KR20220028381A - Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution - Google Patents

Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution Download PDF

Info

Publication number
KR20220028381A
KR20220028381A KR1020200109304A KR20200109304A KR20220028381A KR 20220028381 A KR20220028381 A KR 20220028381A KR 1020200109304 A KR1020200109304 A KR 1020200109304A KR 20200109304 A KR20200109304 A KR 20200109304A KR 20220028381 A KR20220028381 A KR 20220028381A
Authority
KR
South Korea
Prior art keywords
thin film
light absorption
cigs
alkali
absorption layer
Prior art date
Application number
KR1020200109304A
Other languages
Korean (ko)
Other versions
KR102524637B1 (en
Inventor
김준호
미나 살라후딘
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Priority to KR1020200109304A priority Critical patent/KR102524637B1/en
Publication of KR20220028381A publication Critical patent/KR20220028381A/en
Application granted granted Critical
Publication of KR102524637B1 publication Critical patent/KR102524637B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A thin film solar cell and a method for treating solution-based alkali post deposition on a light absorption layer include: coating a solution containing alkali element (A) on the surface of a pre-prepared CIGS light absorption layer, and then performing heat treatment to obtain a polycrystalline chalcoparite thin film where the alkali element (A) is surface-treated. The method has the advantage that it can be easily applied to the manufacture of high-efficiency solar cells by manufacturing the alkaline element surface-treated chalcoparite thin film through a non-vacuum solution-based process.

Description

박막 태양전지 및 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법{Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution}Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution

본 발명은 알카리 원소 후증착 처리 방법에 관한 것으로서, 더욱 상세하게는 기제조된 CIGS 광흡수층 대해서 알카리 원소가 포함된 용액을 후코팅 및 후열처리하여 알카리 원소(A)가 표면 처리된 다결정 CIGS 박막을 획득하는 박막 태양전지 및 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법에 관한 것이다.The present invention relates to a method for post-deposition treatment of alkali elements, and more particularly, to a pre-prepared CIGS light absorption layer, a polycrystalline CIGS thin film having an alkali element (A) surface-treated by post-coating and post-heat treatment with a solution containing an alkali element. It relates to a solution-based alkali element post-deposition treatment method for the obtained thin film solar cell and light absorption layer.

칼코파라이트 Cu(In,Ga)Se2 (CIGS)는 박막 태양전지의 광흡수층으로 사용된다. 현재의 CIGS 태양전지 최고효율은 23.35%를 보이는데, 이는 박막 태양전지 중 페로브스카이트 태양전지 다음으로 최고효율에 해당한다.Chalcopalite Cu(In,Ga)Se 2 (CIGS) is used as a light absorption layer in thin film solar cells. Currently, the highest efficiency of CIGS solar cells is 23.35%, which is the second highest efficiency after perovskite solar cells among thin film solar cells.

CIGS 태양전지 효율을 23%에 이르게 한 중요한 공정 중 하나는 알카리 원소 PDT(Post-Deposition Treatment)이다. CIGS 챔피온 셀의 광전변환 효율 23.35 % 달성에는 CsF -PDT 방법이 이용되어졌다.One of the important processes that made CIGS solar cell efficiency reach 23% is alkali element PDT (Post-Deposition Treatment). The CsF-PDT method was used to achieve the 23.35% photoelectric conversion efficiency of the CIGS champion cell.

Alkali PDT 방법은 2013년 Tiwari 박사팀에서 처음으로 보고하였다. Alkali PDT 방법은 CIGS 광흡수층 제조 후에, 350도로 기판 온도를 유지하고, Se 분위기 속에서 NaF, KF를 증착하여 광흡수층을 열처리하는 방법을 말한다. 즉, 알카리 원소를 CIGS 광흡수층 표면에 증착해서 광흡수층 내부로 열확산시키는 방법을 이른다.The Alkali PDT method was first reported by Dr. Tiwari and his team in 2013. The Alkali PDT method refers to a method of heat-treating the light absorption layer by depositing NaF and KF in a Se atmosphere while maintaining the substrate temperature at 350°C after manufacturing the CIGS light absorption layer. That is, it refers to a method in which an alkali element is deposited on the surface of the CIGS light absorption layer and thermally diffused into the light absorption layer.

Tiwari 박사팀은 이렇게 추가로 열처리하여 얻어진 광흡수층을 이용하여 CIGS 태양전지를 제작한 결과 광전변환 효율이 18.7%에서 20.4%로 증가됨을 보고했다. 이후에, Alkali PDT에 대한 연구가 전세계적으로 이루어지고 있고, 광흡수층 Alkali PDT에 의해 CIGS 태양전지 효율이 증가됨이 여러 곳에서 보고되고 있다.Dr. Tiwari's team reported that the photoelectric conversion efficiency increased from 18.7% to 20.4% as a result of fabricating a CIGS solar cell using the light absorption layer obtained by this additional heat treatment. After that, research on Alkali PDT has been conducted worldwide, and it has been reported in several places that the CIGS solar cell efficiency is increased by the light absorption layer Alkali PDT.

Alkali PDT의 효과는 CIGS 광흡수층 내의 결함 감소 효과, 광흡수층 그레인 바운더리 결함 감소 효과, 광흡수층 표면의 전자구조 변형 효과, 버퍼층 성장에 미치는 영향 등이 보고 되었다.The effects of Alkali PDT were reported on the effect of reducing defects in the CIGS light absorbing layer, reducing the grain boundary defects of the light absorbing layer, the effect of modifying the electronic structure of the light absorbing layer, and the effect on the growth of the buffer layer.

상기에 기술된 다양한 이유에 의해서 Alkali PDT한 CIGS 광흡수층을 이용할 경우 태양전지의 광전변환 효율이 증가됨이 보고되고 있다. 이는 Alkali PDT한 CIGS 광흡수층을 이용할 경우 태양전지 효율이 재현성 있게 증가됨을 보여줌을 의미한다.For the various reasons described above, it has been reported that the photoelectric conversion efficiency of the solar cell is increased when the Alkali PDT CIGS light absorption layer is used. This means that the solar cell efficiency is reproducibly increased when Alkali PDT CIGS light absorption layer is used.

하지만, 현재까지 연구 내용을 보면, 모두 진공 기반 PDT 방법으로 시행됨을 알 수 있다. 이는 Se 분위기에서 XF(X=K, Rb, Cs)를 CIGS 광흡수층 표면에 증착하고 열처리하는 방법이다. 수용액 기반의 Alkali PDT 방법이 보고된 경우는 많지 않다.However, if you look at the contents of the research so far, it can be seen that all of them are performed by the vacuum-based PDT method. This is a method of depositing XF (X=K, Rb, Cs) on the surface of the CIGS light absorption layer in a Se atmosphere and performing heat treatment. There are few reports of Alkali PDT methods based on aqueous solutions.

진공 기반의 Alkali PDT를 하기 위해서는 특별히 PDT 전용의 진공 챔버가 필요하고, Alkali 원소 증착용 effusion cell 등 고가의 진공 장비가 필요하다. 이러한 진공 기반의 Alkali PDT는 공정 비용이 많이 드는 단점이 있다.In order to perform vacuum-based Alkali PDT, a vacuum chamber exclusively for PDT is required, and expensive vacuum equipment such as an effusion cell for Alkali element deposition is required. The vacuum-based Alkali PDT has a disadvantage in that the process cost is high.

한국 등록특허번호 제10-1521450호Korean Patent No. 10-1521450

이와 같은 문제점을 해결하기 위하여, 본 발명은 기제조된 CIGS 광흡수층 표면에 알카리 원소를 포함한 용액을 코팅하고, 이어서 후열처리를 통해서 알카리 원소(A)가 표면 처리된 다결정 칼코파라이트 박막을 획득하는 박막 태양전지 및 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법을 제공하는데 그 목적이 있다.In order to solve this problem, the present invention is to obtain a polycrystalline chalcoparite thin film surface-treated with alkali element (A) by coating a solution containing an alkali element on the surface of a pre-prepared CIGS light absorption layer, and then performing post-heat treatment. An object of the present invention is to provide a solution-based alkali element post-deposition treatment method for a thin film solar cell and a light absorption layer.

본 발명은 알카리 표면 처리된 CIGS 광흡수층을 제조하는 방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a method for manufacturing an alkali surface-treated CIGS light absorption layer.

본 발명은 알카리 원소로 표면 처리된 칼코파라이트 박막을 비진공 용액 코팅과 후열처리로 제조하는 방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a method for manufacturing a chalcoparite thin film surface-treated with an alkali element by non-vacuum solution coating and post-heat treatment.

상기 목적을 달성하기 위한 본 발명의 특징에 따른 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법은,A solution-based alkali element post-deposition treatment method for a light absorption layer according to a feature of the present invention for achieving the above object,

알카리원소염을 용매에 녹인 알카리 원소가 도핑된 전구체 용액을 준비하는 단계;preparing a precursor solution doped with an alkali element by dissolving an alkali element salt in a solvent;

상기 전구체 용액을 상기 기판 상에 기형성된 광흡수층의 표면에 도포하여 알카리 원소가 함유된 비정질 박막을 형성하는 단계; 및forming an amorphous thin film containing an alkali element by applying the precursor solution to the surface of the light absorption layer previously formed on the substrate; and

챔버 내에서 상기 기판 상의 비정질 박막을 S 또는 Se의 물질이 증발되는 베이퍼(Vapor) 분위기에서 열처리하여 알카리 원소(A)가 표면 처리된 다결정 칼코파라이트 박막을 획득하는 단계를 포함하는 것을 특징으로 한다.It characterized in that it comprises the step of heat-treating the amorphous thin film on the substrate in a vapor atmosphere in which the material of S or Se is evaporated in a chamber to obtain a polycrystalline chalcoparite thin film surface-treated with alkali element (A). .

본 발명의 특징에 따른 박막 태양전지는,A thin film solar cell according to a feature of the present invention,

기판;Board;

상기 기판의 일면에 증착된 몰리브데늄의 전극층;an electrode layer of molybdenum deposited on one surface of the substrate;

상기 전극층 상에 형성하여 진공기반 또는 비진공기반으로 제조된 CIGS(Copper Indium Galium Selenide) 박막이 광흡수층으로 형성된 층; 및a layer in which a vacuum-based or non-vacuum-based CIGS (Copper Indium Galium Selenide) thin film is formed on the electrode layer as a light absorption layer; and

상기 광흡수층의 표면에 알카리 원소(A)가 표면 처리된 다결정 칼코파라이트(Chalcopyrite) 박막을 포함하는 것을 특징으로 한다.It is characterized in that it comprises a polycrystalline chalcopalite (Chalcopyrite) thin film surface-treated with an alkali element (A) on the surface of the light absorption layer.

전술한 구성에 의하여, 본 발명은 알카리 원소 표면 처리된 칼코파라이트 박막을 용액 기반 공정을 통해서 제조함으로써 고효율 태양전지 제조에 용이하게 적용할 수 있는 효과가 있다.According to the above-described configuration, the present invention has an effect that can be easily applied to manufacturing a high-efficiency solar cell by manufacturing a thin film of chalcoparite surface-treated with an alkali element through a solution-based process.

도 1은 본 발명의 실시예에 따른 칼코파라이트 박막을 알카리 원소로 표면 처리하는 공정별 사용된 기구나 장치를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 실시예에 따른 CIGS 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법을 나타낸 도면이다.
도 3은 본 발명의 실시예에 따른 알카리 원소로 표면 처리하여 제조된 CIGS 박막의 FE-SEM(Field Emission-Scanning Electron Microscope) 이미지를 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 알카리 원소로 표면 처리하여 제조된 CIGS 박막의 XRD 패턴을 나타낸 도면이다.
도 5는 본 발명의 실시예에 따라 알카리 원소로 표면 처리하여 제조된 CIGS 박막과 K 표면 처리된 CIGS 박막의 PL 과 TRPL 측정 결과를 나타낸 도면이다.
도 6은 본 발명의 실시예에 따른 순수 CIGS 박막과 알카리 원소로 표면 처리하여 제조된 CIGS 박막을 이용하여 제조된 태양전지의 전류밀도-전압(J-V) 그래프와 EQE 측정 결과를 나타낸 도면이다.
1 is a view schematically showing a device or apparatus used for each process of surface treatment of a chalcoparite thin film with an alkali element according to an embodiment of the present invention.
2 is a view showing a solution-based alkali element post-deposition treatment method for a CIGS light absorption layer according to an embodiment of the present invention.
3 is a view showing an FE-SEM (Field Emission-Scanning Electron Microscope) image of a CIGS thin film prepared by surface treatment with an alkali element according to an embodiment of the present invention.
4 is a view showing an XRD pattern of a CIGS thin film prepared by surface treatment with an alkali element according to an embodiment of the present invention.
5 is a view showing the PL and TRPL measurement results of the CIGS thin film prepared by surface treatment with an alkali element and K surface-treated CIGS thin film according to an embodiment of the present invention.
6 is a view showing a current density-voltage (JV) graph and EQE measurement results of a solar cell manufactured using a pure CIGS thin film and a CIGS thin film prepared by surface treatment with an alkali element according to an embodiment of the present invention.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain element, it means that other elements may be further included, rather than excluding other elements, unless otherwise stated.

도 1은 본 발명의 실시예에 따른 칼코파라이트 박막을 알카리 원소로 표면 처리하는 공정별 사용된 기구나 장치를 개략적으로 나타낸 도면이다.1 is a view schematically showing a device or apparatus used for each process of surface treatment of a chalcoparite thin film with an alkali element according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 광흡수 박막의 알카리 원소(A)로 표면 처리하는 제조 방법은 비이커 등 적당한 용기(11)를 이용하여 알카리원소염(g1), Thiourea(g2), 용매에 녹여 알카리 원소가 도핑된 전구체 용액(10)의 준비하는 단계(S100)와, 코팅 장치(20)를 이용하여 기판(100), 전극층(200), 광흡수층(300) 상에 전구체 용액(10)을 도포하는 단계(S110)와, 챔버(30) 내에서 기판(100) 상의 비정질 박막(400)을 S 또는 Se의 물질(110)이 증발되는 베이퍼(Vapor) 분위기에서 열처리하여 알카리 원소(A)가 표면 처리된 다결정 칼코파라이트(Chalcopyrite) 박막(500)을 획득하는 열처리 단계(S120)를 포함한다.Referring to FIG. 1, in the manufacturing method of surface treatment of the light absorption thin film of the present invention with an alkali element (A), an alkali element salt (g1), Thiourea (g2), and a solvent are dissolved in a suitable container 11 such as a beaker. A step of preparing the precursor solution 10 doped with an alkali element (S100) and the precursor solution 10 on the substrate 100, the electrode layer 200, and the light absorption layer 300 using the coating device 20. In the step of applying (S110), and heat-treating the amorphous thin film 400 on the substrate 100 in the chamber 30 in a vapor atmosphere in which the material 110 of S or Se is evaporated, the alkali element (A) is It includes a heat treatment step (S120) of obtaining a surface-treated polycrystalline chalcopyrite thin film 500.

열처리 단계(S120)는 후셀렌화(post-selenization) 과정에 의해 Cu1-xAx(In,Ga)Se2, 열처리 과정에서의 후황화(post-sulfurization) 과정에 의해 Cu1-xAx(In,Ga)S2, 또는 열처리 과정에서의 후황화-셀렌화(post sulfo-selenization) 과정에 의해 Cu1-xAx(In,Ga)(S,Se)2을 표면에 형성한 광흡수층(300)을 획득할 수 있다.The heat treatment step (S120) is Cu 1-x A x (In,Ga)Se 2 by the post-selenization process, Cu 1-x A by the post-sulfurization process in the heat treatment process x (In,Ga)S 2 , or Cu 1-x A x (In,Ga)(S,Se) 2 formed on the surface by the post sulfo-selenization process in the heat treatment process. The light absorption layer 300 may be obtained.

이와 같이, 본 발명은 알카리 원소(A)가 표면 처리된 칼코파라이트 박막(500)을 전구체 용액(10)을 이용하는 용액 기반 공정을 통해서 고품질로 제조하여 알카리 원소(A)가 표면 처리된 칼코파라이트 박막(500)이 고효율 태양전지 제조에 용이하게 적용될 수 있다.As described above, in the present invention, the alkali element (A) surface-treated chalcoparite thin film 500 is manufactured in high quality through a solution-based process using the precursor solution 10, and the alkali element (A) is surface-treated chalcopa. The light thin film 500 can be easily applied to manufacturing a high-efficiency solar cell.

본 발명의 실시예의 박막 태양전지는 기판(100), 전극층(200), CIGS 광흡수층(300) 및 다결정 칼코파라이트(Chalcopyrite) 박막(500)을 포함한다.The thin film solar cell of the embodiment of the present invention includes a substrate 100 , an electrode layer 200 , a CIGS light absorption layer 300 , and a polycrystalline chalcopyrite thin film 500 .

기판(100)은 Mo 코팅된 유리 또는 Mo 코팅된 폴리이미드일 수 있으며, 설계 목적에 따라 실리콘, 수지계 등 다양한 다른 기판이 이용될 수도 있다. The substrate 100 may be Mo-coated glass or Mo-coated polyimide, and various other substrates such as silicon, resin, etc. may be used depending on the design purpose.

기판(100)의 일면에 몰리브데늄(Mo)의 전극층(200)이 증착된다. 전극층(200)은 몰리브데늄(Mo) 등과 같은 금속 물질을 기판(100)의 일면에 스퍼터링 증착법을 이용하여 증착시킨다.An electrode layer 200 of molybdenum (Mo) is deposited on one surface of the substrate 100 . For the electrode layer 200 , a metal material such as molybdenum (Mo) is deposited on one surface of the substrate 100 by sputtering deposition.

광흡수층(300)은 CIGS(Copper Indium Galium Selenide) 박막으로 전극층(200)의 위에 기형성되어 있다.The light absorption layer 300 is a copper indium gallium selenide (CIGS) thin film and is pre-formed on the electrode layer 200 .

박막 태양전지는 광흡수층(300)의 표면에 알카리 원소(A)가 표면 처리된 다결정 칼코파라이트(Chalcopyrite) 박막(500)을 형성한다.The thin film solar cell forms a polycrystalline chalcopyrite thin film 500 in which an alkali element (A) is surface-treated on the surface of the light absorption layer 300 .

도 2는 본 발명의 실시예에 따른 CIGS 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법을 나타낸 도면이다.2 is a view showing a solution-based alkali element post-deposition treatment method for a CIGS light absorption layer according to an embodiment of the present invention.

도 2를 참조하면, 알카리 원소(A)가 용해된 수용액을 준비하는 단계(S100)는 비이커 등 적당한 용기(11)를 이용하여 알카리원소염(g1), Thiourea(g2)을 용매에 녹여 알카리 원소(A)가 포함된 전구체 용액(10)을 준비한다(S100).Referring to FIG. 2 , the step (S100) of preparing an aqueous solution in which the alkali element (A) is dissolved is performed by dissolving alkali element salts (g1) and Thiourea (g2) in a solvent using a suitable container 11 such as a beaker. A precursor solution 10 containing (A) is prepared (S100).

예를 들어, 알카리원소염(g1)은 ACl(A=Li,Na,K,Rb,Cs)을 이용할 수 있고, 용매는 물, 에탄올, 메탄올, DMSO(Dimethyl sulfoxide) 또는 DMF(Dimetylformamide) 중 하나를 포함하거나, 또는 이들 중 2 이상의 혼합 용액을 포함할 수 있다.For example, alkali element salt (g1) may use ACl (A=Li,Na,K,Rb,Cs), and the solvent is one of water, ethanol, methanol, DMSO (dimethyl sulfoxide) or DMF (Dimetylformamide). or a mixed solution of two or more thereof.

또한, 알카리원소염(g1)은 chloride(Cl)계, acetate((CO2CH3)2)계, nitrate((NO3)2)계, Nitrate Hydrate((NO3)2·x(H2O))계 또는 Acetate hydrate((CO2CH3)2·x(H2O))계의 원소염 등을 포함한다.In addition, alkali element salt (g1) is chloride(Cl)-based, acetate((CO 2 CH 3 ) 2 )-based, nitrate((NO 3 ) 2 )-based, Nitrate Hydrate((NO 3 ) 2 ·x(H 2 ) O)) or Acetate hydrate ((CO2CH3)2·x(H 2 O))).

ACl, A(CO2CH3)2, A(NO3)2 등의 알카리원소염(g1)은 Li, Na, K, Rb, Cs 중 하나 이상의 알카리 원소(A)가 전구체 용액(10)에 용해되어 있는 형태가 된다.An alkali element salt (g1) such as ACl, A(CO 2 CH 3 ) 2 , A(NO 3 ) 2 is one or more alkali elements (A) among Li, Na, K, Rb, and Cs in the precursor solution (10). It becomes a dissolved form.

여기서, 알카리 원소(A)가 용해되어 있는 형태는 Li, Na, K, Rb, Cs 등 단일 원소 형태로 용해될 수도 있고, (Li, Na), (K, Rb), (K, Cs) 등 이중 원소로 용해될 수도 있으며, (Na, K, Rb), (Na, K, Cs) 등 삼중, 또는 (Na, K, Rb, Cs)와 같이 사중으로 용해되는 형태가 될 수도 있다.Here, the form in which the alkali element (A) is dissolved may be dissolved in a single element form such as Li, Na, K, Rb, Cs, (Li, Na), (K, Rb), (K, Cs), etc. It may be dissolved as a double element, (Na, K, Rb), (Na, K, Cs), such as triple, or (Na, K, Rb, Cs) may be in the form of a quadruple dissolved.

다음으로, 전구체 용액(10)이 준비되면, 도 1과 같이, 코팅 장치(20)를 이용하여 CIGS 광흡수층(300) 상에 전구체 용액(10)을 도포하여 알카리 원소가 함유된 비정질 박막(400)을 형성한다(S110).Next, when the precursor solution 10 is prepared, as shown in FIG. 1 , the precursor solution 10 is applied on the CIGS light absorption layer 300 using the coating device 20 to form an amorphous thin film 400 containing an alkali element. ) is formed (S110).

여기서, 기형성된 CIGS 박막(광흡수층)(300)은 진공기반 또는 비진공기반의 제조 방법에 의해 임의로 제조될 수 있다.Here, the pre-formed CIGS thin film (light absorption layer) 300 may be arbitrarily manufactured by a vacuum-based or non-vacuum-based manufacturing method.

여기서, 코팅 장치(20)를 이용한 코팅 또는 도포 방식은, 스핀 코팅, 스프레이 코팅, 잉크젯 코팅, 또는 블레이드 코팅 방식 등을 포함할 수 있다.Here, the coating or application method using the coating device 20 may include spin coating, spray coating, inkjet coating, or blade coating method.

코팅 장치(20)는 기판(100)을 가열하기 위한 히터를 포함할 수 있으며, 히터를 작동하여, 기판(100)의 온도 100℃ 내지 500℃에서 코팅 장치(20)의 노즐을 통해 광흡수층(300) 상에 전구체 용액(10)을 뿌려 도포할 수 있다. The coating apparatus 20 may include a heater for heating the substrate 100, and by operating the heater, the light absorption layer ( 300) may be applied by spraying the precursor solution 10 on it.

다음에, S110 단계에서 CIGS 광흡수층(300)의 표면에 비정질 박막(400)을 형성한 후, 챔버(30) 내에서 광흡수층(300)의 표면에 형성된 비정질 박막(400)을 S 또는 Se의 물질(110)이 증발되는 베이퍼(vapor) 분위기에서 열처리하여 알카리 원소(A)가 표면 처리된 다결정 칼코파라이트 박막(500)을 획득하는 열처리 과정을 수행한다(S120).Next, after forming the amorphous thin film 400 on the surface of the CIGS light absorption layer 300 in step S110, the amorphous thin film 400 formed on the surface of the light absorption layer 300 in the chamber 30 is formed of S or Se. A heat treatment process is performed to obtain a polycrystalline chalcoparite thin film 500 having an alkali element (A) surface-treated by heat treatment in a vapor atmosphere in which the material 110 is evaporated ( S120 ).

다시 말해, S120 단계는 후열 처리 과정을 수행하면, 알카리 원소가 열확산에 의해서 광흡수층(300) 안으로 이동하게 되어 CIGS 박막(광흡수층)(300)의 표면이 Alkali Doped CIGS(다결정) 또는 Alkali Alloyed CIGS(다결정)로 변하게 된다.In other words, in step S120, when the post-heat treatment process is performed, the alkali element moves into the light absorption layer 300 by thermal diffusion so that the surface of the CIGS thin film (light absorption layer) 300 is Alkali Doped CIGS (polycrystalline) or Alkali Alloyed CIGS (polycrystalline)

본 발명은 광흡수층(300)의 표면만 Alkali Doped CIGS(다결정) 또는 Alkali Alloyed CIGS(다결정)로 될 수 있다고 설명하고 있지만, 열확산 공정을 강하게 수행하면, CIGS 박막(300)의 전체가 Akali Doped CIGS(다결정) 또는 Alkali Alloyed CIGS(다결정)로 될 수도 있다.Although the present invention describes that only the surface of the light absorption layer 300 can be made of Alkali Doped CIGS (polycrystalline) or Alkali Alloyed CIGS (polycrystalline), if the thermal diffusion process is strongly performed, the entire CIGS thin film 300 is Akali Doped CIGS (polycrystalline) or Alkali Alloyed CIGS (polycrystalline).

즉, 본 발명은 열확산 정도에 따라 CIGS 박막(300)의 표면 또는 박막 전체를 Akali Doped CIGS(다결정) 또는 Alkali Alloyed CIGS(다결정)으로 변하게 할 수 있다.That is, in the present invention, the surface or the entire thin film of the CIGS thin film 300 may be changed to Akali Doped CIGS (polycrystalline) or Alkali Alloyed CIGS (polycrystalline) according to the degree of thermal diffusion.

여기서, 열처리 온도는 530℃ 내지 600℃인 것이 바람직하다. 챔버(30)는 그래파이트 박스 형태일 수 있고, 챔버(30) 내에 기판(100) 장착부 주위로 소정의 용기에 S 또는 Se 파우더 또는 펠릿(pellet)을 담아 놓고 챔버(30) 내의 히터를 가동하면서 열처리 과정을 수행할 수 있다.Here, the heat treatment temperature is preferably 530 °C to 600 °C. The chamber 30 may be in the form of a graphite box, and S or Se powder or pellets are placed in a predetermined container around the substrate 100 mounting part in the chamber 30 and heat treatment while operating the heater in the chamber 30 process can be performed.

이와 같은 열처리 과정에서의 후셀렌화(post-selenization) 과정(Se 베이퍼 분위기)에 의해 Cu1-xAx(In,Ga)Se2 중, 예를 들어, 알카리 원소로서 K가 표면 처리된 Cu1-xKx(In,Ga)S2 표면을 가진 다결정 칼코파라이트 박막(500)을 획득할 수 있다.Among Cu 1-x A x (In,Ga)Se 2 by the post-selenization process (Se vapor atmosphere) in this heat treatment process, for example, Cu surface-treated with K as an alkali element A polycrystalline chalcoparite thin film 500 having a 1-x K x (In,Ga)S 2 surface may be obtained.

또한, 열처리 과정에서의 후황화(post-sulfurization) 과정(S 베이퍼 분위기)에 의해 Cu1-xAx(In,Ga)S2 중, 예를 들어, 알카리 원소로서 K가 표면 처리된 Cu1-xKx(In,Ga)S2 표면을 가진 다결정 칼코파라이트 박막(500)을 획득할 수 있다.In addition, among Cu 1-x A x (In,Ga)S 2 by a post-sulfurization process (S vapor atmosphere) in the heat treatment process, for example, Cu 1 in which K is surface-treated as an alkali element -x K x (In,Ga)S 2 A polycrystalline chalcoparite thin film 500 having a surface may be obtained.

또한, 열처리 과정에서의 후황화-셀렌화(post sulfo-selenization) 과정(Se 와 S 혼합 베이퍼 분위기)에 의해 Cu1-xAx(In,Ga)(S,Se)2 중, 예를 들어, 알카리 원소로서 K가 표면 처리된 Cu1-xKx(In,Ga)(S,se)2 표면을 가진 다결정 칼코파라이트 박막(500)을 획득할 수 있다.In addition, Cu 1-x A x (In,Ga)(S,Se) 2 of Cu 1-x A x (In,Ga)(S,Se) 2 by the post sulfo-selenization process (Se and S mixed vapor atmosphere) in the heat treatment process, for example, , it is possible to obtain a polycrystalline chalcoparite thin film 500 having a surface-treated Cu 1-x K x (In,Ga)(S,se) 2 surface with K as an alkali element.

본 발명은 알카리염을 녹인 용액을 기형성된 CIGS 광흡수층 표면에 용액 코팅하고, 열처리해서 CIGS 표면이 Alkali Doped 또는 Alloyed된 CIGS(다결정)을 얻는 방법이다.The present invention is a method of obtaining CIGS (polycrystal) in which an alkali salt solution is dissolved on the surface of a preformed CIGS light absorption layer by solution coating, and heat treatment is performed on the CIGS surface to be Alkali Doped or Alloyed.

도 3은 본 발명의 실시예에 따른 알카리 원소로 표면 처리하여 제조된 CIGS 박막의 FE-SEM(Field Emission-Scanning Electron Microscope) 이미지를 나타낸 도면이다.3 is a view showing an FE-SEM (Field Emission-Scanning Electron Microscope) image of a CIGS thin film prepared by surface treatment with an alkali element according to an embodiment of the present invention.

도 3은 본 발명에서 제조된 CIGS(Copper Indium Galium Selenide) 박막(a)과 K 표면 처리된 CIGS 박막(b)의 FE-SEM 표면 이미지 측정 결과이다. K 표면 처리된 CIGS 박막의 경우, K 표면 처리되지 않은 CIGS 박막에 비해 결정 그레인들이 더 크게 성장한 것을 볼 수 있다. 이는 K 표면 처리가 CIGS 결정 성장을 크게 유도하는 것으로 해석된다.3 is a FE-SEM surface image measurement result of the CIGS (Copper Indium Galium Selenide) thin film (a) and K surface-treated CIGS thin film (b) prepared in the present invention. In the case of the K surface-treated CIGS thin film, it can be seen that the crystal grains grew larger than the K surface-treated CIGS thin film. It is interpreted that K surface treatment greatly induces CIGS crystal growth.

도 4는 본 발명의 실시예에 따른 알카리 원소로 표면 처리하여 제조된 CIGS 박막의 XRD 패턴을 나타낸 도면이다.4 is a view showing an XRD pattern of a CIGS thin film prepared by surface treatment with an alkali element according to an embodiment of the present invention.

도 4는 본 발명에서 제조된 CIGS(구리(Cu)-인듐(In)-갈륨(Ga)-셀레늄(Se)) 박막과 K 표면 처리된 CIGS 박막의 XRD 측정 결과이다. K 표면 처리된 CIGS 박막의 Bragg angle 위치가 다소 왼쪽에 위치하는데, 이는 K 표면 처리를 통해서 CIGS 박막의 Lattice Parameter가 증가된 것을 의미한다.4 is an XRD measurement result of the CIGS (copper (Cu)-indium (In)-gallium (Ga)-selenium (Se)) thin film and the K surface-treated CIGS thin film prepared in the present invention. The Bragg angle position of the CIGS thin film treated with the K surface is slightly to the left, which means that the lattice parameter of the CIGS thin film is increased through the K surface treatment.

도 5는 본 발명의 실시예에 따라 알카리 원소로 표면 처리하여 제조된 CIGS 박막과 K 표면 처리된 CIGS 박막의 PL 과 TRPL 측정 결과를 나타낸 도면이다.5 is a view showing the PL and TRPL measurement results of the CIGS thin film prepared by surface treatment with an alkali element and K surface-treated CIGS thin film according to an embodiment of the present invention.

도 5의 (a)는 알카리 원소로 표면 처리하여 제조된 CIGS 박막의 PL(Photoluminescence) 측정 결과이다.Figure 5 (a) is a PL (Photoluminescence) measurement result of the CIGS thin film prepared by surface treatment with an alkali element.

도 5의 (b)는 알카리 원소로 표면 처리하여 제조된 CIGS 박막의 TRPL(Time Resolved Photoluminescence) 측정 결과이다.FIG. 5B is a time-resolved photoluminescence (TRPL) measurement result of a CIGS thin film prepared by surface treatment with an alkali element.

도 5는 본 발명에 따라 제조된 CIGS 박막과 K 표면 처리된 CIGS 박막의 PL 과 TRPL 측정 결과를 보여준다. K 표면 처리한 CIGS의 경우 PL Intensity가 크고, TRPL Life Time이 길게 측정되었다. 이는 K 표면 처리를 통해서 광흡수층의 전하 재결합 결함이 줄어들고, 이에 따라 PL Intensity가 증가하고, TRPL Life Time이 길게 측정된 것으로 해석된다.5 shows the PL and TRPL measurement results of the CIGS thin film prepared according to the present invention and the K surface-treated CIGS thin film. In case of CIGS treated with K surface, PL Intensity was large and TRPL Life Time was long. It is interpreted that the charge recombination defects of the light absorption layer are reduced through K surface treatment, and accordingly, the PL intensity increases and the TRPL life time is long.

도 6은 본 발명의 실시예에 따른 순수 CIGS 박막과 알카리 원소로 표면 처리하여 제조된 CIGS 박막을 이용하여 제조된 태양전지의 전류밀도-전압(J-V) 그래프와 EQE 측정 결과를 나타낸 도면이다.6 is a view showing a current density-voltage (J-V) graph and EQE measurement results of a solar cell manufactured using a pure CIGS thin film and a CIGS thin film prepared by surface treatment with an alkali element according to an embodiment of the present invention.

도 6의 (a)는 본 발명에 따라 제조된 CIGS 박막과 K 표면 처리된 CIGS 박막을 이용해서 제작한 태양전지의 전류밀도-전압(J-V) 그래프이다. K 표면 처리된 CIGS 광흡수층을 사용하여 만든 태양전지는 개방 전압(open circuit voltage, Voc)=0.633V, 단략전류(short circuit current, Jsc)=29.83 mA/cm2, 충진률(fill factor, FF)=65.75%, 광전변환효율(power conversion efficiency, PCE)=12.41 % 를 보였다. 반면, 순수한 CIGS 광흡수층을 사용하여 만든 태양전지는 개방 전압(open circuit voltage, Voc)=0.5548 V, 단략전류(short circuit current, Jsc)=26.76mA/cm2, 충진률(fill factor, FF)=62.195%, 광전변환효율(power conversion efficiency, PCE)=9.233%를 보였다. 이는 K 표면 처리된 CIGS 광흡수층을 사용할 경우, 태양전지 효율이 증가될 수 있음을 직접적으로 보여주는 결과이다.6 (a) is a current density-voltage (JV) graph of a solar cell manufactured using the CIGS thin film manufactured according to the present invention and the K surface-treated CIGS thin film. A solar cell made using the K surface-treated CIGS light absorption layer has an open circuit voltage (Voc)=0.633V, short circuit current (Jsc)=29.83 mA/cm 2 , and a fill factor (FF). ) = 65.75%, and power conversion efficiency (PCE) = 12.41 %. On the other hand, solar cells made using pure CIGS light absorption layer have open circuit voltage (Voc)=0.5548 V, short circuit current (Jsc)=26.76mA/cm 2 , fill factor (FF) =62.195%, and photoelectric conversion efficiency (PCE) = 9.233%. This is a result directly showing that solar cell efficiency can be increased when a K surface-treated CIGS light absorption layer is used.

도 6의 (b)는 본 발명에 따라 제조된 CIGS 박막과 K 표면 처리된 CIGS 박막을 이용해서 제조한 태양전지의 EQE(External Quantum Efficiency) 측정 결과이다. FIG. 6(b) is an EQE (External Quantum Efficiency) measurement result of a solar cell manufactured using the CIGS thin film manufactured according to the present invention and the K surface-treated CIGS thin film.

구체적으로는 도 6의 (a)의 J-V 그래프 측정에 이용된 태양전지에 대한 EQE 측정 결과인데, K 표면 처리된 CIGS 박막을 이용해서 제작한 태양전지의 경우 530nm 이상 파장 영역에서 EQE 값이 더 크게 측정된다.Specifically, it is the EQE measurement result for the solar cell used for measuring the JV graph of FIG. It is measured.

이는 K 표면 처리에 따라 CIGS 박막 내에서 전하 재결합을 일으키는 결함이 크게 감소되고, 이에 따라 530nm 이상의 장파장 스펙트럼 영역에서 EQE 값이 증가한 것으로 이해된다.It is understood that the defect causing charge recombination in the CIGS thin film is greatly reduced according to the K surface treatment, and thus the EQE value is increased in the long-wavelength spectral region of 530 nm or more.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements by those skilled in the art using the basic concept of the present invention as defined in the following claims are also provided. is within the scope of the right.

10: 전구체 용액
11: 용기
20: 코팅 장치
30: 챔버
100: 기판
200: 전극층
300: 광흡수층, CIGS 박막
400: 비정질 박막
500: 다결정 칼코파라이트 박막
10: precursor solution
11: Courage
20: coating device
30: chamber
100: substrate
200: electrode layer
300: light absorption layer, CIGS thin film
400: amorphous thin film
500: polycrystalline chalcoparite thin film

Claims (11)

알카리원소염을 용매에 녹인 알카리 원소가 도핑된 전구체 용액을 준비하는 단계;
상기 전구체 용액을 상기 기판 상에 기형성된 광흡수층의 표면에 도포하여 알카리 원소가 함유된 비정질 박막을 형성하는 단계; 및
챔버 내에서 상기 기판 상의 비정질 박막을 S 또는 Se의 물질이 증발되는 베이퍼(Vapor) 분위기에서 열처리하여 알카리 원소(A)가 표면 처리된 다결정 칼코파라이트 박막을 획득하는 단계를 포함하는 것을 특징으로 하는 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법.
preparing a precursor solution doped with an alkali element by dissolving an alkali element salt in a solvent;
forming an amorphous thin film containing an alkali element by applying the precursor solution to the surface of the light absorption layer previously formed on the substrate; and
Heating the amorphous thin film on the substrate in a vapor atmosphere in which S or Se material is evaporated in a chamber to obtain a polycrystalline chalcoparite thin film surface-treated with alkali element (A), characterized in that Solution-based alkali element post-deposition treatment method for light absorption layer.
제1항에 있어서,
상기 다결정 칼코파라이트 박막을 획득하는 단계는,
열처리하게 되면, 상기 알카리 원소가 열확산에 의해서 CIGS(Copper Indium Galium Selenide) 박막의 광흡수층 안으로 이동하게 되어 상기 CIGS 박막의 표면이 Alkali Doped CIGS(다결정) 또는 Alkali Alloyed CIGS(다결정)로 변하는 단계를 더 포함하는 것을 특징으로 하는 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법.
The method of claim 1,
Obtaining the polycrystalline chalcoparite thin film comprises:
When heat treatment is performed, the alkali element moves into the light absorption layer of the CIGS (Copper Indium Galium Selenide) thin film by thermal diffusion, so that the surface of the CIGS thin film is changed to Alkali Doped CIGS (polycrystalline) or Alkali Alloyed CIGS (polycrystalline). Solution-based alkali element post-deposition treatment method for the light absorption layer, characterized in that it comprises.
제1항에 있어서,
상기 다결정 칼코파라이트 박막을 획득하는 단계는,
열확산 공정을 강하게 수행하면, 상기 CIGS 박막의 전체가 Alkali Doped CIGS(다결정) 또는 Alkali Alloyed CIGS(다결정)로 변하는 단계를 더 포함하는 것을 특징으로 하는 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법.
According to claim 1,
Obtaining the polycrystalline chalcoparite thin film comprises:
When the thermal diffusion process is strongly performed, the solution-based alkali element post-deposition treatment method for the light absorption layer, further comprising the step of changing the entire CIGS thin film to Alkali Doped CIGS (polycrystalline) or Alkali Alloyed CIGS (polycrystalline).
제1항에 있어서,
상기 다결정 칼코파라이트 박막을 획득하는 단계는,
상기 열처리에서의 후셀렌화(post-selenization) 과정에 의해 Cu1-xAx(In,Ga)Se2,
상기 열처리에서의 후황화(post-sulfurization) 과정에 의해 Cu1-xAx(In,Ga)S2, 또는
상기 열처리에서의 후황화-셀렌화(post sulfo-selenization) 과정에 의해 Cu1-xAx(In,Ga)(S,Se)2을 표면에 형성한 광흡수층을 형성하는 단계를 포함하는 것을 특징으로 하는 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법.
The method of claim 1,
Obtaining the polycrystalline chalcoparite thin film comprises:
Cu 1-x A x (In,Ga)Se 2 , by the post-selenization process in the heat treatment
Cu 1-x A x (In,Ga)S 2 by the post-sulfurization process in the heat treatment, or
In the heat treatment, the post sulfo-selenization (post sulfo-selenization) process comprising the step of forming a light absorption layer formed on the surface of Cu 1-x A x (In,Ga)(S,Se) 2 A solution-based alkali element post-deposition treatment method for a light absorption layer, characterized in that it.
제1항에 있어서,
상기 용매는 물, 에탄올, 메탄올, DMSO(Dimethyl Sulfoxide) 또는 DMF(Dimetylformamide) 중 하나를 포함하거나, 또는 이들 중 2이상의 혼합 용액을 포함하는 것을 특징으로 하는 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법.
The method of claim 1,
The solvent contains one of water, ethanol, methanol, DMSO (dimethyl sulfoxide) or DMF (Dimetylformamide), or a solution-based alkali element post-deposition treatment for the light absorption layer, characterized in that it contains a mixed solution of two or more of these method.
제1항에 있어서,
상기 알카리원소염은 chloride(Cl)계, acetate((CO2CH3)2)계, nitrate((NO3)2)계, Nitrate Hydrate((NO3)2·x(H2O))계 또는 Acetate hydrate((CO2CH3)2·x(H2O))계의 원소염을 포함하는 것을 특징으로 하는 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법.
The method of claim 1,
The alkali element salt is chloride(Cl)-based, acetate((CO 2 CH 3 ) 2 )-based, nitrate ((NO 3 ) 2 )-based, Nitrate Hydrate ((NO 3 ) 2 ·x(H 2 O))-based Or Acetate hydrate ((CO2CH3)2·x(H 2 O))-based solution-based alkali element post-deposition treatment method for the light absorption layer, characterized in that it comprises an elemental salt.
제1항에 있어서,
상기 알카리원소염은 Li, Na, K, Rb, Cs 중 하나 이상의 알카리 원소(A)가 상기 전구체 용액에 용해되어 있는 것을 특징으로 하는 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법.
The method of claim 1,
The alkali element salt is a solution-based alkali element post-deposition treatment method for the light absorption layer, characterized in that at least one alkali element (A) of Li, Na, K, Rb, and Cs is dissolved in the precursor solution.
제1항에 있어서,
상기 광흡수층의 표면에 도포하여 비정질 박막을 형성하는 단계는,
상기 기판의 온도 100℃ 내지 500℃에서 코팅 장치의 노즐을 통해 코팅 또는 도포 방식을 스핀 코팅, 스프레이 코팅, 잉크젯 코팅, 또는 블레이드 코팅 방식으로 이루어지는 것을 특징으로 하는 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법.
The method of claim 1,
Forming an amorphous thin film by coating on the surface of the light absorption layer,
Solution-based alkali element post-deposition on the light absorption layer, characterized in that the coating or application method is spin coating, spray coating, inkjet coating, or blade coating method through a nozzle of a coating device at a temperature of 100° C. to 500° C. of the substrate processing method.
기판;
상기 기판의 일면에 증착된 몰리브데늄의 전극층;
상기 전극층 상에 형성하여 진공기반 또는 비진공기반으로 제조된 CIGS(Copper Indium Galium Selenide) 박막이 광흡수층으로 형성된 층; 및
상기 광흡수층의 표면에 알카리 원소(A)가 표면 처리된 다결정 칼코파라이트(Chalcopyrite) 박막을 포함하는 것을 특징으로 하는 박막 태양전지.
Board;
an electrode layer of molybdenum deposited on one surface of the substrate;
a layer in which a vacuum-based or non-vacuum-based CIGS (Copper Indium Galium Selenide) thin film is formed on the electrode layer as a light absorption layer; and
A thin film solar cell, characterized in that it comprises a polycrystalline chalcopyrite (Chalcopyrite) thin film surface-treated with an alkali element (A) on the surface of the light absorption layer.
제9항에 있어서,
상기 CIGS 박막의 표면에 알카리 원소(A)가 표면 처리된 Alkali Doped CIGS(다결정) 또는 Alkali Alloyed CIGS(다결정)를 형성하는 것을 특징으로 하는 박막 태양전지.
10. The method of claim 9,
A thin film solar cell, characterized in that to form Alkali Doped CIGS (polycrystalline) or Alkali Alloyed CIGS (polycrystalline) surface-treated with an alkali element (A) on the surface of the CIGS thin film.
제9항에 있어서,
상기 다결정 칼코파라이트 박막은 알카리 원소로 K가 표면 처리된 Cu1-xAx(In,Ga)Se2, Cu1-xAx(In,Ga)S2, 또는 Cu1-xAx(In,Ga)(S,Se)2의 표면을 가진 것을 특징으로 하는 박막 태양전지.


10. The method of claim 9,
The polycrystalline chalcoparite thin film is Cu 1-x A x (In,Ga)Se 2 , Cu 1-x A x (In,Ga)S 2 , or Cu 1-x A x surface-treated with K with an alkali element (In,Ga)(S,Se) 2 A thin film solar cell, characterized in that it has a surface.


KR1020200109304A 2020-08-28 2020-08-28 Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution KR102524637B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200109304A KR102524637B1 (en) 2020-08-28 2020-08-28 Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200109304A KR102524637B1 (en) 2020-08-28 2020-08-28 Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution

Publications (2)

Publication Number Publication Date
KR20220028381A true KR20220028381A (en) 2022-03-08
KR102524637B1 KR102524637B1 (en) 2023-04-21

Family

ID=80812701

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200109304A KR102524637B1 (en) 2020-08-28 2020-08-28 Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution

Country Status (1)

Country Link
KR (1) KR102524637B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218680A (en) * 2007-03-05 2008-09-18 Honda Motor Co Ltd Ia GROUP ELEMENT MEASURING METHOD
KR20130086932A (en) * 2010-05-31 2013-08-05 아사히 가라스 가부시키가이샤 Cigs solar cell and substrate for cigs solar cell
KR20140036068A (en) * 2012-09-13 2014-03-25 한국과학기술연구원 Fabrication of chalcopyrite compound thin films for solar cells using multi-stage paste coating
JP5511320B2 (en) * 2008-11-11 2014-06-04 京セラ株式会社 Thin film solar cell manufacturing method
KR101521450B1 (en) 2013-01-28 2015-05-21 조선대학교산학협력단 Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218680A (en) * 2007-03-05 2008-09-18 Honda Motor Co Ltd Ia GROUP ELEMENT MEASURING METHOD
JP5511320B2 (en) * 2008-11-11 2014-06-04 京セラ株式会社 Thin film solar cell manufacturing method
KR20130086932A (en) * 2010-05-31 2013-08-05 아사히 가라스 가부시키가이샤 Cigs solar cell and substrate for cigs solar cell
KR20140036068A (en) * 2012-09-13 2014-03-25 한국과학기술연구원 Fabrication of chalcopyrite compound thin films for solar cells using multi-stage paste coating
KR101521450B1 (en) 2013-01-28 2015-05-21 조선대학교산학협력단 Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Essam H. 외 1인, ACS Appl. Energy Mater. 2020, 3, 5, 4821-4830, 2020.5.1.공개* *
M. Malitckaya 외 3인, J. Phys. Chem. C 2017, 121, 29, 15516-15528, 2017.7.7.공개 *

Also Published As

Publication number Publication date
KR102524637B1 (en) 2023-04-21

Similar Documents

Publication Publication Date Title
Feng et al. High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells
Li et al. Scalable fabrication of perovskite solar cells
Lei et al. Review of recent progress in antimony chalcogenide‐based solar cells: materials and devices
Zeng et al. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings
Li et al. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition
US20170084400A1 (en) Precipitation process for producing perovskite-based solar cells
Chen et al. Moisture-tolerant and high-quality α-CsPbI 3 films for efficient and stable perovskite solar modules
Yin et al. Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere
US20170287648A1 (en) Large-area perovskite film and perovskite solar cell or module and fabrication method thereof
Ghosh et al. Fabrication of the SnS/ZnO heterojunction for PV applications using electrodeposited ZnO films
Liu et al. High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite film prepared by vacuum-assisted thermal annealing
KR20180042277A (en) Formation of lead-free perovskite film
Husainat et al. Simulation and analysis method of different back metals contact of CH3NH3PbI3 perovskite solar cell along with electron transport layer TiO2 using MBMT-MAPLE/PLD
Franckevičius et al. Efficiency improvement of superstrate CZTSSe solar cells processed by spray pyrolysis approach
Luo et al. Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells
KR20120075827A (en) Method for manufacturing light absorbing layer of compound semiconductor solar cell
Zhao et al. A sintering-free, nanocrystalline tin oxide electron selective layer for organometal perovskite solar cells
Zhang et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells
Wang et al. Reveal the growth mechanism in perovskite films via weakly coordinating solvent annealing
Chen et al. Effect of annealing process on CH 3 NH 3 PbI 3-X Cl X film morphology of planar heterojunction perovskite solar cells with optimal compact TiO 2 layer
JP5278778B2 (en) Chalcogenite compound semiconductor and method for producing the same
KR102524637B1 (en) Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution
Peksu et al. Synthesis of ZnO nanowires and their photovoltaic application: ZnO nanowires/AgGaSe 2 thin film core-shell solar cell
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
Wen et al. High-temperature inverted annealing for efficient perovskite photovoltaics

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant