KR20220034297A - Method for surface treatment of solar panel - Google Patents

Method for surface treatment of solar panel Download PDF

Info

Publication number
KR20220034297A
KR20220034297A KR1020200116245A KR20200116245A KR20220034297A KR 20220034297 A KR20220034297 A KR 20220034297A KR 1020200116245 A KR1020200116245 A KR 1020200116245A KR 20200116245 A KR20200116245 A KR 20200116245A KR 20220034297 A KR20220034297 A KR 20220034297A
Authority
KR
South Korea
Prior art keywords
solar panel
weight
coating solution
surface treatment
nanoparticles
Prior art date
Application number
KR1020200116245A
Other languages
Korean (ko)
Other versions
KR102541027B1 (en
Inventor
이철구
Original Assignee
이철구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이철구 filed Critical 이철구
Priority to KR1020200116245A priority Critical patent/KR102541027B1/en
Publication of KR20220034297A publication Critical patent/KR20220034297A/en
Application granted granted Critical
Publication of KR102541027B1 publication Critical patent/KR102541027B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The present invention relates to a surface treatment method for solar panels. More specifically, the surface treatment method for solar panels comprises the following steps: preparing nanoparticles whose surfaces are coated with a silicon-carbon composite by vapor-depositing an alkoxysilane-based compound on the nanoparticles; mixing the nanoparticles coated with the silicon-carbon composite, a fluorosilane-based compound, tetrafluoroethylene, and a coating solution; and applying the mixed coating solution on a solar panel. According to the present invention, when the nanoparticles coated with alkoxy silane-based compounds is coated on the solar panel together with the coating solution, water repellency and high light transmittance are simultaneously provided to the surface of the solar panel. In addition, the method is simple and does not require expensive equipment, thereby providing advantages of requiring a relatively low cost and being applied to a large-area substrate to enlarge a solar panel.

Description

태양광 패널의 표면 처리 방법{METHOD FOR SURFACE TREATMENT OF SOLAR PANEL}Method for surface treatment of solar panel {METHOD FOR SURFACE TREATMENT OF SOLAR PANEL}

본 발명은 태양광 패널의 표면 처리 방법에 관한 것으로, 구체적으로 알콕시 실란계 화합물을 나노입자 상에 기상으로 증착시켜 표면이 실리콘-탄소 복합체로 코팅된 나노입자를 제조하는 단계; 상기 실리콘-탄소 복합체로 코팅된 나노입자, 불소 실란계 화합물, 테트라플루오로에틸렌 및 코팅액과 혼합하는 단계; 상기 혼합 코팅액을 태양광 패널 상에 도포하는 단계를 포함하는 태양광 패널 표면 처리 방법에 관한 것이다.The present invention relates to a method for surface treatment of a solar panel, and specifically, depositing an alkoxysilane-based compound on the nanoparticles in a vapor phase to prepare nanoparticles whose surface is coated with a silicon-carbon composite; mixing the silicon-carbon composite-coated nanoparticles with the fluorine-silane-based compound, tetrafluoroethylene and a coating solution; It relates to a solar panel surface treatment method comprising the step of applying the mixed coating solution on the solar panel.

일반적으로 재료의 표면은 물과의 반응 정도에 따라 크게 친수성(hydrophilic) 과 소수성 (hydrophobic)으로 구분된다. 친수성은 표면이 물과 친하여 물방울이 표면에 잘 퍼지는 성질을 나타내면, 반대로 소수성은 표면이 물과 친하지 않아 물방울이 재료 표면 위에 동그랗게 그 형상을 잘 유지하게 된다. In general, the surface of a material is largely divided into hydrophilic and hydrophobic depending on the degree of reaction with water. Hydrophilicity indicates that the surface is friendly with water, so that water droplets spread well on the surface.

특히 소수성 표면 중 물방울과의 접촉각이 150도 이상을 보이는 경우를 초소수성(Super-hydrophobic)이라 명칭하며, 그 응용분야가 방수유리나 방수옷감 등의 단순한 응용에서부터 nano-implant, 의료소재 및 태양광, 에너지 분야까지 활용되고 있다.In particular, the case where the contact angle with water drops of more than 150 degrees among hydrophobic surfaces is called super-hydrophobic, and its application fields range from simple applications such as waterproof glass or waterproof cloth to nano-implant, medical materials and sunlight, It is also used in the energy sector.

이러한 초소수성은 두 가지 요인에 의해서 결정된다.This superhydrophobicity is determined by two factors.

그 중 첫 번째는 화학적 요인으로서, 고체의 표면 에너지나 액체 방울의 표면장력에 의해서 결정된다. 고체의 표면 에너지가 낮으면 소수성을 나타내고, 반대로 표면 에너지가 큰 경우 친수성을 나타낸다.The first of these is a chemical factor, which is determined by the surface energy of a solid or the surface tension of a liquid droplet. When the surface energy of a solid is low, it shows hydrophobicity, and, conversely, when the surface energy is high, it shows hydrophilicity.

두 번째는 물리적 요인으로서 고체 표면의 거칠기(roughness), 즉 표면의 거친 정도에 따라서 친수성 또는 소수성이 변한다. 고체 표면에 있어 상기 두 가지 요인을 적절히 제어하면 접촉각이 초소수성 표면이나 접촉각이 0°에 가까운 초친수성 표면을 형성하는 것이 가능하다.The second is a physical factor, and hydrophilicity or hydrophobicity changes depending on the roughness of the solid surface, that is, the roughness of the surface. When the above two factors are properly controlled on a solid surface, it is possible to form a superhydrophobic surface with a contact angle or a superhydrophilic surface with a contact angle close to 0°.

이와 같은 초소수성 표면은 높은 접촉각을 형성함으로써 빗물이나 이슬이 방울을 만들어 굴러 떨어지게 만드는데, 먼지나 때도 이 독특한 표면 구조로 인해 잘 들러붙지 않고, 물이 굴러 떨어지면서 실려나가게 된다.Such a superhydrophobic surface forms a high contact angle so that rain or dew drops form and roll off. Dust and dirt do not stick well due to this unique surface structure and are carried away as the water rolls off.

특히, 최근 녹색에너지인 태양광에너지에 대한 관심이 증폭되면서 고효율 태양전지 개발에 노력을 기울이고 있다. 이러한 태양전지의 효율은 투과도에 밀접한 관계가 있으므로 그 표면을 항상 깨끗하게 유지한다면 태양전지의 효율을 유지할 수 있을 것이다. 이때 투명 전도성 초발수 코팅기술을 이용할 경우 별도의 세정과정 없이 유리의 고투과도를 유지시켜 태양전지의 효율을 유지시키는 기술로 활용이 가능하다.In particular, as interest in solar energy, which is a green energy, has recently increased, efforts are being made to develop high-efficiency solar cells. Since the efficiency of the solar cell is closely related to the transmittance, if the surface is always kept clean, the efficiency of the solar cell can be maintained. In this case, if the transparent conductive super water-repellent coating technology is used, it can be used as a technology to maintain the efficiency of the solar cell by maintaining the high transmittance of the glass without a separate cleaning process.

대한민국 등록특허 제10-1362511호Republic of Korea Patent Registration No. 10-1362511

본 발명의 목적은 실리콘-탄소 복합체가 코팅된 나노입자를 태양광 패널 상에 코팅하여 고투과도 초발수 표면으로 개질할 수 있는 태양광 패널의 표면 처리 방법을 제공하는 것이다.An object of the present invention is to provide a method for surface treatment of a solar panel that can be modified into a high-permeability super water-repellent surface by coating nanoparticles coated with a silicon-carbon composite on a solar panel.

본 발명의 일 실시예에서는 알콕시 실란계 화합물을 나노입자 상에 기상으로 증착시켜 표면이 실리콘-탄소 복합체로 코팅된 나노입자를 제조하는 단계; 상기 실리콘-탄소 복합체로 코팅된 나노입자, 불소 실란계 화합물, 테트라플루오로에틸렌 및 코팅액과 혼합하는 단계; 및 상기 혼합 코팅액을 태양광 패널 상에 도포하는 단계를 포함하는 태양광 패널 표면 처리 방법을 제공한다. In an embodiment of the present invention, depositing an alkoxysilane-based compound on the nanoparticles in a vapor phase to prepare nanoparticles whose surface is coated with a silicon-carbon composite; mixing the silicon-carbon composite-coated nanoparticles with the fluorine-silane-based compound, tetrafluoroethylene and a coating solution; And it provides a solar panel surface treatment method comprising the step of applying the mixed coating solution on the solar panel.

상기 알콕시 실란계 화합물은 트리메톡시옥틸실란 (Trimethoxyoctylsilane), 트리메톡시메틸실란 (Trimethoxymethylsilane), 비닐트리메톡시실란 (Vinyltrimethoxysilane), 트리메톡시데실렌실란 (Trimethoxydecilenesilane) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. The alkoxy silane-based compound is from the group consisting of trimethoxyoctylsilane, trimethoxymethylsilane, vinyltrimethoxysilane, trimethoxydecilenesilane, and mixtures thereof. may be selected, but is not limited thereto.

상기 나노입자는 SiO2, ZnO, ITO, Al2O3 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나일 수 있으나, 이에 제한되지 않는다. The nanoparticles may be any one selected from the group consisting of SiO 2 , ZnO, ITO, Al 2 O 3 and mixtures thereof, but is not limited thereto.

상기 불소 실란계 화합물은 플루오로 알킬실란 (Fluoroalkyl Silane), 폴리테트라플루오로에틸렌 (Polytetrafluoroethylene), 폴리플루오로알콕시 (Perfluoroalkoxy) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. The fluorosilane-based compound may be selected from the group consisting of fluoroalkylsilane, polytetrafluoroethylene, polyfluoroalkoxy, and mixtures thereof, but is not limited thereto.

상기 실리콘-탄소 복합체로 코팅된 나노입자, 불소 실란계 화합물, 테트라플루오로에틸렌 및 코팅액과 혼합하는 단계는 나노입자 50 ~ 70 중량%, 불소 실란계 화합물 1 ~ 10 중량%, 테트라플루오로에틸렌 1 ~ 10 중량% 및 코팅액 20 ~ 40 중량% 혼합할 수 있으나, 이에 제한되지 않는다. The silicon-carbon composite-coated nanoparticles, fluorine silane-based compound, tetrafluoroethylene, and the step of mixing with the coating solution include nanoparticles 50 to 70% by weight, fluorosilane compound 1 to 10% by weight, tetrafluoroethylene 1 ~ 10% by weight and 20 to 40% by weight of the coating solution may be mixed, but is not limited thereto.

상기 코팅액은 아크릴레이트계 화합물, 가교제, 광개시제, 결합 개선제 및 점도 조절제를 포함할 수 있으나, 이에 제한되지 않는다. The coating solution may include, but is not limited to, an acrylate-based compound, a crosslinking agent, a photoinitiator, a bonding improver, and a viscosity modifier.

상기 아크릴레이트계 화합물은 2-에틸헥실 아크릴레이트(2-EHA); 2-에틸헥실아크릴레이트(2-EHA) 및 메틸 아크릴레이트(MA)의 혼합물; 2-에틸헥실 아크릴레이트(2-EHA), 아크릴 산(AA) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. The acrylate-based compound is 2-ethylhexyl acrylate (2-EHA); a mixture of 2-ethylhexyl acrylate (2-EHA) and methyl acrylate (MA); It may be selected from the group consisting of 2-ethylhexyl acrylate (2-EHA), acrylic acid (AA), and mixtures thereof, but is not limited thereto.

상기 가교제는 디큐밀 퍼옥사이드이고, 광개시제는 2,2'-아조-비스-이소부틸니트릴(2,2'-azo-bis-isobutyrylnitrile - AIBN)이고, 결합 개선제는 알킬설페이트이고 점도 조절제는 소수성 흄드 실리카일 수 있으나, 이에 제한되지 않는다. The cross-linking agent is dicumyl peroxide, the photoinitiator is 2,2'-azo-bis-isobutylnitrile (2,2'-azo-bis-isobutyrylnitrile - AIBN), the bond improver is an alkylsulfate and the viscosity modifier is a hydrophobic fumed It may be silica, but is not limited thereto.

상기 코팅액은 아크릴레이트계 화합물 70 ~ 90 중량%, 가교제 0.1 ~ 3 중량%, 광개시제 0.1 ~ 3 중량%, 결합 개선제 1 ~ 5 중량% 및 점도 조절제 5 ~ 30 중량%를 포함할 수 있으나, 이에 제한되지 않는다. The coating solution may include 70 to 90% by weight of an acrylate-based compound, 0.1 to 3% by weight of a crosslinking agent, 0.1 to 3% by weight of a photoinitiator, 1 to 5% by weight of a bonding improver, and 5 to 30% by weight of a viscosity modifier, but limited thereto doesn't happen

상기 혼합 코팅액을 태양광 패널 상에 도포하는 단계 이후에 UV를 조사하여 경화하는 단계를 더 포함할 수 있다.After the step of applying the mixed coating solution on the solar panel, the step of curing by irradiating UV light may be further included.

본 발명에 따른 알콕시 실란계 화합물이 코팅된 나노입자를 코팅액과 함께 태양광 패널에 도포하는 경우에는 태양광 패널 표면에 높은 광투과도를 갖는 발수성을 부여할 수 있으며, 그 방법이 단순하고 고가의 장비가 사용되지 않아 비용이 상대적으로 저렴하고 대면적의 기판상에 적용하여 대형화할 수 있다는 장점이 있다. 따라서 우천시 물방울이 표면에 젖지 않고 표면 위를 굴러다니면서 먼지를 쓸어내리는 자가세정효과가 나타나며, 이로 인해 표면에 먼지가 쌓이는 것을 방지하여 태양광의 효율을 일정하게 유지할 수 있다.When the nanoparticles coated with the alkoxysilane compound according to the present invention are applied to the solar panel together with the coating solution, water repellency having high light transmittance can be imparted to the surface of the solar panel, and the method is simple and expensive equipment Since it is not used, the cost is relatively low, and it has the advantage that it can be applied on a large-area substrate and can be enlarged. Therefore, the self-cleaning effect of water droplets rolling on the surface without getting wet in the rain and sweeping away the dust appears, thereby preventing dust from accumulating on the surface and maintaining constant solar efficiency.

도 1은 본 발명의 일 실시예에 따른 태양광 패널 표면 처리 방법의 순서도를 나타낸다.1 shows a flowchart of a method for surface treatment of a solar panel according to an embodiment of the present invention.

본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as "comprise" or "have" are intended to designate that a feature, number, step, operation, component, part, or a combination thereof described in the specification exists, but one or more other features It is to be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not

도 1은 본 발명의 일 실시예에 따른 태양광 패널 표면 처리 방법의 순서도를 나타낸 도면으로, 이하 도 1을 참조하여 본 발명을 보다 상세하게 설명한다. 1 is a view showing a flowchart of a method for surface treatment of a solar panel according to an embodiment of the present invention, and the present invention will be described in more detail with reference to FIG. 1 below.

본 발명의 일 실시예에서는 알콕시 실란계 화합물을 나노입자 상에 기상으로 증착시켜 표면이 실리콘-탄소 복합체로 코팅된 나노입자를 제조하는 단계(S110); 상기 실리콘-탄소 복합체로 코팅된 나노입자, 불소 실란계 화합물, 테트라플루오로에틸렌 및 코팅액과 혼합하는 단계(S120); 및 상기 혼합 코팅액을 태양광 패널 상에 도포하는 단계(S120)를 포함하는 태양광 패널 표면 처리 방법을 제공한다.In an embodiment of the present invention, depositing an alkoxysilane-based compound on the nanoparticles in a vapor phase to prepare nanoparticles having a surface coated with a silicon-carbon composite (S110); mixing the silicon-carbon composite-coated nanoparticles with the fluorine-silane-based compound, tetrafluoroethylene and a coating solution (S120); And it provides a solar panel surface treatment method comprising the step (S120) of applying the mixed coating solution on the solar panel.

상기 나노입자를 제조하는 단계(S110)는 나노입자 표면을 알콕시 실란계 화합물로 코팅하여 초소수성을 갖는 나노입자를 제조하는 단계로 열 증착 방법에 의해서 알콕시 실란계 화합물을 기상으로 전환시켜 나노입자에 증착시킨다. The step of preparing the nanoparticles (S110) is a step of preparing nanoparticles having superhydrophobicity by coating the surface of the nanoparticles with an alkoxysilane-based compound. vaporize.

종래 분말 입자의 표면을 기능성 코팅막으로 코팅하기 위해서는 액상 코팅법을 사용하여 왔다. 이러한 액상 코팅법은 얇고 균일한 코팅막을 형성하기 어렵다는 단점이 있다. 특히, 초소수성 코팅의 경우 액상 코팅법은 코팅된 표면이 접촉각이 다소 낮아 고도의 초소수성 표면을 얻기 어렵다.In order to coat the surface of the conventional powder particles with a functional coating film, a liquid coating method has been used. This liquid coating method has a disadvantage in that it is difficult to form a thin and uniform coating film. In particular, in the case of superhydrophobic coating, in the liquid coating method, it is difficult to obtain a highly superhydrophobic surface because the coated surface has a rather low contact angle.

본 발명은 이러한 종래기술의 단점을 극복하기 위한 것으로 분말 입자의 표면을 실리콘 유기 고분자의 기상 증착을 이용하여 코팅한다는 점에서 기술적 특징이 있다. 이러한 기상 증착 방법은 액상 증착 방법과는 달리 용매를 필요로 하지 않기 때문에 친환경적이다.The present invention has a technical feature in that the surface of the powder particles is coated using vapor deposition of a silicon organic polymer in order to overcome the disadvantages of the prior art. This vapor deposition method is environmentally friendly because it does not require a solvent unlike the liquid phase deposition method.

상기 방법은 액상의 알콕시 실란계 화합물을 이용하여 기상 증착할 수 있다는 점에서 기술적 특징을 갖는다. 즉, 알콕시 실란계 화합물을 이용하여 용액 상태로 사용하여 습윤-화학적 방법에 의해서 증착하는 것이 아니라, 건식-화학적 방법에 의해서 증착할 수 있다.The method has a technical feature in that it can be vapor-deposited using a liquid alkoxysilane-based compound. That is, the alkoxysilane-based compound may be used in a solution state and deposited by a dry-chemical method, rather than by a wet-chemical method.

구체적으로 반응 용기에 액상의 알콕시 실란계 화합물을 넣고 그 위로 그물 형태의 분리막을 위치시켜, 분리막 상부에 실리카 나노입자를 위치시키고, 반응 용기를 밀봉한 다음 2080 ~ 300℃의 온도에서 4 ~ 10시간 가열하여 알콕시 실란계 화합물이 코팅된 실리카 나노입자를 수득할 수 있다. Specifically, a liquid alkoxysilane-based compound is placed in a reaction vessel, a net-type separation membrane is placed on it, silica nanoparticles are placed on the separation membrane, and the reaction vessel is sealed, and then at a temperature of 2080 to 300° C. for 4 to 10 hours. By heating, silica nanoparticles coated with an alkoxysilane-based compound can be obtained.

상기 알콕시 실란계 화합물은 트리메톡시옥틸실란 (Trimethoxyoctylsilane), 트리메톡시메틸실란 (Trimethoxymethylsilane), 비닐트리메톡시실란 (Vinyltrimethoxysilane), 트리메톡시데실렌실란 (Trimethoxydecilenesilane) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. The alkoxy silane-based compound is from the group consisting of trimethoxyoctylsilane, trimethoxymethylsilane, vinyltrimethoxysilane, trimethoxydecilenesilane, and mixtures thereof. may be selected, but is not limited thereto.

또한, 본 발명에 있어서, 상기 나노입자는 고투과도를 갖는 입자를 사용하는 것이 바람직하며, 그 예로는 SiO2, ZnO, ITO 및 Al2O3 나노 입자가 있다.In addition, in the present invention, it is preferable to use particles having high transmittance as the nanoparticles, and examples thereof include SiO 2 , ZnO, ITO and Al 2 O 3 nanoparticles.

상기 방법에 의하여 알콕시 실란계 화합물로 코팅된 나노입자는 알콕시 실란계 화합물에 의하여 실라카 나노입자가 소수성 성질을 가지게 된다. As for the nanoparticles coated with the alkoxy silane-based compound by the above method, the silica nanoparticles have hydrophobic properties by the alkoxy silane-based compound.

일반적으로 초발수성은 초발수층이 갖는 투과도와 반비례하는 관계를 갖으며 표면의 초발수성은 표면의 거칠기가 클수록 더 큰 값을 갖는다. 또한 표면의 거칠기가 클수록 표면에서의 산란현상은 더 크게 일어나고 그 결과 초발수층의 투과도는 감소하게 된다. In general, superhydrophobicity has a relationship in inverse proportion to the permeability of the superhydrophobic layer, and the superhydrophobicity of the surface has a larger value as the roughness of the surface increases. In addition, the greater the roughness of the surface, the greater the scattering on the surface occurs, and as a result, the transmittance of the super water-repellent layer is reduced.

따라서, 이러한 산란 현상을 피하기 위해서는 가시광선영역(400 ~ 700 nm) 보다 훨씬 작은 표면 거칠기를 가져야 한다. 따라서 초발수 층을 형성하는 나노입자의 크기는 100 nm 이하의 지름을 갖는 것이 바람직하며, 더욱 바람직하게는 1 nm 내지 100 nm 의 지름을 갖는 것이 바람직하다.Therefore, in order to avoid such a scattering phenomenon, it should have a surface roughness much smaller than that of the visible light region (400 to 700 nm). Therefore, the size of the nanoparticles forming the superhydrophobic layer preferably has a diameter of 100 nm or less, and more preferably has a diameter of 1 nm to 100 nm.

상기 제조된 표면이 실리콘-탄소 복합체로 코팅된 나노입자는 태양광 패널 표면에 도포하기 위하여 불소 실란계 화합물, 테트라플루오로에틸렌 및 코팅액과 혼합된다(S120). The prepared surface of the nanoparticles coated with the silicon-carbon composite is mixed with a fluorine-silane-based compound, tetrafluoroethylene, and a coating solution to be applied to the surface of the solar panel (S120).

상기 실리콘-탄소 복합체로 코팅된 나노입자, 불소 실란계 화합물, 테트라플루오로에틸렌 및 코팅액과 혼합하는 단계는 나노입자 50 ~ 70 중량%, 불소 실란계 화합물 1 ~ 10 중량%, 테트라플루오로에틸렌 1 ~ 10 중량% 및 코팅액 20 ~ 40 중량% 혼합할 수 있으나, 이에 제한되지 않는다. The silicon-carbon composite-coated nanoparticles, fluorine silane-based compound, tetrafluoroethylene, and the step of mixing with the coating solution include nanoparticles 50 to 70% by weight, fluorosilane compound 1 to 10% by weight, tetrafluoroethylene 1 ~ 10% by weight and 20 to 40% by weight of the coating solution may be mixed, but is not limited thereto.

상기 실리콘-탄소 복합체로 코팅된 나노입자는 총 중량 대비 50 ~ 70 중량% 첨가되는 것이 바람직하고, 50 중량% 미만으로 첨가되는 경우 초발수 효과를 발휘하기 어렵고, 70 중량%를 초과하여 첨가되는 경우에는 상대적으로 코팅액의 함량이 줄어들어 접착력이 약해지는 단점이 있다. The silicon-carbon composite-coated nanoparticles are preferably added in an amount of 50 to 70% by weight relative to the total weight, and when added in an amount of less than 50% by weight, it is difficult to exhibit a super water-repellent effect, and when added in excess of 70% by weight There is a disadvantage in that the content of the coating solution is relatively reduced and the adhesive strength is weakened.

상기 불소 실란계 화합물은 플루오로 알킬실란 (Fluoroalkyl Silane), 폴리테트라플루오로에틸렌 (Polytetrafluoroethylene), 폴리플루오로알콕시 (Perfluoroalkoxy) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. The fluorosilane-based compound may be selected from the group consisting of fluoroalkylsilane, polytetrafluoroethylene, polyfluoroalkoxy, and mixtures thereof, but is not limited thereto.

상기 플루오로 알킬실란 화합물은 상업적인 제품으로서 입수 가능한데, 예를 들어 Degussa AG사의 상표명 DYNASYLAN® F 8261 (트리데카플루오로옥틸트리에톡시실린)이 있으며, 1H, 1H, 2H, 2H-퍼플루오로데실트리클로로실란 (FDTS), 1H, 1H, 2H, 2H-퍼플루오로옥틸트리에톡시실란 및 1H, 1H, 2H, 2H-퍼플루오로옥틸트리클로로실란을 포함할 수 있으며, 바람직하게는 1H, 1H, 2H, 2H-퍼플루오로데실트리클로로실란을 사용한다. Such fluoroalkylsilane compounds are available as commercial products, for example under the trade name DYNASYLAN ® F 8261 (tridecafluorooctyltriethoxycillin) from Degussa AG, 1H, 1H, 2H, 2H-perfluorodecyl trichlorosilane (FDTS), 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane and 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane, preferably 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane is used.

상기 불소 실란계 화합물은 총 중량 대비 1 ~ 10 중량% 첨가되는 것이 바람직하고, 1 중량% 미만으로 첨가되는 경우 하기의 실험예와 같은 시너지 효과를 발휘하기 어렵고, 10 중량%를 초과하여 첨가하는 경우에는 비용 측면에서 바람직하지 않다. The fluorosilane-based compound is preferably added in an amount of 1 to 10% by weight relative to the total weight, and when added in an amount of less than 1% by weight, it is difficult to exert a synergistic effect as in the following experimental example, and when added in excess of 10% by weight This is not preferable from a cost standpoint.

상기 테트라플루오로에틸렌은 상기 불소 실란계 화합물과 함께 첨가하는 경우에 초발수 효과를 증가시키는 것을 확인할 수 있었다. 바람직하게는 상기 불소 실란계 화합물과 테트라플루오로에틸렌은 1:1의 중량비로 첨가될 수 있다. When the tetrafluoroethylene is added together with the fluorine silane compound, it was confirmed that the super water-repellent effect was increased. Preferably, the fluorine silane compound and tetrafluoroethylene may be added in a weight ratio of 1:1.

상기 테트라플루오로에틸렌은 불소 실란계 화합물과 마찬가지로 총 중량 대비 1 ~ 10 중량% 첨가되는 것이 바람직하고, 1 중량% 미만으로 첨가되는 경우 하기의 실험예와 같은 시너지 효과를 발휘하기 어렵다.The tetrafluoroethylene is preferably added in an amount of 1 to 10% by weight based on the total weight like the fluorine silane compound, and when it is added in an amount of less than 1% by weight, it is difficult to exert a synergistic effect as in the following experimental example.

상기 코팅액은 아크릴레이트계 화합물, 가교제, 광개시제, 결합 개선제 및 점도 조절제를 포함할 수 있으나, 이에 제한되지 않는다. The coating solution may include, but is not limited to, an acrylate-based compound, a crosslinking agent, a photoinitiator, a bonding improver, and a viscosity modifier.

또한 상기 코팅액은 총 중량 대비 20 ~ 40 중량% 첨가되는 것이 바람직하고, 코팅액이 20 중량% 미만으로 첨가되는 경우에는 접착력이 약하다는 단점이 있고, 40 중량%를 초과하여 첨가되는 경우에는 상대적으로 실리콘-탄소 복합체로 코팅된 나노입자의 첨가량이 감소하여 초발수 효과가 약해지는 단점이 있다. In addition, the coating solution is preferably added in an amount of 20 to 40 wt% based on the total weight, and when the coating solution is added in an amount of less than 20 wt%, the adhesive strength is weak, and when added in excess of 40 wt%, the silicone is relatively - There is a disadvantage in that the superhydrophobic effect is weakened due to the decrease in the amount of nanoparticles coated with the carbon composite.

상기 아크릴레이트계 화합물은 2-에틸헥실 아크릴레이트(2-EHA); 2-에틸헥실아크릴레이트(2-EHA) 및 메틸 아크릴레이트(MA)의 혼합물; 2-에틸헥실 아크릴레이트(2-EHA), 아크릴 산(AA) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. The acrylate-based compound is 2-ethylhexyl acrylate (2-EHA); a mixture of 2-ethylhexyl acrylate (2-EHA) and methyl acrylate (MA); It may be selected from the group consisting of 2-ethylhexyl acrylate (2-EHA), acrylic acid (AA), and mixtures thereof, but is not limited thereto.

상기 아크릴레이트계 화합물은 코팅액 총 중량 대비 70 내지 90 중량%로 포함될 수 있다.The acrylate-based compound may be included in an amount of 70 to 90% by weight based on the total weight of the coating solution.

상기 가교제는 사슬 모양 고분자 사슬 사이에서 가교 역할을 하는 물질로, 가교는 수지(樹脂)에 경도(硬度)나 탄력성 등 기계적 강도와 화학적 안정성을 부여하는 것으로, 유기과산화물 가교제를 사용할 수 있으며, 상기 유기과산화물 가교제의 구체적인 예로는, DTBP(Di-t-butyl peroxide), 디큐밀 퍼옥사이드(Dicumyl peroxide), 디-t-아밀 퍼옥사이드(Di-t-amyl peroxide), 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산(2,5-Dimethyl-2,5-di(t-butylperoxy)hexane) 등을 들 수 있으나 본 발명이 이에 제한되지 않는다. 또한 상기 가교제의 함유량은 특별히 한정되지 않으나 코팅액 총 중량 대비 0.1 내지 3 중량%로 포함될 수 있다.The crosslinking agent is a material that acts as a crosslinking agent between the chain polymer chains, and the crosslinking imparts mechanical strength and chemical stability such as hardness or elasticity to the resin. An organic peroxide crosslinking agent may be used, and the organic Specific examples of the peroxide crosslinking agent include DTBP (Di-t-butyl peroxide), dicumyl peroxide, di-t-amyl peroxide, 2,5-dimethyl-2, 5-di(t-butylperoxy)hexane (2,5-Dimethyl-2,5-di(t-butylperoxy)hexane), and the like, but the present invention is not limited thereto. In addition, the content of the crosslinking agent is not particularly limited, but may be included in an amount of 0.1 to 3% by weight based on the total weight of the coating solution.

상기 광개시제는 공지의 것이라면 제한되지 않고 사용될 수 있으며, 일 예로 양이온 종이나 루이스산을 만들어 내는 양이온성 광개시제, 라디칼을 만들어내는 광개시제 또는 이들의 조합으로 사용될 수 있다. The photoinitiator may be used without limitation as long as it is known, for example, a cationic photoinitiator generating a cationic species or Lewis acid, a photoinitiator generating a radical, or a combination thereof.

예를 들면, AIBN(azobisisobutyronitrile), ABCN(1,1'-Azobis(cyclohexanecarbonitrile)) 또는 2,2'-아조비스-2,4-디메틸발레로니트릴(2,2'-azobis-(2,4-dimethylvaleronitrile)) 등의 아조계 개시제 또는 BPO(benzoyl peroxide) 또는 DTBP(di-tert-butyl peroxide) 등의 과산화물계 개시제 등이 적용될 수 있다. For example, AIBN (azobisisobutyronitrile), ABCN (1,1'-Azobis (cyclohexanecarbonitrile)) or 2,2'-azobis-2,4-dimethylvaleronitrile (2,2'-azobis- (2,4) -dimethylvaleronitrile)), an azo-based initiator, or a peroxide-based initiator such as BPO (benzoyl peroxide) or DTBP (di-tert-butyl peroxide) may be applied.

상기 광개시제는 코팅액 총 중량 대비 0.1 내지 3 중량%로 포함될 수 있으며, 광개시제의 양이 조성물의 0.1 중량% 미만인 경우, UV에 의해 경화되는데 어려움을 갖는 경향이 있다. 광개시제의 양이 코팅액 총 중량 대비 3 중량% 초과인 경우, 신속하게 경화하는 경향이 있고, 나아가, 보다 많은 양의 광개시제는 낮은 분자량을 초래할 수 있고, 이는 낮은 응집 강도를 야기할 수 있다. The photoinitiator may be included in an amount of 0.1 to 3% by weight relative to the total weight of the coating solution, and when the amount of the photoinitiator is less than 0.1% by weight of the composition, it tends to have difficulty in curing by UV. When the amount of the photoinitiator is more than 3% by weight relative to the total weight of the coating solution, it tends to cure rapidly, and furthermore, a higher amount of the photoinitiator may result in a low molecular weight, which may result in a low cohesive strength.

결합 개선제는 반응을 촉진시키기 위한 것으로, 시판되는 통상적인 무기산의 첨가가 가능하지만, 알킬설페이트가 바람직하며, 상기 알킬설페이트는 에틸설페이트, 디에틸설페이트 또는 이들의 혼합물을 들 수 있다.The binding improver is for accelerating the reaction, and it is possible to add a commercially available inorganic acid, but an alkyl sulfate is preferable, and the alkyl sulfate may include ethyl sulfate, diethyl sulfate, or a mixture thereof.

결합 개선제로서, 알킬설페이트는 코팅액 총 중량 대비 1 내지 5 중량%가 포함되는 것이 바람직하다. 1 중량% 이하인 경우, 반응에 관여하지 않는 것으로 보이며, 5 중량% 이상인 경우에는 임계치로 보여서 추가 첨가를 하여도 반응 개선에 변화가 없다.As the bonding improver, the alkyl sulfate is preferably included in an amount of 1 to 5% by weight based on the total weight of the coating solution. If it is 1 wt% or less, it does not appear to be involved in the reaction, and if it is 5 wt% or more, it is seen as a critical value, so there is no change in reaction improvement even if additional addition is added.

점도 조절제는 코팅액의 점도를 조절하며, 소수성 흄드 실리카를 코팅액에 첨가하는 경우 코팅액의 점도를 조절할 수 있다. 상기 점도 조절제는 코팅액 총 중량 대비 5 ~ 30 중량%를 포함할 수 있으나, 이에 제한되지 않는다. The viscosity modifier controls the viscosity of the coating solution, and when hydrophobic fumed silica is added to the coating solution, the viscosity of the coating solution can be adjusted. The viscosity modifier may include 5 to 30% by weight based on the total weight of the coating solution, but is not limited thereto.

소수성 흄드 실리카는 무기 실리카의 오가노실란 화합물(소수성 개질제)에 의한 표면 처리를 통해서 얻어지며, 일반적으로는 생산 공정에 따라서 소수성 흄드 실리카 및 침강 실리카로서 분류된다. 소수성 흄드 실리카 분말은 200 내지 400℃의 고온에서 소수성 흄드 실리카 분말을 실란으로 표면 화학 처리를 통해서 얻어질 수 있고, 여기서, 일반적으로 사용되는 화학 공정은 유동층 공정(fluidized bed process)이다.Hydrophobic fumed silica is obtained through surface treatment of inorganic silica with an organosilane compound (hydrophobic modifier), and is generally classified as hydrophobic fumed silica and precipitated silica according to the production process. The hydrophobic fumed silica powder may be obtained through surface chemical treatment of hydrophobic fumed silica powder with silane at a high temperature of 200 to 400° C., wherein a chemical process generally used is a fluidized bed process.

