KR101521450B1 - Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target - Google Patents

Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target Download PDF

Info

Publication number
KR101521450B1
KR101521450B1 KR1020130009267A KR20130009267A KR101521450B1 KR 101521450 B1 KR101521450 B1 KR 101521450B1 KR 1020130009267 A KR1020130009267 A KR 1020130009267A KR 20130009267 A KR20130009267 A KR 20130009267A KR 101521450 B1 KR101521450 B1 KR 101521450B1
Authority
KR
South Korea
Prior art keywords
cuse2
thin film
sputtering
target
cigs thin
Prior art date
Application number
KR1020130009267A
Other languages
Korean (ko)
Other versions
KR20140097645A (en
Inventor
김남훈
오성하
이우선
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Priority to KR1020130009267A priority Critical patent/KR101521450B1/en
Publication of KR20140097645A publication Critical patent/KR20140097645A/en
Application granted granted Critical
Publication of KR101521450B1 publication Critical patent/KR101521450B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법에 관한 것으로서, CuSe2 타켓으로 스퍼터링 증착을 수행하여 CIGS 박막을 제조하기 위한 방법을 제공함에 그 목적이 있다.
이러한 목적을 달성하기 위한 본 발명은, (a) 기판에 마련된 CuSe2 타겟에 프리 스퍼터링 수행하는 단계; (b) RF 마그네트론 스퍼터링 수행하는 단계; 및 (c) Ga/In/CuSe2 다층 스택구조를 생성하기 위하여, 인듐(In) 및 갈륨(Ga) 타겟을 RF 스퍼터링을 수행하여 CuSe2 박막 위에 증착하는 단계; 를 포함한다.
The present invention relates to a CIGS thin film manufacturing method using a non-selenized sputtering process targeting CuSe2, and a method for fabricating a CIGS thin film by performing sputtering deposition using a CuSe2 target.
According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the steps of: (a) performing pre-sputtering on a CuSe2 target provided on a substrate; (b) performing RF magnetron sputtering; And (c) in order to create a Ga / In / CuSe 2 multi-layer stack structure, an indium (In) and gallium (Ga) target by performing an RF sputter deposition over the thin film CuSe2; .

Description

CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법{Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target}[0001] The present invention relates to a method for manufacturing a CIGS thin film using a non-selenized sputtering process targeting CuSe2,

본 발명은 CIGS 박막 제조방법에 관한 것으로서, 더욱 상세하게는 인듐(In), 갈륨(Ga), 구리 셀레나이드(CuSe2)를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법에 관한 것이다.The present invention relates to a CIGS thin film manufacturing method, and more particularly, to a CIGS thin film manufacturing method using a non-selenized sputtering process which targets indium (In), gallium (Ga), and copper selenide (CuSe2).

태양전지 광흡수층 제조방법과 관련해서는, 한국공개특허 제10-2011-0017061호(이하, '선행문헌') 외에 다수 출원 및 공개되어 있다. Related to the manufacturing method of the solar cell light absorbing layer, there are many applications and disclosures in addition to Korean Patent Laid-Open No. 10-2011-0017061 (hereinafter referred to as "prior art document").

선행문헌에 따른 방법은, 기판 상에 금속전구체층을 증착하는 단계; 및 상기 금속전구체층 상에 셀레늄을 증착하는 단계; 를 포함하고, 상기 각 단계들은, 상기 기판을 챔버 내에서 회전이송하면서 수행하는 것을 특징으로 한다. A method according to the prior art comprises depositing a metal precursor layer on a substrate; And depositing selenium on the metal precursor layer; And each of the steps is performed while rotating the substrate in the chamber.

한편, 다결정 CIGS 박막과 칼코파이라이트 격자구조는 광흡수율과 우수한 전기-광학 안정성, 결함에 대한 높은 내성, 비소나 카드뮴 요소와 같은 독성이나 유해 오염물질의 결여 그리고 Ga/(In+Ga)비율의 조절에 의해 최적의 광 밴드갭 값을 조정할 수 있다는 이유로 태양광전지에서 흡수층으로 연구가 되었다. 헤테로 구조 CIGS 태양전지 제조에서 기존의 다결정 실리콘 태양 전지의 최고 효율이라 할 수 있는 20.3 %를 초과하는 높은 변환 효율이 달성되었다. On the other hand, the polycrystalline CIGS thin film and the chalcopyrite lattice structure are excellent in light absorptivity, excellent electro-optical stability, high resistance to defects, lack of toxic or harmful contaminants such as arsenic and cadmium elements, and Ga / (In + Ga) It has been studied as an absorber layer in solar photovoltaics because it can adjust the optimum optical bandgap value by adjusting. High conversion efficiency exceeding 20.3%, which is the highest efficiency of conventional polycrystalline silicon solar cells, has been achieved in the fabrication of heterostructure CIGS solar cells.

다양한 CIGS 제조공정 중에서, 기존 동시증발법의 비용이 비싼 장비, 느린 증착속도 그리고 낮은 재현성과 절차의 복잡성과 같은 산업 생산을 위한 단점에 비해 H2Se 증기를 사용하여 스퍼터한 Cu-In-Ga 전구체의 셀렌화는 적은 비용으로 CIGS 박막을 준비하기 위한 적정한 방법으로 발견되었다. 그러나 셀렌화 공정은 H2Se의 높은 독성, 배면전극과의 낮은 접착력과 반응이 느리다는 핵심적인 문제들 역시도 발견되었다. 비셀렌화 공정은 CIGS 박막을 제조하기 위한 개발되어야 하지만 극소수의 연구들만 수행되었다(Cu-In-Ga의 DC-magnetron 스퍼터링과 Se의 열증착한 후 황화 분위기에서의 RTA를 진행하여 전구체 박막을 형성하였다).Among the various CIGS manufacturing processes, there is a disadvantage for industrial production such as expensive simultaneous evaporation equipment, slow deposition rate, and low reproducibility and complexity of the process. In contrast to the disadvantages of industrial production, the use of H2Se vapor to sputtered Cu- Was found to be a suitable method for preparing CIGS thin films at low cost. However, the selenization process has also been found to have major problems such as high toxicity of H2Se, low adhesion to the back electrode, and slow response. Although the desensitization process has to be developed to produce CIGS thin films, only a few studies have been performed (DC-magnetron sputtering of Cu-In-Ga and thermal annealing of Se, followed by RTA in a sulfiding atmosphere to form a precursor thin film ).

또한, Cu-Ga 합금과 In-Se 합금 타겟들을 동시 스퍼터링 방법을 활용하여 CIGS 박막을 제조하였다. 이러한 작업은 어떤 셀렌화 공정 없이도 In, Ga, CuSe2 합금 타겟들의 RF 마그네트론(magnetron) 스퍼터링을 활용하여 칼코파이라이트 CIGS 박막을 형성할 수 있다는 것을 증명한다. 이 제안된 방법은 간단하고 대량생산을 위한 광범위한 영역에서 제조 그리고 Ga/(In + Ga) 비율의 화학적 조성을 쉽게 조정할 수 있다는 이점들을 포함한다. In addition, CIGS thin films were fabricated by simultaneous sputtering of Cu-Ga alloy and In-Se alloy targets. This work demonstrates that RF magnetron sputtering of In, Ga, CuSe2 alloy targets can be used to form a chalcopyrite CIGS thin film without any selenization process. The proposed method is simple and involves the advantages of easy fabrication and chemical composition of the Ga / (In + Ga) ratio in a wide range for mass production.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, CuSe2 타켓으로 스퍼터링 증착을 수행하여 CIGS 박막을 제조하기 위한 방법을 제공함에 그 목적이 있다. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for manufacturing a CIGS thin film by performing sputtering deposition with a CuSe2 target.

이러한 기술적 과제를 달성하기 위한 본 발명은 (a) 기판에 마련된 CuSe2 타겟에 프리 스퍼터링 수행하는 단계; (b) RF 마그네트론 스퍼터링 수행하는 단계; 및 (c) Ga/In/CuSe2 다층 스택구조를 생성하기 위하여, 인듐(In) 및 갈륨(Ga) 타겟을 RF 스퍼터링을 수행하여 CuSe2 박막 위에 증착하는 단계; 를 포함한다. According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: (a) performing free sputtering on a CuSe2 target provided on a substrate; (b) performing RF magnetron sputtering; And (c) depositing an indium (In) and gallium (Ga) target on the CuSe2 thin film by RF sputtering to produce a Ga / In / CuSe2 multilayer stack structure; .

또한 상기 (a) 단계에서, 상기 기판은, 코닝(corning) 유리 기판인 것을 특징으로 한다.In the step (a), the substrate may be a corning glass substrate.

또한 상기 (a) 단계에서, 프리 스퍼터링(pre-sputtering)을 1분 내지 10분간 수행하는 것을 특징으로 한다.Also, in the step (a), pre-sputtering is performed for 1 minute to 10 minutes.

또한 상기 (b) 단계에서, 매개 공정변수에 따라, RF 마그네트론 스퍼터링을 수행하는 것을 특징으로 한다.Further, in the step (b), RF magnetron sputtering is performed according to an intermediate process variable.

그리고 상기 (c) 단계에서, 상기 인듐(In)과 갈륨(Ga) 타겟을 각각 20와트(Watt) 내지 40와트(Watt)의 RF 스퍼터링 파워로, RF 스퍼터링을 수행하는 것을 특징으로 한다. In the step (c), RF sputtering is performed with the RF sputtering power of the indium (In) and gallium (Ga) targets at 20 watts to 40 watts, respectively.

상기와 같은 본 발명에 따르면, CIGS 박막태양전지 흡수층 제작을 위해 고비용 및 고난도의 셀렌화 공정을 수행하던 종래와 달리, CuSe2 타겟을 이용한 비셀렌화 스퍼터링 공정을 수행함으로써, 고품질의 CIGS 박막을 생산할 수 있는 효과가 있다.According to the present invention, a high-quality CIGS thin film can be produced by performing a non-selenized sputtering process using a CuSe2 target, unlike the conventional method of performing a selenization process at a high cost and a high cost for fabricating a CIGS thin film solar cell absorbing layer There is an effect.

도 1 은 본 발명의 일실시예에 따른 CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법에 관한 전체 흐름도.
도 2 는 본 발명의 일실시예에 따른 CuSe2, 증착된 CuSe2-In-Ga 박막, 로에서 열처리한 박막 및 RTA에 의해 열처리한 박막들의 XRD 패턴들을 보이는 그래프.
도 3 은 본 발명의 일실시예에 따른 열처리한 표본들의 전기적 광학적 특성을 보이는 일예시도.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall flowchart of a CIGS thin film manufacturing method using a non-selenized sputtering process targeting CuSe2 according to an embodiment of the present invention; FIG.
FIG. 2 is a graph showing XRD patterns of CuSe 2, a deposited CuSe 2 -In-Ga thin film, a thin film annealed in a furnace, and a thin film annealed by RTA according to an embodiment of the present invention.
FIG. 3 illustrates an example of electrical and optical characteristics of heat-treated specimens according to an embodiment of the present invention. FIG.

본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. It is to be noted that the detailed description of known functions and constructions related to the present invention is omitted when it is determined that the gist of the present invention may be unnecessarily blurred.

이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.

본 발명의 일실시예에 따른 CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법에 관하여 도 1 내지 도 3 을 참조하여 설명하면 다음과 같다. A method of manufacturing a CIGS thin film using a non-selenized sputtering process targeting CuSe2 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG.

도 1 은 본 발명의 일실시예에 따른 CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법에 관한 전체 흐름도이다. FIG. 1 is an overall flowchart of a CIGS thin film manufacturing method using a non-selenized sputtering process targeting CuSe 2 according to an embodiment of the present invention.

[제 1 단계] CuSe2 타겟에 프리 스퍼터링 수행.[Step 1] Perform free sputtering on the CuSe2 target.

2*2cm 코닝(corning) 유리 기판에 마련된 CuSe2 타겟(99.99% 순도, 2-inch 직경)에 프리 스퍼터링(pre-sputtering)을 5분간 수행한다(S10).
Pre-sputtering is performed for 5 minutes on a CuSe2 target (99.99% purity, 2-inch diameter) provided on a 2 * 2 cm corning glass substrate (S10).

[제 2 단계] RF 마그네트론 스퍼터링 수행.[Second Stage] Performing RF magnetron sputtering.

공정 매개변수에 따라 RF 마그네트론 스퍼터링을 수행한다(S20).RF magnetron sputtering is performed according to the process parameters (S20).

이때, 공정 매개변수는 다음과 같다.Here, the process parameters are as follows.

20sccm의 아르곤 기압, 1.0 * 10-6Torr의 기압, 5.0cm의 기판 거리, 35와트(Watt)의 RF 스퍼터링 파워, 상온에서 2분 30초 동안 스퍼터링될 때의 7.5 * 10-3Torr의 진공 기압.
An argon atmosphere pressure of 20 sccm, an air pressure of 1.0 * 10 -6 Torr, a substrate distance of 5.0 cm, RF sputtering power of 35 Watt, vacuum pressure of 7.5 * 10 -3 Torr when sputtered at room temperature for 2 minutes and 30 seconds .

[제 3 단계] 인듐(In) 및 갈륨(Ga) 증착.[Third Stage] Indium (In) and gallium (Ga) deposition.

Ga/In/CuSe2 다층 스택구조를 생성하기 위하여, 인듐(In)(99.99% 순도, 2-inch 직경)과 갈륨(Ga)(99.99% 순도, 2-inch 직경) 타겟을 RF 스퍼터링을 수행하여 CuSe2 박막 위에 증착한다(S30).(99.99% purity, 2-inch diameter) and gallium (Ga) (99.99% purity, 2-inch diameter) targets were RF sputtered to produce a Ga / In / CuSe2 multi- Is deposited on the thin film (S30).

여기서, 인듐(In)과 갈륨(Ga) 타겟을 각각 20와트(Watt)와 35와트(Watt)의 RF 스퍼터링 파워로, 20초와 5분 동안을 제외한 모두 동일한 공정조건에서 RF 스퍼터링을 수행한다.
Here, RF sputtering is performed under the same process conditions except for 20 seconds and 5 minutes, with the indium (In) and gallium (Ga) targets being RF sputtering powers of 20 watts and 35 watts, respectively.

이에 따라, X-ray reflectometry(XRR)를 이용하여 측정한 결과, 인듐(In)과 갈륨(Ga) 박막의 평균두께는 약 150nm와 100nm이다.As a result, the average thicknesses of indium (In) and gallium (Ga) thin films measured by X-ray reflectometry (XRR) were about 150 nm and 100 nm.

이처럼 증착된 샘플은, 열처리를 위해 로(furnace)나 RTA를 이용하였다. The samples thus deposited were furnace or RTA for heat treatment.

열처리 공정의 초기 단계에서 각 증착된 샘플은 관형 세라믹 실험실 로에서 10분 동안 미리 가열한 후 진공 분위기(~10-3 Torr)에서 400℃나 600℃의 온도로 1시간 동안 열처리되었다. 열처리 후, 샘플들은 진공 챔버 안에서 유지되었고 실온에서 천천히 냉각되었다. 기존의 로 열처리 보다 온도 균일성을 향상시키기 위하여 N2가스 분위기 내에서 400℃로 10초 동안 RTA를 사용하였다. In the initial stage of the heat treatment process, each deposited sample was preheated in a tubular ceramic laboratory for 10 minutes and then heat treated in a vacuum atmosphere (~ 10 -3 Torr) at 400 ° C or 600 ° C for 1 hour. After the heat treatment, the samples were held in a vacuum chamber and slowly cooled at room temperature. In order to improve temperature uniformity over conventional furnace annealing, RTA was used for 10 seconds at 400 ℃ in N2 gas atmosphere.

X-ray diffraction(XRD, Cu Kα = 0.15405 nm, 40 kV, 30 mA)를 사용하여 박막들의 결정구조를 분석하였다. UV-visible spectrophotometer을 사용하여 400-800nm 범위 내에서 박막들의 광학특성을 분석하였다. 실온에서 Hall Effect measurement system을 사용하여 캐리어 농도, 저항과 이동도를 포함하는 박막들의 전기적 특성들을 알아볼 수 있었다. The crystal structure of thin films was analyzed by X-ray diffraction (XRD, Cu Kα = 0.15405 nm, 40 kV, 30 mA). The optical properties of thin films were analyzed in the range of 400-800nm using UV-visible spectrophotometer. Using Hall Effect measurement system at room temperature, we could identify the electrical properties of thin films including carrier concentration, resistance and mobility.

도 2 는 (a) 는 CuSe2, (b) 는 증착된 CuSe2-In-Ga 박막, (c) 는 로에서 400℃로 열처리한 박막, (d) 는 로에서 600℃에서 열처리한 박막, (e) 는 RTA에 의해 400℃로 열처리한 박막들의 XRD 패턴들을 보여준다. (B) is a CuSe2-In-Ga thin film, (c) is a thin film annealed at 400 ° C in a furnace, (d) is a thin film annealed at 600 ° C in a furnace, (e) ) Show XRD patterns of thin films annealed at 400 ° C by RTA.

회절 스펙트럼은 10-90°범위 내에서 2θ을 스캔하여 얻을 수 있었다. Diffraction spectra were obtained by scanning 2θ within the range of 10-90 °.

도 2 의 (a) 에서 CuSe2 박막의 회절 패턴은 2θ = 21.35°, 30.39°, 35.27°, 37.45°, 41.59°, 45.39°, 50.79°, 60.49°에서 (211), (222), (400), (411), (322), (431), (440), (622) 과 같이 ITO 기판에 해당하는 피크들의 존재를 보여준다. 2 (a), the diffraction pattern of the CuSe2 thin film was (211), (222), (400) at 2θ = 21.35 °, 30.39 °, 35.27 °, 37.45 °, 41.59 °, 45.39 °, 50.79 °, , 411, 322, 431, 440, and 622, respectively, of the ITO substrate.

도 2 의 (b) 의 증착된 CuSe2-In-Ga 박막 2θ = 32.93°에서 In (101) 피크가 나타난다. CuSe2-in-Ga 박막들이 로에서 400℃로 1시간동안 열처리 된 후, 우선방위의 회절피크 (112) at 2θ = 26.90°, (220)/(204) at 2θ = 44.71° and (312)/(116) at 2θ = 52.85° 는 CIGS 칼코파이라이트 상들에 해당한다.The In (101) peak appears at 2? = 32.93 ° of the deposited CuSe2-In-Ga thin film of FIG. 2 (b). After the CuSe2-in-Ga thin films were annealed at 400 DEG C for 1 hour in the furnace, the diffraction peaks (112) at 2θ = 26.90 °, (220) / (204) at 2θ = 44.71 ° and (312) / (116) at 2 &thetas; = 52.85 DEG corresponds to CIGS chalcopyrite phases.

어떤 가스의 주입이 없었던 로에서 400℃로 열처리한 CuSe2-In-Ga 박막들은 결과적으로 칼코파이라이트 구조가 되었다. (220) / (204) 및 (312) / (116) 회절 피크의 강도는 이전 연구에서 보고된 농도보다 선명하고 강했던 반면, (112) 피크의 값은 비슷했는데, 이것은 이러한 방법론이 결정의 질과 결정립 성장을 얻을 수 있다는 것을 의미한다. (112), (220)/(204), (312)/(116) 회절 피크는 CuSe2-In-Ga 박막이 상대적으로 높은 600℃로 로에서 1시간동안 열처리 된 박막에서는 발견되지 않았으나 63.51°에서 CIGS 칼코파이라이트 상에 해당하는 (323)/(305) 회절피크가 발생하였다. 이 결과는 열처리 온도가 550℃ 이상으로 증가할 때 XRD 회절 피크가 점차 감소하는 이전 연구와 정확히 일치한다. 개방전압(Voc)과 단락전류(Jsc)를 포함하는 전기적 특성들은 알려진 바와 같이 꽉 찬 (112), (220)/(224), (312)/(116) 중심입자가 박막에서 구조적 결함으로 인해 누설전류와 캐리어 재결합을 줄이기 때문에 이 조건에서 악화될 것이다. 보여지는 도 2 의 (c) 와 (e) 처럼, RTA처리한 샘플들과 로에서 400℃ 열처리한 샘플들이 거의 또는 전혀 변화가 없는 것이 관찰되었는데 이것은 (112), (220)/(204), (312)/(116)가 칼코파이라이트 상들이기 때문이다. RTA 처리는 짧은 반응시간과 낮은 온도에서의 박막의 In의 낮은 손실과 열응력을 통해 화학양론의 확실한 조절과 같은 몇 가지 이점들을 제공한다. 400℃이하에서의 RTA 처리의 추가 분석들이 필요된다. The CuSe2-In-Ga thin films annealed at 400 ℃ in the furnace without any gas injection resulted in a chalcopyrite structure. The intensity of the (220) / (204) and (312) / (116) diffraction peaks were vivid and stronger than those reported in the previous study, while the values of the (112) peaks were similar, Which means that grain growth can be obtained. (112), (220) / (204) and (312) / (116) diffraction peaks were not found in thin films annealed at 600 ° C. for 1 hour at relatively high CuSe 2 -In-Ga thin films, but at 63.51 ° (323) / (305) diffraction peaks corresponding to the CIGS chalcopyrite phase occurred. This result agrees exactly with the previous study, in which the XRD diffraction peak gradually decreases when the heat treatment temperature increases above 550 ° C. The electrical properties including the open-circuit voltage (Voc) and the short-circuit current (Jsc) are known to be due to structural defects in the thin films 112, 220, 224, 312 / This condition will deteriorate because it reduces leakage current and carrier recombination. As shown in FIGS. 2 (c) and 2 (e), there was little or no change in the RTA-treated samples and the samples annealed at 400 ° C. in the furnace, (312) / (116) are chalcopyrite phases. RTA treatment offers several advantages such as a low reaction time and a low loss of In of the thin film at low temperature and a definite control of stoichiometry through thermal stress. Further analyzes of the RTA treatment at < RTI ID = 0.0 > 400 C < / RTI >

도 3 은 열처리한 표본들의 전기적 광학적 특성을 보여준다. 열처리한 CuSe2-In-GA 박막의 전도성(σ), 캐리어 농도(N), 홀 이동도(μ) 및 흡수 계수(α)는 측정되었고, 사전연구에서 규정하거나 기록된 값과 비교했다. Figure 3 shows the electrical and optical properties of the heat treated specimens. Conductivity (σ), carrier concentration (N), hole mobility (μ) and absorption coefficient (α) of the annealed CuSe2-In-Ga thin films were measured and compared with the values specified or recorded in the previous study.

흡수계수는 박막의 표면 아래로 흡수된 주어진 파장의 입사 광자가 얼마나 먼지를 측정하기 위한 방법이다. 이것은 광자를 흡수하는 반도체의 능력이고 Beer-Lambert의 법칙을 사용하여 계산될 수 있다. CIGS 박막의 흡수계수는, Han et al.에 의해 105cm-1에 근접하고 박막의 두께에 관계없이 높은 광자 에너지의 영역에서 흡수계수의 필수 값과 일치했다. 이 실험에서 열처리한 CuSe2-In-Ga 박막의 모든 흡수계수는 8.24 * 105cm-1에서 2.41 * 106cm-1까지의 범위 안에 있었고 이 값은 필수 값 이상이었다. RTA 처리한 시편은 가장 높은 값을 보였고 반면에 로에서 600℃로 열처리한 시편은 가장 낮은 값을 보였다. The absorption coefficient is a measure of how much incident photons of a given wavelength are absorbed below the surface of the film. This is the ability of the semiconductor to absorb photons and can be calculated using Beer-Lambert's law. The absorption coefficient of the CIGS thin film was close to 10 5 cm -1 by Han et al. And was consistent with the required value of the absorption coefficient in the region of high photon energy regardless of the thickness of the thin film. All the absorption coefficients of the CuSe2-In-Ga thin films annealed in this experiment were in the range of 8.24 * 10 5 cm -1 to 2.41 * 10 6 cm -1, which was above the required value. The RTA treated specimens showed the highest values, while the specimens annealed at 600 ℃ showed the lowest values.

이 시험에서 열처리한 CuSe2-In-Ga 박막들의 모든 전도성들은 3.34 * 102 S/cm 이상으로 동일한 두께(500nm)인 CIGS 박막의 기록된 값(0.22S/cm)를 초과하였다. 전도성의 향상은 400℃에서 열처리한 시편들에서 보다 컸다.All conductivities of the CuSe2-In-Ga thin films annealed in this test exceeded the recorded value (0.22 S / cm) of CIGS thin films with the same thickness (500 nm), above 3.34 * 102 S / cm. The improvement in conductivity was greater in the specimens annealed at 400 ℃.

특히, RTA 처리한 시편에서 2.33 * 103 S/cm로 가장 큰 값이었다. 모든 열처리한 박막들은 p-형의 전도성을 보였다. CIGS 박막의 케리어 농도는 2 * 1016 cm3 이상으로 제안되었고 이 값은 NRLL 19.9% 디바이스의 관련자산이었다. 이 실험에서 측정된 값은 대략 1019-1020 cm-3이었고 이는 필요 값에 비해 매우 컸다. 캐리어 농도는 CuSe2 타겟을 스퍼터링한 후 RTA 처리한 시편에서 4.43 * 1020 cm-3의 최대값을 얻었다. CIGS 박막의 홀 이동도는 이전 연구와 같은 두께(500nm)에서 4.25 cm2/Vs 주위였다. 이 실험에서 열처리한 CuSe2-In-Ga 박막의 홀 이동도는 로에서 600℃와 400℃로 열처리한 샘플에서 대략, 10.90 cm2/Vs의 최소값과 90.10 cm2/Vs의 최대값을 나타내었다. 로에서 600℃로 열처리한 시편에 비해 400℃에서 RTA 처리한 시편은 34.30cm2/Vs의 높은 홀 이동도를 얻었지만 캐리어 농도와는 반대의 경향을 보였는데, 그 이유는 아마도 박막의 낮은 결함 밀도가 RTA 처리한 시편에서 낮은 포논의 분산을 유도했기 때문이다.
Especially, the maximum value was 2.33 * 10 3 S / cm in RTA treated specimens. All annealed films showed p-type conductivity. The carrier concentration of the CIGS thin film was suggested to be over 2 * 1016 cm 3, which was an associated asset of the NRLL 19.9% device. The measured value in this experiment was approximately 10 19 -10 20 cm -3 , which was very large compared to the required value. The carrier concentration was 4.43 * 10 20 cm -3 in the RTA-treated specimen after sputtering the CuSe 2 target. The hole mobility of CIGS thin films was around 4.25 cm2 / Vs at the same thickness (500 nm) as in the previous study. The hole mobility of the CuSe2-In-Ga thin films annealed in this experiment showed a minimum value of 10.90 cm 2 / Vs and a maximum value of 90.10 cm 2 / Vs in the samples annealed at 600 ° C and 400 ° C in furnace. Compared to the specimens annealed at 600 ° C, the RTA-treated specimens at 400 ° C showed a high hole mobility of 34.30 cm 2 / Vs, but showed a tendency opposite to the carrier concentration because the low defect density Because it induced low phonon dispersion in the RTA treated specimens.

정리하면, CuSe2 타겟을 스퍼터링 증착을 이용하여 CIGS 박막을 제조하기 위한 비셀렌화 방법이 제안되었다. 셀렌화나 황화가스 없는 종래의 로와 RTA에서 400℃로 열처리를 하여 CIGS 칼코파이라이트 (112), (220)/(204), (312)/(116)상은 성공적으로 형성하였다. 열처리한 모든 박막의 전도성, 캐리어 농도, 홀 이동도 그리고 흡수계수가 필요하거나 보고된 값보다 현저히 뛰어났다. 낮은 온도와 짧은 유지시간에 RTA를 통해 얻은 안정적인 특성은 다음과 같다. 2.33 * 103 S/cm의 전도성, 4.43 * 1020 cm-3의 캐리어 농도, 34.30 cm2/Vs의 홀 이동도 그리고 2.41 * 106 cm-1의 흡수계수.
In summary, a non-selenization method for producing CIGS thin films using sputtering deposition of a CuSe2 target has been proposed. CIGS chalcopyrite 112, (220) / (204), (312) / (116) phases were successfully formed by heat treatment at 400 ° C. in a conventional furnace without selenization or sulfide gas and RTA. Conductivity, carrier concentration, hole mobility and absorption coefficient of all annealed films were significantly better than required or reported values. The stable characteristics obtained by RTA at low temperature and short holding time are as follows. A conductivity of 2.33 * 10 3 S / cm, a carrier concentration of 4.43 * 10 20 cm -3 , a hole mobility of 34.30 cm 2 / Vs and an absorption coefficient of 2.41 * 10 6 cm -1 .

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be appreciated by those skilled in the art that numerous changes and modifications may be made without departing from the invention. Accordingly, all such appropriate modifications and changes, and equivalents thereof, should be regarded as within the scope of the present invention.

Claims (5)

(a) 공정 매개변수에 따라 CuSe2 타겟을 RF 마그네트론 스퍼터링하여 기판 상에 CuSe2 박막을 형성하는 단계; 및
(b) Ga/In/CuSe2 다층 스택구조를 생성하기 위하여, 인듐(In) 및 갈륨(Ga) 타겟을 RF 스퍼터링하여 상기 CuSe2 박막이 형성된 기판 상에 인듐(In)/갈륨(Ga) 박막을 형성하는 단계; 를 포함하는 CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법.
(a) RF magnetron sputtering a CuSe2 target according to process parameters to form a CuSe2 thin film on a substrate; And
(b) In order to produce a Ga / In / CuSe2 multilayer stack structure, indium (In) and gallium (Ga) targets are RF sputtered to form an indium / gallium (Ga) thin film on the substrate having the CuSe2 thin film formed thereon ; A method for fabricating a CIGS thin film using a non-selenized sputtering process targeting CuSe2.
제 1 항에 있어서,
상기 (a) 단계에서,
상기 기판은, 코닝(corning) 유리 기판인 것을 특징으로 하는 CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법.
The method according to claim 1,
In the step (a)
Wherein the substrate is a corning glass substrate. 2. The method of claim 1, wherein the substrate is a corning glass substrate.
삭제delete 삭제delete 제 1 항에 있어서,
상기 (b) 단계에서,
상기 인듐(In)과 갈륨(Ga) 타겟을 각각 20와트(Watt) 내지 40와트(Watt)의 RF 스퍼터링 파워로, RF 스퍼터링을 수행하는 것을 특징으로 하는 CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법.
The method according to claim 1,
In the step (b)
Characterized in that RF sputtering is performed with the RF sputtering power of 20 watts to 40 watts for the indium (In) and gallium (Ga) targets, respectively, in a non-selenized sputtering process targeting CuSe2 Fabrication Method of CIGS Thin Films.
KR1020130009267A 2013-01-28 2013-01-28 Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target KR101521450B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130009267A KR101521450B1 (en) 2013-01-28 2013-01-28 Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130009267A KR101521450B1 (en) 2013-01-28 2013-01-28 Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target

Publications (2)

Publication Number Publication Date
KR20140097645A KR20140097645A (en) 2014-08-07
KR101521450B1 true KR101521450B1 (en) 2015-05-21

Family

ID=51744793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130009267A KR101521450B1 (en) 2013-01-28 2013-01-28 Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target

Country Status (1)

Country Link
KR (1) KR101521450B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220028381A (en) 2020-08-28 2022-03-08 인천대학교 산학협력단 Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064108A (en) * 2000-08-17 2002-02-28 Honda Motor Co Ltd Compound semiconductor film forming device
JP2003282600A (en) * 2002-03-25 2003-10-03 Honda Motor Co Ltd Method and device for manufacturing light-absorbing layer
JP3811825B2 (en) * 2001-07-06 2006-08-23 本田技研工業株式会社 Method for forming light absorption layer
KR20110118067A (en) * 2010-04-22 2011-10-28 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Forming chalcogenide semicoductor absorbers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064108A (en) * 2000-08-17 2002-02-28 Honda Motor Co Ltd Compound semiconductor film forming device
JP3811825B2 (en) * 2001-07-06 2006-08-23 本田技研工業株式会社 Method for forming light absorption layer
JP2003282600A (en) * 2002-03-25 2003-10-03 Honda Motor Co Ltd Method and device for manufacturing light-absorbing layer
KR20110118067A (en) * 2010-04-22 2011-10-28 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Forming chalcogenide semicoductor absorbers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220028381A (en) 2020-08-28 2022-03-08 인천대학교 산학협력단 Thin Film Solar Cell and Method for Treating Alkali Post Deposition Photo Absorber by Using Aqueous Solution

Also Published As

Publication number Publication date
KR20140097645A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
Romeo et al. Low substrate temperature CdTe solar cells: A review
OA13236A (en) Method for the preparation of Group IB-IIIA-VIA Quaternary or higher alloy semiconductor films.
JP2011521463A (en) Solar cell layer system
KR101747395B1 (en) Molybdenum substrates for cigs photovoltaic devices
Lee Effects of heat treatment of vacuum evaporated CdCl2 layer on the properties of CdS/CdTe solar cells
Feng et al. Fabrication and characterization of Cu2ZnSnS4 thin films for photovoltaic application by low-cost single target sputtering process
Kim et al. Narrow-bandgap Cu2Sn1− xGexSe3 thin film solar cells
KR20150051181A (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
Wei et al. Effects of selenium atmosphere on grain growth for CZTSe absorbers fabricated by selenization of as-sputtered precursors
Warasawa et al. Advantages of using amorphous indium zinc oxide films for window layer in Cu (In, Ga) Se2 solar cells
Nam et al. ALD NiO thin films as a hole transport-electron blocking layer material for photo-detector and solar cell devices
Xu et al. Preparations of Cu2ZnSnS4 thin films and Cu2ZnSnS4/Si heterojunctions on silicon substrates by sputtering
Kim et al. Non-selenization method using sputtering deposition with a CuSe 2 target for CIGS thin film
Lin et al. Influence of annealing temperature on properties of Cu (In, Ga)(Se, S) 2 thin films prepared by co-sputtering from quaternary alloy and In2S3 targets
Oyola et al. ZnO films grown using a novel procedure based on the reactive evaporation method
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
Paudel et al. High temperature CSS processed CdTe solar cells on commercial SnO 2: F/SnO 2 coated soda-lime glass substrates
KR101521450B1 (en) Method for manufacturing CIGS Thin Film Using Non-selenization Sputtering Process with CuSe2 Target
Liang et al. Thermal induced structural evolution and performance of Cu2ZnSnSe4 thin films prepared by a simple route of ion-beam sputtering deposition
US9947531B2 (en) High rate sputter deposition of alkali metal-containing precursor films useful to fabricate chalcogenide semiconductors
Gupta et al. Synthesis and characterization of sputtered Cd 1-x Mg x Te alloy and their applications in solar cells
Dhere et al. Investigation of Cd1-xMgxTe alloys for tandem solar cell applications
Jeong et al. Fabrication of CuInSe2 thin film solar cell with selenization of double layered precursors from Cu2Se and In2Se3 binary
Hussain et al. On structural and electrical characterization of n-ZnO/p-Si single heterojunction solar cell
Cao et al. In-situ growth of a CdS window layer by vacuum thermal evaporation for CIGS thin film solar cell applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190513

Year of fee payment: 5