KR20220033661A - 내식층이 구비된 부품 - Google Patents

내식층이 구비된 부품 Download PDF

Info

Publication number
KR20220033661A
KR20220033661A KR1020200115674A KR20200115674A KR20220033661A KR 20220033661 A KR20220033661 A KR 20220033661A KR 1020200115674 A KR1020200115674 A KR 1020200115674A KR 20200115674 A KR20200115674 A KR 20200115674A KR 20220033661 A KR20220033661 A KR 20220033661A
Authority
KR
South Korea
Prior art keywords
layer
corrosion
pores
resistant layer
porous ceramic
Prior art date
Application number
KR1020200115674A
Other languages
English (en)
Inventor
안범모
박승호
박기용
Original Assignee
(주)포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인트엔지니어링 filed Critical (주)포인트엔지니어링
Priority to KR1020200115674A priority Critical patent/KR20220033661A/ko
Priority to TW110130666A priority patent/TWI801974B/zh
Priority to US17/465,856 priority patent/US20220076927A1/en
Publication of KR20220033661A publication Critical patent/KR20220033661A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • C04B41/4531Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase by C.V.D.
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 내식층이 구비된 부품에 관한 것으로서, 특히, 부식에 의한 기공 노출을 방지하고, 기공을 통한 수분 및 파티클의 분출을 방지할 수 있는, 내식층이 구비된 부품에 관한 것이다.

Description

내식층이 구비된 부품{PARTS WITH CORROSION-RESISTING LAYER}
본 발명은 내식층이 구비된 부품에 관한 것으로서, 특히, 반도체 제조 공정에 사용되는 공정 챔버에 설치되는, 내식층이 구비된 부품에 관한 것이다.
최근 증착 공정에 있어서 높은 생산성 및 고품질화가 요구되는 상황이다.
이에 따라 증착 공정에서는 공정 속도를 높이기 위해 플라즈마 RF 출력을 증가시켜 사용하고, 생산 시간을 단축하기 위해 고온의 조건에서 NF3 부식성 가스를 사용하여 플라즈마 클리닝 공정을 수행하고 있다.
증착 공정 장비는 플라즈마 클리닝 공정 중 불소를 포함한 고온 플라즈마 가스 분위기에 노출되게 된다. 증착 공정 장비에는 챔버 내에서 웨이퍼를 고정시키기 위한 지지대가 포함되는데, 이러한 지지대도 플라즈마 클리닝 공정 중 고온 플라즈마 가스 분위기에 노출되게 된다. 지지대는 다공성 세라믹 재질로 구성되는 반도체용 세라믹 히터 및 정전척(Electro-Static Chuck)을 포함할 수 있다.
일 예로서, 반도체용 세라믹 히터는 고온 플라즈마 가스에 노출됨으로써 불소 라디칼 및 이온과 반응해서 그 표면에 불화 알루미늄의 반응층이 형성되게 된다. 불화 알루미늄 반응층은 고온(예를 들어, 450℃)에서 승화하기 시작하여 반복적인 증착 공정 또는 클리닝 공정에 의해 승화 반응이 지속적으로 진행되게 된다. 불화 알루미늄 반응층의 승화는 반도체용 세라믹 히터의 부식 범위를 확대하는 문제를 야기할 수 있다.
부식된 반도체용 세라믹 히터는 표면의 두께가 점차 얇아지면서 강도 저하 및 균열의 문제가 발생하게 된다. 또한, 승화한 불화 알루미늄 반응층은 챔버 내에서 비교적 저온 영역인 챔버의 내벽면 등에 석출 및 부착되어 파티클 형태의 오염 원인으로 작용하게 된다.
불화 알루미늄 반응층으로부터 발생한 파티클은 웨이퍼에 부착될 수 있고, 이는 웨이퍼의 오염 및 불량 문제를 야기하게 된다. 또한, 반도체 소자의 제조 수율을 저하시키는 문제를 발생시킨다.
반도체용 세라믹 히터는 이와 같은 부식 및 파티클 발생 문제를 방지하기 위해 플라즈마 가스에 노출되는 표면이 표면 처리될 수 있다.
표면 처리 방법으로는, 세라믹 용사 처리에 의한 박막층 형성 방법 및 화학적 기상 증착 방법 등이 있다.
도 1은 다공성 세라믹 소결체(PC)를 위에서 바라보고 도시한 도이고, 도 2는 화학적 기상 증착 방법을 이용하여 표면 처리된 다공성 세라믹 소결체(PC)의 일부를 확대하여 도시한 도이다.
일 예로서 반도체용 세라믹 히터는 도 1에 도시된 다공성 세라믹 소결체(PC)로 구성되어 그레인(G) 사이에 기공(S)이 형성될 수 있다. 다공성 세라믹 소결체(PC)는 도 2에 도시된 바와 같이 화학적 기상 증착 방법을 이용하여 표면에 박막층(P)이 형성될 수 있다.
그런데, 도 2에 도시된 바와 같이, 화학적 기상 증착 방법을 이용하여 형성된 박막층(P)은, 다공성 세라믹 소결체(PC)의 표면을 따라 형성되어 그레인(G)의 표면에 형성되고 그레인(G) 주변에 형성된 기공(S)의 상부를 막는 형태로 형성되게 된다. 다시 말해, 박막층(P)이 기공(S)의 상부를 덮는 형태로 형성되게 된다. 이 경우, 다공성 세라믹 소결체(PC)를 위에서 바라보면 박막층(P)에 의해 기공(S)이 막힌 형태이나, 박막층(P)이 기공(S)의 상부만을 덮고 있는 형태이므로, 기공(S)의 내부는 그대로 공극 형태일 수 있다.
이와 같은 형태는 박막층(P)이 부식되어 그 두께가 얇아지거나 크랙 등의 이유로다시 기공(S)이 다시 노출되게 된다. 노출된 기공(S)을 통해 내부의 수분 및 이물질이 분출되게 된다. 이로 인해 웨이퍼가 오염되고, 공정 챔버의 공정 불량 및 생산 수율을 저하시키는 문제가 야기될 수 있다.
다공성 세라믹 소결체(PC)는 용사 및 에어로졸 코팅 방법에 의해 표면 처리될 수도 있다. 그러나, 용사 및 에어로졸 코팅 방법을 통해 형성된 얇은 박막층은 부식 방지에 있어서 한계가 있다. 또한, 부식 방지 효과를 높이기 위해 박막층의 두께를 두껍게 형성할 경우에는 다공성 세라믹 소결체의 열특성(열전도도 또는 열용량)에 영향을 미칠 수 있고, 두꺼운 박막층이 다공성 세라믹 재질과의 열팽창 계수 차이로 인해 균열 및 크랙(Crack)이 발생할 수 있다.
한국공개특허 제10-2005-0053629호
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 기공에 충진된 내식층에 의해 부식에 의한 기공 노출을 방지하고, 기공을 통한 내부의 수분 및 파티클의 분출을 방지할 수 있는, 내식층이 구비된 부품을 제공하는 것을 목적으로 한다.
본 발명의 일 특징에 따른 내식층이 구비된 부품은, 다공성 세라믹 소결체; 및 상기 다공성 세라믹 소결체의 표면에 형성된 내식층;을 포함하고, 상기 내식층은 상기 다공성 세라믹 소결체의 기공을 충진하여 상기 기공을 밀폐하는 것을 특징으로 한다.
또한, 상기 다공성 세라믹 소결체는, 알루미나(Al2O3), 알루미늄나이트라이드(AlN), 탄화규소(SiC), 이트리아(Y2O3), 질화붕소(BN), 지르코니아(ZrO2) 및 질화규소(Si3N4) 중 적어도 어느 하나를 포함하는 것을 특징으로 한다.
또한, 상기 내식층은, 알루미늄 산화물층, 이트륨 산화물층, 하프늄 산화물층, 실리콘 산화물층,에르븀산화물층, 지르코늄 산화물층, 플루오르화층, 전이금속층, 티타늄 질화물층, 탄탈륨 질화물층 및 지르코늄 질화물층 중 적어도 어느 하나를 포함하는 것을 특징으로 한다.
또한, 상기 내식층은, 상기 다공성 세라믹 소결체의 표면에 형성된 표면 내식층; 및 상기 다공성 세라믹 소결체의 기공 내부에 형성된 기공 내식층;을 포함하고, 상기 다공성 세라믹 소결체의 깊이 방향으로의 기공 내식층의 길이가 상기 표면 내식층의 두께보다 적어도 일부에서 큰 것을 특징으로 한다.
또한, 상기 기공은, 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함하고, 상기 내식층은, 상기 나노 기공을 충진하여 상기 기공을 밀폐하는 것을 특징으로 한다.
또한, 상기 기공은, 상기 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함하고, 상기 내식층은, 상기 메조 기공을 충진하여 상기 기공을 밀폐하는 것을 특징으로 한다.
또한, 상기 내식층은, 알루미늄, 실리콘, 하프늄, 지르코늄, 이트륨, 에르븀, 티타늄 및 탄탈늄 중 적어도 어느 하나인 전구체 가스와, 상기 내식층을 형성할 수 있는 반응물 가스를 교대로 공급하여 형성되는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 내식층이 구비된 부품은, 바디; 상기 바디상에 형성된 다공성 세라믹층; 및 상기 다공성 세라믹층의 표면에 형성된 내식층;을 포함하고, 상기 내식층은 상기 다공성 세라믹층의 기공을 충진하여 상기 기공을 밀폐하는 것을 특징으로 한다.
또한, 상기 다공성 세라믹층은, 용사 재료를 용사하여 형성되는 것을 특징으로 한다.
또한, 상기 다공성 세라믹층은, 알루미나(Al2O3), 알루미늄나이트라이드(AlN), 탄화규소(SiC), 이트리아(Y2O3), 질화붕소(BN), 지르코니아(ZrO2) 및 질화규소(Si3N4) 중 적어도 어느 하나를 포함하는 것을 특징으로 한다.
또한, 상기 내식층은, 상기 다공성 세라믹층의 표면에 형성된 표면 내식층; 및 상기 다공성 세라믹층의 기공 내부에 형성된 기공 내식층;을 포함하고, 상기 다공성 세라믹층의 깊이 방향으로의 상기 기공 내식층의 길이가 상기 표면 내식층의 두께보다 적어도 일부에서 큰 것을 특징으로 한다.
또한, 상기 기공은, 상기 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함하고, 상기 내식층은, 상기 나노 기공을 충진하여 상기 기공을 밀폐하는 것을 특징으로 한다.
또한, 상기 기공은, 상기 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함하고, 상기 내식층은, 상기 메조 기공을 충진하여 상기 기공을 밀폐하는 것을 특징으로 한다.
또한, 상기 내식층은, 알루미늄, 실리콘, 하프늄, 지르코늄, 이트륨, 에르븀, 티타늄 및 탄탈늄 중 적어도 어느 하나인 전구체 가스와, 상기 내식층을 형성할 수 있는 반응물 가스를 교대로 공급하여 형성되는 것을 특징으로 한다.
본 발명의 내식층이 구비된 부품은, 표면측에 구비된 내식층이 부식되어 두께가 얇아지더라도 기공 노출의 염려가 없으므로 기공을 통해 내부의 수분 및 이물질이 분출되는 문제를 방지할 수 있고, 웨이퍼 오염 및 불량 문제를 감소시킴으로써 반도체 제조 수율을 향상시킬 수 있는 효과가 있다.
도 1은 다공성 세라믹 소결체를 위에서 바라보고 도시한 도.
도 2는 화학적 기상 증착 방법을 이용하여 표면 처리된 다공성 세라믹 소결체의 일부를 확대하여 도시한 도.
도 3a는 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품의 내식층을 구성하는 단원자층을 확대하여 도시한 도.
도 3b는 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품의 표면의 일부를 확대하여 도시한 도.
도 4는 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품을 제조하는 과정의 순서도.
도 5는 본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품의 변형 예를 제조하는 과정의 순서도.
도 6은 본 발명의 내식층이 구비된 부품을 포함하는 화학 기상 증착 공정용 공정 챔버를 개략적으로 도시한 도.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한되지 않는 것으로 이해되어야 한다.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 폭 및 영역들의 두께 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다.
이하, 본 발명의 바람직한 실시 예들을 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.
도 1은 다공성 세라믹 소결체(PC)를 위에서 바라보고 도시한 도이고, 도 2는 화학적 기상 증착 방법을 이용하여 다공성 세라믹 소결체(PC)에 표면 처리를 수행한 상태를 일부 확대하여 도시한 도이고, 도 3a는 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)의 내식층(110)을 구성하는 단원자층(M)을 확대하여 도시한 도이고, 도 3b는 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)을 일부 확대하여 도시한 도이고, 도 4는 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)을 제조하는 과정의 개략적인 순서도이다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은, 일 예로서, 증착 공정을 수행하는 장비의 챔버 내에 구비되거나 챔버의 벽면을 이루거나 챔버 내·외부로 가스가 유동하는 적어도 하나의 부품일 수 있다. 예를 들어, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 공정 챔버 내에서 웨이퍼를 지지하고, 안착된 웨이퍼에 열을 전달하는 반도체용 세라믹 히터일 수 있고, 웨이퍼의 정전기 발생을 최소화시키는 정전척일 수도 있다.
이하에서는 일 예로서, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)이 공정 장비의 챔버 내에서 반도체용 세라믹 히터로서 구비될 수 있다.
도 3b에 도시된 바와 같이, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은, 다공성 세라믹 소결체(PC) 및 다공성 소결체(PC)의 표면에 형성된 내식층(110)을 포함하여 구성될 수 있다.
다공성 세라믹 소결체(PC)는, 알루미나(Al2O3), 알루미늄나이트라이드(AlN), 탄화규소(SiC), 이트리아(Y2O3), 질화붕소(BN), 지르코니아(ZrO2) 및 질화규소(Si3N4) 중 적어도 어느 하나를 포함하는 분말, 바인더 및 잔여물로 이루어지는 조성물을 금형에 넣어 성형한 다음, 성형된 성형체를 소결하고, 표면을 평탄화하여 형성될 수 있다.
이에 따라, 다공성 세라믹 소결체(PC)는, 알루미나(Al2O3), 알루미늄나이트라이드(AlN), 탄화규소(SiC), 이트리아(Y2O3), 질화붕소(BN), 지르코니아(ZrO2) 및 질화규소(Si3N4) 중 적어도 어느 하나를 포함하여 구성될 수 있다.
다공성 세라믹 소결체(PC)는 소결 제조됨에 따라 복수의 그레인(G) 사이에 무질서한 기공(S)이 형성되는 구조를 가질 수 있다.
다공성 세라믹 소결체(PC)의 기공(S)은 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함할 수 있다.
매크로 기공(S)은, 수백 ㎚이상~ 수 ㎛이하의 크기일 수 있다. 매크로 기공(S)은 바람직하게는, 100㎚이상~1㎛이하의 크기일 수 있다.
메조 기공(S)은, 수 ㎚이상 ~ 수십 ㎚이하의 크기일 수 있다. 메조 기공(S)은 바람직하게는, 5㎚이상~50㎚이하의 크기일 수 있다.
나노 기공(S)은, 수㎚ 이상 ~ 수 ㎚이하의 크기일 수 있다. 나노 기공(S)은 바람직하게는, 1㎚이상~4㎚이하의 크기일 수 있다.
다공성 세라믹 소결체(PC)의 표면에는 내식층(110)이 형성될 수 있다.
내식층(110)은 다공성 세라믹 소결체(PC)의 기공(S)을 충진하여 기공(S)을 밀폐할 수 있다. 내식층(110)은 기공(S)의 내부를 메꾸면서 기공(S)을 완전히 밀폐하는 형태로 형성될 수 있다. 내식층(110)은 기공(S)의 내부에 공극이 존재하지 않도록 그 내부에 완벽하게 충진되면서 기공(S)의 상부를 완전히 밀폐할 수 있다. 내식층(110)은 기공(S)의 상부만을 막는 형태가 아닌 기공(S)의 내부에 충진되면서 기공(S)을 밀폐하므로, 그레인(G)사이에 기공(S)이 존재하지 않는 구조를 형성할 수 있다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 다공성 세라믹 소결체(PC)의 표면 및 그레인(G)사이에 내식층(110)이 존재하는 구조로 형성될 수 있다. 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 내식층(110)에 의해 다공성 세라믹 소결체(PC)의 수분 및 이물질이 분출되는 통로로서 이용되는 기공(S)이 존재하지 않을 수 있다. 따라서 기공(S)을 통해 수분 및 이물질이 분출되는 문제가 미연에 방지될 수 있다.
내식층(110)은 증착 공정 중 사용되는 반응 가스, 에칭 가스 또는 클리닝 가스를 포함하는 공정 가스에 대한 내식성을 구비할 수 있다.
내식층(110)은 전구체 가스(PG)와 반응물 가스를 교대로 공급함으로써 형성될 수 있다. 이 경우, 내식층(110)은 전구체 가스(PG) 및 반응물 가스의 구성에 따라 다른 구성으로 형성될 수 있다.
일 예로서, 내식층(110)은, 알루미늄, 실리콘, 하프늄, 지르코늄, 이트륨, 에르븀, 티타늄 및 탄탈늄 중 적어도 어느 하나인 전구체 가스(PG)와 내식층(110)을 형성할 수 있는 반응물 가스를 교대로 공급하여 형성될 수 있다.
전구체 가스(PG) 및 반응물 가스를 교대로 공급하여 형성되는 내식층(110)은, 전구체 가스(PG) 및 반응물 가스의 구성에 따라 알루미늄 산화물층, 이트륨 산화물층, 하프늄 산화물층, 실리콘 산화물층, 에르븀 산화물층, 지르코늄 산화물층, 플루오르화층, 전이금속층, 티타늄 질화물층, 탄탈륨 질화물층 및 지르코늄 질화물층 중 적어도 어느 하나를 포함할 수 있다.
상세히 설명하면, 내식층(110)이 알루미늄 산화물층으로 구성될 경우, 전구체 가스(PG)는, 알루미늄 알콕사이드(Al(T-OC4H9)3), 알루미늄 클로라이드(AlCl3), 트리메틸 알루미늄(TMA: Al(CH3)3), 디에틸알루미늄 에톡시드, 트리스(에틸메틸아미도)알루미늄, 알루미늄 세크-부톡시드, 알루미늄 3브롬화물, 알루미늄 3염화물, 트리에틸 알루미늄, 트리이소부틸알루미늄, 트리메틸알루미늄 및 트리스(디에틸아미도)알루미늄 중 적어도 하나를 포함할 수 있다.
이 때, 전구체 가스(PG)로서 알루미늄 알콕사이드(Al(T-OC4H9)3), 디에틸알루미늄 에톡시드, 트리스(에틸메틸아미도)알루미늄, 알루미늄 세크-부톡시드, 알루미늄 3브롬화물, 알루미늄 3염화물, 트리에틸 알루미늄, 트리이소부틸알루미늄, 트리메틸알루미늄 및 트리스(디에틸아미도)알루미늄 중 적어도 하나가 이용될 경우, 반응체 가스(RG)로는 H2O가 이용될 수 있다.
전구체 가스(PG)로서 알루미늄 클로라이드(AlCl3)가 이용될 경우, 반응체 가스(RG)로는 O3가 이용될 수 있다.
전구체 가스(PG)로서 트리메틸 알루미늄(TMA: Al(CH3)3)이 이용될 경우에는, 반응체 가스(RG)로서 O3 또는 H2O가 이용될 수 있다.
내식층(110)이 이트륨 산화물층으로 구성될 경우, 전구체 가스(PG)는 염화이트륨(YCl3), Y(C5H5)3, 트리스(N,N-비스(트리메틸실릴)아미드)이트륨(III), 이트륨(III)부톡사이드, 트리스(사이클로펜타디에닐)이트륨(III), 트리스(부틸사이클로펜타디에닐)이트륨(III),트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토)이트륨(III), 트리스(사이클로펜타디에닐)이트륨(Cp3Y), 트리스(메틸사이클로펜타디에닐)이트륨((CpMe)3Y), 트리스(부틸사이클로펜타디에닐)이트륨 및 트리스(에틸사이클로펜타디에닐)이트륨 중 적어도 하나를 포함할 수 있다.
이 경우, 전구체 가스(PG)로서, 염화이트륨(YCl3) 및 Y(C5H5)3 중 적어도 하나가 이용될 경우, 반응체 가스(RG)로는 O3가 이용될 수 있다.
전구체 가스(PG)로서, 트리스(N,N-비스(트리메틸실릴)아미드)이트륨(III), 이트륨(III)부톡사이드, 트리스(사이클로펜타디에닐)이트륨(III), 트리스(부틸사이클로펜타디에닐)이트륨(III), 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토)이트륨(III), 트리스(사이클로펜타디에닐)이트륨(Cp3Y), 트리스(메틸사이클로펜타디에닐)이트륨((CpMe)3Y), 트리스(부틸사이클로펜타디에닐)이트륨 및 트리스(에틸사이클로펜타디에닐)이트륨 중 적어도 하나가 이용될 경우, 반응체 가스(RG)로서, H20, O2 또는 O3 중 적어도 하나가 이용될 수 있다.
내식층(110)이 하프늄 산화물층으로 구성될 경우, 전구체 가스(PG)는 염화 하프늄(HfCl4), Hf(N(CH3)(C2H5))4, Hf(N(C2H5)2)4, 테트라(에틸메틸아미도)하프늄 및 펜타키스(디메틸아미도)탄탈럼 중 적어도 하나를 포함할 수 있다.
이 경우, 전구체 가스(PG)로서, 염화 하프늄(HfCl4), Hf(N(CH3)(C2H5))4 및 Hf(N(C2H5)2)4 중 적어도 하나가 이용될 경우, 반응체 가스(RG)로는 O3가 이용될 수 있다.
전구체 가스(PG)로서, 테트라(에틸메틸아미도)하프늄 및 펜타키스(디메틸아미도)탄탈럼 중 적어도 하나가 이용될 경우, 반응체 가스(RG)로는 H2O, O2 또는 O3 중 적어도 하나가 이용될 수 있다.
내식층(110)이 실리콘 산화물층으로 구성될 경우, 전구체 가스(PG)는 Si(OC2H5)4를 포함할 수 있다. 이 경우, 반응체 가스(RG)로는 O3가 이용될 수 있다.
내식층(110)이 에르븀 산화물층으로 구성될 경우, 전구체 가스(PG)는 트리스-메틸시클로펜타디에닐 에르븀(III)(Er(MeCp)3), 에르븀 보란아미드(Er(BA)3), Er(TMHD)3, 에르븀(III)트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이트), 트리스(부틸시클로펜타디에닐)에르븀(III), 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오나토) 에르븀(Er(thd)3), Er(PrCp)3, Er(CpMe)2, Er(BuCp)3 및 Er(thd)3 중 적어도 하나를 포함할 수 있다.
이 경우, 전구체 가스(PG)로서, 트리스-메틸시클로펜타디에닐 에르븀(III)(Er(MeCp)3), 에르븀 보란아미드(Er(BA)3), Er(TMHD)3, 에르븀(III)트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이트) 및 트리스(부틸시클로펜타디에닐)에르븀(III) 중 적어도 하나가 이용될 경우, 반응체 가스(RG)로는, H2O, O2 또는 O3 중 적어도 하나가 이용될 수 있다.
전구체 가스(PG)로서, 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오나토) 에르븀(Er(thd)3), Er(PrCp)3, Er(CpMe)2 및 Er(BuCp)3 중 적어도 하나가 이용될 경우, 반응체 가스(RG)로는 O3가 이용될 수 있다.
전구체 가스(PG)로서, Er(thd)3가 이용될 경우, 반응체 가스(RG)로는 O-라디칼이 이용될 수 있다.
내식층(110)이 지르코늄 산화물로 구성될 경우, 전구체 가스(PG)는 사염화지르코늄(ZrCl4), Zr(T-OC4H9)4, 지르코늄(IV) 브로마이드, 테트라키스(디에틸아미도)지르코늄(IV), 테트라키스(디메틸아미도)지르코늄(IV), 테트라키스(에틸메틸아미도)지르코늄(IV), 테트라키스(N,N’-디메틸-포름아미디네이트)지르코늄, 테트라(에틸메틸아미도)하프늄, 펜타키스(디메틸아미도)탄탈럼, 트리스(디메틸아미노)(사이클로펜타디에닐)지르코늄 및 트리스(2,2,6,6-테트라메틸-헵탄-3,5-디오네이트)에르븀 중 적어도 하나를 포함할 수 있다.
이와 같은 구성 중 적어도 하나가 전구체 가스(PG)로 이용될 경우, 반응체 가스(RG)로는 H2O, O2, O3 또는 O-라디칼 중 적어도 하나가 이용될 수 있다.
내식층(110)이 플루오르화층으로 구성될 경우, 전구체 가스(PG)는 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토)이트륨(III)를 포함할 수 있다. 이 경우, 반응체 가스(RG)로는 H2O, O2 또는 O3가 중 적어도 하나가 이용될 수 있다.
내식층(110)이 전이 금속층으로 구성될 경우, 전구체 가스(PG)는 탄탈륨클로라이드(TaCl5) 및 사염화티타늄(TiCl4) 중 적어도 하나를 포함할 수 있다. 이 경우, 반응체 가스(RG)로는 H-라디칼이 이용될 수 있다.
구체적으로, 전구체 가스(PG)로서 탄탈륨클로라이드(TaCl5)가 이용되고, 반응체 가스(RG)로 H-라디칼이 이용될 경우, 전이 금속층은 탄랄륨층으로 구성될 수 있다.
이와는 달리, 전구체 가스(PG)로서 사염화티타늄(TiCl4)이 이용되고, 반응체 가스(RG)로 H-라디칼이 이용될 경우, 전이 금속층은 티타늄층으로 구성될 수 있다.
내식층(110)이 티타늄 질화물층으로 구성될 경우, 전구체 가스(PG)는 비스(디에틸아미도)비스(디메틸아미도)티타늄(IV), 테트라키스(디에틸아미도)티타늄(IV), 테트라키스(디메틸아미도)티타늄(IV), 테트라키스(에틸메틸아미도)티타늄(IV), 티타늄(IV) 브롬화물, 티타늄(IV) 염화물 및 티타늄(IV) 3차-부톡사이드 중 적어도 하나를 포함할 수 있다. 이 경우, 반응체 가스(RG)로는 H2O, O2, O3 또는 O-라디칼 중 적어도 하나가 이용될 수 있다.
내식층(110)이 탄탈륨 질화물층으로 구성될 경우, 전구체 가스(PG)는 펜타키스(디메틸아미도)탄탈(V), 탄탈(V) 염화물, 탄탈(V) 에톡사이드 및 트리스(디에틸아미노)(3차-부틸이미도)탄탈(V) 중 적어도 하나를 포함할 수 있다. 이 경우, 반응체 가스(RG)로는 H2O, O2, O3 또는 O-라디칼 중 적어도 하나가 이용될 수 있다.
내식층(110)이 지르코늄 질화물층으로 구성될 경우, 전구체 가스(PG)는 지르코늄(IV) 브롬화물, 지르코늄(IV) 염화물, 지르코늄(IV) 3차-부톡사이드, 테트라키스(디에틸아미도)지르코늄(IV), 테트라키스(디메틸아미도)지르코늄(IV) 및 테트라키스(에틸메틸아미도)지르코늄(IV)를 포함할 수 있다. 이 경우, 반응체 가스(RG)로는 H2O, O2, O3 또는 O-라디칼 중 적어도 하나가 이용될 수 있다.
이처럼 내식층(110)은 사용되는 전구체 가스(PG) 및 반응체 가스(RG)의 구성에 따라 따른 종류의 구성으로 형성될 수 있다.
도 4에 도시된 바와 같이, 내식층(110)은 다공성 세라믹 소결체(PC)의 표면에 전구체 가스(PG)를 흡착시키고, 반응체 가스(RG)를 공급하여 전구체 가스(PG)와 반응체 가스(RG)의 화학적 치환으로 단원자층(M)을 생성시키는 사이클(이하, '단원자층 생성 사이클'이라함)을 반복적으로 수행함으로써 형성될 수 있다.
도 3a에 도시된 바와 같이, 한 번의 단원자층을 생성시키는 사이클 수행시, 기공(S)에는 얇은 두께의 한 층의 단원자층(M)이 형성될 수 있다. 단원자층(M)을 생성시키는 사이클을 반복적으로 수행함에 따라 기공(S)의 내부에는 복수층의 단원자층(M)이 형성될 수 있다. 이로 인해 기공(S)은 복수층의 단원자층(M)이 겹겹이 쌓이면서 그 내부가 충진될 수 있고, 기공(S) 내부를 충진하는 내식층(110)이 형성될 수 있다.
다시 말해, 내식층(110)은, 단원자층 생성 사이클의 수행 횟수에 따라 단원자층(M)이 점차 이 수행되면서 다공성 세라믹 소결체(PC)의 기공(S)의 내부면에 한 층씩 단원자층(M)이 증착되면서 복수층의 단원자층(M)이 기공(S)의 내부를 완전히 충전함으로써 형성될 수 있다.
보다 상세히 설명하면, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은, 다공성 세라믹 소결체(PC)를 구비하는 단계(미도시)와, 다공성 세라믹 소결체(PC)의 표면에 전구체 가스를 흡착하는 전구체 가스 흡착 단계(S1), 불활성 기체 공급 단계(미도시), 반응체 가스 흡착 및 치환 단계(S2) 및 불활성 기체 공급 단계(미도시)를 순차적으로 수행하는 단원자층 생성 사이클을 반복하여 수행하여 복수층의 단원자층(M)을 생성하여 내식층(110)을 형성하는 단계(S3)에 의해 제조될 수 있다.
전구체 가스 흡착 단계(S1)에서는, 다공성 세라믹 소결체(PC)의 표면에 전구체 가스(PG)를 공급하여 흡착시킴으로써 전구체 흡착층을 형성하는 과정이 수행될 수 있다. 전구체 흡착층은 자기 제한적 반응에 의해 1개의 층만으로 형성된다.
그런 다음, 불활성 기체 공급 단계가 수행될 수 있다. 불황성 기체 공급 단계에서는 불활성 기체를 공급하여 전구체 흡착층에서 과잉의 전구체를 제거하는 과정이 수행된다. 불활성 기체는 자기 제한적 반응에 의해 1개의 층만을 형성한 전구체 흡착층에 잔존하는 과잉의 전구체를 제거할 수 있다.
그런 다음, 반응체 가스 흡착 및 치환 단계(S2)가 수행될 수 있다. 도 4의 S2단계에 도시된 양방향 화살표는 전구체 가스(PG)와 반응체 가스(RG)의 치환을 의미한다.
반응체 흡착 및 치환 단계(S2)에서는, 전구체 흡착층의 표면에 반응체 가스(RG)를 공급하여 전구체 흡착층의 표면에 반응체 가스(RG)를 흡착시키고, 전구체 흡착층과 반응체 가스(RG)의 화학적 치환에 의해 단원자층(M)을 생성시키는 과정이 수행될 수 있다.
그런 다음, 불활성 기체 공급 단계를 수행하여 과잉의 반응체 가스(RG)를 제거하는 과정이 수행된다.
단원자층 생성 사이클이 반복적으로 수행하여 복수층의 단원자층(M)을 생성하는 단계(S3)가 수행되고, 이를 통해 내식층(110)이 형성될 수 있다.
도 3에 도시된 바와 같이, 내식층(110)은 단원자층 생성 사이클의 반복 수행에 의해 다공성 세라믹 소결체(PC)의 표면 및 그레인(G)사이에 존재하는 기공(S) 내부에 형성될 수 있다. 이에 따라, 내식층(110)은 다공성 세라믹 소결체(PC)의 표면에 형성된 표면 내식층(110a) 및 다공성 세라믹 소결체(PC)의 기공 내식층(110b)을 포함하여 구성될 수 있다.
표면 내식층(110a)은 다공성 세라믹 소결체(PC)의 표면측에 존재하는 그레인(G)의 표면에 형성되어 다공성 세라믹 소결체(PC)의 표면 부식을 최소화할 수 있다.
기공 내식층(110b)은 단원자층 생성 사이클 과정에서 다공성 세라믹 소결체(PC)의 그레인(G) 사이에 존재하는 틈새, 즉, 기공(S)에 침투하여 흡착되는 전구체 가스(PG) 및 반응체 가스(RG)에 의해 단원자층(M)이 기공(S)의 내부 모든면에 생성됨으로써 형성될 수 있다. 기공 내식층(110b)은 단원자층 생성 사이클의 반복에 의해 복수층의 단원자층(M)이 기공(S) 내부에서 겹겹이 쌓이면서 기공(S) 전체를 충진하는 형태로 형성될 수 있다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은, 기공 내식층(110b)이 기공(S)의 내부를 충진하고, 표면 내식층(110a)이 기공(S)의 상부에 형성되면서 내식층(110)이 기공(S)을 완전히 밀폐하는 구조를 가질 수 있다. 이로 인해 웨이퍼(W)의 오염 및 불량 원인으로 작용할 수 있는 파티클이 기공(S)을 통해 외부로 분출되는 문제가 발생하지 않을 수 있다.
기공 내식층(110b)은 다공성 세라믹 소결체(PC)의 깊이 방향으로의 길이가 표면 내식층(110a)의 두께보다 적어도 일부에서 클 수 있다. 기공 내식층(110b)은 단원자층 생성 사이클의 반복 수행에 의해 기공(S) 전체에 형성되기 때문에 다공성 세라믹 소결체(PC)의 표면측 기공(S)의 깊이 방향으로의 길이가 비교적 길 경우, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)의 적어도 일부에서 표면 내식층(110a)의 두께보다 길이가 큰 형태로 존재할 수 있다. 일 예로서, 도 3에 도시된 바와 같이, 기공 내식층(110b)은 다공성 세라믹 소결체(PC)의 깊이 방향으로 기공(S)의 길이가 비교적 긴 기공(S)에 형성되어 표면 내식층(110a)의 두께보다 클 수 있다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 기공 내식층(110b)의 길이가 표면 내식층(110a)의 두께보다 크게 형성됨으로써, 표면 내식층(110a)이 장시간 사용 및 공정 가스에 노출되어 부식되더라도 기공(S)이 노출되지 않는 구조를 형성할 수 있다.
또한, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은, 다공성 세라믹 소결체(PC)의 표면 처리시 그레인(G)의 표면 뿐만 아니라 표면측 그레인(G)의 사이에 존재하는 표면측 기공(S)의 내부를 포함하는 전체에 내식층(110)이 구비될 수 있다. 이에 따라 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 표면측에 존재하는 그레인(G) 및 기공(S) 사이에 공극이 존재하지 않는 구조가 형성될 수 있다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)의 내식층(110)을 형성하는 단원자층 생성 사이클과 달리, 도 2에 도시된 바와 같이, 종래의 화학적 기상 증착 방법을 이용하여 박막층(P)을 형성할 경우, 박막층(P)은 기공(S)의 상부를 덮어서 막는 형태로 형성될 수 있다. 이 경우, 기공(S)의 내부는 여전히 공극 형태로 존재하게 된다.
도 2를 참조하여 설명하면, 일 예로서, 다공성 세라믹 소결체(PC)에 존재하는 기공(S)은 다공성 세라믹 소결체(PC)의 깊이 방향으로 구간 마다 그 크기가 다르게 형성될 수 있다. 기공(S)은 크기별로 매크로 기공, 메조 기공 및 나노 기공으로 구분될 수 있다. 일 예로서, 도 2에 도시된 바와 같이 기공(S)은 다공성 세라믹 소결체(PC)의 깊이 방향으로 매크로 기공(S), 메조 기공(S) 및 나노 기공(S)이 연통되는 형태로 형성될 수 있다.
일 예로서, 도 2에 도시된 바와 같이, 가장 큰 폭을 갖는 구간이 매크로 기공(S)일 경우, 표면측 기공(S)은 매크로 기공(S)일 수 있다. 종래의 화학적 기상 증착 방법을 이용할 경우, 박막층(P)은 매크로 기공(S)의 적어도 일부를 막는 형태로 형성될 수 있으나, 매크로 기공(S)을 통과하여 매크로 기공(S)의 하부에 형성되는 메조 기공(S) 및 나노 기공(S)에 위치하는 형태로 형성되기는 어려울 수 있다.
표면측 기공(S)이 매크로 기공(S)보다 작은 폭을 갖는 메조 기공(S) 및 나노 기공(S) 중 적어도 하나로 형성될 경우, 종래 기술에 따른 박막층(P)은 기공(S)의 상부에 얹혀지면서 막는 형태로 형성될 수는 있으나 다공성 세라믹 소결체(PC)의 깊이 방향으로 형성되는 나머지 기공(S)에 형성되기는 어려울 수 있다. 따라서 종래의 기술을 이용하여 박막층(P)을 구비할 경우, 다공성 세라믹 소결체(PC)의 표면측 기공(S)의 하부에 깊이 방향으로 형성되는 나머지 기공(S)은 공극 형태인 구조가 형성될 수 있다.
다공성 세라믹 소결체(PC)에 구비된 박막층(P)은 기공(S)의 상부에 얹혀지는 형태로 형성되기 때문에 장시간 사용되고, 공정 가스에 노출되어 부식되면 그 두께가 얇아지거나 크랙 등이 발생하여 다공성 세라믹 소결체(PC)의 기공(S)의 내부 공극이 다시 노출되게 된다. 노출된 기공(S)을 통해 다공성 세라믹 소결체(PC) 내부에 잔존하는 수분 및 이물질은 외부로 노출되고, 이는 웨이퍼 불량 및 제조 수율 저하의 문제를 야기하게 된다.
하지만 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 내부에 공극이 존재하지 않는 구조를 가질 수 있다. 이는 기공(S)의 내부를 포함하는 기공(S) 전체에 충진된 기공 내식층(110b)에 의해 구현될 수 있다.
상세히 설명하면, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 단원자층 생성 사이클을 반복적으로 수행하여 내식층(110)을 구비하기 때문에 미세한 크기의 기공(S)에도 내식층(110)을 형성할 수 있다.
구체적으로, 매크로 기공(S), 메조 기공(S) 및 나노 기공(S)을 포함하는 기공(S) 전체에 복수층의 단원자층(M)을 생성시켜 내식층(110)을 구비할 수 있다. 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은, 단원자층 생성 사이클을 통해 내식층(110)을 구비함으로써 표면측 기공(S)의 크기와 관계없이 다공성 세라믹 소결체(PC)의 깊이 방향으로 형성되는 기공(S) 전체에 내식층(110)이 위치하도록 할 수 있다.
이를 통해, 도 3에 도시된 바와 같이, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 기공(S) 전체를 충진하면서 가장 작은 폭을 갖는 나노 기공(S)을 충진하여 기공(S)을 밀폐할 수 있다.
또한, 매크로 기공(S)과 나노 기공(S) 사이의 폭을 갖는 메조 기공(S)을 충진하여 기공(S)을 밀폐할 수 있다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은, 제품의 표면 뿐만 아니라 크기와 관계없이 제품 내부에 존재하는 공극, 즉, 기공(S)에 내식층이 위치하는 구조일 수 있다. 이로 인해 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 표면 내식층(110a)이 부식되더라도 노출되는 기공(S) 자체가 존재하지 않을 수 있다. 따라서, 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 표면 내식층(110a)이 부식되더라도 기공(S) 전체에 충진된 기공 내식층(110b)의 표면이 노출되어 기공(S)이 노출되는 문제가 발생하지 않게 된다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은, 그레인(G)의 표면에 형성되는 표면 내식층(110a) 및 기공(S) 내부를 채우는 기공 내식층(110b)을 구비할 수 있다.
본 발명의 바람직한 제1실시 예에 따른 부품(100)은, 기공 내식층(110b)이 다공성 세라믹 소결체(PC)의 기공(S)을 충진하므로, 표면 내식층(110a)이 부식되어 두께가 얇아지더라도 다공성 세라믹 소결체(PC)의 표면이 기공 내식층(110b)에 의해 완전히 밀폐된 형태일 수 있다.
이로 인해 다공성 세라믹 소결체(PC)의 내부 기공(S)이 노출되어 수분 및 이물질이 외부로 분출되는 문제가 방지될 수 있다. 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)은 증착 공정 장비에 구비될 경우 웨이퍼 불량 및 제조 품질 저하의 원인을 최소화할 수 있으므로 반도체 소자의 제조 수율을 향상시킬 수 있게 된다. 또한, 내식층(110)은 수㎚ 내지 수㎛의 두께로 얇게 형성되므로 다공성 세라믹 소결체(PC)의 열특성(열전도도 또는 열용량)에 영향을 미치는 것을 최소화할 수 있다.
도 5는 본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100')을 제조하는 과정의 개략적인 순서도이다.
도 5에 도시된 바와 같이, 본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100')은 바디(BD), 바디(BD)상에 형성된 다공성 세라믹층(PC') 및 다공성 세라믹층(PC')의 표면에 형성된 내식층(110)을 포함하여 구성될 수 있다.
바디(BD)는 금속 재질을 포함하여 구성될 수 있다. 금속 재질은 알루미늄, 티타늄, 텅스텐 및 아연과 이들의 합금 등을 포함할 수 있다.
도 5에 도시된 바와 같이, 본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100')은, 다공성 세라믹층(PC')을 구비하는 바디(BD)를 준비하는 단계(S1)와, 전구체 가스 흡착 단계(S2), 불활성 기체 공급 단계(미도시), 반응체 가스 흡착 및 치환 단계(S3) 및 불활성 기체 공급 단계(미도시)를 순차적으로 수행하는 단원자층 생성 사이클을 반복적으로 수행하여 내식층(110)을 형성하는 단계(S4)를 포함하여 제조될 수 있다.
도 5에 도시된 바와 같이, 다공성 세라믹층(PC')을 구비하는 바디(BD)가 구비될 수 있다.
바디(BD)의 적어도 일면에 형성되는 다공성 세라믹층(PC')은 일 예로서 세라믹 용사 처리 방법에 의해 형성될 수 있다. 다공성 세라믹층(PC')은 용사 재료를 용사하여 형성될 수 있다.
세라믹 용사 처리 방법은, 불활성 가스로부터 생성되는 플라즈마 흐름에 용사 재료를 투입하고, 순간적으로 용융시켜, 완전 용융된 분말 용사재를 고속으로 분사 모재에 충돌시켜 급냉 응고함으로써, 금속 또는 세라믹 모재 위에 일정한 두께의 피막을 형성시키는 기술이다. 용사 재료로는 분말 또는 금속, 비금속, 세라믹(주로 금속 산화물, 탄산물), 서멧(cermet) 등이 이용될 수 있다.
다공성 세라믹층(PC')은 다공성 구조로 형성되어 기공(S)을 포함할 수 있다.
다공성 세라믹층(PC')은 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100)의 다공성 세라믹 소결체(PC)와 동일한 구성을 포함하고, 기공(S)을 포함하는 다공성 구조로 형성될 수 있다. 따라서, 다공성 세라믹층(PC')의 구성 및 구조에 대한 자세한 설명은 생략한다.
바디(BD)는 표면에 다공성 세라믹층(PC')을 구비함으로써 일차적으로 내식성을 구비할 수 있다.
그런 다음, 전구체 가스 흡착 단계(S1), 불활성 기체 공급 단계(미도시), 반응체 가스 흡착 및 치환 단계(S2) 및 불활성 기체 공급 단계(미도시)를 포함하는 단원자층 생성 사이클이 반복적으로 수행되어 다공성 세라믹층(PC')의 표면에 내식층(110)이 형성될 수 있다.
본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100')은, 단원자층 생성 사이클의 반복 수행을 통해 다공성 세라믹층(PC')에 존재하는 기공(S)에 내식층(110)이 충진되는 구조일 수 있다.
단원자층 생성 사이클은 기공(S)으로 전구체 가스(PG) 및 반응체 가스(RG)가 침투하여 기공(S)의 내부 전체 면에 복수층의 단원자층(M)이 형성되도록 할 수 있다. 이에 따라 다공성 세라믹층(PC')의 기공(S)의 내부 전체에 내식층(110)이 충진되는 구조가 형성될 수 있게 된다.
본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100')은, 다공성 세라믹층(PC')의 표면에 내식층(110)을 구비함으로써 이차적인 내식성을 구비할 수 있게 된다. 내식층(110)은 다공성 세라믹층(PC')의 표면에 형성되어 바디(BD)의 표면에서 부식 방지 기능을 하는 층의 두께를 비교적 크게 형성하여 고내식성을 구비할 수 있다. 이 경우, 다공성 세라믹층(PC')은 얇은 두께로 바디(BD)의 표면에 형성되고, 내식층(110)도 다공성 세라믹층(PC')의 표면에 일정한 두께이나 비교적 얇은 두께로 형성되므로 부식 방지를 위한 부식 방지층을 바디(BD)의 표면에 한 번에 두껍게 형성하는 구조 대비 박리 문제를 최소화할 수 있다.
내식층(110)은 다공성 세라믹층(PC')의 기공(S)을 충진하면서 다공성 세라믹층(PC')의 강도를 강화하고 그 표면에 내식성이 구비되도록 할 수 있다.
이로 인해 본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100')은, 부식에 의해 내식층(110)의 두께가 얇아지더라도 다시 내식성을 갖는 다공성 세라믹층(PC')이 노출되므로 보다 고내식성을 가질 수 있다.
또한, 내식층(110)은 다공성 세라믹층(PC')의 기공(S) 내부 전체를 기공 내식층(110b)이 채우는 형태로 다공성 세라믹층(PC')의 표면에 형성되므로 표면 내식층(110a)이 부식되더라도 다공성 세라믹층(PC')의 기공(S)이 노출되는 문제가 발생하지 않는다. 이에 따라 다공성 세라믹층(PC')의 기공(S)을 통해 수분 및 이물질이 분출되는 문제를 방지할 수 있다. 그 결과 웨이퍼 불량 발생률을 감소시켜 반도체 제조 수율을 향상시킬 수 있다.
도 6은 본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100) 및 본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100') 중 적어도 하나를 포함하는 화학 기상 증착 공정용 공정 챔버(1000)를 개략적으로 도시한 도이다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100) 및 본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100')는 화학 기상 증착 공정용 공정 챔버(1000)의 일부 구성으로 구비되어 증착 공정을 수행할 수 있다.
화학 기상 증착 공정용 공정 챔버(1000)는 화학 기상 증착 공정용 공정 챔버(1000)의 외부에 구비되는 기체 유량 장치(MFC, Mass Flow Controller)와, 화학 기상 증착 공정용 공정 챔버(1000)의 내부에 설치되어 웨이퍼(W)를 지지하는 반도체용 세라믹 히터(H)와, 화학 기상 증착 공정용 공정 챔버(1000)의 상부에 배치되는 백킹 플레이트(BP)와, 백킹 플레이트(BP) 하부에 배치되어 웨이퍼(W)로 공정 가스를 공급하는 디퓨저(D)와, 반도체용 세라믹 히터(H)와 디퓨저(D) 사이에 배치되어 웨이퍼(W)의 가장 자리를 커버하는 쉐도우 프레임(SF)과, 공정 가스 공급부(미도시)에서 공급되는 공정 가스가 배기되는 공정 가스 배기부(EX)와 ,공정 가스 공급부 및 공정 가스 배기부(EX)에 설치되는 슬릭 밸브(미도시)를 포함하여 구성될 수 있다.
본 발명의 바람직한 제1실시 예에 따른 내식층이 구비된 부품(100) 및 본 발명의 바람직한 제2실시 예에 따른 내식층이 구비된 부품(100')은, 일 예로서, 화학 기상 증착 공정용 공정 챔버(1000)의 반도체용 세라믹 히터(H)의 구성으로 구비될 수 있다.
화학 기상 증착 공정용 공정 챔버(1000)는 공정 가스 공급부에서 공급된 공정 가스가 백킹 플레이트(BP)로 유입된 후, 디퓨저(D)의 관통홀을 통해 웨이퍼(W)로 분사됨으로써 웨이퍼(W)에 화학 기상 증착 공정을 수행할 수 있게 된다. 공정 가스는 플라즈마 상태의 가스로서 강한 부식성과 침식성을 갖는다.
화학 기상 증착 공정용 공정 챔버(1000)의 반복적인 증착 공정 또는 클리닝 공정에 의해 화학 기상 증착 공정용 공정 챔버(1000)를 구성하는 부품들은 공정 가스와 접촉하게 된다.
본 발명의 바람직한 제1, 2실시 예에 따른 내식층이 구비된 부품(100, 100')은 다공성 세라믹 소결체(PC) 및 다공성 세라믹층(PC')의 표면에 구비되는 내식층(110)에 의해 내식성을 향상시킬 수 있다.
또한, 본 발명의 바람직한 제1, 2실시 예에 따른 부품(100)은, 장시간 사용되고, 반복적으로 공정 가스에 노출됨에 따라 내식층(110)의 두께가 얇아지더라도 다공성 세라믹 소결체(PC) 및 다공성 세라믹층(PC')의 기공(S)이 노출되는 문제가 방지될 수 있다. 이는 기공(S)에 충진되는 기공 내식층(110b)에 의해 구현될 수 있다. 본 발명의 바람직한 제1, 2실시 예에 따른 부품(100)은 다공성 세라믹 소결체(PC) 및 다공성 세라믹층(PC')의 표면에 표면 내식층(110a)을 형성하고, 기공(S)에 기공 내식층(110b)을 충진하여 내식층(110)을 구비할 수 있다. 이에 따라 표면에서 일정한 두께를 형성하는 표면 내식층(110a)에 의해 표면 내식성이 향상될 수 있다. 이 뿐만 아니라, 기공(S)에 충진된 기공 내식층(110b)에 의해 장시간 사용되고, 공정 가스에 대한 반복적인 노출에 의해 표면 내식층(110a)의 두께가 얇아지더라도, 기공(S)이 다시 노출되는 문제가 방지될 수 있다.
기공(S)은 내부 수분 및 공정 이물질을 외부로 분출하여 웨이퍼(W)의 오염 및 불량을 야기하는 주요 원인일 수 있다. 본 발명의 바람직한 제1, 2실시 예에 따른 내식층이 구비된 부품(100, 100')은, 내식층(110)을 형성하는 과정에서 표면 내식층(110a) 및 기공(S)을 충진하는 기공 내식층(110b)을 구비할 수 있다. 이로 인해 기공(S)에 기공 내식층(110b)이 충진되어 위치함으로써 기공(S)이 존재하지 않는 구조가 형성될 수 있다. 본 발명의 바람직한 제1, 2실시 예에 따른 내식층이 구비된 부품(100, 100')은, 부식되어 표면 내식층(110a)의 두께가 점차 얇아지더라도 기공(S) 전체에 충진되는 기공 내식층(110b)에 의해 노출되는 기공(S)이 존재하지 않을 수 있다. 이에 따라 기공(S)을 통해 제품 내부의 수분 및 이물질이 분출되는 문제가 방지될 수 있다. 그 결과 웨이퍼(W) 오염 및 불량의 문제가 감소되고, 나아가 반도체 제조 수율을 향상시킬 수 있다.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.
100: 내식층이 구비된 부품
110: 내식층
110a: 표면 내식층 110b: 기공 내식층
PC: 다공성 세라믹 소결체

Claims (14)

  1. 다공성 세라믹 소결체; 및
    상기 다공성 세라믹 소결체의 표면에 형성된 내식층;을 포함하고,
    상기 내식층은 상기 다공성 세라믹 소결체의 기공을 충진하여 상기 기공을 밀폐하는, 내식층이 구비된 부품.
  2. 제1항에 있어서,
    상기 다공성 세라믹 소결체는,
    알루미나(Al2O3), 알루미늄나이트라이드(AlN), 탄화규소(SiC), 이트리아(Y2O3), 질화붕소(BN), 지르코니아(ZrO2) 및 질화규소(Si3N4) 중 적어도 어느 하나를 포함하는, 내식층이 구비된 부품.
  3. 제1항에 있어서,
    상기 내식층은,
    알루미늄 산화물층, 이트륨 산화물층, 하프늄 산화물층, 실리콘 산화물층, 에르븀 산화물층, 지르코늄 산화물층, 플루오르화층, 전이금속층, 티타늄 질화물층, 탄탈륨 질화물층 및 지르코늄 질화물층 중 적어도 어느 하나를 포함하는, 내식층이 구비된 부품.
  4. 제1항에 있어서,
    상기 내식층은 상기 다공성 세라믹 소결체의 표면에 형성된 표면 내식층; 및
    상기 다공성 세라믹 소결체의 기공 내부에 형성된 기공 내식층;을 포함하고,
    상기 다공성 세라믹 소결체의 깊이 방향으로의 상기 기공 내식층의 길이가 상기 표면 내식층의 두께보다 적어도 일부에서 큰, 내식층이 구비된 부품.
  5. 제1항에 있어서,
    상기 기공은 상기 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함하고,
    상기 내식층은 상기 나노 기공을 충진하여 상기 기공을 밀폐하는, 내식층이 구비된 부품.
  6. 제1항에 있어서,
    상기 기공은 상기 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함하고,
    상기 내식층은 상기 메조 기공을 충진하여 상기 기공을 밀폐하는, 내식층이 구비된 부품.
  7. 제1항에 있어서,
    상기 내식층은,
    알루미늄, 실리콘, 하프늄, 지르코늄, 이트륨, 에르븀, 티타늄 및 탄탈늄 중 적어도 어느 하나인 전구체 가스와, 상기 내식층을 형성할 수 있는 반응물 가스를 교대로 공급하여 형성되는, 내식층이 구비된 부품.
  8. 바디;
    상기 바디상에 형성된 다공성 세라믹층; 및
    상기 다공성 세라믹층의 표면에 형성된 내식층;을 포함하고,
    상기 내식층은 상기 다공성 세라믹층의 기공을 충진하여 상기 기공을 밀폐하는, 내식층이 구비된 부품.
  9. 제8항에 있어서,
    상기 다공성 세라믹층은 용사 재료를 용사하여 형성되는, 내식층이 구비된 부품.
  10. 제8항에 있어서,
    상기 다공성 세라믹층은,
    알루미나(Al2O3), 알루미늄나이트라이드(AlN), 탄화규소(SiC), 이트리아(Y2O3), 질화붕소(BN), 지르코니아(ZrO2) 및 질화규소(Si3N4) 중 적어도 어느 하나를 포함하는, 내식층이 구비된 부품.
  11. 제8항에 있어서,
    상기 내식층은,
    상기 다공성 세라믹층의 표면에 형성된 표면 내식층; 및
    상기 다공성 세라믹층의 기공 내부에 형성된 기공 내식층;을 포함하고,
    상기 다공성 세라믹층의 깊이 방향으로의 상기 기공 내식층의 길이가 상기 표면 내식층의 두께보다 적어도 일부에서 큰, 내식층이 구비된 부품.
  12. 제8항에 있어서,
    상기 기공은 상기 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함하고,
    상기 내식층은 상기 나노 기공을 충진하여 상기 기공을 밀폐하는, 내식층이 구비된 부품.
  13. 제8항에 있어서,
    상기 기공은 상기 기공의 크기별로 매크로 기공, 메조 기공 및 나노 기공을 포함하고,
    상기 내식층은 상기 메조 기공을 충진하여 상기 기공을 밀폐하는, 내식층이 구비된 부품.
  14. 제8항에 있어서,
    상기 내식층은,
    알루미늄, 실리콘, 하프늄, 지르코늄, 이트륨, 에르븀, 티타늄 및 탄탈늄 중 적어도 어느 하나인 전구체 가스와, 상기 내식층을 형성할 수 있는 반응물 가스를 교대로 공급하여 형성되는, 내식층이 구비된 부품.
KR1020200115674A 2020-09-09 2020-09-09 내식층이 구비된 부품 KR20220033661A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200115674A KR20220033661A (ko) 2020-09-09 2020-09-09 내식층이 구비된 부품
TW110130666A TWI801974B (zh) 2020-09-09 2021-08-19 具有抗腐蝕層之部件
US17/465,856 US20220076927A1 (en) 2020-09-09 2021-09-03 Part with corrosion-resistant layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200115674A KR20220033661A (ko) 2020-09-09 2020-09-09 내식층이 구비된 부품

Publications (1)

Publication Number Publication Date
KR20220033661A true KR20220033661A (ko) 2022-03-17

Family

ID=80469259

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200115674A KR20220033661A (ko) 2020-09-09 2020-09-09 내식층이 구비된 부품

Country Status (3)

Country Link
US (1) US20220076927A1 (ko)
KR (1) KR20220033661A (ko)
TW (1) TWI801974B (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050053629A (ko) 1999-12-10 2005-06-08 도카로 가부시키가이샤 플라즈마처리 용기 내부재 및 그 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799384B2 (en) * 2005-11-02 2010-09-21 Praxair Technology, Inc. Method of reducing porosity in thermal spray coated and sintered articles
US10975469B2 (en) * 2017-03-17 2021-04-13 Applied Materials, Inc. Plasma resistant coating of porous body by atomic layer deposition
US20180337026A1 (en) * 2017-05-19 2018-11-22 Applied Materials, Inc. Erosion resistant atomic layer deposition coatings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050053629A (ko) 1999-12-10 2005-06-08 도카로 가부시키가이샤 플라즈마처리 용기 내부재 및 그 제조방법

Also Published As

Publication number Publication date
TW202210445A (zh) 2022-03-16
TWI801974B (zh) 2023-05-11
US20220076927A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
KR102481924B1 (ko) 확산 장벽 층 및 내침식성 층을 갖는 다층 코팅
JP7175289B2 (ja) 高温アプリケーション用プラズマ耐食性薄膜コーティング
KR102296911B1 (ko) 원자 층 증착에 의한 다층 플라즈마 저항성 코팅
US10676819B2 (en) Non-line of sight deposition of erbium based plasma resistant ceramic coating
CN107313027B (zh) 多组分涂层组成物、其形成方法和半导体工艺腔室部件
TWM595646U (zh) 氟化物塗覆的製品
KR20190057753A (ko) 내플라즈마성 코팅막의 제조방법 및 이에 의해 형성된 내플라즈마성 부재
KR20220033661A (ko) 내식층이 구비된 부품
US20220411340A1 (en) Part having corrosion-resistant layer, manufacturing process apparatus having same, and method of manufacturing part
KR102549555B1 (ko) 공정 챔버용 부품 및 보호막 처리 장치
KR20220045708A (ko) 증착 장비용 가스분사부재 및 이를 구비하는 증착 장비

Legal Events

Date Code Title Description
A201 Request for examination