KR20220040902A - Pretreatment method of aluminium for cvd process - Google Patents

Pretreatment method of aluminium for cvd process Download PDF

Info

Publication number
KR20220040902A
KR20220040902A KR1020200124186A KR20200124186A KR20220040902A KR 20220040902 A KR20220040902 A KR 20220040902A KR 1020200124186 A KR1020200124186 A KR 1020200124186A KR 20200124186 A KR20200124186 A KR 20200124186A KR 20220040902 A KR20220040902 A KR 20220040902A
Authority
KR
South Korea
Prior art keywords
aluminum
polishing
fluoride
aluminum fluoride
parts
Prior art date
Application number
KR1020200124186A
Other languages
Korean (ko)
Inventor
전세주
송석원
장재확
김황식
Original Assignee
와이엠씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 와이엠씨 주식회사 filed Critical 와이엠씨 주식회사
Priority to KR1020200124186A priority Critical patent/KR20220040902A/en
Publication of KR20220040902A publication Critical patent/KR20220040902A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a pretreatment method of aluminum for a CVD process. More particularly, the pretreatment method comprises: an aluminum fluoride barrier film forming step for forming an aluminum fluoride generation prevention film made of aluminum fluoride on an aluminum surface; a plasma treatment step for converting the aluminum fluoride generation prevention film formed through the aluminum fluoride barrier film forming step into aluminum nitride by plasma treatment; and a polishing step for polishing the aluminum nitride layer generated through the plasma treatment step. The aluminum nitride layer is formed on the surface of the aluminum pretreated through the above process. Therefore, the generation of aluminum fluoride is suppressed and no particles are generated even while a fluoride-based gas is continuously supplied in the CVD process.

Description

CVD 공정용 알루미늄의 전처리방법 {PRETREATMENT METHOD OF ALUMINIUM FOR CVD PROCESS}Pretreatment method of aluminum for CVD process {PRETREATMENT METHOD OF ALUMINIUM FOR CVD PROCESS}

본 발명은 CVD 공정용 알루미늄의 전처리방법에 관한 것으로, 더욱 상세하게는 질화알루미늄층이 형성되어 CVD공정에서 불화계 가스가 지속적으로 공급되더라고, 불화알루미늄의 생성이 억제될 뿐만 아니라, 파티클이 발생되지 않는 알루미늄을 제공하는 CVD 공정용 알루미늄의 전처리방법에 관한 것이다.The present invention relates to a method for pretreatment of aluminum for a CVD process, and more particularly, even though an aluminum nitride layer is formed and a fluoride-based gas is continuously supplied in the CVD process, the generation of aluminum fluoride is suppressed and particles are generated It relates to a pretreatment method of aluminum for CVD process to provide aluminum that does not become untreated.

디스플레이의 화학기상증착(CVD, Chemical Vapor Deposition) 공정에서는 여러 파트의 제품이 사용되고 있으며 알루미늄을 기초모재로 한 제품들이 사용되고 있다. 특히 디스플레이의 CVD 공정은 고온 및 고압의 조건에서 공정이 진행되기 때문에 기초모재의 표면에서 떨어져 나오는 파티클이 유리기판의 표면을 오염시켜 불량을 야기할 수 있다. 이러한 파티클은 공정 수율에 직접적인 영향을 끼치는 인자로 관리가 필수적이다.In the chemical vapor deposition (CVD) process of displays, several parts are used, and products based on aluminum are used. In particular, since the CVD process of the display is performed under conditions of high temperature and high pressure, particles falling off from the surface of the base material may contaminate the surface of the glass substrate and cause defects. These particles are a factor that directly affects the yield of the process, and management is essential.

CVD 공정에서 사용되는 불화계 가스는 제품의 알루미늄으로 이루어진 기초모재와 결합하여 불화알루미늄을 화합물을 생성한다. 이때, 불소 이온은 기공을 통해 제품 모재인 알루미늄에 침투하게 되는데, 침투과정에서 모재인 알루미늄에 균열을 유발하고, 상기의 과정을 통해 형성된 균열을 통해 불소 이온의 투입이 더욱 용이해지며 알루미늄으로 이루어진 모재에 응력 발생에도 영향을 줄 수 있다.The fluoride-based gas used in the CVD process is combined with the base base material made of aluminum to create an aluminum fluoride compound. At this time, fluoride ions penetrate into aluminum, which is the base material of the product, through the pores, which causes cracks in the aluminum, which is the base material, in the penetration process, and through the cracks formed through the above process, the input of fluoride ions becomes easier and is made of aluminum. It can also affect the generation of stress in the base material.

불화알루미늄 화합물은 검은색을 띄며 알루미늄으로 이루어진 모재의 표면에 고착되어 쉽게 제거되지 않는데, 고착된 불화알루미늄 화합물을 제거하기 위해서는 알루미늄으로 이루어진 모재를 고농도의 질산에 장시간 함침해야 하며, 상기의 과정에도 불구하고, 모재에 형성된 불화알루미늄의 일부는 완벽히 제거되지 않고 잔존하게 된다.The aluminum fluoride compound is black in color and adheres to the surface of the base material made of aluminum and is not easily removed. And, a part of the aluminum fluoride formed on the base material remains without being completely removed.

또한, 고농도 질산에 장시간 함침되는 경우 알루미늄 모재의 표면이 질산성분으로 인해 손상되는 현상이 발생하여 제품의 상품성이 저하되는 문제점이 있었다.In addition, when immersed in high-concentration nitric acid for a long time, the surface of the aluminum base material is damaged due to the nitric acid component, thereby deteriorating the marketability of the product.

한국특허등록 제10-1473641호(2014.12.11)Korean Patent Registration No. 10-1473641 (2014.12.11) 한국특허공개 제10-2019-0025552호(2019.03.11)Korean Patent Publication No. 10-2019-0025552 (2019.03.11)

본 발명의 목적은 질화알루미늄층이 형성되어 CVD공정에서 불화계 가스가 지속적으로 공급되더라고, 불화알루미늄의 생성이 억제될 뿐만 아니라, 파티클이 발생되지 않는 알루미늄을 제공하는 CVD 공정용 알루미늄의 전처리방법을 제공하는 것이다.It is an object of the present invention to provide aluminum in which an aluminum nitride layer is formed and a fluoride-based gas is continuously supplied in the CVD process. is to provide

본 발명의 목적은 알루미늄의 표면에 불화알루미늄으로 이루어진 불화알루미늄 생성방지막을 형성하는 불화알루미늄방지막형성단계, 상기 불화알루미늄방지막형성단계를 통해 형성된 불화알루미늄 생성방지막을 플라즈마 처리하여 질화알루미늄으로 변환하는 플라즈마처리단계 및 상기 플라즈마처리단계를 통해 생성된 질화알루미늄층을 연마하는 연마단계로 이루어지는 것을 특징으로 하는 CVD 공정용 알루미늄의 전처리방법을 제공함에 의해 달성된다.An object of the present invention is an aluminum fluoride prevention film forming step of forming an aluminum fluoride production prevention film made of aluminum fluoride on the surface of aluminum, and a plasma treatment to convert the aluminum fluoride production prevention film formed through the aluminum fluoride prevention film formation step to plasma treatment to convert it to aluminum nitride It is achieved by providing a pretreatment method of aluminum for CVD process, characterized in that it consists of a polishing step of polishing the aluminum nitride layer generated through the step and the plasma treatment step.

본 발명의 바람직한 특징에 따르면, 상기 불화알루미늄방지막형성단계는 알루미늄의 표면에 40 내지 60℃의 온도와 진공조건에서 불화알루미늄 분말을 분사코팅하여 이루어지는 것으로 한다.According to a preferred feature of the present invention, the aluminum fluoride barrier film forming step is made by spray coating aluminum fluoride powder on the surface of aluminum at a temperature of 40 to 60° C. and vacuum conditions.

본 발명의 더 바람직한 특징에 따르면, 상기 불화알루미늄 생성방지막은 1 내지 10㎛의 두께로 형성되는 것으로 한다.According to a more preferred feature of the present invention, the aluminum fluoride generation prevention film is to be formed to a thickness of 1 to 10㎛.

본 발명의 더욱 바람직한 특징에 따르면, 상기 플라즈마처리단계는 질소가 함유된 가스 혼합물을 플라즈마에 노출시켜 반응성 질소를 생성하고, 상기 반응성 질소를 불화알루미늄으로 이루어진 생성방지막과 반응시켜 이루어지는 것으로 한다.According to a more preferred feature of the present invention, in the plasma treatment step, reactive nitrogen is generated by exposing a gas mixture containing nitrogen to plasma, and the reactive nitrogen is reacted with a generation preventing film made of aluminum fluoride.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 연마단계는 상기 플라즈마처리단계를 통해 생성된 질화알루미늄층을 연마제로 연마하여 0.1 내지 3㎛의 표면조도를 나타내도록 이루어지는 것으로 한다.According to a further preferred feature of the present invention, the polishing step is made to exhibit a surface roughness of 0.1 to 3㎛ by polishing the aluminum nitride layer generated through the plasma treatment step with an abrasive.

본 발명의 더욱 더 바람지한 특징에 따르면, 상기 연마단계는 상기 질화알루미늄층을 물리적 연마제로 연마한 후에 화학적 연마제로 연마하여 이루어지며, 상기 화학적 연마제는 인산 100 중량부, 광택제 1.5 내지 3.5 중량부, 안정화제 1.5 내지 2.5 중량부, 평활제 1.5 내지 2.5 중량부 및 황산 5 내지 10 중량부로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the polishing step is performed by polishing the aluminum nitride layer with a physical abrasive and then with a chemical abrasive, and the chemical abrasive is 100 parts by weight of phosphoric acid, 1.5 to 3.5 parts by weight of a polishing agent. , 1.5 to 2.5 parts by weight of a stabilizer, 1.5 to 2.5 parts by weight of a smoothing agent, and 5 to 10 parts by weight of sulfuric acid.

본 발명에 따른 CVD 공정용 알루미늄의 전처리방법은 질화알루미늄층이 형성되어 CVD공정에서 불화계 가스가 지속적으로 공급되더라고, 불화알루미늄의 생성이 억제될 뿐만 아니라, 파티클이 발생되지 않는 알루미늄을 제공하는 탁월한 효과를 나타낸다.The method for pretreatment of aluminum for CVD process according to the present invention is to provide aluminum that not only does not generate aluminum fluoride, but also does not generate particles even when an aluminum nitride layer is formed and a fluoride-based gas is continuously supplied in the CVD process shows excellent effect.

도 1은 본 발명에 따른 CVD 공정용 알루미늄의 전처리방법을 나타낸 순서도이다.1 is a flowchart illustrating a pretreatment method of aluminum for a CVD process according to the present invention.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, which is intended to describe in detail enough that a person of ordinary skill in the art to which the present invention pertains can easily carry out the invention, This does not mean that the technical spirit and scope of the present invention is limited.

본 발명에 따른 CVD 공정용 알루미늄의 전처리방법은 알루미늄의 표면에 불화알루미늄으로 이루어진 불화알루미늄 생성방지막을 형성하는 불화알루미늄방지막형성단계(S101), 상기 불화알루미늄방지막형성단계(S101)를 통해 형성된 불화알루미늄 생성방지막을 플라즈마 처리하여 질화알루미늄으로 변환하는 플라즈마처리단계(S103) 및 상기 플라즈마처리단계(S103)를 통해 생성된 질화알루미늄층을 연마하는 연마단계(S105)로 이루어진다.The method for pretreatment of aluminum for CVD process according to the present invention is an aluminum fluoride barrier film forming step (S101) of forming an aluminum fluoride production prevention film made of aluminum fluoride on the surface of aluminum, and aluminum fluoride formed through the aluminum fluoride barrier film forming step (S101) It consists of a plasma treatment step (S103) of converting the generation prevention film into aluminum nitride by plasma treatment and a polishing step (S105) of polishing the aluminum nitride layer generated through the plasma treatment step (S103).

상기 불화알루미늄방지막형성단계(S101)는 알루미늄의 표면에 불화알루미늄으로 이루어진 불화알루미늄 생성방지막을 형성하는 단계로, 알루미늄의 표면에 40 내지 60℃의 온도와 진공조건에서 불화알루미늄 분말을 분사코팅하여 이루어진다.The aluminum fluoride prevention film forming step (S101) is a step of forming an aluminum fluoride production prevention film made of aluminum fluoride on the surface of aluminum. .

이때, 상기 불화알루미늄 생성방지막은 알루미늄의 3차원 표면을 따라 기공과 균열이 없이 형성되는데, 특히 알루미늄의 모서리, 면, 홀(hole) 등의 부위에서도 탈리되지 않도록 형성되는 것이 바람직하다. 더욱 상세하게는 상기 알루미늄의 표면에 불화알루미늄으로 이루어진 불화알루미늄 생성방지막은 40 내지 60℃의 온도와 진공조건에서 불화알루미늄을 분사코팅하는 경우에는 알루미늄의 3차원 표면을 따라 모서리, 홀(hole), 요철부 등과 같이 평평하지 않은 부분에서도 코팅효율이 향상된다.At this time, the aluminum fluoride generation prevention film is formed without pores and cracks along the three-dimensional surface of aluminum, and in particular, it is preferably formed so as not to be detached from parts such as corners, surfaces, and holes of aluminum. More specifically, the aluminum fluoride generation prevention film made of aluminum fluoride on the surface of aluminum is formed by spray coating aluminum fluoride at a temperature of 40 to 60 ° C. and vacuum conditions along the three-dimensional surface of aluminum. Corners, holes, Coating efficiency is improved even in uneven parts such as uneven parts.

또한, 상기 불화알루미늄 생성방지막은 1 내지 10㎛의 두께로 형성되는데, 상기 불화알루미늄 생성방지막의 두께가 1㎛ 미만으로 형성되면 외력 등에 의해 불화알루미늄 생성방지막의 쉽게 손상되어 불화알루미늄의 생성방지 효과가 유지될 수 없으며, 상기 불화알루미늄 생성방지막의 두께가 10㎛를 초과하게 되면 상기의 효과는 크게 향상되지 않으면서 제품의 두께와 제조비용을 증가시키기 때문에 바람직하지 못하다.In addition, the aluminum fluoride production prevention film is formed to a thickness of 1 to 10㎛, when the thickness of the aluminum fluoride formation prevention film is formed to be less than 1㎛, the aluminum fluoride formation prevention film is easily damaged by external force, etc. It cannot be maintained, and when the thickness of the aluminum fluoride generation prevention film exceeds 10 μm, the above effect is not greatly improved and the thickness and manufacturing cost of the product are increased, which is not preferable.

이때, 상기와 같이 표면에 불화알루미늄으로 이루어진 불화알루미늄 생성방지막이 형성되는 알루미늄은 CVD 공정에서 챔버의 내부에 위치하는 부품일 수 있으며, 더욱 상세하게는 히터, 샤워헤드, 서셉터, 배플, 전극, 파워터미널, 플랜지, 스크루, 바(bar), 히터서포트, 브라켓 및 공정챔버 내벽 등의 부품일 수 있다.At this time, the aluminum on which the aluminum fluoride generation prevention film made of aluminum fluoride is formed on the surface as described above may be a part located inside the chamber in the CVD process, and more specifically, a heater, a showerhead, a susceptor, a baffle, an electrode, It may be a component such as a power terminal, a flange, a screw, a bar, a heater support, a bracket, and an inner wall of a process chamber.

상기 플라즈마처리단계는(S103) 상기 불화알루미늄방지막형성단계(S101)를 통해 형성된 불화알루미늄 생성방지막을 플라즈마 처리하여 질화알루미늄으로 변환하는 단계로, 질소가 함유된 가스 혼합물을 플라즈마에 노출시켜 반응성 질소를 생성하고, 상기 반응성 질소를 불화알루미늄으로 이루어진 생성방지막과 반응시키는 과정으로 이루어진다.The plasma treatment step (S103) is a step of converting the aluminum fluoride generation prevention film formed through the aluminum fluoride prevention film forming step (S101) to aluminum nitride by plasma treatment, and exposing a gas mixture containing nitrogen to plasma to generate reactive nitrogen and reacting the reactive nitrogen with a production prevention film made of aluminum fluoride.

상기의 과정을 통해 불화알루미늄으로 이루어진 생성방지막이 질화알루미늄으로 전환되어 불화알루미늄의 생성이 억제될 뿐만 아니라, 파티클이 발생되지 않고, 검은색을 띠지 않기 때문에 산처리 등을 통해 이물질을 제거할 필요가 없는 알루미늄이 제공된다.Through the above process, the formation prevention film made of aluminum fluoride is converted to aluminum nitride, which suppresses the generation of aluminum fluoride, and does not generate particles and does not have a black color, so there is no need to remove foreign substances through acid treatment, etc. Aluminium without it is provided.

이때, 상기 플라즈마는 용량성(capacitive) 또는 유도성(inductive) 수단에 의해 형성될 수 있으며, RF 전력을 전구체 가스 혼합물에 커플링하는 것에 의해 에너자이징될(energized) 수 있다.In this case, the plasma may be formed by capacitive or inductive means, and may be energized by coupling RF power to the precursor gas mixture.

상기 RF 전력은 고주파수 컴포넌트 및 저주파수 컴포넌트를 갖는 이중-주파수(dual-frequency) RF 전력일 수 있으며, 50W 내지 2,500W의 전력 레벨로 인가되며, 이는 전부 고-주파수 RF 전력, 예컨대, 약 1356MHz의 주파수의 RF 전력일 수 있거나, 또는, 고-주파수 전력과 저주파수 전력의 혼합, 예컨대, 약 300kHz의 주파수의 RF 전력일 수 있다.The RF power may be dual-frequency RF power having a high frequency component and a low frequency component, applied at a power level of 50W to 2,500W, all of which are high-frequency RF power, eg, a frequency of about 1356 MHz. RF power of , or a mixture of high-frequency power and low-frequency power, eg, RF power at a frequency of about 300 kHz.

특히, 상기 플라즈마는 인-시츄 RF 플라즈마를 사용하는 것이 바람직하며, 인-시츄 플라즈마는 용량성 또는 유도성 수단에 의해 형성될 수 있는데, RF 전력을 전구체 가스 혼합물에 커플링하는 것에 의해 에너자이징될 수 있다.In particular, the plasma preferably uses an in-situ RF plasma, which may be formed by capacitive or inductive means, which may be energized by coupling RF power to a precursor gas mixture. there is.

상기 RF 전력은 고주파수 컴포넌트 및 저주파수 컴포넌트를 갖는 이중-주파수 RF 전력이며, 전형적으로 50W 내지 2,500W의 전력 레벨로 인가되며, 이는 전부 고-주파수 RF 전력, 예컨대, 약 1356MHz의 주파수의 RF 전력일 수 있거나, 또는, 고-주파수 전력과 저주파수 전력의 혼합, 예컨대, 약 300kHz의 주파수의 RF 전력일 수 있다.The RF power is dual-frequency RF power with a high frequency component and a low frequency component, typically applied at a power level of 50W to 2,500W, which can all be high-frequency RF power, for example RF power with a frequency of about 1356 MHz. Or, it may be a mixture of high-frequency power and low-frequency power, for example RF power at a frequency of about 300 kHz.

본 발명에서 사용되는 인-시츄 RF 플라즈마는 외부 챔버, 상기 외부 챔버의 내부에 설치된 내부 챔버, 상기 내부 챔버로 공정가스 또는 클리닝가스를 공급하는 가스공급유닛, 상기 내부 챔버의 내부에 위치하는 전극, 상기 전극으로 전력을 인가하는 전극 플라즈마 전원, 상기 내부 챔버와 상기 외부 챔버를 연결하며, 그 내부에 상기 내부 챔버와 전기적으로 연결되는 제1 커넥터가 개재된 제1신축 부재 및 The in-situ RF plasma used in the present invention includes an external chamber, an internal chamber installed inside the external chamber, a gas supply unit supplying a process gas or a cleaning gas to the internal chamber, an electrode positioned inside the internal chamber, An electrode plasma power supply for applying electric power to the electrode, a first elastic member connecting the inner chamber and the outer chamber and having a first connector electrically connected to the inner chamber therein is interposed; and

상기 제1 커넥터에 연결되며, 상기 제1 커넥터를 통하여 상기 내부 챔버로 전력을 인가하는 제1 챔버 플라즈마 전원을 포함하여 이루어진 장치를 이용하여 제공될 수 있다.It may be provided using a device including a first chamber plasma power source connected to the first connector and applying power to the inner chamber through the first connector.

상기 반응챔버는 화학 기상 증착법이나 원자층 증착법 또는 플라즈마 유도 원자층 증착법 등을 수행하여 기판 상에 박막을 형성하는 챔버일 수 있다.The reaction chamber may be a chamber in which a thin film is formed on a substrate by performing a chemical vapor deposition method, an atomic layer deposition method, or a plasma-induced atomic layer deposition method.

또한, 상기 외부 챔버는 금속과 같은 도전성 재질로 형성되고, 접지된다. 그리고, 상기 외부 챔버의 일측에는 상기 외부 챔버의 내부로 가스를 공급하기 위한 가스공급구가 형성되고, 상기 가스공급구에는 가스공급유닛이 연결된다.In addition, the outer chamber is formed of a conductive material such as metal, and is grounded. A gas supply port for supplying gas to the interior of the external chamber is formed at one side of the outer chamber, and a gas supply unit is connected to the gas supply port.

상기 가스공급유닛은 상기 외부 챔버의 내부로 아르곤(Ar) 가스보다 낮은 방전율을 갖는 저방전 가스를 공급할 수 있다. 예를 들면, 상기 가스공급유닛은 상기 외부 챔버의 내부로 O2 가스, N2 가스, Ar/O2 가스 및, Ar/N2 가스 등의 저방전 가스를 공급할 수 있다.The gas supply unit may supply a low-discharge gas having a lower discharge rate than that of an argon (Ar) gas to the inside of the external chamber. For example, the gas supply unit may supply a low-discharge gas such as O 2 gas, N 2 gas, Ar/O 2 gas, and Ar/N 2 gas to the inside of the external chamber.

상기 전극은 금속과 같은 도전성 재질로 형성될 수 있고, 상기 내부 챔버의 길이방향을 따라 배치되도록 장방형으로 형성될 수 있다. 또한, 상기 전극은 상기 내부챔버의 내부로 공급된 공정 가스 또는 클리닝 가스가 상기 내부 챔버의 내부면을 따라 이동할 수 있도록 상기 내부 챔버의 중앙에 배치될 수 있고, 상기 내부 챔버로부터 절연되도록 배치될 수 있다.The electrode may be formed of a conductive material such as metal, and may be formed in a rectangular shape to be disposed along a longitudinal direction of the inner chamber. In addition, the electrode may be disposed in the center of the inner chamber so that the process gas or the cleaning gas supplied into the inner chamber can move along the inner surface of the inner chamber, and may be disposed to be insulated from the inner chamber. there is.

상기 연마단계(S105)는 상기 플라즈마처리단계(S103)를 통해 생성된 질화알루미늄층을 연마하는 단계로, 상기 플라즈마처리단계(S103)를 통해 생성된 질화알루미늄층의 표면을 연마제로 연마하여 0.1 내지 3㎛의 표면조도를 나타내도록 하는 단계다.The polishing step (S105) is a step of polishing the aluminum nitride layer generated through the plasma treatment step (S103), and polishing the surface of the aluminum nitride layer generated through the plasma treatment step (S103) with an abrasive to 0.1 to This is a step to show a surface roughness of 3㎛.

이때, 상기 연마단계(S105)는 상기 질화알루미늄층을 물리적 연마제로 연마한 후에 화학적 연마제로 연마하는 과정으로 이루어지는 것이 바람직하다.In this case, it is preferable that the polishing step (S105) consists of polishing the aluminum nitride layer with a chemical polishing agent after polishing the aluminum nitride layer with a physical polishing agent.

상기와 같은 과정으로 이루어지는 연마단계(S105)를 거치면 알루미늄의 표면에 형성된 질화알루미늄층의 표면거칠기가 증가하여 CVD 공정에서 비표면적의 증가로 인해 증착효과가 향상될 뿐만 아니라, 표면 광택이 향상되어 우수한 상품성을 나타내는 알루미늄이 제공된다.After the polishing step (S105) consisting of the above process, the surface roughness of the aluminum nitride layer formed on the surface of the aluminum increases, so that not only the deposition effect is improved due to the increase of the specific surface area in the CVD process, but also the surface gloss is improved. Aluminum exhibiting commercial properties is provided.

이때, 상기 연마제는 물리적 연마제는 콜로이달 실리카, 과수, 피에이치 조절용 첨가제 및 폴리에틸렌이민을 포함하여 이루어질 수 있다.In this case, the abrasive may include a physical abrasive, such as colloidal silica, fruit trees, an additive for controlling PH, and polyethyleneimine.

상기 콜로이달 실리카는 실질적으로 알루미늄의 표면을 연마하는 역할을 하는데, 연마제로는 실리카(SiO2), 알루미나(Al2O3), 세리아(CeO2), 망가니아(MnO2) 및 지르코니아(ZrO2) 등이 사용될 수 있으나, 질화알루미늄층의 표면에 스크래치가 발생하는 것을 최소화하기 위해서는 콜로이달 실리카를 사용하는 것이 가장 바람직하다.The colloidal silica serves to substantially polish the surface of aluminum, and the abrasive includes silica (SiO 2 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), mangania (MnO 2 ), and zirconia (ZrO). 2 ) may be used, but it is most preferable to use colloidal silica in order to minimize the occurrence of scratches on the surface of the aluminum nitride layer.

또한, 상기 화학적 연마제는 상기의 물리적 연마제로 연마된 질화알루미늄층의 표면을 연마함과 동시에 광택을 부여하는 역할을 하는데, 인산, 광택제, 안정화제, 평활제 및 황산으로 이루어지며, 인산 100 중량부, 광택제 1.5 내지 3.5 중량부, 안정화제 1.5 내지 2.5 중량부, 평활제 1.5 내지 2.5 중량부 및 황산 5 내지 10 중량부로 이루어지는 것이 바람직하다.In addition, the chemical abrasive serves to polish the surface of the aluminum nitride layer polished with the physical abrasive and to impart gloss at the same time. , It is preferable to consist of 1.5 to 3.5 parts by weight of a brightener, 1.5 to 2.5 parts by weight of a stabilizer, 1.5 to 2.5 parts by weight of a smoothing agent, and 5 to 10 parts by weight of sulfuric acid.

상기 인산은 상기 화학적 연마제의 주재로가 되는 성분으로, 오산화인 P2O5이 수화(水和)하여 발생하는 산성분의 총칭으로, 무색 및 무취의 점성도가 큰 액체이며, 농도가 높아지면 결정화하기 쉽다.The phosphoric acid is a major component of the chemical abrasive, and is a generic term for acidic components generated by hydration of phosphorus pentoxide P 2 O 5. It is a colorless and odorless liquid with high viscosity, and crystallizes when the concentration increases easy to do.

상기 인산은 본 발명에서 알루미늄의 표면을 화학적으로 연마시키는 역할을 한다.The phosphoric acid serves to chemically polish the surface of aluminum in the present invention.

또한, 상기 광택제는 1.5 내지 3.5 중량부가 함유되며, 알루미늄의 표면에 광택을 부여하는 역할을 하는데, 질산구리(Copper Nitrate) 1 내지 2 중량부 및 황산니켈 (Nickel Sulfate) 0.5 내지 1.5 중량부로 이루어지는 것이 바람직하며, 질산구리 1.5 중량부 및 황산니켈 1 중량부로 이루어지는 것이 더욱 바람직하다.In addition, the brightening agent contains 1.5 to 3.5 parts by weight, and serves to impart gloss to the surface of aluminum, and it is composed of 1 to 2 parts by weight of copper nitrate and 0.5 to 1.5 parts by weight of nickel sulfate. Preferably, it is more preferably composed of 1.5 parts by weight of copper nitrate and 1 part by weight of nickel sulfate.

상기 질산구리는 상기 광택제의 주성분으로, 연마제에 함유되어 알루미늄의 표면에 광택을 부여하는 역할을 하는데, 질산구리의 함량이 1 중량부 미만이거나 2 중량부를 초과하게 되면 알루미늄 표면의 광택성 향상효과가 저하된다.The copper nitrate is the main component of the polishing agent, and it is contained in the abrasive to give the surface of aluminum gloss. is lowered

또한, 상기 황산니켈은 상기 광택제에 함유되어 광택의 균형을 조절하는 역할을 한다.In addition, the nickel sulfate is contained in the brightening agent serves to control the balance of the gloss.

상기 안정화제는 1.5 내지 2.5 중량부가 함유되며, 글리신(Glycine)으로 이루어지는데, 상기 인산, 광택제, 평활제 및 황산이 혼합된 혼합물의 안정성을 유지할 수 있도록 하는 역할을 한다.The stabilizer contains 1.5 to 2.5 parts by weight and consists of glycine, and serves to maintain the stability of the mixture in which the phosphoric acid, the brightener, the smoothing agent and the sulfuric acid are mixed.

이때, 안정화제의 함량이 1.5 중량부 미만이면, 혼합물의 안정성이 저하되며, 안정화제의 함량이 2.5 중량부를 초과하게 되면 상대적으로 인산, 광택제, 평활제 및 황산의 함량이 줄어들어 화학적 연마제의 연마효과 및 광택효과가 저하된다.At this time, when the content of the stabilizer is less than 1.5 parts by weight, the stability of the mixture is reduced, and when the content of the stabilizer exceeds 2.5 parts by weight, the content of phosphoric acid, brightener, smoothing agent and sulfuric acid is relatively reduced, so that the polishing effect of the chemical abrasive is reduced. And the gloss effect is reduced.

상기 평활제는 1.5 내지 2.5 중량부가 함유되며, 무수망초(Sodium Sulfate Anhydrous)로 이루어지는데, 알루미늄 표면의 평활도(Smoothness, 平滑度)를 향상시켜 광택이 향상되도록 하는 역할을 한다.The smoothing agent contains 1.5 to 2.5 parts by weight, and is made of Sodium Sulfate Anhydrous, and serves to improve the smoothness of the aluminum surface to improve gloss.

상기 평활제의 함량이 1.5 중량부 미만이면, 알루미늄 표면의 평활도가 낮아지며, 상기 평활제의 함량이 2.5 중량부를 초과하게 되면 상대적으로 인산, 광택제, 안정화제 및 황산의 함량이 줄어들어 본 발명에 따른 광택향상 효과가 우수한 알루미늄용 화학 연마제 조성물의 연마효과가 저하된다.When the content of the leveling agent is less than 1.5 parts by weight, the smoothness of the aluminum surface is lowered, and when the content of the leveling agent exceeds 2.5 parts by weight, the contents of phosphoric acid, brightening agent, stabilizer and sulfuric acid are relatively reduced, so that the gloss according to the present invention The polishing effect of the chemical abrasive composition for aluminum excellent in the improvement effect is reduced.

상기 황산은 5 내지 10 중량부가 함유되며, 상기 인산과 혼합되어 알루미늄 표면의 연마효과를 더욱 향상시키고 연마시간을 단축시켜 작업성을 개선하는 역할을 한다.The sulfuric acid is contained in 5 to 10 parts by weight, and mixed with the phosphoric acid to further improve the polishing effect of the aluminum surface and shorten the polishing time to improve workability.

이때, 상기 황산의 함량이 5 중량부 미만이면, 연마효과의 향상이 미미하며, 황산의 함량이 10 중량부를 초과하게 되면, 제조비용이 증가할 뿐만 아니라, 본 발명에 따른 광택향상 효과가 우수한 알루미늄용 화학 연마제 조성물을 폐기처분할 때, 처리비용을 증가시키게 된다.At this time, if the content of the sulfuric acid is less than 5 parts by weight, the improvement of the polishing effect is insignificant. When disposing of the chemical abrasive composition for use, the treatment cost is increased.

상기와 같은 성분으로 이루어진 화학적 연마제 조성물의 제조는 인산 100 중량부를 교반장치가 구비된 가열기에 투입하고, 45 내지 55℃의 온도로 가열한 상태에서, 광택제 1.5 내지 3.5 중량부, 안정화제 15 내지 25 중량부, 평활제 15 내지 25 중량부 및 황산 5 내지 10 중량부를 투입하고, 가열기에 구비된 교반장치로 교반하여 제조한다.For the preparation of the chemical abrasive composition comprising the above components, 100 parts by weight of phosphoric acid is put into a heater equipped with a stirring device, and in a state of heating to a temperature of 45 to 55° C., 1.5 to 3.5 parts by weight of a brightener, 15 to 25 parts by weight of a stabilizer It is prepared by adding parts by weight, 15 to 25 parts by weight of a leveling agent, and 5 to 10 parts by weight of sulfuric acid, and stirring with a stirring device provided in a heater.

따라서, 본 발명에 따른 CVD 공정용 알루미늄의 전처리방법은 질화알루미늄층이 형성되어 CVD공정에서 불화계 가스가 지속적으로 공급되더라고, 불화알루미늄의 생성이 억제될 뿐만 아니라, 파티클이 발생되지 않는 알루미늄을 제공한다.Therefore, in the method for pretreatment of aluminum for CVD process according to the present invention, even though the aluminum nitride layer is formed and the fluoride-based gas is continuously supplied in the CVD process, the production of aluminum fluoride is suppressed and particles are not generated. to provide.

S101 ; 불화알루미늄방지막형성단계
S103 ; 플라즈마처리단계
S105 ; 연마단계
S101; Aluminum fluoride barrier film formation step
S103; Plasma treatment step
S105 ; grinding step

Claims (6)

알루미늄의 표면에 불화알루미늄으로 이루어진 불화알루미늄 생성방지막을 형성하는 불화알루미늄방지막형성단계;
상기 불화알루미늄방지막형성단계를 통해 형성된 불화알루미늄 생성방지막을 플라즈마 처리하여 질화알루미늄으로 변환하는 플라즈마처리단계; 및
상기 플라즈마처리단계를 통해 생성된 질화알루미늄층을 연마하는 연마단계;로 이루어지는 것을 특징으로 하는 CVD 공정용 알루미늄의 전처리방법.
An aluminum fluoride prevention film forming step of forming an aluminum fluoride generation prevention film made of aluminum fluoride on the surface of aluminum;
Plasma treatment step of converting the aluminum fluoride generation prevention film formed through the aluminum fluoride prevention film forming step to plasma treatment to aluminum nitride; and
A pretreatment method of aluminum for a CVD process, comprising: a polishing step of polishing the aluminum nitride layer generated through the plasma treatment step.
청구항 1에 있어서,
상기 불화알루미늄방지막형성단계는 알루미늄의 표면에 40 내지 60℃의 온도와 진공조건에서 불화알루미늄 분말을 분사코팅하여 이루어지는 것을 특징으로 하는 CVD 공정용 알루미늄의 전처리방법.
The method according to claim 1,
The aluminum fluoride barrier film forming step is a pretreatment method of aluminum for a CVD process, characterized in that the aluminum fluoride powder is spray-coated on the surface of aluminum at a temperature of 40 to 60° C. and under vacuum conditions.
청구항 1에 있어서,
상기 불화알루미늄 생성방지막은 1 내지 10㎛의 두께로 형성되는 것을 특징으로 하는 CVD 공정용 알루미늄의 전처리방법.
The method according to claim 1,
The aluminum fluoride generation prevention film is a pretreatment method of aluminum for a CVD process, characterized in that it is formed to a thickness of 1 to 10㎛.
청구항 1에 있어서,
상기 플라즈마처리단계는 질소가 함유된 가스 혼합물을 플라즈마에 노출시켜 반응성 질소를 생성하고, 상기 반응성 질소를 불화알루미늄으로 이루어진 생성방지막과 반응시켜 이루어지는 것을 특징으로 하는 CVD 공정용 알루미늄의 전처리방법.
The method according to claim 1,
The plasma treatment step generates reactive nitrogen by exposing a gas mixture containing nitrogen to plasma, and reacts the reactive nitrogen with a generation prevention film made of aluminum fluoride.
청구항 3에 있어서,
상기 연마단계는 상기 플라즈마처리단계를 통해 생성된 질화알루미늄층을 연마제로 연마하여 0.1 내지 3㎛의 표면조도를 나타내도록 이루어지는 것을 특징으로 하는 CVD 공정용 알루미늄의 전처리방법.
4. The method according to claim 3,
The polishing step is a pretreatment method of aluminum for a CVD process, characterized in that by polishing the aluminum nitride layer generated through the plasma treatment step with an abrasive to exhibit a surface roughness of 0.1 to 3㎛.
청구항 5에 있어서,
상기 연마단계는 상기 질화알루미늄층을 물리적 연마제로 연마한 후에 화학적 연마제로 연마하여 이루어지며,
상기 화학적 연마제는 인산 100 중량부, 광택제 1.5 내지 3.5 중량부, 안정화제 1.5 내지 2.5 중량부, 평활제 1.5 내지 2.5 중량부 및 황산 5 내지 10 중량부로 이루어지는 것을 특징으로 하는 CVD 공정용 알루미늄의 전처리방법.
6. The method of claim 5,
The polishing step is made by polishing the aluminum nitride layer with a chemical abrasive after polishing with a physical abrasive,
The chemical abrasive is 100 parts by weight of phosphoric acid, 1.5 to 3.5 parts by weight of a brightener, 1.5 to 2.5 parts by weight of a stabilizer, 1.5 to 2.5 parts by weight of a smoothing agent, and 5 to 10 parts by weight of sulfuric acid. .
KR1020200124186A 2020-09-24 2020-09-24 Pretreatment method of aluminium for cvd process KR20220040902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200124186A KR20220040902A (en) 2020-09-24 2020-09-24 Pretreatment method of aluminium for cvd process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200124186A KR20220040902A (en) 2020-09-24 2020-09-24 Pretreatment method of aluminium for cvd process

Publications (1)

Publication Number Publication Date
KR20220040902A true KR20220040902A (en) 2022-03-31

Family

ID=80934981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200124186A KR20220040902A (en) 2020-09-24 2020-09-24 Pretreatment method of aluminium for cvd process

Country Status (1)

Country Link
KR (1) KR20220040902A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473641B1 (en) 2014-06-30 2014-12-17 조상무 Surface treatment method for internal/external metal material by coating aluminium equiaxed structure using cvd process, and internal/external metal material treated by the same
KR20190025552A (en) 2016-07-01 2019-03-11 발터 악티엔게젤샤프트 Cutting tool with structured alumina layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473641B1 (en) 2014-06-30 2014-12-17 조상무 Surface treatment method for internal/external metal material by coating aluminium equiaxed structure using cvd process, and internal/external metal material treated by the same
KR20190025552A (en) 2016-07-01 2019-03-11 발터 악티엔게젤샤프트 Cutting tool with structured alumina layer

Similar Documents

Publication Publication Date Title
KR102490014B1 (en) Chemical conversion of yttria into yttrium fluoride and yttrium oxyfluoride to develop pre-seasoned corossion resistive coating for plasma components
CN209104115U (en) The product of protection is corroded with multilayer plasma body
KR101322549B1 (en) Protective film structure of metal member, metal component employing protective film structure, and equipment for producing semiconductor or flat-plate display employing protective film structure
CN101154589B (en) Form film build method and the device of silicon oxide layer
US7323230B2 (en) Coating for aluminum component
US20140363596A1 (en) Rare-earth oxide based erosion resistant coatings for semiconductor application
US20090233113A1 (en) Aluminum member or aluminum alloy member with excellent corrosion resistance
TWI541894B (en) A plasma processing chamber, a gas sprinkler head and a method of manufacturing the same
CN101463473A (en) Shower plate electrode for plasma cvd reactor
JP2003306769A (en) Film deposition method and base material
TWI673388B (en) Barrier anodization methods to develop aluminum oxide layer for plasma equipment components
TW201533798A (en) Gas distribution plate
TWI749216B (en) Etching method and plasma etching material
KR101592147B1 (en) A method manufacturing an oxide layer of an aluminium substrate
KR20220040902A (en) Pretreatment method of aluminium for cvd process
US9340871B1 (en) Quality multi-spectral zinc sulfide
CN103187232B (en) A kind of focusing ring reducing chip back surface generation polymer
US8337956B2 (en) Wafer
JP3323764B2 (en) Processing method
JP6236709B2 (en) Silicon nitride film manufacturing method and silicon nitride film
US11760694B2 (en) Alumina sintered body and manufacturing method therefor
JPH09167766A (en) Plasma chemical vapor growth device and manufacturing method of semiconductor device
TW202126836A (en) Method and apparatus for forming a plasma resistant coating, component, and plasma processing apparatus
KR102418092B1 (en) Silicon nitride film manufacturing method and silicon nitride film
US20230051800A1 (en) Methods and apparatus for plasma spraying silicon carbide coatings for semiconductor chamber applications

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application