in the two regions is kept constant, the interval between the baselines included in the two regions is relatively wide, and when the thickness of the abdominal cavity identified in the two regions changes, the baseline included in the two regions A method for manufacturing an abdominal cavity, in which the interval between the livers is relatively narrow.
제1 항에 있어서,
상기 복수 개의 기준선을 획득하는 단계는
상기 복강의 두께는 상기 복강 구조 영상에서의 횡단면 두께인, 복강 구조물 제조방법.
According to claim 1,
The step of acquiring the plurality of baselines
The thickness of the abdominal cavity is a cross-sectional thickness in the abdominal cavity structure image, the abdominal cavity structure manufacturing method.
제1 항에 있어서,
상기 복수 개의 기준선을 획득하는 단계에서
상기 영상의 횡단면 상에서, 상기 복수 개의 기준선은 횡격막, 흉곽, 하대정맥 및 신장 중 적어도 어느 하나와 중첩되는, 복강 구조물 제조방법.
According to claim 1,
In the step of acquiring the plurality of reference lines
On the cross-section of the image, the plurality of baselines overlap at least one of the diaphragm, the rib cage, the inferior vena cava and the kidney.
제1 항에 있어서,
상기 복수 개의 제1 구조물을 모델링하는 단계는
획득한 상기 복수 개의 기준선이 상기 복수 개의 제1 구조물 각각의 중심선이 되어 소정의 폭과 너비를 갖도록 적층 제조하는, 복강 구조물 제조방법.
According to claim 1,
The step of modeling the plurality of first structures is
The obtained plurality of reference lines become the center line of each of the plurality of first structures and laminate manufacturing to have a predetermined width and width, a method for manufacturing a abdominal cavity structure.
KR1020210182216A 2020-10-05 2021-12-17 Method for manufacturing an abdominal cavity structure using 3d-printing KR102415254B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210182216A KR102415254B1 (en) 2020-10-05 2021-12-17 Method for manufacturing an abdominal cavity structure using 3d-printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200128281A KR102352844B1 (en) 2020-10-05 2020-10-05 Method for manufacturing an abdominal cavity structure using 3d-printing and the abdominal cavity structure using the same
KR1020210182216A KR102415254B1 (en) 2020-10-05 2021-12-17 Method for manufacturing an abdominal cavity structure using 3d-printing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200128281A Division KR102352844B1 (en) 2020-10-05 2020-10-05 Method for manufacturing an abdominal cavity structure using 3d-printing and the abdominal cavity structure using the same

Publications (2)

Publication Number Publication Date
KR20220045568A true KR20220045568A (en) 2022-04-12
KR102415254B1 KR102415254B1 (en) 2022-06-30

Family

ID=80051942

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200128281A KR102352844B1 (en) 2020-10-05 2020-10-05 Method for manufacturing an abdominal cavity structure using 3d-printing and the abdominal cavity structure using the same
KR1020210182216A KR102415254B1 (en) 2020-10-05 2021-12-17 Method for manufacturing an abdominal cavity structure using 3d-printing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200128281A KR102352844B1 (en) 2020-10-05 2020-10-05 Method for manufacturing an abdominal cavity structure using 3d-printing and the abdominal cavity structure using the same

Country Status (2)

Country Link
KR (2) KR102352844B1 (en)
WO (1) WO2022075656A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180124005A (en) * 2018-11-13 2018-11-20 사회복지법인 삼성생명공익재단 The method for fabricating temporal bone model and the same fabricated thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070118243A1 (en) * 2005-10-14 2007-05-24 Vantus Technology Corporation Personal fit medical implants and orthopedic surgical instruments and methods for making
JP2016001267A (en) * 2014-06-12 2016-01-07 大日本印刷株式会社 Model, manufacturing system, information processing apparatus, manufacturing method, information processing method, program, and recording medium
KR20160024894A (en) * 2016-02-16 2016-03-07 최병억 System for designing customized nasal implant
JP6803239B2 (en) * 2017-01-11 2020-12-23 村上 貴志 Surgical training system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180124005A (en) * 2018-11-13 2018-11-20 사회복지법인 삼성생명공익재단 The method for fabricating temporal bone model and the same fabricated thereby

Also Published As

Publication number Publication date
KR102352844B1 (en) 2022-01-18
KR102415254B1 (en) 2022-06-30
WO2022075656A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
US10789739B2 (en) System and method for generating partial surface from volumetric data for registration to surface topology image data
EP1631931B1 (en) Methods and systems for image-guided placement of implants
CN104066403A (en) Surgery assisting device
JP2010508110A (en) Placement of fiducial markers
US10342664B2 (en) Structurally encoded implant alignment device and encoding method
KR102415254B1 (en) Method for manufacturing an abdominal cavity structure using 3d-printing
Dillon et al. Cadaveric testing of robot-assisted access to the internal auditory canal for vestibular schwannoma removal
US11521519B2 (en) Cranial bio-model comprising a skull layer and dura layer and method of manufacturing a cranial bio-model
Leon et al. Optimizing the magnetic dipole-field source for magnetically guided cochlear-implant electrode-array insertions
JP3181095U (en) Skull plate
CN106580318B (en) Accurate positioner of matrix electrode under dura mater
CN114743639A (en) Pituitary adenoma operation planning system based on artificial intelligence technology
KR102527630B1 (en) A guide device for liver resection and manufacturing method of the guide device
Popielski et al. The matching method for veins images
EP1857068A1 (en) Device for tracking rigid, difficult or impossible to register body structures
Bao et al. Liver segmentation from 3D abdominal CT images
Chen et al. Numerical Calculation Method for Brain Shift Based on Hydrostatics and Dynamic FEM
Lecoeur et al. Variability of the temporal bone surface's topography: implications for otologic surgery
Yang et al. Preoperative planning for jugular‐foramen tumors: Preparation of a three‐dimensional surgical drawing
Gooroochurn et al. A registration framework for preoperative CT to intraoperative white light images
Gabrovski et al. Computer Aided Design of Customized Implants Based on CT-Scan Data and Virtual Prototypes
Zygomalas et al. Liver 3D modeling and hepatectomy simulation for the residents’ preoperative education
Ovinis Computer vision techniques for a robot-assisted emergency neurosurgery system
JPS63266480A (en) Board for making solid model

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant