KR20220039894A - Method and apparatus of determining modulation and coding scheme - Google Patents

Method and apparatus of determining modulation and coding scheme Download PDF

Info

Publication number
KR20220039894A
KR20220039894A KR1020200121500A KR20200121500A KR20220039894A KR 20220039894 A KR20220039894 A KR 20220039894A KR 1020200121500 A KR1020200121500 A KR 1020200121500A KR 20200121500 A KR20200121500 A KR 20200121500A KR 20220039894 A KR20220039894 A KR 20220039894A
Authority
KR
South Korea
Prior art keywords
terminal
transmission
base station
slot
modulation
Prior art date
Application number
KR1020200121500A
Other languages
Korean (ko)
Inventor
박기현
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020200121500A priority Critical patent/KR20220039894A/en
Publication of KR20220039894A publication Critical patent/KR20220039894A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04W72/042
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a modulation and encoding type determining method which sets an MCS table, in which a value of at least one of a code rate and frequency efficiency is adjusted, and performs modulation and encoding based on the adjusted MCS table.

Description

변조 및 부호화 형태 결정 방법 및 장치{METHOD AND APPARATUS OF DETERMINING MODULATION AND CODING SCHEME}Method and apparatus for determining modulation and coding mode

본 발명은 3GPP NR 시스템에서 저전력 단말을 위한 변조 기법 및 부호화 방법을 결정하는 방법을 제공한다.The present invention provides a method of determining a modulation scheme and an encoding method for a low-power terminal in a 3GPP NR system.

일 측면에서, 본 실시예들은 본 개시는 변조 및 부호화 형태 결정 방법에 있어서, 저전력 단말에 대하여, 부호율 및 주파수 효율 중 적어도 하나의 값이 조정된 MCS 테이블을 설정하고, 조정된 MCS 테이블에 기초하여 변조 및 부호화를 수행하는 방법을 제공할 수 있다.In one aspect, the present disclosure relates to a method for determining a modulation and coding type by setting an MCS table in which at least one value of a code rate and frequency efficiency is adjusted for a low-power terminal, and based on the adjusted MCS table Thus, it is possible to provide a method for performing modulation and encoding.

도 1은 본 실시예가 적용될 수 있는 NR 무선 통신 시스템에 대한 구조를 간략하게 도시한 도면이다.
도 2는 본 실시예가 적용될 수 있는 NR 시스템에서의 프레임 구조를 설명하기 위한 도면이다.
도 3은 본 실시예가 적용될 수 있는 무선 접속 기술이 지원하는 자원 그리드를 설명하기 위한 도면이다.
도 4는 본 실시예가 적용될 수 있는 무선 접속 기술이 지원하는 대역폭 파트를 설명하기 위한 도면이다.
도 5는 본 실시예가 적용될 수 있는 무선 접속 기술에서의 동기 신호 블록을 예시적으로 도시한 도면이다.
도 6는 본 실시예가 적용될 수 있는 무선 접속 기술에서의 랜덤 액세스 절차를 설명하기 위한 도면이다.
도 7은 CORESET에 대해서 설명하기 위한 도면이다.
도 8은 본 실시예에 따른 부호율 유지 방법이 적용된 일반 상향 링크 전송을 위한 MCS테이블을 설명하기 위한 도면이다.
도 9는 본 실시예에 따른 주파수 효율 유지 방법이 적용된 일반 상향 링크 전송을 위한 MCS테이블을 설명하기 위한 도면이다.
도 10은 본 실시예에 따른 융합 방법이 적용된 일반 상향 링크 전송을 위한 MCS테이블을 설명하기 위한 도면이다.
도 11은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 12는 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
1 is a diagram schematically illustrating a structure of an NR wireless communication system to which this embodiment can be applied.
2 is a diagram for explaining a frame structure in an NR system to which this embodiment can be applied.
3 is a diagram for explaining a resource grid supported by a radio access technology to which this embodiment can be applied.
4 is a diagram for explaining a bandwidth part supported by a radio access technology to which the present embodiment can be applied.
5 is a diagram exemplarily illustrating a synchronization signal block in a radio access technology to which the present embodiment can be applied.
6 is a diagram for explaining a random access procedure in a radio access technology to which this embodiment can be applied.
7 is a diagram for explaining CORESET.
8 is a diagram for explaining an MCS table for general uplink transmission to which the code rate maintenance method according to the present embodiment is applied.
9 is a diagram for explaining an MCS table for general uplink transmission to which the frequency efficiency maintenance method according to the present embodiment is applied.
10 is a diagram for explaining an MCS table for general uplink transmission to which the convergence method according to the present embodiment is applied.
11 is a diagram showing the configuration of a base station according to another embodiment.
12 is a diagram showing the configuration of a user terminal according to another embodiment.

이하, 본 개시의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성 요소들에 참조부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 실시예들을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 기술 사상의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다. 본 명세서 상에서 언급된 "포함한다", "갖는다", "이루어진다" 등이 사용되는 경우 "~만"이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별한 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함할 수 있다.Hereinafter, some embodiments of the present disclosure will be described in detail with reference to exemplary drawings. In adding reference numerals to components of each drawing, the same components may have the same reference numerals as much as possible even though they are indicated in different drawings. In addition, in describing the present embodiments, if it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present technical idea, the detailed description may be omitted. When "includes", "having", "consisting of", etc. mentioned in this specification are used, other parts may be added unless "only" is used. When a component is expressed in the singular, it may include a case in which the plural is included unless otherwise explicitly stated.

또한, 본 개시의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. In addition, in describing the components of the present disclosure, terms such as first, second, A, B, (a), (b), etc. may be used. These terms are only for distinguishing the elements from other elements, and the essence, order, order, or number of the elements are not limited by the terms.

구성 요소들의 위치 관계에 대한 설명에 있어서, 둘 이상의 구성 요소가 "연결", "결합" 또는 "접속" 등이 된다고 기재된 경우, 둘 이상의 구성 요소가 직접적으로 "연결", "결합" 또는 "접속" 될 수 있지만, 둘 이상의 구성 요소와 다른 구성 요소가 더 "개재"되어 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다. 여기서, 다른 구성 요소는 서로 "연결", "결합" 또는 "접속" 되는 둘 이상의 구성 요소 중 하나 이상에 포함될 수도 있다. In the description of the positional relationship of the components, when it is described that two or more components are "connected", "coupled" or "connected", two or more components are directly "connected", "coupled" or "connected" ", but it will be understood that two or more components and other components may be further "interposed" and "connected," "coupled," or "connected." Here, other components may be included in one or more of two or more components that are “connected”, “coupled” or “connected” to each other.

구성 요소들이나, 동작 방법이나 제작 방법 등과 관련한 시간적 흐름 관계에 대한 설명에 있어서, 예를 들어, "~후에", "~에 이어서", "~다음에", "~전에" 등으로 시간적 선후 관계 또는 흐름적 선후 관계가 설명되는 경우, "바로" 또는 "직접"이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.In the description of the temporal flow relationship related to the components, the operation method or the production method, for example, the temporal precedence relationship such as "after", "after", "after", "before", etc. Alternatively, when a flow precedence relationship is described, it may include a case where it is not continuous unless "immediately" or "directly" is used.

한편, 구성 요소에 대한 수치 또는 그 대응 정보(예: 레벨 등)가 언급된 경우, 별도의 명시적 기재가 없더라도, 수치 또는 그 대응 정보는 각종 요인(예: 공정상의 요인, 내부 또는 외부 충격, 노이즈 등)에 의해 발생할 수 있는 오차 범위를 포함하는 것으로 해석될 수 있다.On the other hand, when numerical values or corresponding information (eg, level, etc.) for a component are mentioned, even if there is no separate explicit description, the numerical value or the corresponding information is based on various factors (eg, process factors, internal or external shock, Noise, etc.) may be interpreted as including an error range that may occur.

본 명세서에서의 무선 통신 시스템은 음성, 데이터 패킷 등과 같은 다양한 통신 서비스를 무선자원을 이용하여 제공하기 위한 시스템을 의미하며, 단말과 기지국 또는 코어 네트워크 등을 포함할 수 있다. A wireless communication system in the present specification refers to a system for providing various communication services such as voice and data packets using radio resources, and may include a terminal, a base station, or a core network.

이하에서 개시하는 본 실시예들은 다양한 무선 접속 기술을 사용하는 무선 통신 시스템에 적용될 수 있다. 예를 들어, 본 실시예들은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(timedivision multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(singlecarrier frequency division multiple access) 또는 NOMA(non-orthogonal multiple access) 등과 같은 다양한 다양한 무선 접속 기술에 적용될 수 있다. 또한, 무선 접속 기술은 특정 접속 기술을 의미하는 것뿐만 아니라 3GPP, 3GPP2, WiFi, Bluetooth, IEEE, ITU 등 다양한 통신 협의기구에서 제정하는 각 세대 별 통신 기술을 의미할 수 있다. 예를 들어, CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced datarates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical andelectronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTSterrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. 이와 같이 본 실시예들은 현재 개시되거나 상용화된 무선 접속 기술에 적용될 수 있고, 현재 개발 중이거나 향후 개발될 무선 접속 기술에 적용될 수도 있다. The present embodiments disclosed below may be applied to a wireless communication system using various wireless access technologies. For example, the present embodiments are CDMA (code division multiple access), FDMA (frequency division multiple access), TDMA (time division multiple access), OFDMA (orthogonal frequency division multiple access), SC-FDMA (single carrier frequency division multiple access) Alternatively, it may be applied to various various radio access technologies such as non-orthogonal multiple access (NOMA). In addition, the wireless access technology may mean not only a specific access technology, but also a communication technology for each generation established by various communication consultation organizations such as 3GPP, 3GPP2, WiFi, Bluetooth, IEEE, and ITU. For example, CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced datarates for GSM evolution (EDGE). OFDMA may be implemented with a radio technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA). IEEE 802.16m is an evolution of IEEE 802.16e, and provides backward compatibility with a system based on IEEE 802.16e. UTRA is part of the universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) that uses evolved-UMTSterrestrial radio access (E-UTRA), and employs OFDMA in the downlink and SC- FDMA is employed. As such, the present embodiments may be applied to currently disclosed or commercialized radio access technologies, or may be applied to radio access technologies currently under development or to be developed in the future.

한편, 본 명세서에서의 단말은 무선 통신 시스템에서 기지국과 통신을 수행하는 무선 통신 모듈을 포함하는 장치를 의미하는 포괄적 개념으로서, WCDMA, LTE, NR, HSPA 및 IMT-2020(5G 또는 New Radio) 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선 기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다. 또한, 단말은 사용 형태에 따라 스마트 폰과 같은 사용자 휴대 기기가 될 수도 있고, V2X 통신 시스템에서는 차량, 차량 내의 무선 통신 모듈을 포함하는 장치 등을 의미할 수도 있다. 또한, 기계 형태 통신(Machine Type Communication) 시스템의 경우에 기계 형태 통신이 수행되도록 통신 모듈을 탑재한 MTC 단말, M2M 단말, URLLC 단말 등을 의미할 수도 있다. On the other hand, the terminal in the present specification is a comprehensive concept meaning a device including a wireless communication module that performs communication with a base station in a wireless communication system, WCDMA, LTE, NR, HSPA and IMT-2020 (5G or New Radio), etc. It should be interpreted as a concept including all of UE (User Equipment), MS (Mobile Station), UT (User Terminal), SS (Subscriber Station), wireless device, etc. in GSM. In addition, the terminal may be a user's portable device such as a smart phone depending on the type of use, and in a V2X communication system may mean a vehicle, a device including a wireless communication module in the vehicle, and the like. In addition, in the case of a machine type communication (Machine Type Communication) system, it may mean an MTC terminal, an M2M terminal, a URLLC terminal, etc. equipped with a communication module to perform machine type communication.

본 명세서의 기지국 또는 셀은 네트워크 측면에서 단말과 통신하는 종단을 지칭하며, 노드-B(Node-B), eNB(evolved Node-B), gNB(gNode-B), LPN(Low Power Node), 섹터(Sector), 싸이트(Site), 다양한 형태의 안테나, BTS(Base Transceiver System), 액세스 포인트(Access Point), 포인트(예를 들어, 송신포인트, 수신포인트, 송수신포인트), 릴레이 노드(Relay Node), 메가 셀, 매크로 셀, 마이크로 셀, 피코 셀, 펨토 셀, RRH(Remote Radio Head), RU(Radio Unit), 스몰 셀(small cell) 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. 또한, 셀은 주파수 도메인에서의 BWP(Bandwidth Part)를 포함하는 의미일 수 있다. 예를 들어, 서빙 셀은 단말의 Activation BWP를 의미할 수 있다. A base station or cell of the present specification refers to an end that communicates with a terminal in terms of a network, a Node-B (Node-B), an evolved Node-B (eNB), gNode-B (gNB), a Low Power Node (LPN), Sector, site, various types of antennas, base transceiver system (BTS), access point, point (eg, transmission point, reception point, transmission/reception point), relay node ), mega cell, macro cell, micro cell, pico cell, femto cell, RRH (Remote Radio Head), RU (Radio Unit), small cell (small cell), such as a variety of coverage areas. In addition, the cell may mean including a BWP (Bandwidth Part) in the frequency domain. For example, the serving cell may mean the Activation BWP of the UE.

앞서 나열된 다양한 셀은 하나 이상의 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. 1) 무선 영역과 관련하여 메가 셀, 매크로 셀, 마이크로 셀, 피코 셀, 펨토 셀, 스몰 셀(small cell)을 제공하는 장치 그 자체이거나, 2) 무선 영역 그 자체를 지시할 수 있다. 1)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 무선 영역을 협업으로 구성하도록 상호 작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 포인트, 송수신 포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시 예가 된다. 2)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수도 있다.In the various cells listed above, since there is a base station controlling one or more cells, the base station can be interpreted in two meanings. 1) in relation to the radio area, it may be the device itself providing a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, or a small cell, or 2) may indicate the radio area itself. In 1), the devices providing a predetermined radio area are controlled by the same entity, or all devices interacting to form a radio area cooperatively are directed to the base station. A point, a transmission/reception point, a transmission point, a reception point, etc. become an embodiment of a base station according to a configuration method of a wireless area. In 2), the radio area itself in which signals are received or transmitted from the point of view of the user terminal or the neighboring base station may be indicated to the base station.

본 명세서에서 셀(Cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.In the present specification, a cell is a component carrier having the coverage of a signal transmitted from a transmission/reception point or a signal transmitted from a transmission/reception point (transmission point or transmission/reception point), and the transmission/reception point itself. can

상향링크(Uplink, UL, 또는 업링크)는 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 단말로 데이터를 송수신하는 방식을 의미한다. 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미할 수 있으며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미할 수 있다. 이때, 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 또한, 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.The uplink (Uplink, UL, or uplink) refers to a method of transmitting and receiving data by the terminal to the base station, and the downlink (Downlink, DL, or downlink) refers to a method of transmitting and receiving data to the terminal by the base station do. Downlink may mean a communication or communication path from a multi-transmission/reception point to a terminal, and uplink may mean a communication or communication path from a terminal to a multi-transmission/reception point. In this case, in the downlink, the transmitter may be a part of multiple transmission/reception points, and the receiver may be a part of the terminal. In addition, in the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of the multi-transmission/reception point.

상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PUCCH(Physical Uplink Control CHannel) 등과 같은 제어 채널을 통하여 제어 정보를 송수신하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터 채널을 구성하여 데이터를 송수신한다.이하에서는 PUCCH, PUSCH, PDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.The uplink and the downlink transmit and receive control information through a control channel such as a Physical Downlink Control CHannel (PDCCH) and a Physical Uplink Control CHannel (PUCCH), and a Physical Downlink Shared CHannel (PDSCH), a Physical Uplink Shared CHannel (PUSCH), etc. Data is transmitted and received by configuring the same data channel. Hereinafter, a situation in which signals are transmitted and received through channels such as PUCCH, PUSCH, PDCCH, and PDSCH may be expressed in the form of 'transmitting and receiving PUCCH, PUSCH, PDCCH and PDSCH'. do.

설명을 명확하게 하기 위해, 이하에서는 본 기술 사상을 3GPP LTE/LTE-A/NR(New RAT) 통신 시스템을 위주로 기술하지만 본 기술적 특징이 해당 통신 시스템에 제한되는 것은 아니다.For clarity of explanation, the present technical idea will be mainly described below for the 3GPP LTE/LTE-A/NR (New RAT) communication system, but the present technical characteristics are not limited to the corresponding communication system.

3GPP에서는 4G(4th-Generation) 통신 기술에 대한 연구 이후에 ITU-R의 차세대 무선 접속 기술의 요구사항에 맞추기 위한 5G(5th-Generation)통신 기술을 개발한다. 구체적으로, 3GPP는 5G 통신 기술로 LTE-Advanced 기술을 ITU-R의 요구사항에 맞추어 향상 시킨 LTE-A pro와 4G 통신 기술과는 별개의 새로운 NR 통신 기술을 개발한다. LTE-A pro와 NR은 모두 5G 통신 기술을 의미하는 것으로, 이하에서는 특정 통신 기술을 특정하는 경우가 아닌 경우에 NR을 중심으로 5G 통신 기술을 설명한다. In 3GPP, after research on 4G (4th-Generation) communication technology, 5G (5th-Generation) communication technology is developed to meet the requirements of ITU-R's next-generation wireless access technology. Specifically, 3GPP develops LTE-A pro, which improves LTE-Advanced technology to meet the requirements of ITU-R as a 5G communication technology, and a new NR communication technology separate from 4G communication technology. LTE-A pro and NR both refer to 5G communication technology. Hereinafter, 5G communication technology will be described focusing on NR unless a specific communication technology is specified.

NR에서의 운영 시나리오는 기존 4G LTE의 시나리오에서 위성, 자동차, 그리고 새로운 버티컬 등에 대한 고려를 추가하여 다양한 동작 시나리오를 정의하였으며, 서비스 측면에서 eMBB(Enhanced Mobile Broadband) 시나리오, 높은 단말 밀도를 가지되 넓은 범위에 전개되어 낮은 데이터 레이트(data rate)와 비동기식 접속이 요구되는 mMTC(Massive Machine Communication) 시나리오, 높은 응답성과 신뢰성이 요구되고 고속 이동성을 지원할 수 있는 URLLC(Ultra Reliability and Low Latency) 시나리오를 지원한다.In the NR operation scenario, various operation scenarios were defined by adding consideration to satellites, automobiles, and new verticals from the existing 4G LTE scenarios. It is deployed in a range and supports the mMTC (Massive Machine Communication) scenario that requires a low data rate and asynchronous access, and the URLLC (Ultra Reliability and Low Latency) scenario that requires high responsiveness and reliability and supports high-speed mobility. .

이러한 시나리오를 만족하기 위해서 NR은 새로운 waveform 및 프레임 구조 기술, 낮은 지연속도(Low latency) 기술, 초고주파 대역(mmWave) 지원 기술, 순방향 호환성(Forward compatible) 제공 기술이 적용된 무선 통신 시스템을 개시한다. 특히, NR 시스템에서는 순방향(Forard) 호환성을 제공하기 위해서 유연성 측면에서 다양한 기술적 변화를 제시하고 있다. NR의 주요 기술적 특징은 아래에서 도면을 참조하여 설명한다.To satisfy this scenario, NR discloses a wireless communication system to which a new waveform and frame structure technology, low latency technology, mmWave support technology, and forward compatible technology are applied. In particular, in the NR system, various technological changes are presented in terms of flexibility in order to provide forward compatibility. The main technical features of NR will be described with reference to the drawings below.

<NR 시스템 일반><Normal NR system>

도 1은 본 실시예가 적용될 수 있는 NR 시스템에 대한 구조를 간략하게 도시한 도면이다. 1 is a diagram schematically illustrating a structure of an NR system to which this embodiment can be applied.

도 1을 참조하면, NR 시스템은 5GC(5G Core Network)와 NR-RAN파트로 구분되며, NG-RAN은 사용자 평면(SDAP/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB와 ng-eNB들로 구성된다.gNB 상호 또는 gNB와 ng-eNB는 Xn 인터페이스를 통해 상호 연결된다. gNB와 ng-eNB는 각각 NG 인터페이스를 통해 5GC로 연결된다. 5GC는 단말 접속 및 이동성 제어 기능 등의 제어 평면을 담당하는 AMF (Access and Mobility Management Function)와 사용자 데이터에 제어 기능을 담당하는 UPF (User Plane Function)를 포함하여 구성될 수 있다. NR에서는 6GHz 이하 주파수 대역(FR1, Frequency Range 1)과 6GHz 이상 주파수 대역(FR2, Frequency Range 2)에 대한 지원을 모두 포함한다.1, the NR system is divided into a 5G Core Network (5GC) and an NR-RAN part, and the NG-RAN controls the user plane (SDAP/PDCP/RLC/MAC/PHY) and UE (User Equipment) It consists of gNBs and ng-eNBs that provide planar (RRC) protocol termination. The gNB interconnects or gNBs and ng-eNBs are interconnected via an Xn interface. gNB and ng-eNB are each connected to 5GC through the NG interface. 5GC may be configured to include an Access and Mobility Management Function (AMF) in charge of a control plane such as terminal access and mobility control functions, and a User Plane Function (UPF) in charge of a control function for user data. NR includes support for both the frequency band below 6 GHz (FR1, Frequency Range 1) and the frequency band above 6 GHz (FR2, Frequency Range 2).

gNB는 단말로 NR 사용자 평면 및 제어 평면 프로토콜 종단을 제공하는 기지국을 의미하고, ng-eNB는 단말로 E-UTRA 사용자 평면 및 제어 평면 프로토콜 종단을 제공하는 기지국을 의미한다. 본 명세서에서 기재하는 기지국은 gNB및 ng-eNB를 포괄하는 의미로 이해되어야 하며, 필요에 따라 gNB 또는 ng-eNB를 구분하여 지칭하는 의미로 사용될 수도 있다. gNB means a base station that provides NR user plane and control plane protocol termination to a terminal, and ng-eNB means a base station that provides E-UTRA user plane and control plane protocol termination to a terminal. The base station described in this specification should be understood as encompassing gNB and ng-eNB, and may be used as a meaning to distinguish gNB or ng-eNB as needed.

<NR 웨이브 폼,뉴머롤러지 및 프레임 구조><NR Waveform, Pneumologic and Frame Structure>

NR에서는 하향링크 전송을 위해서 Cyclic prefix를 사용하는 CP-OFDM 웨이브 폼을 사용하고, 상향링크 전송을 위해서 CP-OFDM 또는 DFT-s-OFDM을 사용한다. OFDM 기술은 MIMO(Multiple Input Multiple Output)와 결합이 용이하며, 높은 주파수 효율과 함께 저 복잡도의 수신기를 사용할 수 있다는 장점을 가지고 있다. In NR, a CP-OFDM waveform using a cyclic prefix is used for downlink transmission, and CP-OFDM or DFT-s-OFDM is used for uplink transmission. OFDM technology is easy to combine with MIMO (Multiple Input Multiple Output), and has advantages of using a low-complexity receiver with high frequency efficiency.

한편, NR에서는 전술한 3가지 시나리오 별로 데이터 속도, 지연속도, 커버리지 등에 대한 요구가 서로 상이하기 때문에 임의의 NR 시스템을 구성하는 주파수 대역을 통해 각각의 시나리오 별 요구사항을 효율적으로 만족시킬 필요가 있다. 이를 위해서, 서로 다른 복수의 뉴머롤러지(numerology) 기반의 무선 자원을 효율적으로 멀티플렉싱(multiplexing)하기 위한 기술이 제안되었다. On the other hand, in NR, since the requirements for data rate, delay rate, coverage, etc. are different for each of the three scenarios described above, it is necessary to efficiently satisfy the requirements for each scenario through the frequency band constituting an arbitrary NR system. . To this end, a technique for efficiently multiplexing a plurality of different numerology-based radio resources has been proposed.

구체적으로, NR 전송 뉴머롤러지는 서브캐리어 간격(sub-carrier spacing)과 CP(Cyclic prefix)에 기초하여 결정되며, 아래 표 1과 같이 15kHz를 기준으로 μ 값이 2의 지수 값으로 사용되어 지수적으로 변경된다.Specifically, the NR transmission numerology is determined based on sub-carrier spacing and cyclic prefix (CP), and the μ value is used as an exponential value of 2 based on 15 kHz as shown in Table 1 below. is changed to

μμ 서브캐리어 간격subcarrier spacing Cyclic prefixCyclic prefix Supported for dataSupported for data Supported for synchSupported for synch 00 1515 NormalNormal YesYes YesYes 1One 3030 NormalNormal YesYes YesYes 22 6060 Normal, ExtendedNormal, Extended YesYes NoNo 33 120120 NormalNormal YesYes YesYes 44 240240 NormalNormal NoNo YesYes

위 표 1과 같이 NR의 뉴머롤러지는 서브캐리어 간격에 따라 5가지로 구분될 수 있다. 이는 4G 통신 기술 중 하나인 LTE의 서브캐리어 간격이 15kHz로 고정되는 것과는 차이가 있다. 구체적으로, NR에서 데이터 전송을 위해서 사용되는 서브캐리어 간격은 15, 30, 60, 120kHz이고, 동기 신호 전송을 위해서 사용되는 서브캐리어 간격은 15, 30, 120, 240kHz이다. 또한, 확장 CP는 60kHz 서브캐리어 간격에만 적용된다. 한편, NR에서의 프레임 구조(frame structure)는 1ms의 동일한 길이를 가지는 10개의 서브프레임(subframe)으로 구성되는 10ms의 길이를 가지는 프레임(frame)이 정의된다. 하나의 프레임은 5ms의 하프 프레임으로 나뉠 수 있으며, 각 하프 프레임은 5개의 서브프레임을 포함한다. 15kHz 서브캐리어 간격의 경우에 하나의 서브프레임은 1개의 슬롯(slot)으로 구성되고, 각 슬롯은 14개의 OFDM 심볼(symbol)로 구성된다.As shown in Table 1 above, the NR numerology can be divided into five types according to the subcarrier spacing. This is different from the fact that the subcarrier interval of LTE, one of the 4G communication technologies, is fixed at 15 kHz. Specifically, in NR, subcarrier intervals used for data transmission are 15, 30, 60, and 120 kHz, and subcarrier intervals used for synchronization signal transmission are 15, 30, 120, 240 kHz. In addition, the extended CP is applied only to the 60 kHz subcarrier interval. On the other hand, as for the frame structure in NR, a frame having a length of 10 ms is defined, which is composed of 10 subframes having the same length of 1 ms. One frame can be divided into half frames of 5 ms, and each half frame includes 5 subframes. In the case of a 15 kHz subcarrier interval, one subframe consists of one slot, and each slot consists of 14 OFDM symbols.

도 2는 본 실시예가 적용될 수 있는 NR 시스템에서의 프레임 구조를 설명하기 위한 도면이다. 2 is a diagram for explaining a frame structure in an NR system to which this embodiment can be applied.

도 2를 참조하면, 슬롯은 노멀 CP의 경우에 고정적으로 14개의 OFDM 심볼로 구성되나, 슬롯의 시간 도메인에서 길이는 서브캐리어 간격에 따라 달라질 수 있다. 예를 들어, 15kHz 서브캐리어 간격을 가지는 뉴머롤러지의 경우에 슬롯은 1ms 길이로 서브프레임과 동일한 길이로 구성된다. 이와 달리, 30kHz 서브캐리어 간격을 가지는 뉴머롤러지의 경우에 슬롯은 14개의 OFDM 심볼로 구성되나, 0.5ms의 길이로 하나의 서브프레임에 두 개의 슬롯이 포함될 수 있다. 즉, 서브프레임과 프레임은 고정된 시간 길이를 가지고 정의되며, 슬롯은 심볼의 개수로 정의되어 서브캐리어 간격에 따라 시간 길이가 달라질 수 있다. Referring to FIG. 2 , a slot is fixedly composed of 14 OFDM symbols in the case of a normal CP, but the length of the slot in the time domain may vary according to the subcarrier interval. For example, in the case of a numerology having a 15 kHz subcarrier interval, the slot is 1 ms long and is composed of the same length as the subframe. Contrary to this, in the case of numerology having a 30 kHz subcarrier interval, a slot consists of 14 OFDM symbols, but two slots may be included in one subframe with a length of 0.5 ms. That is, the subframe and the frame are defined to have a fixed time length, and the slot is defined by the number of symbols, so that the time length may vary according to the subcarrier interval.

한편, NR은 스케줄링의 기본 단위를 슬롯으로 정의하고, 무선 구간의 전송 지연을 감소시키기 위해서 미니 슬롯(또는 서브 슬롯 또는 non-slot based schedule)도 도입하였다. 넓은 서브캐리어 간격을 사용하면 하나의 슬롯의 길이가 반비례하여 짧아지기 때문에 무선 구간에서의 전송 지연을 줄일 수 있다. 미니 슬롯(또는 서브 슬롯)은 URLLC 시나리오에 대한 효율적인 지원을 위한 것으로 2, 4, 7개 심볼 단위로 스케줄링이 가능하다. Meanwhile, NR defines a basic unit of scheduling as a slot, and also introduces a mini-slot (or a sub-slot or a non-slot based schedule) in order to reduce transmission delay in a radio section. When a wide subcarrier interval is used, the length of one slot is shortened in inverse proportion, so that transmission delay in a radio section can be reduced. The mini-slot (or sub-slot) is for efficient support of the URLLC scenario and can be scheduled in units of 2, 4, or 7 symbols.

또한, NR은 LTE와 달리 상향링크 및 하향링크 자원 할당을 하나의 슬롯 내에서 심볼 레벨로 정의하였다. HARQ 지연을 줄이기 위해 전송 슬롯 내에서 바로 HARQ ACK/NACK을 송신할 수 있는 슬롯 구조가 정의되었으며, 이러한 슬롯 구조를 자기 포함(self-contained) 구조로 명명하여 설명한다. Also, unlike LTE, NR defines uplink and downlink resource allocation at a symbol level within one slot. In order to reduce the HARQ delay, a slot structure capable of transmitting HARQ ACK/NACK directly within a transmission slot has been defined, and this slot structure will be described as a self-contained structure.

NR에서는 총 256개의 슬롯 포맷을 지원할 수 있도록 설계되었으며, 이중 62개의 슬롯 포맷이 3GPP Rel-15에서 사용된다. 또한, 다양한 슬롯의 조합을 통해서 FDD 또는 TDD 프레임을 구성하는 공통 프레임 구조를 지원한다. 예를 들어, 슬롯의 심볼이 모두 하향링크로 설정되는 슬롯 구조와 심볼이 모두 상향링크로 설정되는 슬롯 구조 및 하향링크 심볼과 상향링크 심볼이 결합된 슬롯 구조를 지원한다. 또한, NR은 데이터 전송이 하나 이상의 슬롯에 분산되어 스케줄링됨을 지원한다. 따라서, 기지국은 슬롯 포맷 지시자(SFI, Slot Format Indicator)를 이용하여 단말에 슬롯이 하향링크 슬롯인지, 상향링크 슬롯인지 또는 플렉시블 슬롯인지를 알려줄 수 있다. 기지국은 단말 특정하게(UE-specific) RRC 시그널링을 통해서 구성된 테이블의 인덱스를 SFI를 이용하여 지시함으로써 슬롯 포맷을 지시할 수 있으며, DCI(Downlink Control Information)를 통해서 동적으로 지시하거나 RRC를 통해서 정적 또는 준정적으로 지시할 수도 있다. NR is designed to support a total of 256 slot formats, of which 62 slot formats are used in 3GPP Rel-15. In addition, a common frame structure constituting an FDD or TDD frame is supported through a combination of various slots. For example, a slot structure in which all symbols of a slot are set to downlink, a slot structure in which all symbols are set to uplink, and a slot structure in which downlink symbols and uplink symbols are combined are supported. In addition, NR supports that data transmission is scheduled to be distributed in one or more slots. Accordingly, the base station may inform the terminal whether the slot is a downlink slot, an uplink slot, or a flexible slot using a slot format indicator (SFI). The base station may indicate the slot format by indicating the index of the table configured through UE-specific RRC signaling using SFI, and may indicate dynamically through DCI (Downlink Control Information) or statically or through RRC. It can also be ordered quasi-statically.

<NR 물리 자원 ><NR Physical Resources>

NR에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 대역폭 파트(bandwidth part) 등이 고려된다.In relation to a physical resource in NR, an antenna port, a resource grid, a resource element, a resource block, a bandwidth part, etc. are considered do.

안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 시프트(Frequency shift), 평균 수신 파워(Average received power) 및 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.An antenna port is defined such that a channel on which a symbol on an antenna port is carried can be inferred from a channel on which another symbol on the same antenna port is carried. When the large-scale property of a channel on which a symbol on one antenna port is carried can be inferred from a channel on which a symbol on another antenna port is carried, the two antenna ports are QC/QCL (quasi co-located or It can be said that there is a quasi co-location) relationship. Here, the wide range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.

도 3은 본 실시예가 적용될 수 있는 무선 접속 기술이 지원하는 자원 그리드를 설명하기 위한 도면이다. 3 is a diagram for explaining a resource grid supported by a radio access technology to which this embodiment can be applied.

도 3을 참조하면, 자원 그리드(Resource Grid)는 NR이 동일 캐리어에서 복수의 뉴머롤러지를 지원하기 때문에 각 뉴머롤러지에 따라 자원 그리드가 존재할 수 있다. 또한, 자원 그리드는 안테나 포트, 서브캐리어 간격, 전송 방향에 따라 존재할 수 있다. Referring to FIG. 3 , in the resource grid, since NR supports a plurality of numerologies on the same carrier, a resource grid may exist according to each numerology. In addition, the resource grid may exist according to an antenna port, a subcarrier interval, and a transmission direction.

자원 블록(resource block)은 12개의 서브캐리어로 구성되며, 주파수 도메인 상에서만 정의된다. 또한, 자원 요소(resource element)는 1개의 OFDM 심볼과 1개의 서브캐리어로 구성된다. 따라서, 도 3에서와 같이 하나의 자원 블록은 서브캐리어 간격에 따라 그 크기가 달라질 수 있다. 또한, NR에서는 자원 블록 그리드를 위한 공통 참조점 역할을 수행하는 "Point A"와 공통 자원 블록, 가상 자원 블록 등을 정의한다. A resource block consists of 12 subcarriers, and is defined only in the frequency domain. In addition, a resource element is composed of one OFDM symbol and one subcarrier. Accordingly, as in FIG. 3 , the size of one resource block may vary according to the subcarrier interval. In addition, NR defines "Point A" serving as a common reference point for a resource block grid, a common resource block, a virtual resource block, and the like.

도 4는 본 실시예가 적용될 수 있는 무선 접속 기술이 지원하는 대역폭 파트를 설명하기 위한 도면이다. 4 is a diagram for explaining a bandwidth part supported by a radio access technology to which the present embodiment can be applied.

NR에서는 캐리어 대역폭이 20Mhz로 고정된 LTE와 달리 서브캐리어 간격 별로 최대 캐리어 대역폭이 50Mhz에서 400Mhz로 설정된다. 따라서, 모든 단말이 이러한 캐리어 대역폭을 모두 사용하는 것을 가정하지 않는다. 이에 따라서 NR에서는 도 4에 도시된 바와 같이 캐리어 대역폭 내에서 대역폭 파트(BWP)를 지정하여 단말이 사용할 수 있다. 또한, 대역폭 파트는 하나의 뉴머롤러지와 연계되며 연속적인 공통 자원 블록의 서브 셋으로 구성되고, 시간에 따라 동적으로 활성화 될 수 있다. 단말에는 상향링크 및 하향링크 각각 최대 4개의 대역폭 파트가 구성되고, 주어진 시간에 활성화된 대역폭 파트를 이용하여 데이터가 송수신된다. In NR, unlike LTE in which the carrier bandwidth is fixed at 20Mhz, the maximum carrier bandwidth is set from 50Mhz to 400Mhz for each subcarrier interval. Therefore, it is not assumed that all terminals use all of these carrier bandwidths. Accordingly, in NR, as shown in FIG. 4, a bandwidth part (BWP) may be designated within the carrier bandwidth and used by the terminal. In addition, the bandwidth part is associated with one numerology and is composed of a subset of continuous common resource blocks, and may be dynamically activated according to time. Up to four bandwidth parts are configured in the terminal, respectively, in uplink and downlink, and data is transmitted/received using the activated bandwidth part at a given time.

페어드 스펙트럼(paired spectrum)의 경우 상향링크 및 하향링크 대역폭 파트가 독립적으로 설정되며, 언페어드 스펙트럼(unpaired spectrum)의 경우 하향링크와 상향링크 동작 간에 불필요한 주파수 리튜닝(re-tunning)을 방지하기 위해서 하향링크와 상향링크의 대역폭 파트가 중심 주파수를 공유할 수 있도록 쌍을 이루어 설정된다.In the case of a paired spectrum, the uplink and downlink bandwidth parts are set independently, and in the case of an unpaired spectrum, to prevent unnecessary frequency re-tunning between downlink and uplink operations For this purpose, the downlink and uplink bandwidth parts are set in pairs to share a center frequency.

<NR 초기 접속><NR Initial Connection>

NR에서 단말은 기지국에 접속하여 통신을 수행하기 위해서 셀 검색 및 랜덤 액세스 절차를 수행한다. In NR, the terminal accesses the base station and performs a cell search and random access procedure in order to perform communication.

셀 검색은 기지국이 전송하는 동기 신호 블록(SSB, Synchronization Signal Block)를 이용하여 단말이 해당 기지국의 셀에 동기를 맞추고, 물리계층 셀 ID를 획득하며, 시스템 정보를 획득하는 절차이다. Cell search is a procedure in which the terminal synchronizes with the cell of the corresponding base station using a synchronization signal block (SSB) transmitted by the base station, obtains a physical layer cell ID, and obtains system information.

도 5는 본 실시예가 적용될 수 있는 무선 접속 기술에서의 동기 신호 블록을 예시적으로 도시한 도면이다. 5 is a diagram exemplarily illustrating a synchronization signal block in a radio access technology to which the present embodiment can be applied.

도 5를 참조하면, SSB는 각각 1개 심볼 및 127개 서브 캐리어를 점유하는 PSS(primarysynchronization signal) 및 SSS(secondary synchronization signal) 및 3개의 OFDM 심볼 및 240 개의 서브캐리어에 걸쳐있는 PBCH로 구성된다. Referring to FIG. 5, the SSB consists of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) occupying 1 symbol and 127 subcarriers, respectively, and a PBCH spanning 3 OFDM symbols and 240 subcarriers.

단말은 시간 및 주파수 도메인에서 SSB를 모니터링하여 SSB를 수신한다. The UE receives the SSB by monitoring the SSB in the time and frequency domains.

SSB는 5ms 동안 최대 64번 전송될 수 있다. 다수의 SSB는 5ms 시간 내에서 서로 다른 전송 빔으로 전송되며, 단말은 전송에 사용되는 특정 하나의 빔을 기준으로 볼 때에는 20ms의 주기마다 SSB가 전송된다고 가정하고 검출을 수행한다. 5ms 시간 내에서 SSB 전송에 사용할 수 있는 빔의 개수는 주파수 대역이 높을수록 증가할 수 있다. 예를 들어, 3GHz 이하에서는 최대 4개의 SSB 빔 전송이 가능하며, 3~6GHz까지의 주파수 대역에서는 최대 8개, 6GHz 이상의 주파수 대역에서는 최대 64개의 서로 다른 빔을 사용하여 SSB를 전송할 수 있다. SSB can be transmitted up to 64 times in 5ms. A plurality of SSBs are transmitted using different transmission beams within 5 ms, and the UE performs detection on the assumption that SSBs are transmitted every 20 ms when viewed based on one specific beam used for transmission. The number of beams that can be used for SSB transmission within 5 ms time may increase as the frequency band increases. For example, up to 4 SSB beams can be transmitted in 3 GHz or less, and SSB can be transmitted using up to 8 different beams in a frequency band of 3 to 6 GHz and up to 64 different beams in a frequency band of 6 GHz or more.

SSB는 하나의 슬롯에 두 개가 포함되며, 서브캐리어 간격에 따라 아래와 같이 슬롯 내에서의 시작 심볼과 반복 횟수가 결정된다.Two SSBs are included in one slot, and the start symbol and the number of repetitions within the slot are determined according to the subcarrier interval as follows.

한편, SSB는 종래 LTE의 SS와 달리 캐리어 대역폭의 센터 주파수에서 전송되지 않는다. 즉, SSB는 시스템 대역의 중심이 아닌 곳에서도 전송될 수 있고, 광대역 운영을 지원하는 경우 주파수 도메인 상에서 복수의 SSB가 전송될 수 있다. 이에 따라서, 단말은 SSB를 모니터링 하는 후보 주파수 위치인 동기 래스터(synchronization raster)를 이용하여 SSB를 모니터링 한다. 초기 접속을 위한 채널의 중심 주파수 위치 정보인 캐리어래스터(carrier raster)와 동기 래스터는 NR에서 새롭게 정의되었으며, 동기 래스터는 캐리어래스터에 비해서, 주파수 간격이 넓게 설정되어 있어서, 단말의 빠른 SSB 검색을 지원할 수 있다. On the other hand, the SSB is not transmitted at the center frequency of the carrier bandwidth, unlike the SS of the conventional LTE. That is, the SSB may be transmitted in a place other than the center of the system band, and a plurality of SSBs may be transmitted in the frequency domain when wideband operation is supported. Accordingly, the UE monitors the SSB using a synchronization raster that is a candidate frequency location for monitoring the SSB. The carrier raster and synchronization raster, which are the center frequency location information of the channel for initial access, are newly defined in NR. Compared to the carrier raster, the synchronization raster has a wider frequency interval, so that the terminal can support fast SSB search. can

단말은 SSB의 PBCH를 통해서 MIB를 획득할 수 있다. MIB(Master Information Block)는 단말이 네트워크가 브로드캐스팅 하는 나머지 시스템 정보(RMSI, Remaining Minimum System Information)를 수신하기 위한 최소 정보를 포함한다. 또한, PBCH는 시간 도메인 상에서의 첫 번째 DM-RS 심볼의 위치에 대한 정보, SIB1을 단말이 모니터링하기 위한 정보(예를 들어, SIB1 뉴머롤러지 정보, SIB1 CORESET에 관련된 정보, 검색 공간 정보, PDCCH 관련 파라미터 정보 등), 공통 자원 블록과 SSB 사이의 오프셋 정보(캐리어 내에서의 절대 SSB의 위치는 SIB1을 통해서 전송) 등을 포함할 수 있다. 여기서, SIB1 뉴머롤러지 정보는 단말이 셀 검색 절차를 완료한 이후에 기지국에 접속하기 위한 랜덤 액세스 절차에서 사용되는 일부 메시지에서도 동일하게 적용된다. 예를 들어, 랜덤 액세스 절차를 위한 메시지 1 내지 4 중 적어도 하나에 SIB1의 뉴머롤러지 정보가 적용될 수 있다. The UE may acquire the MIB through the PBCH of the SSB. MIB (Master Information Block) includes minimum information for the terminal to receive the remaining system information (RMSI, Remaining Minimum System Information) broadcast by the network. In addition, the PBCH includes information on the position of the first DM-RS symbol in the time domain, information for the UE to monitor SIB1 (eg, SIB1 neurology information, information related to SIB1 CORESET, search space information, PDCCH related parameter information, etc.), offset information between the common resource block and the SSB (the position of the absolute SSB in the carrier is transmitted through SIB1), and the like. Here, the SIB1 neurology information is equally applied to some messages used in the random access procedure for accessing the base station after the UE completes the cell search procedure. For example, the neurology information of SIB1 may be applied to at least one of messages 1 to 4 for the random access procedure.

전술한 RMSI는 SIB1(System Information Block 1)을 의미할 수 있으며, SIB1은 셀에서 주기적으로(ex, 160ms) 브로드캐스팅 된다. SIB1은 단말이 초기 랜덤 액세스 절차를 수행하는데 필요한 정보를 포함하며, PDSCH를 통해서 주기적으로 전송된다. 단말이 SIB1을 수신하기 위해서는 PBCH를 통해서 SIB1 전송에 사용되는 뉴머롤러지 정보, SIB1의 스케줄링에 사용되는 CORESET(Control Resource Set) 정보를 수신해야 한다. 단말은 CORESET 내에서 SI-RNTI를 이용하여 SIB1에 대한 스케줄링 정보를 확인하고, 스케줄링 정보에 따라 SIB1을 PDSCH 상에서 획득한다. SIB1을 제외한 나머지 SIB들은 주기적으로 전송될 수도 있고, 단말의 요구에 따라 전송될 수도 있다. The aforementioned RMSI may mean System Information Block 1 (SIB1), and SIB1 is periodically broadcast (eg, 160 ms) in the cell. SIB1 includes information necessary for the UE to perform an initial random access procedure, and is periodically transmitted through the PDSCH. In order for the UE to receive SIB1, it must receive neurology information used for SIB1 transmission and CORESET (Control Resource Set) information used for scheduling SIB1 through the PBCH. The UE checks scheduling information for SIB1 by using SI-RNTI in CORESET, and acquires SIB1 on PDSCH according to the scheduling information. SIBs other than SIB1 may be transmitted periodically or may be transmitted according to the request of the terminal.

도 6는 본 실시예가 적용될 수 있는 무선 접속 기술에서의 랜덤 액세스 절차를 설명하기 위한 도면이다. 6 is a diagram for explaining a random access procedure in a radio access technology to which this embodiment can be applied.

도 6을 참조하면, 셀 검색이 완료되면 단말은 기지국으로 랜덤 액세스를 위한 랜덤 액세스 프리앰블을 전송한다. 랜덤 액세스 프리앰블은 PRACH를 통해서 전송된다. 구체적으로, 랜덤 액세스 프리앰블은 주기적으로 반복되는 특정 슬롯에서 연속된 무선 자원으로 구성되는 PRACH를 통해서 기지국으로 전송된다. 일반적으로, 단말이 셀에 초기 접속하는 경우에 경쟁 기반 랜덤 액세스 절차를 수행되며, 빔 실패 복구(BFR, Beam Failure Recovery)를 위해서 랜덤 액세스를 수행하는 경우에는 비경쟁 기반 랜덤 액세스 절차가 수행된다. Referring to FIG. 6 , upon completion of cell search, the terminal transmits a random access preamble for random access to the base station. The random access preamble is transmitted through the PRACH. Specifically, the random access preamble is transmitted to the base station through a PRACH consisting of continuous radio resources in a specific slot that is periodically repeated. In general, when a UE initially accesses a cell, a contention-based random access procedure is performed, and when random access is performed for beam failure recovery (BFR), a contention-free random access procedure is performed.

단말은 전송한 랜덤 액세스 프리앰블에 대한 랜덤 액세스 응답을 수신한다. 랜덤 액세스 응답에는 랜덤 액세스 프리앰블식별자(ID), UL Grant (상향링크 무선자원), 임시 C-RNTI(Temporary Cell - Radio Network Temporary Identifier) 그리고 TAC(Time Alignment Command) 이 포함될 수 있다. 하나의 랜덤 액세스 응답에는 하나 이상의 단말들을 위한 랜덤 액세스 응답 정보가 포함될 수 있기 때문에, 랜덤 액세스 프리앰블식별자는 포함된 UL Grant, 임시 C-RNTI 그리고 TAC가 어느 단말에게 유효한지를 알려주기 위하여 포함될 수 있다. 랜덤 액세스 프리앰블식별자는 기지국이 수신한 랜덤 액세스 프리앰블에 대한식별자일 수 있다. TAC는 단말이 상향 링크 동기를 조정하기 위한 정보로서 포함될 수 있다. 랜덤 액세스 응답은 PDCCH상의 랜덤 액세스 식별자, 즉 RA-RNTI(Random Access - Radio Network Temporary Identifier)에 의해지시될 수 있다.The terminal receives a random access response to the transmitted random access preamble. The random access response may include a random access preamble identifier (ID), a UL grant (uplink radio resource), a temporary C-RNTI (Temporary Cell - Radio Network Temporary Identifier), and a Time Alignment Command (TAC). Since one random access response may include random access response information for one or more UEs, the random access preamble identifier may be included to inform which UE the included UL Grant, temporary C-RNTI, and TAC are valid. The random access preamble identifier may be an identifier for the random access preamble received by the base station. The TAC may be included as information for the UE to adjust uplink synchronization. The random access response may be indicated by a random access identifier on the PDCCH, that is, RA-RNTI (Random Access - Radio Network Temporary Identifier).

유효한 랜덤 액세스 응답을 수신한 단말은 랜덤 액세스 응답에 포함된 정보를 처리하고, 기지국으로스케줄링된 전송을 수행한다. 예를 들어, 단말은 TAC을 적용시키고, 임시 C-RNTI를 저장한다. 또한, UL Grant를 이용하여, 단말의 버퍼에 저장된 데이터 또는 새롭게 생성된 데이터를 기지국으로 전송한다. 이 경우 단말을 식별할 수 있는 정보가 포함되어야 한다.Upon receiving the valid random access response, the terminal processes information included in the random access response and performs scheduled transmission to the base station. For example, the UE applies the TAC and stores the temporary C-RNTI. In addition, data stored in the buffer of the terminal or newly generated data is transmitted to the base station by using the UL grant. In this case, information for identifying the terminal should be included.

마지막으로 단말은 경쟁 해소를 위한 하향링크 메시지를 수신한다.Finally, the terminal receives a downlink message for contention resolution.

<NR CORESET><NR CORESET>

NR에서의 하향링크 제어채널은 1~3 심볼의 길이를 가지는 CORESET(Control Resource Set)에서 전송되며, 상/하향 스케줄링 정보와 SFI(Slot format Index), TPC(Transmit Power Control) 정보 등을 전송한다. The downlink control channel in NR is transmitted in a CORESET (Control Resource Set) having a length of 1 to 3 symbols, and transmits uplink/downlink scheduling information, SFI (Slot Format Index), and TPC (Transmit Power Control) information. .

이와 같이 NR에서는 시스템의 유연성을 확보하기 위해서, CORESET 개념을 도입하였다. CORESET(Control Resource Set)은 하향링크 제어 신호를 위한 시간-주파수 자원을 의미한다. 단말은 CORESET 시간-주파수 자원에서 하나 이상의 검색 공간을 사용하여 제어 채널 후보를 디코딩할 수 있다. CORESET 별 QCL(Quasi CoLocation) 가정을 설정하였으며, 이는 종래 QCL에 의해서 가정되는 특성인 지연 스프레드, 도플러 스프레드, 도플러 쉬프트, 평균 지연 외에 아날로그 빔 방향에 대한 특성을 알리기 위한 목적으로 사용된다. In this way, NR introduced the concept of CORESET in order to secure the flexibility of the system. CORESET (Control Resource Set) means a time-frequency resource for a downlink control signal. The UE may decode the control channel candidates by using one or more search spaces in the CORESET time-frequency resource. Quasi CoLocation (QCL) assumptions for each CORESET are set, and this is used for the purpose of notifying the characteristics of the analog beam direction in addition to the delay spread, Doppler spread, Doppler shift, and average delay, which are characteristics assumed by the conventional QCL.

도 7은 CORESET에 대해서 설명하기 위한 도면이다. 7 is a diagram for explaining CORESET.

도 7을 참조하면, CORESET은 하나의 슬롯 내에서 캐리어 대역폭 내에서 다양한 형태로 존재할 수 있으며, 시간 도메인 상에서 CORESET은 최대 3개의 OFDM 심볼로 구성될 수 있다. 또한, CORESET은 주파수 도메인 상에서 캐리어 대역폭까지 6개의 자원 블록의 배수로 정의된다. Referring to FIG. 7 , CORESET may exist in various forms within a carrier bandwidth within one slot, and CORESET may consist of up to three OFDM symbols in the time domain. In addition, CORESET is defined as a multiple of 6 resource blocks up to the carrier bandwidth in the frequency domain.

첫 번째 CORESET은 네트워크로부터 추가 구성 정보 및 시스템 정보를 수신할 수 있도록 초기 대역폭 파트 구성의 일부로 MIB를 통해서 지시된다. 기지국과의 연결 설정 후에 단말은 RRC 시그널링을 통해서 하나 이상의 CORESET 정보를 수신하여 구성할 수 있다.The first CORESET is indicated through the MIB as part of the initial bandwidth part configuration to receive additional configuration information and system information from the network. After connection establishment with the base station, the terminal may receive and configure one or more pieces of CORESET information through RRC signaling.

본 명세서에서 NR(New Radio)과 관련한 주파수, 프레임, 서브프레임, 자원, 자원블럭, 영역(region), 밴드, 서브밴드, 제어채널, 데이터채널, 동기신호, 각종 참조신호, 각종 신호 또는 각종 메시지는 과거 또는 현재 사용되는 의미 또는 장래 사용되는 다양한 의미로 해석될 수 있다.In the present specification, frequencies, frames, subframes, resources, resource blocks, regions, bands, subbands, control channels, data channels, synchronization signals, various reference signals, various signals or various messages related to NR (New Radio) can be interpreted in various meanings used in the past or present or used in the future.

본 발명은 3GPP NR 시스템에서 저전력 단말을 위한 변조 기법 및 부호화 방법을 결정하는 방법을 제공한다.The present invention provides a method of determining a modulation scheme and an encoding method for a low-power terminal in a 3GPP NR system.

종래의 NR에서는 모든 단말이 FR1 DL에서 256QAM에 의한 변조를, 그 외 FR1 UL 및 FR2 DL/UL에서 64QAM에 의한 변조를 지원하는 것을 전제로 규격이 정의되어 있다. 이는 다운링크의 경우 TS38.214의 Table 5.1.3.1-1, 5.1.3.1-2, 5.1.3.1-3에 정의되어 있으며, 각각은 최대 64QAM의 일반 전송, 최대 256QAM의 일반 전송, 그리고 최대 64QAM의 URLLC 전송을 위해 디자인되어 있다. 또한 업링크의 경우 6.1.4.1-1, 6.1.4.1-2에 정의되어 있으며, 각각 일반 전송, URLLC 전송을 위해 디자인되었다.In the conventional NR, standards are defined on the premise that all terminals support modulation by 256QAM in FR1 DL, and modulation by 64QAM in other FR1 UL and FR2 DL/UL. This is defined in Table 5.1.3.1-1, 5.1.3.1-2, 5.1.3.1-3 of TS38.214 in the case of downlink, respectively, for normal transmission of up to 64QAM, normal transmission of up to 256QAM, and maximum of 64QAM. It is designed for URLLC transmission. Also, uplink is defined in 6.1.4.1-1 and 6.1.4.1-2, and is designed for general transmission and URLLC transmission, respectively.

종래의 MCS테이블은 기본적으로 모든 단말이 64QAM의 송수신은 가능하다는 가정 하에 설계되어 있다. 그러나 저전력 단말의 도입의 필요성이 제기되며, FR1 DL에서 64QAM, FR1 UL 및 FR2DL/UL에서 16QAM까지만을 지원하는 단말을 지원할지에 대한 논의가 이루어져, 3GPP RAN1 102 E-meeting에서 아래와 같은 합의가 이루어졌다.The conventional MCS table is basically designed on the assumption that all terminals can transmit and receive 64QAM. However, the need for the introduction of low-power terminals is raised, and discussions have been made on whether to support terminals supporting only 64QAM in FR1 DL, FR1 UL and 16QAM in FR2DL/UL, and the following agreement is reached in 3GPP RAN1 102 E-meeting lost.

√ For FR1 DL, study relaxation of maximum mandatory modulation to 64QAM instead of 256QAM.√ For FR1 DL, study relaxation of maximum mandatory modulation to 64QAM instead of 256QAM.

√ For FR1 UL, study relaxation of maximum mandatory modulation to 16QAM instead of 64QAM.√ For FR1 UL, study relaxation of maximum mandatory modulation to 16QAM instead of 64QAM.

√ For FR2 DL, study relaxation of maximum mandatory modulation to 16QAM instead of 64QAM.√ For FR2 DL, study relaxation of maximum mandatory modulation to 16QAM instead of 64QAM.

√ For FR2 UL, study relaxation of maximum mandatory modulation to 16QAM instead of 64QAM.√ For FR2 UL, study relaxation of maximum mandatory modulation to 16QAM instead of 64QAM.

√ Restriction to 1 or 2 MIMO layers in DL can be studied.√ Restriction to 1 or 2 MIMO layers in DL can be studied.

√ No TBS restriction is considered in this SI beyond the implicit TBS restrictions resulting from reduced UE bandwidth or reduced number of MIMO layers.√ No TBS restriction is considered in this SI beyond the implicit TBS restrictions resulting from reduced UE bandwidth or reduced number of MIMO layers.

그러나 최대 16QAM 변조만을 지원하는 단말은 기존의 MCS테이블을 사용하여 64QAM을 사용하는 인덱스로 전송을 지시받았을 경우 적절한 처리가 불가능하다.However, when a terminal supporting only 16QAM modulation is instructed to transmit with an index using 64QAM using the existing MCS table, appropriate processing is impossible.

본 발명에서는 FR1 UL 및 FR2 DL/UL에서 최대 16QAM만을 지원하는 저전력 단말을 위한 MCS 파라미터 설정 방법을 제공한다. The present invention provides a method for setting MCS parameters for a low-power terminal supporting only 16QAM at maximum in FR1 UL and FR2 DL/UL.

본 발명은 크게 (1) 64QAM으로 할당된 MCS 인덱스 값 운용 방법, 그리고 (2) MCS 인덱스 운용 방법을 제공한다. 발명에서 사용하는 '저전력 단말'이라는 용어는 FR1 UL 및 FR2 DL/UL에서 최대 16QAM 변조 방식까지만을 지원하는 단말을 의미하는 것으로 정의한다.The present invention largely provides (1) a method for operating an MCS index value allocated to 64QAM , and (2) a method for operating an MCS index . The term 'low power terminal' used in the present invention is defined to mean a terminal that supports up to 16QAM modulation schemes in FR1 UL and FR2 DL/UL.

(1) 64QAM으로 할당된 MCS 인덱스 값 운용 방법: 해당 방법은 저전력 단말이 64QAM이 할당된 인덱스 값을 사용하는 경우 사용하는 방법이다. 이에 따라 송수신단은 저전력 단말이 전송하는/받는 경우 해당 인덱스가 아래 방법이 적용된 파라미터를 사용한다는 것을 사전에 인식할 수 있다. 해당 방법은 크게 부호율 유지 방법과 주파수 효율 유지 방법, 그리고 둘을 융합한 방법으로 나눌 수 있다. (1) Method of operating the MCS index value allocated to 64QAM : This method is used when the low-power terminal uses the index value allocated to 64QAM. Accordingly, the transceiver may recognize in advance that the corresponding index uses the parameter to which the following method is applied when the low-power terminal transmits/receives. The method can be largely divided into a method of maintaining a code rate, a method of maintaining frequency efficiency, and a method combining the two.

① 부호율 유지 방법: 해당 방법은 MCS테이블의 부호율을 유지하는 방법이다. 발명의 설명을 위해 TS 38.214의 Table 6.1.4.1-1의 17번 인덱스를 예로 들면, 해당 인덱스는 Modulation order Qm을 6으로, Target Code rate (over 1024)를 466으로, 이에 따른 spectral efficiency를 2.7305(=Qm*coderate=6*466/1024)로 정의하고 있다. 해당 방법은 Qm이 6 이상으로 정의된 모든 테이블의 Qm을 일괄적으로 4로 해석하는 방법이다. 이에 따라, 실제 spectral efficiency는 4/6이 된다. 해당 단말이 저전력 단말로 사전에 알려진 경우 송신단은 해당 방법을 적용하여 송신하고, 수신단은 해당 방법이 적용되었다고 인식하여 수신한다. 해당 방법이 적용된 Table 6.1.4.1-1은 도 8과 같다. ① Code rate maintenance method : This method maintains the code rate of the MCS table. For the description of the invention, taking index 17 of Table 6.1.4.1-1 of TS 38.214 as an example, the corresponding index is modulation order Qm of 6, target code rate (over 1024) of 466, and spectral efficiency of 2.7305 ( =Qm*coderate=6*466/1024). This method is a method to collectively interpret Qm of all tables in which Qm is defined as 6 or more as 4. Accordingly, the actual spectral efficiency becomes 4/6. When the corresponding terminal is known in advance as a low-power terminal, the transmitting end applies the method to transmit, and the receiving end recognizes that the method is applied and receives it. Table 6.1.4.1-1 to which the method is applied is shown in FIG. 8 .

② 주파수 효율 유지 방법: 해당 방법은 Qm이 6 이상으로 정의된 모든 테이블의 Qm을 일괄적으로 4로 정하면서, 각 테이블 인덱스의 주파수 효율은 유지하는 방법이다. 이를 위해서 부호율은 Qm이 6이었던 인덱스에서 일괄적으로 6/4배, 즉 1.5배로 설정한다. Qm이 6보다 큰 x인 경우에는 일괄적으로 x/4배로 설정한다. ①에서 사용한 예를 적용하면, 해당 방법이 적용된 경우 인덱스 17의 Qm은 4, Target code rate (over 1024)는 699(=466*1.5), Spectral efficiency는 2.7305(=Qm*coderate=4*699/1024)가 된다. 해당 방법이 적용된 Table 6.1.4.1-1은 도 9와 같다. ② Frequency efficiency maintenance method : This method is a method of maintaining the frequency efficiency of each table index while collectively setting the Qm of all tables with Qm defined as 6 or higher as 4. To this end, the code rate is collectively set to 6/4 times, that is, 1.5 times at the index where Qm is 6. When Qm is x greater than 6, it is collectively set to x/4 times. Applying the example used in ①, when the method is applied, the Qm of index 17 is 4, the target code rate (over 1024) is 699 (=466*1.5), and the spectral efficiency is 2.7305 (=Qm*code=4*699/ 1024). Table 6.1.4.1-1 to which the method is applied is shown in FIG. 9 .

③ 융합 방법: 방법 ②는 일부 경우 부호율이 1을 넘어서는 경우가 발생하게 된다. 해당 방법으로 전송이 이루어지는 경우 무조건 초기 전송은 실패하여 재전송이 이루어지게 되는데, 이를 방지하기 위해 방법 ②를 사용할 경우 부호율이 1을 넘어가는 인덱스에는 방법 ①을 적용하도록 하는 방법을 고려할 수 있다. 해당 방법이 적용된 Table 6.1.4.1-1은 도 10과 같다. ③ Convergence method : In method ②, the code rate exceeds 1 in some cases. When transmission is performed by this method, the initial transmission fails unconditionally and retransmission is performed. Table 6.1.4.1-1 to which the method is applied is shown in FIG. 10 .

본 발명에서는 Table 6.1.4.1-1만 예로 들었지만 동일한 방법을 Table 6.1.4.1-2, 5,1,3,1-1, 5,1,3,1-2, 5,1,3,1-3에도 적용할 수 있다.In the present invention, only Table 6.1.4.1-1 is given as an example, but Table 6.1.4.1-2, 5,1,3,1-1, 5,1,3,1-2, 5,1,3,1- 3 can also be applied.

(2) MCS 인덱스 운용 방법: 해당 방법은 지원하지 않는 변조를 지시하는 MCS 인덱스를 처리하는 방법이다. 크게 대체 인덱스 결정 방법과 예외 처리를 수행하는 방법으로 나눌 수 있다. (2) MCS index operation method : This method is a method of processing the MCS index indicating unsupported modulation. It can be largely divided into a method of determining an alternative index and a method of handling exceptions.

① 대체 인덱스 결정 방법: 해당 방법은 지원하지 않는 변조를 사용하는 MCS 인덱스로 지시가 이루어진 경우 해당 인덱스를 지원하는 변조를 지시하는 MCS 인덱스 값으로 변환하여 처리하는 방법이다. 예컨대 Table 6.1.4.1-1의 경우 인덱스 17 이상의 모든 인덱스를 16으로 변환하여 처리할 수 있으며, 인덱스 17 이상인 경우 인덱스 값에 일괄적으로 -11을 하여 처리할 수도 있다. ① Alternative index determination method : In this method, if an MCS index using a modulation that is not supported is indicated, it is converted into an MCS index value indicating a modulation that supports the corresponding index and processed. For example, in the case of Table 6.1.4.1-1, all indices of index 17 or higher can be converted to 16, and in the case of index 17 or higher, index values can be processed by collectively adding -11 to the index value.

② 예외 처리를 수행하는 방법: 해당 방법은 지원하지 않는 변조를 사용하는 MCS인덱스를 지시받은 경우 다운링크는 일괄적으로 NACK을 피드백하도록 하고, 업링크는 전송하지 않도록 하는 방법이다. 해당 방법을 통해 기지국이 저전력 단말을 인식하지 못한 상황에서 16QAM 이하의 변조를 사용하는 인덱스의 사용을 유도하도록 할 수 있다. ② Exception handling method : In this method, when an MCS index using a modulation that is not supported is instructed, the downlink collectively feedbacks the NACK and the uplink does not transmit it. Through this method, it is possible to induce the use of an index using a modulation of 16QAM or less in a situation in which the base station does not recognize the low-power terminal.

본 발명에서 제공된 방법은 각각 독립적으로 적용될 수도 있고, 임의의 형태로 조합되어 운용될 수도 있다. 또한 본 발명에서 사용한 용어는 새로운 용어의 경우 의미의 이해가 용이한 임의의 명칭을 사용하였으며, 실제로는 동일한 의미를 가지는 다른 용어가 사용되는 경우에도 본 발명이 적용될 수 있다.The methods provided in the present invention may be applied independently, or may be operated in combination in any form. In addition, in the case of a new term, an arbitrary name that is easy to understand the meaning of the term used in the present invention is used, and the present invention can be applied even when other terms having the same meaning are actually used.

본 발명에서 제공하는 방법을 통해 최대 16QAM까지만을 지원하는 저전력 단말이 지원되는 형태의 변조 방식을 사용하여 전송을 수행할 수 있다.Through the method provided in the present invention, a low-power terminal supporting up to 16QAM may perform transmission using a supported modulation scheme.

도 11은 또 다른 실시예에 의한 기지국(1000)의 구성을 보여주는 도면이다.11 is a diagram showing the configuration of the base station 1000 according to another embodiment.

도 11을 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)를 포함한다.Referring to FIG. 11 , the base station 1000 according to another embodiment includes a controller 1010 , a transmitter 1020 , and a receiver 1030 .

제어부(1010)는 전술한 본 발명을 수행하기에 필요한 변조 및 부호화 형태 결정 방법에 있어서, 저전력 단말에 대하여, 부호율 및 주파수 효율 중 적어도 하나의 값이 조정된 MCS 테이블을 설정하고, 조정된 MCS 테이블에 기초하여 변조 및 부호화를 수행하는 방법에 따른 전반적인 기지국(1000)의 동작을 제어한다.In the method for determining a modulation and coding type necessary for carrying out the present invention, the controller 1010 sets an MCS table in which at least one of a code rate and a frequency efficiency is adjusted for a low-power terminal, and the adjusted MCS The overall operation of the base station 1000 according to a method of performing modulation and encoding based on the table is controlled.

송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다. The transmitter 1020 and the receiver 1030 are used to transmit/receive signals, messages, and data necessary for carrying out the present invention to and from the terminal.

도 12는 또 다른 실시예에 의한 사용자 단말(1100)의 구성을 보여주는 도면이다.12 is a diagram showing the configuration of a user terminal 1100 according to another embodiment.

도 12를 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)를 포함한다.Referring to FIG. 12 , the user terminal 1100 according to another embodiment includes a receiver 1110 , a controller 1120 , and a transmitter 1130 .

수신부(1110)는 기지국으로부터 하향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiver 1110 receives downlink control information, data, and a message from the base station through a corresponding channel.

또한 제어부(1120)는 전술한 본 발명을 수행하기에 필요한 변조 및 부호화 형태 결정 방법에 있어서, 저전력 단말에 대하여, 부호율 및 주파수 효율 중 적어도 하나의 값이 조정된 MCS 테이블을 설정하고, 조정된 MCS 테이블에 기초하여 변조 및 부호화를 수행하는 방법에 따른 전반적인 사용자 단말(1100)의 동작을 제어한다.In addition, in the method for determining the modulation and coding type necessary for carrying out the present invention, the controller 1120 sets an MCS table in which at least one of a code rate and a frequency efficiency is adjusted for a low-power terminal, and adjusts the The overall operation of the user terminal 1100 according to a method of performing modulation and encoding based on the MCS table is controlled.

송신부(1130)는 기지국에 상향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 1130 transmits uplink control information, data, and a message to the base station through a corresponding channel.

전술한 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 실시 예들 중 본 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계, 구성, 부분들은 전술한 표준 문서들에 의해 뒷받침될 수 있다. 또한, 본 명세서에서 개시하고 있는 모든 용어들은위에서 개시한 표준 문서들에 의해 설명될 수 있다.The above-described embodiments may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP and 3GPP2, which are wireless access systems. That is, steps, configurations, and parts not described in order to clearly reveal the present technical idea among the present embodiments may be supported by the above-described standard documents. In addition, all terms disclosed in this specification can be described by the standard documents disclosed above.

상술한 본 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.The above-described embodiments may be implemented through various means. For example, the present embodiments may be implemented by hardware, firmware, software, or a combination thereof.

하드웨어에 의한 구현의 경우, 본 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러 또는 마이크로 프로세서 등에 의해 구현될 수 있다.In the case of implementation by hardware, the method according to the present embodiments may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), FPGAs (Field Programmable Gate Arrays), may be implemented by a processor, a controller, a microcontroller or a microprocessor.

펌웨어나 소프트웨어에 의한 구현의 경우, 본 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, the method according to the present embodiments may be implemented in the form of an apparatus, procedure, or function that performs the functions or operations described above. The software code may be stored in the memory unit and driven by the processor. The memory unit may be located inside or outside the processor, and may transmit/receive data to and from the processor by various well-known means.

또한, 위에서 설명한 "시스템", "프로세서", "컨트롤러", "컴포넌트", "모듈", "인터페이스", "모델", 또는 "유닛" 등의 용어는 일반적으로 컴퓨터 관련 엔티티 하드웨어, 하드웨어와 소프트웨어의 조합, 소프트웨어 또는 실행 중인 소프트웨어를 의미할 수 있다. 예를 들어, 전술한 구성요소는 프로세서에 의해서 구동되는 프로세스, 프로세서, 컨트롤러, 제어 프로세서, 개체, 실행 스레드, 프로그램 및/또는 컴퓨터일 수 있지만 이에 국한되지 않는다. 예를 들어, 컨트롤러 또는 프로세서에서 실행 중인 애플리케이션과 컨트롤러 또는 프로세서가 모두 구성 요소가 될 수 있다. 하나 이상의 구성 요소가 프로세스 및/또는 실행 스레드 내에 있을 수 있으며, 구성 요소들은 하나의 장치(예: 시스템, 컴퓨팅 디바이스 등)에 위치하거나 둘 이상의 장치에 분산되어 위치할 수 있다.Also, as described above, terms such as "system", "processor", "controller", "component", "module", "interface", "model", or "unit" generally refer to computer-related entities hardware, hardware and software. may mean a combination of, software, or running software. For example, the aforementioned component may be, but is not limited to, a process run by a processor, a processor, a controller, a controlling processor, an object, a thread of execution, a program, and/or a computer. For example, both an application running on a controller or processor and a controller or processor can be a component. One or more components may reside within a process and/or thread of execution, and the components may be located on one device (eg, a system, computing device, etc.) or distributed across two or more devices.

이상의 설명은 본 개시의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 기술 사상의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 또한, 본 실시예들은 본 개시의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로 이러한 실시예에 의하여 본 기술 사상의 범위가 한정되는 것은 아니다. 본 개시의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 개시의 권리 범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely illustrative of the technical spirit of the present disclosure, and various modifications and variations will be possible without departing from the essential characteristics of the present disclosure by those skilled in the art to which the present disclosure pertains. In addition, the present embodiments are not intended to limit the technical spirit of the present disclosure, but to explain, and thus the scope of the present technical spirit is not limited by these embodiments. The protection scope of the present disclosure should be construed by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present disclosure.

Claims (1)

변조 및 부호화 형태 결정 방법에 있어서,
저전력 단말에 대하여, 부호율 및 주파수 효율 중 적어도 하나의 값이 조정된 MCS 테이블을 설정하고, 조정된 MCS 테이블에 기초하여 변조 및 부호화를 수행하는 방법.
A method for determining a modulation and encoding type, comprising:
A method of setting an MCS table in which at least one of a code rate and frequency efficiency is adjusted, and performing modulation and encoding based on the adjusted MCS table for a low-power terminal.
KR1020200121500A 2020-09-21 2020-09-21 Method and apparatus of determining modulation and coding scheme KR20220039894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200121500A KR20220039894A (en) 2020-09-21 2020-09-21 Method and apparatus of determining modulation and coding scheme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200121500A KR20220039894A (en) 2020-09-21 2020-09-21 Method and apparatus of determining modulation and coding scheme

Publications (1)

Publication Number Publication Date
KR20220039894A true KR20220039894A (en) 2022-03-30

Family

ID=80948375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200121500A KR20220039894A (en) 2020-09-21 2020-09-21 Method and apparatus of determining modulation and coding scheme

Country Status (1)

Country Link
KR (1) KR20220039894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4255085A1 (en) 2022-03-30 2023-10-04 Lg Electronics Inc. Method for performing sidelink communication in unlicensed band by ue in wireless communication system and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4255085A1 (en) 2022-03-30 2023-10-04 Lg Electronics Inc. Method for performing sidelink communication in unlicensed band by ue in wireless communication system and apparatus therefor

Similar Documents

Publication Publication Date Title
US11582089B2 (en) Method and apparatus for transmitting uplink channel in unlicensed band
KR102298009B1 (en) Method for Transmitting Uplink data channel and Apparatus thereof
KR102332313B1 (en) Method and apparatus for performing lbt for wireless communication in unlicensed band
KR20190132228A (en) Method and apparatus for transmitting harq feedback information in unlicensed band
KR102320416B1 (en) Method for Transmitting Uplink data and Apparatus thereof
US11671984B2 (en) Method and apparatus for controlling search space for power saving
KR20220039894A (en) Method and apparatus of determining modulation and coding scheme
KR20220007516A (en) Method and apparatus for performing initial access in limited bandwidth
KR102360185B1 (en) Method and apparatus for transmitting uplink channel in unlicensed band
KR20220003457A (en) Method and apparatus for performing frequency hopping
KR20200087084A (en) Method and apparatus for transmitting and receiving uplink control information
KR20200100258A (en) Method for transmitting an uplink shared channel including uplink control information in a next generation wireless network and Apparatuses thereof
KR102592454B1 (en) Method and apparatus for transmitting and receiving uplink control information
KR20200051096A (en) Apparatus and method of CQI management for group-based side-link in new radio
KR102434660B1 (en) Method and apparatus for transmitting and receiving data in unlicensed band
KR20220165859A (en) Method and apparatus of transmission repetition above frequency resource region
KR20230155753A (en) Method and apparatus of determining transmission power of base station for wireless communication
KR20230169724A (en) Methods for reportin ssb index and cri in multi-trp system and apparatuses thereof
KR20220014404A (en) Method and apparatus of indicating configurations of synchronization signal
KR20240066711A (en) Method and apparatus of delivery of assistance information for periodic transmission
KR20210157320A (en) Method and apparatus for controlling search space for power saving
KR20240109931A (en) Method and apparatus for transmitting and receiving uplink and downlink in full duplex
KR20240008806A (en) Method and apparatus for using artificial intelligence/machine learning model in wireless communication network
KR20230034516A (en) Method and apparatus of sharing resource information for V2X sidelink
KR20240109927A (en) Method and apparatus for transmitting and receiving downlink control channel in full duplex