소수성 흄드 실리카는 또한 상업적으로 구입 가능한, 예를 들어, Evonik Degussa Co., Ltd.로부터 제품 AEROSIL174; R972, R974, R104, R106, R202, R812, R812S, R816, R7200, R8200, R711, 및 R719 등일 수 있다. Hydrophobic fumed silica is also commercially available, for example, from Evonik Degussa Co., Ltd. under the product AEROSIL®; R972, R974, R104, R106, R202, R812, R812S, R816, R7200, R8200, R711, and R719, and the like.

본 발명의 태양광 패널 표면 처리 기술을 태양광 패널 표면에 적용하는 경우, 코팅액의 점도는 본 발명의 기술 적용을 용이하게 할 수 있다. 예를 들어 기설치된 태양광 패널은 일정한 각도로 기울어져 있으므로 점도가 낮을 경우 기설치된 태양광 패널에 적용시 코팅액이 흘러내리기 때문에 공정에 어려움이 있을 수 있다. 이러한 경우 점도 조절제로 코팅액의 점도를 조절하여 제조 공정을 유리하게 할 수 있다. When the solar panel surface treatment technology of the present invention is applied to the solar panel surface, the viscosity of the coating solution may facilitate the application of the technology of the present invention. For example, since the installed solar panel is inclined at a certain angle, if the viscosity is low, there may be difficulties in the process because the coating liquid flows down when applied to the installed solar panel. In this case, the viscosity of the coating solution may be adjusted with a viscosity modifier to make the manufacturing process advantageous.

나노입자 등이 혼합된 코팅액은 태양광 패널 상에 도포되는 두께는 유동적으로 조절될 수 있으나, 코팅액의 두께는 광투과도에 영향을 미칠 수 있고, 따라서 두께가 두꺼워질수록 투과도가 낮아지기 때문에 균일하고 얇게 제조하는 것이 중요하다. 따라서 두께는 1cm를 넘지 않는 것이 바람직하다. The thickness of the coating solution mixed with nanoparticles, etc., applied on the solar panel can be flexibly controlled, but the thickness of the coating solution can affect the light transmittance, and therefore the transmittance decreases as the thickness increases. Manufacturing is important. Therefore, it is preferable that the thickness does not exceed 1 cm.

상기 혼합 코팅액을 태양광 패널 상에 도포하는 단계 이후에 UV를 조사하여 경화하는 단계를 더 포함할 수 있다. 상기 경화 단계는 약 10 ~ 60분간 수행될 수 있다. After the step of applying the mixed coating solution on the solar panel, the step of curing by irradiating UV light may be further included. The curing step may be performed for about 10 to 60 minutes.

일반적으로 태양광 패널은 태양광에 노출되어 있기 때문에 이미 설치된 태양광 패널에 본 발명의 표면 처리 방법을 적용하는 경우에는 특별히 UV 조사 단계를 생략할 수 있다.In general, since the solar panel is exposed to sunlight, when the surface treatment method of the present invention is applied to an already installed solar panel, the UV irradiation step can be specifically omitted.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

<실시예> <Example>

1. 실리콘-탄소 복합체가 코팅된 실리카 나노 입자의 제조1. Preparation of silica nanoparticles coated with silicon-carbon composites

스테인리스 스틸 반응 용기에 트리메톡시옥틸실란(Trimethoxyoctylsilane)을 넣고 그 위로 그물 형태의 분리막을 위치시키고, 분리막 상부에 평균 12nm의 지름을 갖는 실리카 나노입자를 채우고 반응 용기를 밀봉하고, 280℃ 내지 300℃에서 6시간 동안 가열하여 트리메톡시옥틸실란이 코팅된 실리카 나노입자를 제조하였다. Put trimethoxyoctylsilane in a stainless steel reaction vessel, place a net-type separator thereon, fill the upper part of the separator with silica nanoparticles having an average diameter of 12 nm, seal the reaction vessel, and 280°C to 300°C was heated for 6 hours to prepare trimethoxyoctylsilane-coated silica nanoparticles.

2. 트리메톡시옥틸실란이 코팅된 실리카 나노입자를 코팅액을 이용하여 코팅2. Coating silica nanoparticles coated with trimethoxyoctylsilane using a coating solution

상기 제조된 실리카 나노입자를 기재 상에 코팅하기 위한 코팅액을 제조하였다. A coating solution for coating the prepared silica nanoparticles on a substrate was prepared.

코팅액 조성Coating solution composition 아크릴레이트계 화합물Acrylate-based compounds 2-에틸헥실 아크릴레이트(2-EHA)2-Ethylhexyl Acrylate (2-EHA) 80 wt%80 wt% 가교제crosslinking agent 디큐밀 퍼옥사이드dicumyl peroxide 1 wt%1 wt% 광개시제photoinitiator AIBNAIBN 1 wt%1 wt% 결합 개선제bond improver 에틸설페이트ethyl sulfate 3 wt%3 wt% 점도 조절제viscosity modifier 소수성 흄드 실리카Hydrophobic Fumed Silica 15 wt%15 wt%

상기 트리메톡시옥틸실란이 코팅된 실리카 나노입자 60 중량%, 상기 코팅액 30 중량%, 플루오로 알킬실란(FDTS) 5 중량% 및 테트라플루오로에틸렌(PTFE) 5 중량%를 혼합하여 기재상에 0.5cm의 두께로 코팅하고 평탄화한 후, UV를 조사하여 경화하였다. 60% by weight of the trimethoxyoctylsilane-coated silica nanoparticles, 30% by weight of the coating solution, 5% by weight of fluoroalkylsilane (FDTS), and 5% by weight of tetrafluoroethylene (PTFE) were mixed on the substrate to 0.5 After coating to a thickness of cm and planarization, it was cured by irradiating UV.

<비교예 1><Comparative Example 1>

플루오로 알킬실란(FDTS) 및 테트라플루오로에틸렌(PTFE)을 제외하고, 트리메톡시옥틸실란이 코팅된 실리카 나노입자 60 중량%, 상기 코팅액 40 중량%를 혼합하여 기재상에 코팅하고 평탄화한 후, UV를 조사하여 경화하였다.Except for fluoroalkylsilane (FDTS) and tetrafluoroethylene (PTFE), 60% by weight of trimethoxyoctylsilane-coated silica nanoparticles and 40% by weight of the coating solution were mixed, coated on a substrate, and planarized , was cured by UV irradiation.

<비교예 2><Comparative Example 2>

플루오로 알킬실란(FDTS)을 제외하고, 상기 트리메톡시옥틸실란이 코팅된 실리카 나노입자 60 중량%, 상기 코팅액 30 중량% 및 테트라플루오로에틸렌(PTFE) 10 중량%를 혼합하여 기재상에 코팅하고 평탄화한 후, UV를 조사하여 경화하였다.Except for fluoroalkylsilane (FDTS), 60% by weight of the trimethoxyoctylsilane-coated silica nanoparticles, 30% by weight of the coating solution, and 10% by weight of tetrafluoroethylene (PTFE) are mixed and coated on a substrate And after planarization, it was cured by irradiating UV.

<비교예 3><Comparative Example 3>

테트라플루오로에틸렌(PTFE)을 제외하고 상기 트리메톡시옥틸실란이 코팅된 실리카 나노입자 60 중량%, 상기 코팅액 30 중량% 및 플루오로 알킬실란(FDTS) 10 중량% 를 혼합하여 기재상에 코팅하고 평탄화한 후, UV를 조사하여 경화하였다.Except for tetrafluoroethylene (PTFE), 60% by weight of the trimethoxyoctylsilane-coated silica nanoparticles, 30% by weight of the coating solution, and 10% by weight of fluoroalkylsilane (FDTS) are mixed and coated on a substrate, After planarization, it was cured by UV irradiation.

<비교예 4><Comparative Example 4>

상기 트리메톡시옥틸실란이 코팅된 실리카 나노입자 45 중량%, 상기 코팅액 45 중량%, 플루오로 알킬실란(FDTS) 5 중량% 및 테트라플루오로에틸렌(PTFE) 5 중량%를 혼합하여 기재상에 코팅하고 평탄화한 후, UV를 조사하여 경화하였다.45% by weight of the trimethoxyoctylsilane-coated silica nanoparticles, 45% by weight of the coating solution, 5% by weight of fluoroalkylsilane (FDTS) and 5% by weight of tetrafluoroethylene (PTFE) are mixed and coated on a substrate And after planarization, it was cured by irradiating UV.

<비교예 5><Comparative Example 5>

상기 트리메톡시옥틸실란이 코팅된 실리카 나노입자 30 중량%, 상기 코팅액 60 중량%, 플루오로 알킬실란 5 중량% 및 테트라플루오로에틸렌(PTFE) 5 중량%를 혼합하여 기재상에 코팅하고 평탄화한 후, UV를 조사하여 경화하였다.30% by weight of the trimethoxyoctylsilane-coated silica nanoparticles, 60% by weight of the coating solution, 5% by weight of fluoroalkylsilane and 5% by weight of tetrafluoroethylene (PTFE) were mixed and coated on a substrate and planarized. Then, it was cured by UV irradiation.

<실험예><Experimental example>

1. 코팅 표면의 접촉각 측정1. Measurement of the contact angle of the coating surface

상기 실시예 및 비교예로 제조된 코팅 표면에 3 ㎕의 물을 떨어뜨린 후 물방울과 표면이 이루는 접촉각을 측정하였다. 그 결과를 [표 2]에 나타내었으며 명시된 접촉각은 3번의 평균값을 사용하였다. After dropping 3 μl of water on the coating surface prepared in Examples and Comparative Examples, the contact angle between the water droplet and the surface was measured. The results are shown in [Table 2], and the average value of 3 times was used for the specified contact angle.

실시예Example 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 접촉각contact angle 168.24°168.24° 147.58°147.58° 150.65°150.65° 148.42°148.42° 132.35°132.35° 110.85°110.85°

상기 [표 2]를 참고하면, 실시예의 경우 접촉각이 168.24°로 가장 높았으며, 비교예의 경우 실시예에 비하여 비교적 낮은 접촉각을 나타내었다. Referring to [Table 2], in the case of the Example, the contact angle was the highest at 168.24°, and the comparative example showed a relatively low contact angle compared to the Example.

플루오로 알킬실란(FDTS) 또는 테트라플루오로에틸렌(PTFE) 중 어느 하나라도 제외하는 경우 모두 첨가된 실시예에 비하여 접촉각이 감소하는 것을 확인할 수 있었으며, 코팅액이 증가하는 경우에는 트리메톡시옥틸실란이 코팅된 실리카 나노입자가 코팅액 내부에 존재하게 되어 접촉각이 작아지는 것으로 판단된다. When any one of fluoroalkylsilane (FDTS) or tetrafluoroethylene (PTFE) was excluded, it was confirmed that the contact angle decreased compared to the example in which all were added, and when the coating solution was increased, trimethoxyoctylsilane was It is judged that the coated silica nanoparticles are present in the coating solution, thereby reducing the contact angle.

2. 광투과도2. Light transmittance

광 투과율은 UV-Vis-NIR spectroscopy에 의해 측정되었다. 투과율을 결정하기 위해 스캔된 파장 범위는 350-700 nm이었다.The light transmittance was measured by UV-Vis-NIR spectroscopy. The wavelength range scanned to determine transmittance was 350-700 nm.

실시예Example 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 광투과도light transmittance 97%97% 96%96% 97%97% 97%97%

[표 3]을 참고하면, 광투과율은 모두 90%이상을 나타내어 태양광 패널 표면에 적용하는 경우에도 태양광 효율에 영향을 주지 않을 것으로 판단된다. Referring to [Table 3], the light transmittance is all 90% or more, it is judged that even when applied to the surface of the solar panel does not affect the solar efficiency.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the present invention, for those of ordinary skill in the art, this specific description is only a preferred embodiment, and it is clear that the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

알콕시 실란계 화합물을 나노입자 상에 기상으로 증착시켜 표면이 실리콘-탄소 복합체로 코팅된 나노입자를 제조하는 단계;
상기 실리콘-탄소 복합체로 코팅된 나노입자, 불소 실란계 화합물, 테트라플루오로에틸렌 및 코팅액과 혼합하는 단계;
상기 혼합 코팅액을 태양광 패널 상에 도포하는 단계를 포함하는 태양광 패널 표면 처리 방법.
depositing an alkoxysilane-based compound on the nanoparticles in a vapor phase to prepare nanoparticles having a surface coated with a silicon-carbon composite;
mixing the silicon-carbon composite-coated nanoparticles with the fluorine-silane-based compound, tetrafluoroethylene and a coating solution;
Solar panel surface treatment method comprising the step of applying the mixed coating solution on the solar panel.
제1항에 있어서,
상기 알콕시 실란계 화합물은 트리메톡시옥틸실란 (Trimethoxyoctylsilane), 트리메톡시메틸실란 (Trimethoxymethylsilane), 비닐트리메톡시실란 (Vinyltrimethoxysilane), 트리메톡시데실렌실란 (Trimethoxydecilenesilane) 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나인 태양광 패널 표면 처리 방법.
According to claim 1,
The alkoxy silane-based compound is from the group consisting of trimethoxyoctylsilane, trimethoxymethylsilane, vinyltrimethoxysilane, trimethoxydecilenesilane, and mixtures thereof. Any one selected solar panel surface treatment method.
제1항에 있어서,
상기 나노입자는 SiO2, ZnO, ITO, Al2O3 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나인 태양광 패널 표면 처리 방법.

According to claim 1,
The nanoparticles are any one selected from the group consisting of SiO 2 , ZnO, ITO, Al 2 O 3 and mixtures thereof.

제1항에 있어서,
상기 불소 실란계 화합물은 플루오로 알킬실란 (Fluoroalkyl Silane), 폴리테트라플루오로에틸렌 (Polytetrafluoroethylene), 폴리플루오로알콕시 (Perfluoroalkoxy) 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나인 태양광 패널 표면 처리 방법.
According to claim 1,
The fluorine silane-based compound is any one selected from the group consisting of fluoroalkylsilane, polytetrafluoroethylene, polyfluoroalkoxy, and mixtures thereof A solar panel surface treatment method.
제1항에 있어서,
상기 혼합 단계는 나노입자 50 ~ 70 중량%, 불소 실란계 화합물 1 ~ 10 중량%, 테트라플루오로에틸렌 1 ~ 10 중량% 및 코팅액 20 ~ 40 중량% 혼합하는 태양광 패널 표면 처리 방법.
According to claim 1,
The mixing step is a solar panel surface treatment method of mixing 50 to 70% by weight of nanoparticles, 1 to 10% by weight of a fluorine silane compound, 1 to 10% by weight of tetrafluoroethylene, and 20 to 40% by weight of the coating solution.
제1항에 있어서,
상기 코팅액은 아크릴레이트계 화합물, 가교제, 광개시제, 결합 개선제 및 점도 조절제를 포함하는 태양광 패널 표면 처리 방법.
According to claim 1,
The coating solution is a solar panel surface treatment method comprising an acrylate-based compound, a crosslinking agent, a photoinitiator, a bonding improver and a viscosity modifier.
제6항에 있어서,
상기 아크릴레이트계 화합물은 2-에틸헥실 아크릴레이트(2-EHA); 2-에틸헥실아크릴레이트(2-EHA) 및 메틸 아크릴레이트(MA)의 혼합물; 2-에틸헥실 아크릴레이트(2-EHA), 아크릴 산(AA) 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나인 태양광 패널 표면 처리 방법.
7. The method of claim 6,
The acrylate-based compound is 2-ethylhexyl acrylate (2-EHA); a mixture of 2-ethylhexylacrylate (2-EHA) and methyl acrylate (MA); A method for surface treatment of a solar panel selected from the group consisting of 2-ethylhexyl acrylate (2-EHA), acrylic acid (AA), and mixtures thereof.
제6항에 있어서,
상기 가교제는 디큐밀 퍼옥사이드이고, 광개시제는 2,2'-아조-비스-이소부틸니트릴(2,2'-azo-bis-isobutyrylnitrile - AIBN)이고, 결합 개선제는 알킬설페이트이고 점도 조절제는 소수성 흄드 실리카인 태양광 패널 표면 처리 방법.
7. The method of claim 6,
the crosslinking agent is dicumyl peroxide, the photoinitiator is 2,2'-azo-bis-isobutylnitrile (2,2'-azo-bis-isobutyrylnitrile - AIBN), the bond improver is an alkylsulfate and the viscosity modifier is a hydrophobic fumed A method of surface treatment of a solar panel that is silica.
제6항에 있어서,
상기 코팅액은 아크릴레이트계 화합물 70 ~ 90 중량%, 가교제 0.1 ~ 3 중량%, 광개시제 0.1 ~ 3 중량%, 결합 개선제 1 ~ 5 중량% 및 점도 조절제 5 ~ 30 중량%를 포함하는 태양광 패널 표면 처리 방법.
7. The method of claim 6,
The coating solution is a solar panel surface treatment comprising 70 to 90% by weight of an acrylate-based compound, 0.1 to 3% by weight of a crosslinking agent, 0.1 to 3% by weight of a photoinitiator, 1 to 5% by weight of a bonding improver, and 5 to 30% by weight of a viscosity modifier method.
제1항에 있어서,
상기 도포 단계 이후에 UV를 조사하는 경화 단계를 더 포함하는 태양광 패널 표면 처리 방법.
According to claim 1,
Solar panel surface treatment method further comprising a curing step of irradiating UV after the application step.
KR1020200116245A 2020-09-10 2020-09-10 Method for surface treatment of solar panel KR102541027B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200116245A KR102541027B1 (en) 2020-09-10 2020-09-10 Method for surface treatment of solar panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200116245A KR102541027B1 (en) 2020-09-10 2020-09-10 Method for surface treatment of solar panel

Publications (2)

Publication Number Publication Date
KR20220034297A true KR20220034297A (en) 2022-03-18
KR102541027B1 KR102541027B1 (en) 2023-06-09

Family

ID=80936823

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200116245A KR102541027B1 (en) 2020-09-10 2020-09-10 Method for surface treatment of solar panel

Country Status (1)

Country Link
KR (1) KR102541027B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293316A (en) * 2023-09-26 2023-12-26 广东凯金新能源科技股份有限公司 Silicon-carbon particles and preparation method thereof, silicon-carbon composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362511B1 (en) 2012-12-05 2014-02-14 성균관대학교산학협력단 A method for manufacturing high transmittance and stable hydrophobic surface by aligning nano particles coated with silicon-carbon complex
JP2015528040A (en) * 2012-07-20 2015-09-24 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Quick-drying radiation-curable coating composition
JP2015209493A (en) * 2014-04-25 2015-11-24 三菱電機株式会社 Water-repellent member and manufacturing method thereof, outdoor unit of air conditioner, and ventilation fan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528040A (en) * 2012-07-20 2015-09-24 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Quick-drying radiation-curable coating composition
KR101362511B1 (en) 2012-12-05 2014-02-14 성균관대학교산학협력단 A method for manufacturing high transmittance and stable hydrophobic surface by aligning nano particles coated with silicon-carbon complex
JP2015209493A (en) * 2014-04-25 2015-11-24 三菱電機株式会社 Water-repellent member and manufacturing method thereof, outdoor unit of air conditioner, and ventilation fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293316A (en) * 2023-09-26 2023-12-26 广东凯金新能源科技股份有限公司 Silicon-carbon particles and preparation method thereof, silicon-carbon composite material and preparation method thereof

Also Published As

Publication number Publication date
KR102541027B1 (en) 2023-06-09

Similar Documents

Publication Publication Date Title
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
US10208223B2 (en) Fluoropolymer coatings comprising aziridine compounds
CN102137901B (en) Photocurable primer composition and coated structure comprising cured primer composition
KR101136759B1 (en) Hydrophilic coating agent, hydrophilic coating film, and hydrophilic base
KR101644025B1 (en) Superhydrophobic Surface Body and Method for Fabricating Superhydrophobic Surface Body Using iCVD
JP4734480B2 (en) Back protection sheet for solar cell and method for producing the same
KR20130096147A (en) Pressure-sensitive adhesive layer for transparent conductive film, transparent conductive film with pressure-sensitive adhesive layer, transparent conductive laminate, and touch panel
CN102220062A (en) Aqueous UV curing coating and preparation method thereof
JP2008291174A (en) Coating material for forming transparent coating film and substrate with transparent film
WO2009116612A1 (en) Hydrophilic film
JP5700903B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
CN108165230B (en) Single-component silane modified sealant for industrialized building
CN107903734B (en) Preparation method of water-resistant long-acting anti-fog and anti-frost high-light-transmittance coating with self-repairing performance
KR102541027B1 (en) Method for surface treatment of solar panel
KR20130066754A (en) Hard coating composition
TW201945072A (en) Hollow particle, method for manufacturing the same and use thereof
JP2015520664A (en) Method for coating glass substrates with aqueous fluropolymer coatings
JP5057201B2 (en) Fluoropolymer molded body having a functional surface
JP2006022258A (en) Composition, molding and manufacturing process of cured coated film
JPWO2019065772A1 (en) Coating composition, laminate, solar cell module, and method for producing laminate
JP7176516B2 (en) Water-based paints and coated substrates
CN111995936B (en) Vinyl ester resin coating, super-hydrophobic coating, and preparation method and application thereof
CN116462807B (en) Formula of silica gel, preparation method of silica gel, shower outlet net and shower
JP6357035B2 (en) Pattern surface formation method
JP6091691B1 (en) Aqueous coating material and film forming method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal