KR20220024469A - 고선명 및 연장된 피사계 심도 안내 렌즈 - Google Patents
고선명 및 연장된 피사계 심도 안내 렌즈 Download PDFInfo
- Publication number
- KR20220024469A KR20220024469A KR1020227000820A KR20227000820A KR20220024469A KR 20220024469 A KR20220024469 A KR 20220024469A KR 1020227000820 A KR1020227000820 A KR 1020227000820A KR 20227000820 A KR20227000820 A KR 20227000820A KR 20220024469 A KR20220024469 A KR 20220024469A
- Authority
- KR
- South Korea
- Prior art keywords
- intraocular lens
- iol
- virtual stop
- equation
- region
- Prior art date
Links
- OWKYZAGJTTTXOK-UHFFFAOYSA-N CCCNCCCN Chemical compound CCCNCCCN OWKYZAGJTTTXOK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1637—Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1637—Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
- A61F2/1645—Toric lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1654—Diffractive lenses
- A61F2/1656—Fresnel lenses, prisms or plates
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2002/1681—Intraocular lenses having supporting structure for lens, e.g. haptics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0026—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in surface structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0053—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in optical properties
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Prostheses (AREA)
Abstract
디포커스 및 난시의 교정을 제공하고, 고차 단색 및 색 수차를 감소시키며, 시력 품질을 개선시키기 위해 연장된 피사계 심도(depth of field)를 제공하는 수정체 또는 무수정체 IOL을 적어도 제공함으로써 IOL의 한계를 극복하는 시스템, 디바이스 및 방법이 개시된다. IOL은 IOL에 일체화된 가상 조리개를 포함한다. 구성 및 배열은 가상 조리개와 교차하고 망막에 걸쳐 광범위하게 산란되는 광선을 허용하여 광이 망막에서 검출 가능한 수준에 도달하는 것을 사실상 방지한다. 가상 조리개는 단색 및 색 수차를 제거하여, 고선명 망막 이미지를 산출하는 데 도움이 된다. 허용 가능한 시력의 주어진 정의에 대해, 피사계 심도는 더 큰 직경의 광학 구역 IOL에 걸쳐 증가된다.
Description
본 출원은 2019년 6월 13일자로 출원된 "HIGH DEFINITION AND EXTENDED DEPTH OF FIELD INTRAOCULAR LENS"라는 명칭의 미국 특허 출원 제62/861,120호, 2020년 3월 6일자로 출원된 "HIGH DEFINITION AND EXTENDED DEPTH OF FIELD INTRAOCULAR LENS"라는 명칭의 미국 특허 출원 제62/986,115호, 2020년 3월 12일자로 출원된 "MICRO-PRISM REGION FOR EXTENDED DEPTH OF FOCUS INTRAOCULAR LENS"라는 명칭의 미국 특허 출원 제62/988,802호에 대한 우선권을 주장한다. 상기 참조된 출원의 내용은 그 전체가 본 명세서에 참조로 포함된다.
인간의 눈은 흔히 높은 삶의 질을 유지하기 위해 허용 가능한 시력을 제공하기 위해 교정되어야 하는 디포커스 및 난시와 같은 수차로부터 고통받는다. 이들 디포커스 및 난시의 교정은 렌즈를 사용하여 달성될 수 있다. 렌즈는, 예를 들어 안경 평면에, 각막 평면(콘택 렌즈 또는 각막 임플란트)에, 또는 수정체(수정체 무손상) 또는 무수정체(수정체 제거됨) 안내 렌즈(intraocular lens)(IOL)로서 눈 내에 위치될 수 있다.
디포커스 및 난시의 기본 수차에 추가하여, 눈은 구면 수차 및 기타 수차와 같은 고차 수차를 갖는 경우가 많다. 일반적으로 가시 스펙트럼에 걸쳐 파장에 따라 변하는 초점으로 인한 수차인 색 수차(chromatic aberration)가 또한 눈에 존재한다. 이들 고차 수차와 색 수차는 인간 시력의 품질에 부정적인 영향을 미친다. 고차 수차 및 색 수차의 부정적인 영향은 동공 크기가 증가함에 따라 증가한다. 이들 수차가 제거된 시력은 흔히 고선명(high definition)(HD) 시력이라고 지칭된다.
노안은 눈이 상이한 거리에 있는 물체에 초점을 맞추는 능력을 상실한 상태이다. 무수정체 눈은 노안을 갖는다. 무수정체 눈에 이식된 표준 단초점 IOL은 단일 초점 거리에서 시력을 회복한다. 이중 초점 또는 누진 추가 안경과 조합된 단초점 IOL을 사용하여, 다양한 거리에 걸쳐 개선된 시력을 제공하기 위해 다양한 디바이스 및 절차가 사용된다. 모노비전 IOL 시스템은 근거리 및 원거리 시력을 복원하는 또 다른 옵션이다 - 한쪽 눈은 다른 쪽 눈과 상이한 초점 거리로 설정되어, 2개의 초점의 양안 합계를 제공하고 혼합된 시력을 제공한다. 모노비전은 현재 안경 없는 양안 시력을 원거리에서 근거리까지 달성하는 시도로 원거리 시력용 우세안과 근거리 시력용 비우세안을 교정하기 위해 IOL을 사용함으로써 노안을 교정하는 가장 일반적인 방법이다.
또한, IOL은 다초점, 예를 들어, 이중 초점(보통 원거리 및 근거리의 2개의 초점 영역을 가짐) 또는 삼중 초점(원거리, 중간 및 근거리의 3개의 초점 영역을 가짐)일 수 있다. 대부분의 다초점 IOL은 추가 범위 내에 분포된 하나 이상의 초점 영역을 갖도록 설계된다. 그러나, 불연속 초점 세트가 있는 요소를 사용하는 것이 유일하게 가능한 설계 전략은 아니다: 연장된 초점 깊이(extended depth of field)(EDOF)가 있는 요소, 즉, 필요한 추가에 걸쳐 연속 초점 세그먼트를 생성하는 요소의 사용도 고려될 수 있다. 이들 방법은 다양한 초점 영역으로부터의 미광(stray light)이 인간 시력을 저하시키므로 완전히 허용되지 않는다.
디포커스 및 난시의 교정을 제공하고, 고차 단색 및 색 수차를 감소시키며, 시력 품질을 개선시키기 위해 연장된 피사계 심도(depth of field)를 제공하는 수정체 또는 무수정체 IOL을 적어도 제공함으로써 IOL의 한계를 극복하는 시스템, 디바이스 및 방법이 개시된다. IOL은 IOL에 일체화된 가상 조리개를 포함한다. 구성 및 배열은 가상 조리개와 교차하고 망막에 걸쳐 광범위하게 산란되는 광선을 허용하여 광이 망막에서 검출 가능한 수준에 도달하는 것을 사실상 방지한다. 가상 조리개는 단색 및 색 수차를 제거하여, 고선명 망막 이미지를 산출하는 데 도움이 된다. 허용 가능한 시력의 주어진 정의에 대해, 피사계 심도는 더 큰 직경의 광학 구역 IOL에 걸쳐 증가된다.
일 양태에서, 연장된 피사계 심도를 제공하기 위한 안내 렌즈가 개시되며, 상기 안내 렌즈는: 적어도 하나의 전방 광학 표면 및 적어도 하나의 후방 광학 표면을 포함하는 광학 구역; 광학 구역에 대해 주변에 위치 설정된 제1 주변 영역 - 제1 주변 영역은 가상 조리개를 포함하고, 가상 조리개는 전방 가상 조리개 표면 및 후방 가상 조리개 표면을 포함함 -; 및 제1 주변 영역에 대해 주변에 위치 설정된 제2 주변 영역 - 제2 주변 영역은 눈 내에 안내 렌즈를 위치 설정하기 위한 햅틱을 포함하고, 햅틱은 안내 렌즈의 최외측 영역을 포함하며; 전방 광학 표면에 입사되는 제1 복수의 광선은 안내 렌즈가 눈에 이식될 때 광학 구역을 통과하여 망막 상에 이미지를 형성함 -; 및 (a) 안내 렌즈의 전방 표면 상의 제1 표면 윤곽 - 제1 표면 윤곽은 적어도 하나의 환형 영역을 포함 -; 및 (b) 안내 렌즈의 후방 표면 상의 제2 표면 윤곽 - 제2 표면 윤곽은 적어도 하나의 환형 영역을 포함 - 중 적어도 하나를 포함하고; 전방 가상 조리개 표면에 입사하는 제2 복수의 광선은 안내 렌즈로부터 망막을 향해 그리고 망막에 걸쳐 광범위하게 하류에 분산되어, 이미지는 연장된 피사계 심도를 포함하며, 또한 상기 가상 조리개는 이미지에서 단색 및 색 수차를 감소시킨다.
관련 방법에서, 본 명세서에 설명된 IOL의 임의의 실시예와 같은 IOL은 이식되거나 달리 인간의 눈과 같은 눈에 결합된다. IOL은 본 명세서에 설명된 특징에 따라 눈의 망막으로 광선의 투과를 수정하거나 조절하는 데 사용된다.
본 명세서에 설명된 주제의 하나 이상의 변형에 대한 세부 사항은 첨부 도면 및 아래의 설명에 기재되어 있다. 본 명세서에 설명된 주제의 다른 특징 및 이점은 설명 및 도면, 그리고 청구범위로부터 명백할 것이다.
도 1a 및 도 1b는 근시안(near-sighted eye)에 대한 동공 크기를 사용하여 단색 수차를 감소시키고 피사계 심도를 증가시키거나 연장시키는 기본적인 방법을 예시한다.
도 2a 및 도 2b는 원시안(far-sighted eye)에 대한 동공 크기를 사용하여 단색 수차를 감소시키고 피사계 심도를 증가시키는 기본적인 방법을 예시한다.
도 3a 및 도 3b는 정시안(emmetropic eye)에 대한 동공 크기를 사용하여 단색 수차를 감소시키고 피사계 심도를 증가시키는 기본적인 방법을 예시한다.
도 4a 및 도 4b는 동공 크기를 사용하여 색 수차를 감소시키는 기본적인 방법을 예시한다.
도 5a 및 도 5b는 유효 동공 크기를 제한하기 위한 가상 조리개의 기본 개념을 예시한다.
도 6a, 도 6b 및 도 6c는 예시적인 IOL의 전체 구조를 예시한다.
도 7은 광학 구역에 대한 주 도수 계산에 사용된 변수를 예시한다.
도 8은 주어진 자오선에 대한 원추 상수(conic constant) K를 최적화하기 위한 광선 추적 절차를 예시한다.
도 9는 예시적인 IOL 프로파일의 자오선에 대한 특정 지점 및 거리를 예시한다.
도 10은 가상 조리개 프로파일의 세부사항을 예시한다.
도 11a 및 도 11b는 3차 베지어 곡선(cubic Bezier curve) 및 곡선을 따른 곡률을 최소화하는 결과를 예시한다.
도 12는 일련의 환형 동심 리플이 가상 조리개의 표면 상에 형성되는 리플 윤곽의 예시적인 실시예를 도시한다.
도 13은 가상 조리개의 표면 상의 마이크로 프리즘 형상의 예시적인 실시예를 도시한다.
도 14는 가상 조리개의 매끄러운 표면의 예시적인 실시예를 도시한다.
도 15는 IOL 또는 IOL의 일부의 전방 표면과 후방 표면 사이의 표면 윤곽의 다양한 조합을 갖는 표를 도시한다.
도 16은 전방 리플 가상 조리개 및 후방 마이크로 프리즘 영역을 갖는 IOL의 측면도 프로파일을 도시한다.
도 17은 IOL의 햅틱 천이 영역에 대한 마이크로 프리즘의 클로즈업을 도시한다.
도 18은 햅틱 천이 필렛에 대한 마이크로 프리즘의 예시적인 기하형상을 도시한다.
도 19는 광학 구역 천이 영역에 대한 마이크로 프리즘의 클로즈업을 도시한다.
도 20은 광학 구역 천이 필렛에 대한 마이크로 프리즘의 기하형상을 도시한다.
도 21은 마이크로 프리즘 영역의 후방 표면에서 광선 굴절 및 광선 전반사를 도시한다.
도 22는 마이크로 프리즘 영역의 예시적인 구조를 도시한다.
도 23은 마이크로 프리즘 영역에서 골부 및 피크 필렛을 도시한다.
도 24는 제1 골부 필렛 및 제1 피크 필렛에 대한 예시적인 구성을 도시한다.
도 25는 리플 가상 조리개 전방 표면 및 매끄러운 후방 표면 IOL에서 미광의 확산을 도시한다.
도 26은 리플 가상 조리개 전방 표면 및 마이크로 프리즘 후방 표면 IOL에서 증가된 미광의 확산을 도시한다.
도 27은 마이크로 프리즘의 날카로운 마지막 피크를 도시한다.
도 28은 제1 및 제2 환형 영역에 의해 둘러싸인 중심 광학 구역을 갖는 IOL의 적어도 일부의 개략도를 도시한다.
도 2a 및 도 2b는 원시안(far-sighted eye)에 대한 동공 크기를 사용하여 단색 수차를 감소시키고 피사계 심도를 증가시키는 기본적인 방법을 예시한다.
도 3a 및 도 3b는 정시안(emmetropic eye)에 대한 동공 크기를 사용하여 단색 수차를 감소시키고 피사계 심도를 증가시키는 기본적인 방법을 예시한다.
도 4a 및 도 4b는 동공 크기를 사용하여 색 수차를 감소시키는 기본적인 방법을 예시한다.
도 5a 및 도 5b는 유효 동공 크기를 제한하기 위한 가상 조리개의 기본 개념을 예시한다.
도 6a, 도 6b 및 도 6c는 예시적인 IOL의 전체 구조를 예시한다.
도 7은 광학 구역에 대한 주 도수 계산에 사용된 변수를 예시한다.
도 8은 주어진 자오선에 대한 원추 상수(conic constant) K를 최적화하기 위한 광선 추적 절차를 예시한다.
도 9는 예시적인 IOL 프로파일의 자오선에 대한 특정 지점 및 거리를 예시한다.
도 10은 가상 조리개 프로파일의 세부사항을 예시한다.
도 11a 및 도 11b는 3차 베지어 곡선(cubic Bezier curve) 및 곡선을 따른 곡률을 최소화하는 결과를 예시한다.
도 12는 일련의 환형 동심 리플이 가상 조리개의 표면 상에 형성되는 리플 윤곽의 예시적인 실시예를 도시한다.
도 13은 가상 조리개의 표면 상의 마이크로 프리즘 형상의 예시적인 실시예를 도시한다.
도 14는 가상 조리개의 매끄러운 표면의 예시적인 실시예를 도시한다.
도 15는 IOL 또는 IOL의 일부의 전방 표면과 후방 표면 사이의 표면 윤곽의 다양한 조합을 갖는 표를 도시한다.
도 16은 전방 리플 가상 조리개 및 후방 마이크로 프리즘 영역을 갖는 IOL의 측면도 프로파일을 도시한다.
도 17은 IOL의 햅틱 천이 영역에 대한 마이크로 프리즘의 클로즈업을 도시한다.
도 18은 햅틱 천이 필렛에 대한 마이크로 프리즘의 예시적인 기하형상을 도시한다.
도 19는 광학 구역 천이 영역에 대한 마이크로 프리즘의 클로즈업을 도시한다.
도 20은 광학 구역 천이 필렛에 대한 마이크로 프리즘의 기하형상을 도시한다.
도 21은 마이크로 프리즘 영역의 후방 표면에서 광선 굴절 및 광선 전반사를 도시한다.
도 22는 마이크로 프리즘 영역의 예시적인 구조를 도시한다.
도 23은 마이크로 프리즘 영역에서 골부 및 피크 필렛을 도시한다.
도 24는 제1 골부 필렛 및 제1 피크 필렛에 대한 예시적인 구성을 도시한다.
도 25는 리플 가상 조리개 전방 표면 및 매끄러운 후방 표면 IOL에서 미광의 확산을 도시한다.
도 26은 리플 가상 조리개 전방 표면 및 마이크로 프리즘 후방 표면 IOL에서 증가된 미광의 확산을 도시한다.
도 27은 마이크로 프리즘의 날카로운 마지막 피크를 도시한다.
도 28은 제1 및 제2 환형 영역에 의해 둘러싸인 중심 광학 구역을 갖는 IOL의 적어도 일부의 개략도를 도시한다.
본 주제를 추가로 설명하기 전에, 본 명세서에 설명된 이 주제는 설명된 특정 실시예에 제한되지 않으며, 이 때문에 물론 달라질 수 있음을 이해하여야 한다. 본 명세서에 사용된 용어는 단지 특정 실시예를 설명하기 위한 것이며, 제한하도록 의도되지 않음을 이해하여야 한다. 달리 정의되지 않는 한, 본 명세서에서 사용되는 모든 기술 용어는 이 주제가 속하는 기술 분야의 숙련자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
디포커스 및 난시의 교정을 제공하고, 고차 단색 및 색 수차를 감소시키며, 시력 품질을 개선시키기 위해 연장된 피사계 심도를 제공하는 수정체 또는 무수정체 IOL을 적어도 제공함으로써 IOL의 한계를 극복하는 시스템, 디바이스 및 방법이 개시된다. 개시된 IOL은 때때로 본 명세서에서 Z+광학 또는 Z+IOL로 지칭된다. 미국 특허 제10,285,807호 및 미국 특허 출원 제16/380,622호는 관련 시스템 및 방법을 설명하고 양자 모두 그 전체가 참조로 본 명세서에 포함된다.
이제 단색 및 색 수차를 감소시키고 피사계 심도를 증가시키는 데 사용되는 기본 원리에 대한 설명이 제공된다. 도 1a는 광축(2)에 센터링된 단일 수렴 렌즈(1)를 개략적으로 예시한다. 멀리 있는 물체로부터의 입사 광선(3)은 광축에 평행하고 렌즈의 초점(4)(대응 도면에 기초하여 접미사 b, c, d 또는 e가 있음)와 교차한다. 렌즈 도수가 적절하게 선택되면, 초점은 관찰 평면(5)과 일치하고, 그렇지 않으면 초점이 관찰 평면 전방이나 후방에 있도록 렌즈 도수와 관찰 평면의 위치 사이에 불일치가 있다.
도 1a에서, 초점은 관찰 평면의 전방에 있다. 모든 입사 광선이 입사 광선(3)과 동일한 광선 높이로 추적되면, 착란원(blur circle)(6)이 관찰 평면(5) 상에 위치된다. 관찰 평면은 광축과 직교하게 배향되므로 도면에서 수직선으로 도시된다. 착란원(6 및 8)은 시각화의 편의를 위해 도면의 평면에 도시되어 있지만, 착란원은 실제로는 관찰 평면에 포함된다. 입사 광선(3)보다 광선 높이가 작은 다른 평행 입사 광선은 이 착란원(6) 안에 있다. 그러한 한가지 광선은 입사 광선(3)보다 광축에 더 가까운 평행 입사 광선(7)이다. 입사 광선(7)은 또한 초점(4)와 교차한 다음 관찰 평면(5)과 교차한다. 입사 광선(7)과 광선 높이가 동일한 모든 입사 광선을 추적하면 착란원(6)보다 작은 직경을 갖는 착란원(8)이 나온다.
도 1b는 도 1a와 동일한 광학 시스템을 예시하지만, 이제 입사 광선은 입사 광선(3b 및 7b)의 기울기에 의해 나타낸 바와 같이 광학 시스템에 더 가까운 물체에 대한 것이다. 효과는 더 가까운 물체에 대한 초점(4)(대응 도면에 기초하여 접미사 a, b, c, 또는 d가 있음)이 이제 관찰 평면에 더 가깝고 착란원(6b 및 8b) 둘 모두는 도 1a의 그 상대 부분보다 더 작지만, 원리는 동일하다: 광축에 더 가까운 렌즈(1)와 교차하는 광선은 관찰 평면 상에 더 작은 착란을 갖는다. 도 1의 이 간단한 광학 구성을 인간의 눈과 관련시키기 위해, 수렴 렌즈(1)는 각막과 수정체 또는 안내 렌즈를 포함하는 눈 광학계의 주 평면을 나타낸다. 관찰 평면(5)은 망막을 나타낸다. 도시된 바와 같이, 초점(4)은 관찰 평면(망막)의 전방에 있으므로, 이 도면은 근시 또는 근시안용이다. 착란원(6 및 8)(또는 6b 및 8b)의 크기는 망막 상의 디포커스 양을 나타내며, 여기서 더 작은 착란원 직경은 더 큰 착란원 직경보다 더 선명한 시력을 제공한다.
입사 광선 높이와 착란원 크기에 관한 동일한 관계는 원시 또는 원시안도 마찬가지라는 점에 유의한다. 이는 원시안에 대응하는 광선을 보여주는 도 2a 및 도 2b에 개략적으로 예시되어 있다. 멀리 있는 물체로부터의 광선(3 및 7)에 대한 도 2a와 광선(3b와 7b)에 대한 도 2b에서, 더 작은 광선 높이는 망막(관찰 평면) 상에 더 작은 착란원을 초래한다.
유사하게, 도 3a 및 도 3b(집합적으로 도 3으로 지칭됨)는 동일한 평행 광선 높이 대 착란원 직경 특성이 정시안에 대해 마찬가지임을 보여준다. 멀리 있는 물체의 경우, 초점(4e)은 이제 망막에 있고(눈이 정시이기 때문에) 착란원(6e 및 8e)은 반경이 0이다. 더 가까운 물체의 경우, 초점(4f)은 망막 후방에 있으며 광축에 더 가까운 광선(7b)에 대응하는 착란원(8f)은 광축으로부터 더 멀리 있는 광선(3b)에 대응하는 착란원(6f)보다 작은 직경을 갖는다.
일반적으로, 눈에는 수차가 있고, 이는 입사 광선 위치가 변경됨에 따라, 눈의 초점도 변경된다는 것을 의미한다. 그러나, 초점이 위치되는 곳(망막 전방, 망막 상, 또는 망막 후방)에 무관하게, 입사 광선 높이가 감소됨에 따라 망막 상의 착란원 직경도 감소된다. 다시 말해서, 눈에 주어진 디포커스(디옵터 오류)의 양에 대해, 입사 광선의 높이가 감소됨에 따라 시력이 개선된다. 이 원리는 초점이 맞지 않는 원거리에 있는 또는 가까운 물체를 더 명확하게 보기 위해 눈꺼풀이 눈의 광축으로부터 더 입사 광선을 차단하게 하도록 가늘게 뜨는 경우에 사용된다.
도 1a 내지 도 3b에 예시된 광선 추적은 단일 파장의 입사광에 대한 것이다. 다색광의 경우, 여러 파장이 존재한다. 이는 일반적으로 도 4a 및 도 4b(집합적으로 도 4라고 지칭됨)에 도시된 바와 같이 상이한 파장의 3개의 광선에 의해 예시된다. 눈의 구성요소와 통상적인 광학 재료의 경우, 광의 파장이 증가함에 따라, 굴절률이 감소한다는 것은 잘 알려져 있다.
도 4a에서, 수렴 렌즈(21)는 광축(22)을 갖는다. 입사하는 색 광선(23)은 대략 가시광선의 범위에 걸쳐 있는 청색(450 nm), 녹색(550 nm) 및 적색(650 nm) 광에 대한 3개의 파장으로 구성된다. 3개의 파장에 대한 굴절률이 상이하기 때문에, 청색 광선(24)은 녹색 광선(25)보다 더 많이 굴절되고, 녹색 광선은 적색 광선(26)보다 더 많이 굴절된다. 녹색 광선이 초점에 있으면, 광축에서 관찰 평면(27)과 교차한다. 이들 3개의 광선의 색 확산은 관찰 평면에 색 착란(28)을 초래한다.
도 4b에서, 입사하는 색 광선(29)은 도 4a의 색 광선(23)보다 더 낮은 광선 높이를 갖는다. 이는 관찰 평면에서 더 작은 색 착란(33)을 초래한다. 따라서, 도 1a 내지 도 3b의 단색 착란의 경우와 마찬가지로, 색 광선 높이가 감소됨에 따라 색 착란이 감소된다. 도 4의 상황은 수렴 렌즈(21)를 눈의 주 평면으로, 관찰 평면(27)을 망막으로 고려함으로써 눈과 관련될 수 있다. 인간 눈은 일반적으로 많은 양의 색 수차(중심 가시 범위에 걸쳐 약 1.0 내지 1.2 디옵터)를 가지므로, 이러한 색 수차 감소는 중요하여, 특히 대비 감도로 측정될 때 눈의 시각적 품질에서 눈에 띄는 개선을 초래할 수 있다.
종합하면, 도 1a 내지 도 4b는 광선 높이를 감소시키면 망막에서 단색 및 색 수차가 모두 감소되어 시력의 품질이 개선된다는 것을 예시한다. 이는, 더 많은 비정상 광선이 중심 망막 착란원에 훨씬 적은 광을 기여하도록 동공 직경을 감소시켜 광축으로부터 더 먼 거리에 있는 광선을 차단하거나 또는 이들 광선으로부터의 광을 망막에 걸쳐 균등하게 및/또는 넓게 확산시킴으로써 달성될 수 있다. 이 효과의 또 다른 특징은 도 1b, 도 2b, 도 3b에 예시된 바와 같이 광선 높이가 감소됨에 따라 피사계 심도가 증가된다는 것이다.
도 5a는 광축(2) 및 조리개(35)를 갖는 수렴 렌즈(34)를 도시한다. 입사 평행 광선(36)은 단지 조리개를 지나가 렌즈 초점(37)을 통과하고 관찰 평면(38)과 교차한다. 광선(36)과 높이가 동일한 모든 평행 광선은 관찰 평면 상의 작은 착란원(39)를 추적한다. 입사 평행 광선(40)은 조리개에 의해 차단되고, 따라서 관찰 평면으로 계속되어 더 큰 착란원(41)을 유발할 수 없다. 이러한 방식으로, 입사 광선 높이를 감소시키는 조리개는 관찰 평면 상의 착란 직경을 감소시킨다.
도 5b는 "가상 조리개"를 예시한다. 즉, 광선을 차단하는 것은 실제로 조리개가 아니지만, 광학 효과는 중심 시력에서 거의 동일하다. 이 도면에서, 가상 조리개에 입사하는 광선(40b)의 묶음은 가상 조리개(42)를 통해 전파되고, 굴절, 회절, 산란 및/또는 반사를 통해, 관찰 평면 상의 임의의 하나의 스폿에서 미광(착란 광)에 대한 기여가 매우 적도록 넓게 확산되는 광선(43)을 산출한다. 이는 개시된 IOL의 주요 작동 메커니즘이다.
IOL의 예시적인 광학 레이아웃
도 6a 내지 도 6c는 감소된 단색 및 색 수차와 증가된 피사계 심도의 이점을 달성하기 위해 광학 원리를 채용하는 예시적인 IOL의 레이아웃을 예시한다. 도 6a는 IOL의 정면도를 도시하고 여기서 정면도는 전방 도면일 수 있다. 도 6b는 IOL의 배면도를 도시하고 여기서 배면도는 후방 도면일 수 있다. 도 6c는 IOL의 측면도를 도시한다. IOL은 디포커스, 난시의 교정, 및 구면 수차와 같이 렌즈에 필요한 임의의 기타 교정을 제공하는 중심 광학 구역(46)(후방면(46b)을 가짐)을 포함한다. 일반적으로, 가상 조리개를 사용하는 IOL의 경우, 중심 광학 구역 직경은 전통적인 IOL의 직경보다 작다. 이는 IOL을 이식하기 쉽게 만들고 차례로 수술 동안 더 작은 각막 절개부를 허용하는 더 작은 중심 두께를 초래한다. IOL은 중심 광학 구역(46)의 중심 위치에 대해 더 주변 외향으로 위치 설정된 가상 조리개(48)를 포함한다. 가상 조리개(48)로부터 주변 외향으로 이동하면, (후방면(50b)을 갖는) 적어도 하나의 IOL 햅틱(50)이 IOL 상에 위치된다. 햅틱(50)은 IOL의 주변 최외곽 에지를 정의하기 위해 주변 외향으로 연장되는 하나 이상의 아암으로 형성될 수 있다. 일 예에서, 광학 구역은 1.5 mm의 직경을 갖는다. 햅틱(50)은 IOL의 최외곽 주변 영역을 정의할 수 있다. IOL이 눈에 위치 설정될 때 광학 구역의 전방 광학 표면에 입사하는 제1 복수의 광선은 광학 구역을 통과하여 망막 상에 이미지를 형성할 수 있고, 전방 가상 조리개 표면에 입사하는 제2 복수의 광선은 IOL로부터 망막을 향해 그리고 망막에 걸쳐 광범위하게 하류에 분산되어, 이미지는 연장된 피사계 심도를 포함하며, 상기 가상 조리개는 이미지에서 단색 및 색 수차를 감소시킨다. 광학 구역은 이중 초점 광학계, 삼중 초점 광학계 및 다초점 광학계 중 적어도 하나를 포함할 수 있다.
가상 조리개는, 가상 조리개가 광학 구역을 둘러싸거나 부분적으로 둘러싸는 제1 주변 영역이 되도록, 광학 구역(46)의 주변 에지에 위치된 제1 천이 영역(47)에 의해 광학 구역(46)에 연결된다. 햅틱은 눈 내에 안내 렌즈를 위치 설정하기 위한 제2 주변 영역을 포함할 수 있다. 제1 천이 영역은 광학 구역(46)의 주변 외향으로 위치된다. 제2 천이 영역(49)은 햅틱(50)을 가상 조리개(48)에 연결한다. 제1 천이 영역(47) 및 제2 천이 영역(49)은 각각의 천이 영역의 양 측면에서 IOL의 외부 표면의 0차 및 1차 연속성을 보장하도록 구성된다. 이들 천이 영역을 구현하는 일반적인 방법은 3차 베지어 함수와 같은 다항 함수이다. 이들과 천이 방법은 본 기술 분야의 숙련자에게 알려져 있다. IOL의 후방면에는 중심 광학 구역(46b), 햅틱(50b), 및 이들 사이의 천이부(47b)가 있다. 도 6a 내지 도 6c는 반드시 실척으로 작성된 것은 아니며, 햅틱 형상은 단지 예시를 위한 것이다. 본 기술 분야의 숙련자에게 알려진 다른 햅틱 형상 및 크기도 적합할 것이다. 제1 및 제2 천이 영역이 IOL에 반드시 그 자체로 존재하는 것은 아니다.
IOL은 전방 표면 및 후방 표면을 갖고 광학 구역(46), 제1 천이 영역(47), 제2 천이 영역(49), 가상 조리개(48), 햅틱(50)을 포함하는 IOL의 구성요소는 각각의 전방 표면 및 후방 표면을 각각 가질 수 있다. 광학 구역(46)은 적어도 하나의 다초점 구역 및/또는 원환체 영역을 포함할 수 있는 전방 광학 표면을 갖는다. 예컨대, 가상 조리개의 영역 또는 IOL의 다른 부분에서 전방 표면 및/또는 후방 표면의 적어도 일부 또는 영역은 관통하는 광에 대해 원하는 또는 미리 결정된 효과를 달성하는 표면 윤곽 또는 형상을 가질 수 있다. 비제한적인 예에서, 전방 표면 및/또는 후방 표면의 표면 윤곽은 일련의 상승 및 하강 표면을 형성하는 파형 형상 또는 물결 모양 형상과 같은 리플 유형 윤곽을 갖는 영역을 포함한다. 도 12는 리플 윤곽의 예시적인 실시예를 도시하는데, 일련의 환형 동심 리플 영역이 가상 조리개의 표면 상에 형성되어 있다. 리플은, 예를 들어 중심 위치로부터 외향으로 방사되는 일련의 환형 주름 또는 환형 주름일 수 있다.
리플(또는 다른 표면 윤곽)은 IOL의 후방 표면 및/또는 전방 표면에서 임의의 다양한 패턴으로 배열될 수 있다. 실시예에서, 표면 윤곽은 IOL 상의 중심 또는 다른 지점으로부터 방사되는 일련의 동심, 환형(또는 부분적으로 환형) 형상, 패턴, 또는 영역으로 배열된다. 다른 실시예에서, 표면 윤곽은 표면 상에 배열된 마이크로 프리즘 형상 또는 일련의 미세결정 형상일 수 있다. 도 13은 가상 조리개의 표면 상의 마이크로 프리즘 형상의 예시적인 실시예를 도시한다. 전방 및/또는 후방 표면은 또한 매끄러운 표면일 수 있다. 도 14는 가상 조리개의 매끄러운 표면의 예시적인 실시예를 도시한다. 마이크로 프리즘 구성의 일부 예시적인 실시예가 아래에 설명되어 있다.
가상 조리개 및/또는 마이크로 프리즘 영역은 IOL의 전방 표면 및/또는 후방 표면에 존재할 수 있다. 또한, 일부 용례에서는 가상 조리개에 대해 하나의 고리를 갖고 마이크로 프리즘 영역에 대해 하나의 고리를 갖는 것이 유리할 수 있다. 도 28은 중심 광학 구역(2801)이 제1 환형 영역(2802)에 의해 둘러싸이고 차례로 제2 환형 영역(2803)에 의해 둘러싸인 이러한 실시예의 예를 도시한다. 제1 환형 영역은 리플 가상 조리개를 도시할 수 있고, 제2 환형 영역은 마이크로 프리즘 영역을 도시할 수 있으며, 그 반대도 마찬가지이다. 후방 표면은 영역이 전방 표면과 동일하거나 전방 표면과 반대인 유사한 2개의 고리 구조를 가질 수 있다. 추가로, 2개의 고리 영역은 IOL의 중심으로부터 동일한 범위를 점유하거나 점유하지 않을 수 있다. IOL은 전방 표면 또는 후방 표면에 표면 윤곽이 있는 임의의 양의 환형 영역을 가질 수 있다.
다른 용례에서, 렌즈의 전방 표면 및/또는 후방 표면에 이러한 환형 영역을 2개보다 많이 갖는 것이 유리할 수 있다.
예컨대, 가상 조리개의 영역에서 IOL의 전방 표면과 후방 표면 사이에서 표면 윤곽 또는 매끄러운 표면의 매우 다양한 조합이 달성될 수 있음을 이해하여야 한다. 도 15는 전방 표면과 후방 표면 사이의 표면 윤곽의 다양한 조합이 있는 표를 도시한다.
표면 윤곽은 IOL을 통과하는 광과 관련하여 다양한 효과를 달성할 수 있다. 예를 들어, 표면 윤곽은 사용된 표면 윤곽의 유형에 따라 미광의 넓은 또는 더 넓은 확산을 달성할 수 있다. 표면 윤곽을 사용하여 망막의 초점으로부터 멀어지게 안내되는 미광의 확산을 달성할 수 있다.
예시적인 광학 구역 세부 사항
광학 구역(들)은 눈에 개선된 집속 광선을 제공하도록 구성된다. 대부분의 눈의 경우, 개선된 안경 교정을 구현하여 양호한 시력이 제공되는데, 즉, 광학 구역은 눈의 구면, 원통, 및 축 오류를 교정한다. 구면, 원통, 및 축 교정은 함께 난시 교정이라고 지칭된다. 난시 오류 교정 외에도, 광학 구역에 대해 최적으로 감소된 구면 수차가 있다. 구면 수차에 대한 교정은 광학 구역에 대해 평행하게 유입되는 모든 광선 또는 거의 모든 광선이 광선 높이에 무관하게 동일한 초점을 갖는다는 것을 의미한다. 무수정체 IOL의 경우, 동일한 원추형 표면을 갖도록 광학 구역의 형상이 선택된다. 이 설계 형상과 구면 수차 교정을 갖는 이전 경험에 따르면 눈의 광축에 대한 렌즈 틸트 및 편심과 같은 실제 위치 설정 오류에 덜 민감한 것으로 나타났다.
특정 눈의 난시 오류를 교정하기 위한 광학 구역의 난시 도수를 결정하기 위해, 임상의는 IOL 도수 계산 절차 또는 알고리즘을 사용한다. IOL 도수 계산 알고리즘은 독립형 프로그램(예컨대, 소프트웨어 프로그램)으로 제공되거나 IOL 도수 계산을 수행하는 데 필요한 눈 측정의 일부 또는 전체를 취득하는 기구의 일부이다. 이들 측정은 통상적으로 각막의 광학 도수(각막 곡률 측정법), 전방 챔버 깊이(각막에서 홍채 또는 수정체까지 측정됨), 및 축방향 길이(각막에서 망막까지 측정됨)를 포함한다. 측정값이 IOL 도수 계산 알고리즘에 입력되면, IOL의 이론적 도수가 계산된다. 현재, 눈에 이식하기 위한 이론적인 도수에 가까운 이용 가능한 IOL 도수(보통 0.5 디옵터 단계로 양자화됨)을 선택한다.
자오선당 곡률 R의 정점 반경의 계산
IOL 도수 계산 알고리즘과 잘 작동하기 위해, 개시된 IOL의 표시된 도수는 눈에 배치될 때 정확한 것이 바람직하다. 일반적으로, 표시된 도수는 2개의 직교하는 주 자오선에서 2개의 주 도수의 계산이 필요한 난시 도수를 포함한다. 다음과 같이 기입된 난시 교정의 경우
구면 + 원통 x 축
구면과 원통은 디옵터 단위이고 축은 각도 단위(0 내지 180)이며, 2개의 주 도수 P 1 및 P 2 는 수학식 1에 의해 제공된다.
[수학식 1]
이 수학식에서, 주 도수 P 1 은 축에 의해 주어진 자오선을 따라 작용하고 주 도수 P 2 는 (축 + 90) 모듈로 180에 의해 주어진 자오선을 따라 작용한다. 동일한 표면 도수 형상에 대한 주 광학 구역 도수를 계산하기 위해, 수학식 2에 제공된 렌즈 제조업자의 공식으로 시작한다.
[수학식 2]
렌즈 재료(적어도 소수점 3자리까지 알려짐)의 주 렌즈 도수 PE(디옵터 단위), 광학 구역 중심 두께 d(mm 단위), 굴절률 n IOL 을 고려하면, IOL 광학 구역에 대한 디옵터 단위의 표면 주 도수는 수학식 3에 의해 제공된다.
[수학식 3]
디옵터 단위의 표면 도수 P 1 및 P 2 의 계산에 수반된 기본 파라미터는 도 7에 개략적으로 예시되어 있다. 도 7은 IOL의 광학 구역의 정면(또는 전방) 표면(52) 및 후면(또는 후방) 표면(53)의 중심을 통과하는 광축(51)을 개략적으로 도시한다. 전방 및 후방 표면 표면(52 및 53)은 동일하고, 즉, 이들 표면 모두는 mm 단위의 동일한 정점 반경 R a 및 원추 상수 K를 갖는 원추 곡선이다. 전방 및 후방 표면은 중심에서 mm 단위의 중심 두께 d(54)에 의해 분리된다. 렌즈의 재료는 공지된 현장 굴절률 n IOL (55)을 갖고 눈 내부의 렌즈를 둘러싸고 있는 매질은 현장 굴절률 n EYE (56)을 갖는다.
광학 구역 표면에 대한 주 도수 P 1 및 P 2 가 수학식 1 내지 3을 사용하여 획득되면, 각각의 자오선 θ에 대한 도수가 수학식 4를 사용하여 계산된다.
[수학식 4]
이어서, 자오선 θ의 도수(디옵터)가 주어지면, 해당 자오선의 곡률 표면 반경 R(θ)(mm)은 수학식 5를 사용하여 계산된다.
[수학식 5]
이 수학식에서,
n IOL = IOL 재료의 굴절률
n EYE = 눈 내부의 매질에 대한 굴절률(1.336)
P(θ) = 자오선 θ의 도수
R(θ) = 자오선 θ의 반경
수학식 1 - 5를 사용하여, 각각의 자오선 θ가 곡률 반경 R(θ)을 갖는 동일한 원환체 광학 구역 표면을 계산할 수 있다. 수학식 1에서 원통 = 0이면, 반경은 각각의 자오선에 대해 일정하고, R(θ) = R이다.
자오선당 최적화된 원추 계수 K의 계산
구면 수차 교정을 제공하기 위해, 각각의 자오선 프로파일은 원추 곡선으로 나타내고 구면 수차를 최적으로 감소시키기 위해 원추 상수 K를 최적화한다. 원추 곡선[3]은 수학식 6에 의해 주어진다.
[수학식 6]
이 수학식에서,
x = mm 단위의 광축을 따른 거리, 우측으로 양수
y = mm 단위의 광축에 수직인 거리, 위로 양수
r = mm 단위의 정점 곡률 반경
K = 원추 상수(무차원), 원의 경우, K = 0
x에 대해 수학식 6을 풀면 수학식 7에 나타낸 바와 같이 곡선의 편향에 대한 수학식이 제공된다.
[수학식 7]
원추형 편향 도함수는 수학식 8에서 제공된다.
[수학식 8]
수학식 8의 분석적 도함수는 또한 순차, 역차 또는 중심 차분 수학식과 같은 차분 연산자를 사용하여 본 기술 분야의 숙련자에 의해 수치적으로 근사화될 수 있고 1차 또는 고차 차분 수학식일 수 있다. 도함수는 수학식 9에 나타낸 바와 같이 정규화된 접선 벡터 T(y)를 계산하는 데 사용된다.
[수학식 9]
아래에 설명되는 바와 같이, 이 접선 벡터는 천이 구역 접선 벡터를 일치시켜 천이 구역과 이들이 연결하는 곡선 프로파일 사이의 1차 연속성을 제공하는 데 사용된다.
주어진 자오선에 대한 정점 반경 R(θ)이 획득되면, 구면 수차를 최소화하기 위한 최적의 원추 상수 K(θ)가 계산된다. 동일한 원추형 IOL 광학계에 대한 원추 상수를 최적화하는 이전의 방법(미국 특허 제7,350,918호에서 설명됨)에서는, 단일 자오선과 단일 광선 높이만을 고려하여 전체 표면에 대해 단일 원추 상수를 구하였다. 이 단일 자오선/단일 광선 높이에 대한 길이방향 광선 수차를 0으로 설정하기 위해 뉴톤-랩슨 반복법(Newton-Raphson iteration)을 사용하여 최적화를 수행하였다. 이 경우, 각각의 자오선에 대해 원추 상수가 최적화된다. 이 최적화는 자오선을 따라 조밀한 입사 광선 높이 세트를 사용하여 수행되고 광학 구역의 후방 초점에 배치된 관찰 평면에서 결과적인 광선 높이를 구한다. 역 초점의 위치는 수학식 10에서 제공된다.
[수학식 10]
이 수학식에서,
n IOL = IOL 재료의 굴절률
n EYE = 눈 내부의 매질에 대한 굴절률(1.336)
P = 디옵터 단위의 자오선 θ의 도수
BFL = mm 단위의 후방 초점 거리
최적화하는 동안, 비용 함수 E를 최소화하는 값을 구하기 위해 원추 상수 K 값에 대해 철저한 검색이 수행된다. 이 비용 함수 E는 수학식 11에서 제공된다.
[수학식 11]
이 수학식에서,
n = 추적된 광선에 대한 인덱서, (0 내지 N-1)
N = 추적된 광선의 수
y 0 (n) = 광학 구역의 전방 표면에서 입사 광선 n의 높이
y 1 (n) = 후방 초점에 위치한 관찰 평면에서 광선 n의 높이
p = 횡방향 광선 오류 도수, 비용 함수의 거동을 제어하는 스칼라
비용 함수 수학식에서, 횡방향 광선 오류 y1(n)은 대응하는 입사 광선 높이 y 0 (n)에 의해 가중되어 이것이 나타내는 광학 섹터 영역을 설명한다. 용례의 경우, 횡방향 광선 오류 도수 p에 대한 적절한 값은 3이다. 이 값은 p=2(통상적인 유클리드 노름(Euclidian norm)을 지정하고 RMS 오류와 연관됨)와 p=∞(최대 오류 또는 무한대 노름용) 사이의 절충안으로 선택된다. p에 대해 이 값을 선택하면, 가장 큰 횡방향 광선 오류 값이 통상적인 RMS 최적화에서보다 작기 때문에 용례에 대해 우수한 오류 노름을 제공하지만, 여전히 무한대 노름의 경우에 있을 수 있는 가장 큰 오류보다 더 작은 대부분의 횡방향 광선 오류 값을 유지한다. K에 대한 이 철저한 검색 최적화는 N = 10,000 등간격 입사 광선 높이로 K = (-1 내지 0) 범위에 걸쳐 수행되어 최적 K가 소수점 4자리까지 발견된다.
도 8은 IOL에 대한 이러한 최적화 계산에서 단일 광선(57)을 개략적으로 예시한다. 광선 높이 y 0 를 갖는 입사 광선(58)은 좌측으로부터 우측으로 광학 구역 전방 표면(59)으로 전파된다. 출사 광선(60)은 광학 구역의 후방 표면(61)을 빠져나가기 때문에, 관찰 평면(62)과 교차한 다음 광축(63)과 교차한다. 길이방향 광선 오류(64)는 초점(65)으로부터 광축 상의 출사 광선의 교차점까지의 거리이다. 횡방향 광선 오류(66)는 초점(65)으로부터 관찰 평면(62)과 출사 광선의 교차점까지의 거리이다. 비용 함수 수학식에 사용된 값은 입사 광선(58)의 높이 y 0 및 관찰 평면(62)과 교차할 때 출사 광선(60)의 높이 y 1 (66)이다.
이 광학 구역에 대한 값의 예시적인 범위는 다음과 같다:
광학 구역 직경의 계산
다음은 동공 직경과 구면 굴절 오류를 고려하여 시력을 추정하는 간단한 수학식이다. 이들은 수학식 12 및 13에서 제공된다.
[수학식 12]
[수학식 13]
A = 분호 단위의 시력(A = Sd/20), 즉, 최소 분해능 각
k = 임상 연구에서 결정된 상수, 평균 값 0.65
D = mm 단위의 동공 직경
E = 디옵터 단위의 구면 굴절 오류
Sd = 스넬렌 분모
제2 수학식은 낮은 수준의 굴절 오류에 대해 더 정확한 것으로 상정되며 E = 0일 때 합리적인 결과를 제공하고, 이는 A = 1 분호 또는 20/20을 제공한다.
E에 대해 수학식 13을 풀면 수학식 14가 산출된다.
[수학식 14]
수학식 13은 디옵터 단위의 피사계 심도 범위(E x 2)와 동공 직경 D가 주어진 경우 시력 A를 산출한다. 수학식 14는 시력 A와 동공 직경 D가 주어진 경우 디옵터 단위의 피사계 심도 범위를 산출한다. 예를 들어:
20/40의 시력, A = 40/20 = 2 분호
D = 3.0 mm
k = 0.65
피사계 심도 = 2E = 1.8 D. 수학식 13을 사용하여,
시력 및 피사계 심도에 대한 이들 수학식은 회절 효과를 포함하지 않은 근사치일 뿐이라는 점에 유의한다. A = 2(20/40 시력)를 사용하여, 3개의 1차 직경에 대한 다음과 같은 대략적인 피사계 심도 값이 계산된다:
가상 조리개 세부 사항
가상 조리개 IOL에 대해 다음 변수가 정의된다.
가상 조리개는 망막에 걸쳐 넓게 가상 조리개 전방 표면과 교차하는 입사 광선을 확산시키는 데 전적으로 또는 부분적으로 책임이 있다. 예시적인 실시예에서, 가상 조리개는 전방 표면 상의 교번하는 고도수 포지티브 및 네거티브 프로파일 및 광학 구역의 후방 표면을 후방 표면 상의 햅틱에 연결하는 매끄러운 곡선을 포함한다. 이는 도 9에 예시되어 있다. 이 도면은 IOL의 광축(67), 중심 두께(68), 에지 두께(69) 및 표면 랜드마크 지점(P0-P9)을 도시한다. 도 9의 프로파일은 IOL의 상부 절반을 나타내며 반드시 실척으로 작성된 것은 아니다. 전방 표면(76)은 반직경 광학 구역(OZD/2)(71)을 갖는 지점 P0과 P1 사이의 전방 광학 구역을 도시한다. 전방 표면 제1 천이 영역은 폭(72)을 가지며 지점 P1과 P2 사이에 위치된다. 가상 조리개는 폭(73)을 가고 지점 P2와 P3 사이에 위치된다. 전방 표면 제2 천이 영역은 폭(74)을 갖고 지점 P3과 P4 사이에 위치된다. 전방 햅틱 표면은 폭(75)을 갖고 지점 P4와 P5 사이에 위치된다. 후방 표면(77)은 후방 햅틱 표면 폭(78)을 갖고 지점 P6과 P7 사이에 위치된다. 후방 표면 천이 영역은 폭(70)을 갖고 지점 P7과 P8 사이에 위치된다. 전체 렌즈 반경은 79이다. 공칭 가상 조리개 기준선의 위치는 80이다.
표면 랜드마크 지점은 P0 =(0, 0)으로 시작하는 위치에 있다. 도 9에서, X축은 우측으로 증가하고 Y축은 위로 증가한다. 이들 지점은 다음의 좌표를 갖는다:
표면 랜드마크 지점
도 10은 IOL에 대한 가상 조리개 프로파일의 세부 사항을 도시하지만 반드시 실척으로 작성된 것은 아니다. 가상 조리개(43)는 이 도면의 좌측에 다양한 곡률 반경의 연속적인 굵은 선으로 도시되어 있으며, 오목/볼록/오목/...와 같은 하단의 교번적인 형상으로 시작한다. 이 도면의 하단 지점 P2는 도 9의 지점 P2에 대응한다. 마찬가지로, 이 도면의 상단 지점 P3은 도 9의 지점 P3에 대응한다. 좌측의 하단 원형 영역은 점선 원으로 둘러싸여 있으며 이 도면의 우측에 확대되어 있다. 도면의 확대된 부분에는, 표면 프로파일(VS0), 원의 중심(VC0), 원의 정점(VA0), 원의 시작점(VP0), 및 원의 종점(VP1)을 갖는 원의 오목 부분이 도시되어 있다. 3개의 지점 VP1:VC0:VP0은 VC0에서 작은 정사각형으로 나타낸 바와 같이 직각을 형성한다. 가상 조리개 공칭 기준선(81)은 교번하는 원 표면 프로파일 VS0, VS1 등 사이의 경계 지점을 포함하는 수직선이다. 이것이 곡률 반경이 r0인 원의 섹션임을 알면, 다음과 같은 벡터 관계가 제공된다:
[수학식 15]
[수학식 16]
[수학식 17]
예시적인 실시예에서, 가상 조리개 프로파일에는 J, 짝수, 예를 들어 14개의 교번하는 원 표면 프로파일이 있다. 이들 원 표면 프로파일 VSj 각각은 대응 중심 VCj, 시작 표면 지점 VPj, 표면 정점 지점 VAj, 표면 종점 VP(j+1), 및 반경 rj를 갖는다. 길이 J의 반경 rj의 시퀀스와 가상 조리개 영역 VAFW의 폭이 주어지면, 모든 반경에 S를 곱하면, 가상 조리개가 원하는 폭에 정확히 맞도록 축척 계수 S가 계산된다. 이 축척 계수는 수학식 18을 사용하여 계산된다.
[수학식 18]
축척 계수가 계산된 후, rj 값의 시퀀스에 S를 곱하여 최종 가상 조리개 프로파일을 결정하는 데 사용되는 반경 세트를 산출한다. 가상 조리개 반경의 바람직한 세트는 무작위로 0.05 내지 0.10 mm의 범위에서 선택될 것으로 보인다. 가상 조리개 폭이 2.05 mm이고 원당 평균 반경이 0.075 mm인 경우 대략
2.05 mm의 가상 조리개 폭을 제공하는 18개의 원에 대한 예시적인 반경은 아래에 열거된다:
이어서, 시작점 P2와 연속적인 원 프로파일이 주어지면, 가상 조리개 프로파일에 대한 원이 원하는 가상 조리개 폭에 정확히 맞게 구성된다.
대안 실시예에서, 연속적인 원 프로파일에 대한 반경 r은 동일하고 교번하는 원 표면 프로파일의 수 J 및 가상 조리개 영역의 폭 VAFW이 주어지면, 동일한 반경이 수학식 19에서 제공된다.
[수학식 19]
천이 영역 세부 사항
예시적인 실시예에서, IOL의 전방 표면 천이 영역은 (1) 전방 표면 중심 광학 구역의 외부 에지와 전방 표면 가상 조리개의 내부 에지 사이의 매끄러운 혼합 및 (2) 전방 표면 가상 조리개의 외부 에지와 햅틱 전방 표면의 내부 에지 사이의 매끄러운 혼합을 제공한다. 후방 표면 천이 영역은 후방 표면 중심 광학 구역의 외부 에지와 햅틱 후방 표면의 내부 에지 사이에 매끄러운 혼합을 제공한다. 이들 천이 영역은 선반 파일 또는 레이저와 같은 기타 제조 디바이스에 대한 표면 지점 세트를 생성할 수 있다.
렌즈의 다양한 영역을 매끄럽게 혼합하거나 연결하기 위해, 즉, 이들 영역 사이에 적어도 0차 및 1차 연속성을 제공하기 위해, 3차 베지어 곡선이 채용된다. 천이 영역의 매끄러움은 시각적 아티팩트를 방지할 수 있다. 2차원(및 3차원)의 파라메트릭 베지어 곡선 F(t)는 수학식 20에서 제공된다.
[수학식 20]
여기서
n = 3차 차수의 경우 베지어 곡선 차수, n = 3
t = 곡선이 제1 지점으로부터 마지막 제어 지점으로 갈 때 파라미터 변수는 0에서 1로 간다
p i = 제어 지점
여기에 채용된 혼합 함수는 3차 베지어 곡선이므로, p0에서 p3까지 번호가 매겨진 4개의 지점이 있다. 천이 영역의 폭(도 단위)은 변수 WT에 의해 제공된다. 3차 베지어 곡선은 t = 0에서 지점 p0 및 t = 1에서 p3를 통과한다. 종점 p0 내지 p3이 천이 영역에 의해 연결되는 표면의 마지막 지점(예를 들어, 도 9의 지점 P1 및 P2)과 동일하게 설정되는 경우, 0차 연속성이 보장된다. 지점 p0에서 곡선의 도함수는 p0에서 p1까지의 선의 기울기와 동일하다. 지점 p3에서 곡선의 도함수는 p2에서 p3까지의 선의 기울기와 동일하다. 따라서, 지점 p0(이전 영역에서 곡선의 단부)을 통과하고 이전 곡선으로부터 p0에서의 기울기와 동일한 기울기를 갖는 선을 따라 제어 지점 p1를 배치하는 것이 중요할 수 있다. 지점 p2의 배치에 대해서도 유사하다. 제어 지점 p1 및 p2에 대한 이들 제약은 천이 곡선에 의해 연결되는 영역의 에지에서 1차 연속성을 보장한다.
4개의 베지어 제어 지점은 베지어 곡선의 볼록 껍질을 형성한다. 곡선의 형상에 대한 중간 제어 지점 p1 및 p2의 영향은 경계 지점 p0 및 p3으로부터의 거리가 수정됨에 따라 증가 및 감소된다. 파라미터 FT(천이 분율)는 혼합 영역 내에서 이들 중간 제어 지점의 배치를 제어하는 데 사용된다.
작은 FT 값(예를 들어, 0.1)은 중간 제어 지점 p1 및 p2를 그 각각의 단부 제어 지점 p0 및 p3 근방에 유지한다. 작은 FT 값은 혼합 영역으로 아주 멀리 떨어진 종점에서 혼합 곡선 도함수를 유지하지 않는다. 더 큰 FT 값(예를 들어, 0.5)은 혼합 영역의 중간 근방에 중간 제어 지점을 푸시한다. 더 큰 FT 값은 혼합 영역으로 더 먼 종점에서 혼합 곡선 도함수를 유지한다. 이 방식으로, FT는 혼합 영역 내부의 천이 곡선의 특성을 제어할 수 있다.
매끄러움을 위해 천이 곡선을 최적화하거나 달리 개선하여, 시각적 아티팩트를 방지하기 위해, 천이 영역 3차 베지어는 앞서 설명한 바와 같이 종점에서 0차 및 1차 연속성을 유지하는 것 외에도 곡선을 따라 모든 지점에서 최소 곡률을 가질 수 있다. 3차 베지어 곡선의 곡률은 수학식 21을 사용하여 계산된다.
[수학식 21]
수학식 21은 파라미터 변수 t에 의해 주어진 지점에서 곡률 C(t)가 제1 및 제2 도함수의 외적 노름을 제1 도함수의 노름으로 나눈 값이라고 명시한다. 3차 베지어 벡터 함수와 그 1차 및 2차 도함수는 수학식 22, 23 및 24에서 제공된다.
[수학식 22]
[수학식 23]
[수학식 24]
이들 수학식에서, p0 내지 p3은 3차 베지어에 대한 4개의 제어 지점이다. 앞서 설명한 바와 같이, 지점 p1 및 p2는 종점 p0 및 p3에서의 1차 도함수가 연결될 영역과 일치하도록 선택된다. 수학식 25 및 26을 사용하여 p0 및 p3에서 정규화된 접선 벡터가 정의된다.
[수학식 25]
[수학식 26]
이들 정규화된 접선 벡터는 또한 지점 p0 및 p3에서 혼합될 영역의 이웃을 직접 평가하여 획득될 수도 있다. 이어서, 최소 곡률 3차 베지어 곡선 검색에서, 내부 제어 지점 p1 및 p2는 수학식 27 및 28에 따라 설정된다.
[수학식 27]
[수학식 28]
이들 수학식에서, s는 종점 p0과 p3 사이의 거리이고, frac는 베지어 곡선을 따른 모든 지점에 대해 수학식 20의 곡률을 최소화하는, (0, 1) 사이에서 발견될 스칼라 값이다. 예를 들어 추가로 설명하기 위해, 종점 위치가 p0 및 p3인 2개의 베지어 곡선과 접선 벡터 T0 및 T3가 도 11a에 도시되어 있다. 하나는 다른 것보다 훨씬 더 많은 곡률을 가지고 있고, 다른 하나는 가장 작은 최대 곡률을 갖도록 최적화되었다. 대응 곡률 그래프는 도 11b에 도시되어 있다. 도 11b는 최적화되지 않은 베지어는 약 2.6의 최대 곡률을 갖고 최적화된 베지어 곡선은 약 0.5의 최대 곡률을 갖는다는 것을 도시한다. 이는 이 높은 곡률 베지어의 경우 0.4의 곡률 반경에 대응하고 최적화된 베지어 곡선의 경우 2.0의 곡률 반경에 대응한다. 이는 최소의 시각적 아티팩트를 갖는 더 매끄러운 천이 곡선을 초래할 뿐만 아니라, 선반 절단 도구가 더 큰 곡률을 갖는 곡선보다 5배 더 큰 반경을 갖게 한다.
베지어 곡선 천이 구역의 계산을 요약하기 위해, 다음 단계가 수행된다:
종점 p0 및 p3을 연결될 표면 프로파일 수학식의 대응 종점으로 설정한다.
연결될 표면 프로파일의 수학식을 사용하여 종점에서 접선 벡터 T0 및 T3을 계산한다.
범위 [0, 1]에 걸쳐 곡률 C(t)를 최소화하기 위해 frac에 대해 범위 [0, 1]에서 전체 검색을 수행한다.
최적화된 frac 값을 사용하여 내부 지점 p1 및 p2를 계산한다.
4개의 베지어 지점 p0 내지 p3을 사용하여 수학식 22를 사용하여 천이 곡선 프로파일을 계산한다.
가상 조리개는 전방 대신 IOL의 후방에 위치될 수 있거나 가상 조리개는 IOL의 전방 표면 및 후방 표면 모두에 위치될 수 있다. 마이크로 프리즘 영역도 마찬가지이다. 도 1에 예시된 광학 구역은 양면이 볼록하지만, 광학계는 렌즈의 원하는 광학 도수와 수정체 또는 무수정체 IOL로서의 용도에 따라 메니스커스 형상 또는 양면 오목형일 수 있다.
예시적인 마이크로 프리즘 가상 조리개 구조
연장된 초점 심도 IOL의 예시적인 프로파일이 도 16에 예시되어 있으며, 이는 수평 중간축에 대해 대칭인 IOL 렌즈의 측면도를 도시한다. IOL은 전방 표면 및 후방 표면을 갖는다. 대칭성으로 인해, 렌즈의 상부 절반만 설명된다. 렌즈 프로파일은 렌즈의 중심을 통과하는 광축(161)을 갖는다. 전방 표면은 전방 광학 구역(162), 리플 가상 조리개 구역(163), 및 햅틱(164)을 갖는다. 후방 표면은 마이크로 프리즘 영역(166)을 햅틱(164)에 연결하는 천이 구역(165), 마이크로 프리즘 영역(166), 마이크로 프리즘 영역(166)을 광학 구역(168)에 연결하는 천이 구역(167), 및 후방 광학 구역(168)을 갖는다.
도 17은 마이크로 프리즘 영역(166)을 햅틱(164)에 연결하는 천이 구역의 예시적인 윤곽을 도시한다. 햅틱(164)의 에지는 곡선형, 둥근형 또는 원형 윤곽 중 적어도 하나를 갖는 필렛(1710)에 의해 마이크로 프리즘 영역(166)의 가장 주변 섹션에 연결된다.
도 18은 예시적인 원형 필렛(1710)의 기하학적 세부 사항을 도시한다. 원형 필렛(1710)은 그 중심(1712), 반경(1713), 시작점(1714) 및 종점(1715)에 의해 지정된다. 필렛 사양을 계산하기 위해, 필렛 반경, 필렛에 의해 연결되는 선분(1717, 1718)의 교차점(1716), 선분(1717, 1718)에 평행한 단위 길이방향 벡터(1719, 1720)가 각각 제공된다. 이러한 주어진 데이터를 다음과 같이 표시한다:
r = 필렛 반경, 스칼라
P = 선분의 교차점, 길이 2 벡터
D 0 , D 1 = 선분에 평행한 단위 길이방향 벡터, 길이 2 벡터
선분(1717, 1718)에 각각 평행한 광선(1721, 1722)은 다음과 같이 구성된다.
[수학식 29]
여기서, 각각의 광선은 시작점 및 단위 길이방향 벡터에 의해 정의된다. 광선 시작점(P 0 및 P 1 )은 도 18에서 항목(1723 및 1724)으로서 식별된다. 이들 2개 광선의 교차점은 필렛 원의 중심(1712)이다. 이 교차점(1712)은 수학식 30에서 파라미터 t 0 또는 t 1 을 풀고 이 값을 위의 광선 수학식 29에 대입하여 구한다.
[수학식 30]
수학식 30에서, 우변의 2x2 매트릭스의 열은 벡터 D0 및 -D1을 포함한다. 원의 중심 C가 나타난다. 나머지 필렛 사양, 도 18의 항목(1714 및 1715)에 각각 대응하는 지점 Pa 및 Pb은 수학식 31을 사용하여 계산된다.
[수학식 31]
마이크로 프리즘 영역을 햅틱 영역에 연결하는 필렛 원은 일부 갑작스러운 설계에서 이 위치에 존재할 수 있는 시각적 아티팩트를 방지하기 위해 매끄러운 천이를 제공하도록 구성된다. 본 기술 분야의 숙련자에게 알려진 베지어 곡선과 같은 다른 방법이 이러한 매끄러운 천이를 위해 이용될 수 있음은 물론이다.
도 19는 마이크로 프리즘 영역을 광학 구역에 연결하는 천이 구역의 예시적인 기하형상을 도시한다. 광학 구역(1825)의 에지는 원형 필렛(1827)에 의해 마이크로 프리즘 영역(1826)의 제1 섹션에 연결된다.
도 20은 광학 구역을 마이크로 프리즘 영역에 연결하는 원형 필렛의 세부 사항을 도시한다. 원형 필렛은 중심(1928), 반경(1929), 시작점(1930) 및 종점(1931)에 의해 특정된다. 필렛 사양을 계산하기 위해, 필렛 반경, 필렛에 의해 연결될 광학 구역의 에지에서 시작점(1930), 단위 길이 접선 벡터(1932), 및 마이크로 프리즘 세그먼트(1926)의 기울기가 제공된다. 주어진 데이터는 다음과 같이 표시된다:
r = 필렛 반경, 스칼라
P a = 시작점, 길이 2 벡터
T = 광학 구역의 종점과 동일한 기울기로 계속되는 단위 길이 접선 벡터, 길이 2 벡터
s = 마이크로 프리즘 세그먼트의 기울기, 스칼라
접선 벡터 T는 원추 수학식과 같은 광학 구역 프로파일을 나타내는 수학식으로부터 분석적으로 계산되거나 차분 수학식을 사용하여 수치적으로 계산될 수 있다. 차분 수학식은 순차, 역차 또는 중심 차분 수학식이 될 수 있으며 1차 또는 고차 차분 수학식이 될 수 있다. 예를 들어, 광학 구역이 지점 C o 에서 광축의 중심을 갖는 무수차 또는 난시 광학 구역을 나타낼 수 있는 원형 프로파일 가지면, 단위 길이 접선 벡터 T는 수학식 31b에 의해 제공된다.
[수학식 31b]
또한, 도 20에는 점선(1933) 및 점선(1934)이 예시되어 있다. 점선(1934) 아래 영역은 광학 구역이고, 점선(1933) 위 영역은 마이크로 프리즘 구역이며, 점선(1933)과 점선(1934) 사이의 영역은 필렛 원으로 실현된 천이 구역이다. 필렛 원의 중심(C)(1928)은 수학식 32를 사용하여 구한다.
[수학식 32]
필렛 사양 종점(1931)을 구하기 위해, 마이크로 프리즘 세그먼트(1926)의 기울기가 필렛 원의 기울기와 일치하는 원 위에 지점이 위치된다. 이 종점(1931)의 좌표는 수학식 33a 및 33b에 의해 제공된다.
[수학식 33a]
[수학식 33b]
마이크로 프리즘 영역을 광학 구역에 연결하는 필렛 원은 일부 갑작스러운 설계에서 이 위치에 존재할 수 있는 시각적 아티팩트를 방지하기 위해 매끄러운 천이를 제공하도록 의도된다. 본 기술 분야의 숙련자에게 알려진 베지어 곡선과 같은 다른 방법이 이러한 매끄러운 천이를 위해 이용될 수 있음은 물론이다.
예시적인 실시예에서, 마이크로 프리즘 어레이 프로파일은 IOL의 후방 표면 상에 배치된다. 마이크로 프리즘 프로파일은 일부 광선에 대한 굴절, 다른 광선에 대한 전반사의 조합을 사용하여 기능하고, 일부 광선은 굴절과 전반사를 모두 사용할 것이다. 다음 설명에서, 마이크로 프리즘 어레이 프로파일은 IOL의 후방 표면에 위치되고 광은 좌측에서 우측으로, 즉, 눈으로 이동한다.
도 21은 기본 마이크로 프리즘 어레이 프로파일의 예를 도시한다. 어레이의 음영 부분은 IOL의 내부를 나타내고 IOL의 전방 표면은 나타내지 않는다. IOL 내부의 굴절률 N 1 은 IOL 외부의 굴절률 N 2 보다 크다. N 1 및 N 2 에 대한 통상적인 값은 각각 1.459 및 1.336이다. 광선(2035)은 표면 법선(2037)을 갖는 교차점(2036)에서 마이크로 프리즘 표면과 교차한다. 이 입사 광선(2035)은 표면 법선(2037)에 대해 입사각(2038)을 만든다. Snell의 법칙은 광선(2035)이 교차점(2036)에서 굴절되는 방식을 설명하고 수학식 34에서 제공된다.
[수학식 34]
이 수학식에서, 입사각은 A 1 이고 굴절각은 A 2 이다. 도면에서, A 1 은 항목(2038)에 대응하고 A 2 는 항목(2039)에 대응한다. 예를 들어, N 1 및 N 2 에 대한 통상적인 값을 사용하여, 입사각(2038)이 45도이면, 굴절각(3209)은 50.6도가 된다. 도 21은 통상적으로 무시할 수 있는 지점(2036)에 대해 반사되는 소량의 광을 예시하지 않는다. 굴절은 입사각(2038)이 소위 임계각 A c 보다 클 때까지 이러한 방식으로 작동한다. 임계각보다 더 큰 입사각의 경우, 광선은 교차점(2)에서 반사된다. 임계각은 수학식 35으로부터 계산된다.
[수학식 35]
위에서 주어진 통상적인 굴절률 값 N 1 및 N 2 을 사용하여, 임계각은 66.3도이다. 도 21에서, 입사 광선(2041)은 표면 법선(2043)을 갖는 교차점(2042)에서 마이크로 프리즘 표면과 교차한다. 이 입사 광선(2041)은 표면 법선(2043)에 대해 입사각(2044)을 만든다. 입사각이 70도이면, 수학식 35에 의해 광선은 표면 지점(2042)에서 전반사되고 입사각(2044)과 동일한 반사각(2045)을 가지며 반사 광선(2046)은 결과이다. 도 21에는 반사 광선(2046)의 연속적인 경로가 도시되어 있지 않은데, 마이크로 프리즘 표면에 의해 후속적으로 굴절된다.
예시적인 실시예에서, 마이크로 프리즘 영역에 걸친 마이크로 프리즘의 어레이는 균일하지 않다. 이 비균일성은 도 22에 예시되어 있다. 도 22에서, 전체 높이(2147)는 도면 하단의 광학 구역 단부로부터 도면 상단의 햅틱 시작까지의 거리이다. 4.5개의 마이크로 프리즘이 도 22에 예시되어 있다. 마이크로 프리즘은 도면의 하단에서 상단까지 크기가 감소하는 반면, 각각의 마이크로 프리즘의 베이스 위치는 도면에서 수직 점선으로 도시된 단일 X 값을 따라 유지된다. 마이크로 프리즘의 크기가 감소함에 따라, 마이크로 프리즘의 하부 및 상부 세그먼트의 기울기는 일정하게 유지된다.
모든 세그먼트 기울기(2148)는 0.5의 상수 값이고 모든 세그먼트 기울기(2049)는 -0.5의 상수 값이다. 렌즈 중심(도면 하단)으로부터 주연부(도면 상단)로 크기가 감소하면 렌즈의 중심으로부터 IOL의 통상적인 햅틱까지 렌즈 두께가 감소된다. 개별 마이크로 프리즘의 높이는 기하급수를 따라 하단으로부터 상단으로 크기가 감소한다. 예를 들어, 마이크로 프리즘의 높이(2150)는 이전 마이크로 프리즘의 높이(2151)에 축척 계수 a를 곱한 값과 같으며, 여기서 축척 계수는 1보다 더 작다. 문헌에서, 축척 계수 a는 또한 공통 비율이라고도 명명되며 기호 r이 주어지지만, 필렛 반경을 지칭하기 위해 기호 r을 이미 사용했기 때문에 대체 기호 a를 선택한다. 광학 구역의 에지에서 시작점 P A (2154) 및 햅틱 시작에서 종점 P B (2155), 마이크로 프리즘 기울기 s, 그리고 공통 비율 a가 주어지면, 다음 방법을 사용하여 기하학적으로 스케일된 마이크로 프리즘의 기하형상을 계산한다.
도 22에 예시된 제1 완전한 마이크로 프리즘의 시작점 P(2156)는 수학식 36에 의해 제공된다.
[수학식 36]
여기서
PA의 좌표는 (Ax, Ay)로 표시된다.
PB의 좌표는 (Bx, By)로 표시된다.
이 제1 마이크로 프리즘의 베이스 높이 h 0 (2151)는 수학식 37에 의해 제공된다.
[수학식 37]
일련의 마이크로 프리즘 베이스 높이는 수학식 38에 의해 제공된다.
[수학식 38]
개별 베이스 높이의 합은 총 높이 H를 제공하며 수학식 39를 사용하여 계산된다.
[수학식 39]
개별 마이크로 프리즘의 대략적인 수 N은 수학식 40으로부터 계산된다.
[수학식 40]
수학식 12에서 계산된 개별 마이크로 프리즘의 정수 N이 주어지면, 초기 베이스 폭 h 0 를 수정하여 정확히 지점 PB(2155)에 도달하도록 한다. 초기 베이스 폭의 이 미세 조절은 수학식 41을 사용하여 수행된다.
[수학식 41]
각각의 마이크로 프리즘에 대한 연속적인 마이크로 프리즘 피크 Peak n 및 골부 Valley n 지점 n = 0, ... N-1은 수학식 42를 사용하여 계산된다.
[수학식 42]
이들 피크 및 골부 정점을 찾은 후, 도 23에 예시된 바와 같이 피크 및 골부 필렛이 적용된다. 이들 필렛은 도 18과 관련하여 설명된 방법 및 수학식 29 - 31을 사용하여 계산된다. 이들 필렛이 적절한 기호 규칙을 따르도록 하기 위해, 골부 필렛(오목)은 양의 반경을 갖고 피크 필렛(볼록)은 음의 반경을 갖는다. 예를 들어, 제1 골부 필렛은 항목(2460)으로서 도 24에 도시된다. 도 24의 수직 점선(2462)은 각각의 골부 필렛의 정점과 일치하고 동일한 x 좌표값 X V 를 갖는다. 각각의 골부 필렛의 중심 CV(2465)는 수학식 43에 의해 주어진 동일한 x 좌표를 갖는다.
[수학식 43]
이 수학식에서, r V 는 골부 필렛의 반경이다. 각각의 골부 필렛의 중심 CV는 수학식 42에 의해 주어진 대응 Valley n 지점에 의해 주어진 y 좌표를 갖는다. 필렛 원의 경계 지점은 도 24에서 P0 2463 및 P1 2464로 표시된다. 지점 P0 및 P1에 대한 좌표는 수학식 44에서 제공된다.
[수학식 44]
이들 수학식에서, 아래첨자 n은 골부 수를 나타낸다. 도 24에 도시된 바와 같이, 골부 필렛 원 반경 r V 에는 양의 값이 주어진다.
도 24의 항목(2461)에 예시된 바와 같은 피크 필렛의 경우, 먼저 수학식 42를 사용하여 피크를 구한 다음, 수학식 45를 사용하여 피크 필렛 원 중심 CP를 구한다.
[수학식 45]
이 수학식에서, r P 는 피크 필렛 원의 반경이다. 골부 시작점 및 종점과 유사하게, 피크 필렛 원 시작점 및 종점 P0 및 P1은 각각 수학식 46을 사용하여 계산된다.
[수학식 46]
도 24는 피크 필렛 원 중심, 시작점, 및 종점을 각각 항목 2468, 2466 및 2467로 예시한다.
도 25는 전방 표면 리플 구역과 후방 표면 매끄러운 구역이 있는 Z+IOL을 통해 광선이 분산되는 방식을 예시한다. 도 26은 후방 표면이 마이크로 프리즘 영역을 통합하는 것으로 교체되었을 때 망막에 걸쳐 광선의 개선된 확산을 예시한다.
앞서 설명한 원형 필렛에 대한 대안으로서, 본 기술 분야의 숙련자는 베지어 곡선과 같은 다른 천이 방법을 사용할 수 있다.
일부 용례에서는 무작위 필렛 반경 및/또는 마이크로 프리즘 기울기 값을 사용하는 것이 유리할 수 있다.
예시적인 실시예 값 및 값 범위
예시적인 실시예에서, 상기 마이크로 프리즘 피처에 대해 특정 값이 선택된다. 추가로, 이들 값은 바람직한 값에 대한 합리적인 범위로부터 선택될 수도 있다. 이들 값과 범위는 아래의 표에 나열되어 있다.
PCO(Posterior capsule opacification) 장벽
후낭 혼탁(PCO)은 백내장 수술 후 발생할 수 있는 합병증이다. 가상 조리개 또는 마이크로 프리즘 영역으로의 세포 이동을 감소시키기 위해, 날카로운 정사각형 에지가 햅틱에 존재할 수 있다. 또한, 마이크로 프리즘 영역의 마지막 피크는 반드시 피크에 필렛이 없어야 한다. 그러한 날카로운 마지막 피크는 피크(2559)로서 도 27에 예시되어 있다.
Z+IOL의 표면에 대해 앞서 설명한 개념을 사용하기 위해 다음이 수행된다. 먼저, IOL의 중심 광학이 특정된다. 광학 구역의 직경은 약 1.5 mm이고 비제한적인 예에서는 (1.4와 1.6 mm) 사이이다. 이 광학 구역의 광학 도수는 단계적으로 -10에서 40 D까지 또는 0.25 또는 0.5 D로 다양하다. 원환체 IOL용 원통 도수는 0.25에서 0.5 D의 단계로 0.5에서 6.0 D까지 다양하다.
가상 조리개는 이어서 이전 개시에서 설명된 개념을 사용하여 생성된다. 가상 조리개 영역의 폭은 약 2.0 mm이다.
전방 표면 천이 영역의 폭은 각각 약 0.15 mm로 설정된다. 후방 표면 마이크로 프리즘 영역의 치수는 위의 표에 설명되어 있다.
전방 표면 및 후방 표면이 특정되면, 개별 프로파일 샘플을 IOL의 중심에서 주변으로 가져와 선반 절단 파일용 지점을 특정한다.
이 명세서는 많은 특정을 포함하지만, 이들은 청구된 발명의 범위 또는 청구될 수 있는 범위에 대한 제한으로 해석되어서는 안되며, 오히려 특정 실시예에 특정한 특징에 대한 설명으로 해석되어야 한다. 별개의 실시예와 관련하여 본 명세서에 설명된 특정 특징은 단일 실시예에서 조합하여 구현될 수도 있다. 역으로, 단일 실시예의 맥락에서 설명된 다양한 특징은 또한 개별적으로 또는 임의의 적절한 하위 조합으로 다중 실시예에서 구현될 수 있다. 더욱이, 특징이 특정 조합으로 작용하는 것으로 앞서 설명될 수 있고 심지어 초기에 그렇게 청구될 수도 있지만, 청구된 조합의 하나 이상의 특징은 일부 경우에 조합에서 제거될 수 있고, 청구된 조합은 하위 조합 또는 하위 조합의 변형에 관한 것일 수 있다. 유사하게, 작업이 특정 순서로 도면에 도시되어 있지만, 이는 바람직한 결과를 달성하기 위해 이러한 작업이 도시되어 있는 특정 순서 또는 순차적인 순서로 수행되거나 예시된 모든 작업이 수행될 것을 요구하는 것으로 이해되어서는 안 된다. 몇 가지 예와 구현만이 개시되어 있다. 설명된 예 및 구현 및 다른 구현에 대한 변형, 수정 및 개선이 개시된 것에 기초하여 이루어질 수 있다.
Claims (17)
- 연장된 피사계 심도를 제공하기 위한 안내 렌즈이며, 상기 안내 렌즈는:
적어도 하나의 전방 광학 표면 및 적어도 하나의 후방 광학 표면을 포함하는 광학 구역;
광학 구역에 대해 주변에 위치 설정된 제1 주변 영역 - 제1 주변 영역은 가상 조리개를 포함하고, 가상 조리개는 전방 가상 조리개 표면 및 후방 가상 조리개 표면을 포함함 -; 및
제1 주변 영역에 대해 주변에 위치 설정된 제2 주변 영역 - 제2 주변 영역은 눈 내에 안내 렌즈를 위치 설정하기 위한 햅틱을 포함하고, 햅틱은 안내 렌즈의 최외측 영역을 포함하며; 전방 광학 표면에 입사되는 제1 복수의 광선은 안내 렌즈가 눈에 이식될 때 광학 구역을 통과하여 망막 상에 이미지를 형성함 -; 및
(a) 안내 렌즈의 전방 표면 상의 제1 표면 윤곽 - 제1 표면 윤곽은 적어도 하나의 환형 영역을 포함 -; 및
(b) 안내 렌즈의 후방 표면 상의 제2 표면 윤곽 - 제2 표면 윤곽은 적어도 하나의 환형 영역을 포함 - 중 적어도 하나를 포함하고;
전방 가상 조리개 표면에 입사하는 제2 복수의 광선은 안내 렌즈로부터 망막을 향해 그리고 망막에 걸쳐 광범위하게 하류에 분산되어, 이미지는 연장된 피사계 심도를 포함하며, 또한 상기 가상 조리개는 이미지에서 단색 및 색 수차를 감소시키는, 안내 렌즈. - 제1항에 있어서, 안내 렌즈는 제1 표면 윤곽 및 제2 표면 윤곽을 모두 포함하는, 안내 렌즈.
- 제1항에 있어서, 제1 표면 윤곽은 리플 및 마이크로 프리즘 중 적어도 하나를 포함하는, 안내 렌즈.
- 제1항에 있어서, 제2 표면 윤곽은 리플 및 마이크로 프리즘 중 적어도 하나를 포함하는, 안내 렌즈.
- 제1항에 있어서, 제1 표면 윤곽은 적어도 하나의 리플로 형성된 제1 환형 영역 및 적어도 하나의 마이크로 프리즘으로 형성된 제2 환형 영역을 포함하는, 안내 렌즈.
- 제1항에 있어서, 제2 표면 윤곽은 적어도 하나의 리플로 형성된 제1 환형 영역 및 적어도 하나의 마이크로 프리즘으로 형성된 제2 환형 영역을 포함하는, 안내 렌즈.
- 제1항에 있어서, 제1 표면 윤곽은 가상 조리개 상에 위치되는, 안내 렌즈.
- 제1항에 있어서, 제2 표면 윤곽은 가상 조리개 상에 위치되는, 안내 렌즈.
- 제1항에 있어서, 제1 표면 윤곽은 적어도 하나의 리플을 포함하는, 안내 렌즈.
- 제1항에 있어서, 광학 구역은 제1 천이 영역에 의해 가상 조리개로부터 분리되는, 안내 렌즈.
- 제1항에 있어서, 가상 조리개는 제2 천이 영역에 의해 햅틱으로부터 분리되는, 안내 렌즈.
- 제1항에 있어서, 제1 표면 윤곽은 가상 조리개 상의 리플을 포함하고 제2 표면 윤곽은 가상 조리개 상의 마이크로 프리즘을 포함하는, 안내 렌즈.
- 제12항에 있어서, 가상 조리개는 필렛을 포함하는 제2 천이 영역에 의해 햅틱으로부터 분리되는, 안내 렌즈.
- 제13항에 있어서, 필렛은 만곡된 윤곽을 갖는, 안내 렌즈.
- 제1항에 있어서, 제2 표면 윤곽은 마이크로 프리즘 피크를 포함하는, 안내 렌즈.
- 제15항에 있어서, 마이크로 프리즘 피크는 PCO 장벽을 제공하는, 안내 렌즈.
- 눈을 치료하는 방법이며,
안구 임플란트를 눈에 이식하는 단계를 포함하고, 안구 임플란트는:
적어도 하나의 전방 광학 표면 및 적어도 하나의 후방 광학 표면을 포함하는 광학 구역;
광학 구역에 대해 주변에 위치 설정된 제1 주변 영역 - 제1 주변 영역은 가상 조리개를 포함하고, 가상 조리개는 전방 가상 조리개 표면 및 후방 가상 조리개 표면을 포함함 -; 및
제1 주변 영역에 대해 주변에 위치 설정된 제2 주변 영역 - 제2 주변 영역은 눈 내에 안내 렌즈를 위치 설정하기 위한 햅틱을 포함하고, 햅틱은 안내 렌즈의 최외측 영역을 포함하며; 전방 광학 표면에 입사되는 제1 복수의 광선은 안내 렌즈가 눈에 이식될 때 광학 구역을 통과하여 망막 상에 이미지를 형성함 -; 및
(a) 안내 렌즈의 전방 표면 상의 제1 표면 윤곽 - 제1 표면 윤곽은 적어도 하나의 환형 영역을 포함 -; 및
(b) 안내 렌즈의 후방 표면 상의 제2 표면 윤곽 - 제2 표면 윤곽은 적어도 하나의 환형 영역을 포함 - 중 적어도 하나를 포함하고;
전방 가상 조리개 표면에 입사하는 제2 복수의 광선은 안내 렌즈로부터 망막을 향해 그리고 망막에 걸쳐 광범위하게 하류에 분산되어, 이미지는 연장된 피사계 심도를 포함하며, 또한 상기 가상 조리개는 이미지에서 단색 및 색 수차를 감소시키는, 방법.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962861120P | 2019-06-13 | 2019-06-13 | |
US62/861,120 | 2019-06-13 | ||
US202062986115P | 2020-03-06 | 2020-03-06 | |
US62/986,115 | 2020-03-06 | ||
US202062988802P | 2020-03-12 | 2020-03-12 | |
US62/988,802 | 2020-03-12 | ||
PCT/US2020/037014 WO2020252034A1 (en) | 2019-06-13 | 2020-06-10 | High definition and extended depth of field intraocular lens |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220024469A true KR20220024469A (ko) | 2022-03-03 |
Family
ID=73781301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227000820A KR20220024469A (ko) | 2019-06-13 | 2020-06-10 | 고선명 및 연장된 피사계 심도 안내 렌즈 |
Country Status (11)
Country | Link |
---|---|
US (1) | US20220249223A1 (ko) |
EP (1) | EP3982880A4 (ko) |
JP (1) | JP2022536702A (ko) |
KR (1) | KR20220024469A (ko) |
CN (1) | CN114245727A (ko) |
AU (1) | AU2020290438A1 (ko) |
BR (1) | BR112021024889A2 (ko) |
CA (1) | CA3143046A1 (ko) |
IL (1) | IL288892A (ko) |
MX (1) | MX2021015216A (ko) |
WO (1) | WO2020252034A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11696823B2 (en) | 2015-04-14 | 2023-07-11 | Z Optics, Inc. | High definition and extended depth of field intraocular lens |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693094A (en) * | 1995-05-09 | 1997-12-02 | Allergan | IOL for reducing secondary opacification |
US6884262B2 (en) * | 1998-05-29 | 2005-04-26 | Advanced Medical Optics, Inc. | Enhanced intraocular lens for reducing glare |
ATE269681T1 (de) * | 1999-11-24 | 2004-07-15 | Advanced Medical Optics Inc | Intraokularlinse zur vermeidung von zellwachstum und zur verminderung der blendwirkung |
US7350918B2 (en) | 2005-06-14 | 2008-04-01 | Lenstec Inc. | Method of designing equal conic intraocular lens |
US8568478B2 (en) * | 2006-09-21 | 2013-10-29 | Abbott Medical Optics Inc. | Intraocular lenses for managing glare, adhesion, and cell migration |
US20080269890A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon Universal Ltd. | Intraocular lens with peripheral region designed to reduce negative dysphotopsia |
US20080269886A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | IOL Peripheral Surface Designs to Reduce Negative Dysphotopsia |
US20080269891A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon, Inc. | Intraocular lens with edge modification |
US10285807B2 (en) * | 2015-04-14 | 2019-05-14 | Z Optics LLC | High definition and extended depth of field intraocular lens |
-
2020
- 2020-06-10 EP EP20823447.6A patent/EP3982880A4/en active Pending
- 2020-06-10 CN CN202080056071.7A patent/CN114245727A/zh active Pending
- 2020-06-10 US US17/618,616 patent/US20220249223A1/en active Pending
- 2020-06-10 BR BR112021024889A patent/BR112021024889A2/pt unknown
- 2020-06-10 KR KR1020227000820A patent/KR20220024469A/ko unknown
- 2020-06-10 MX MX2021015216A patent/MX2021015216A/es unknown
- 2020-06-10 JP JP2021573487A patent/JP2022536702A/ja active Pending
- 2020-06-10 CA CA3143046A patent/CA3143046A1/en active Pending
- 2020-06-10 AU AU2020290438A patent/AU2020290438A1/en active Pending
- 2020-06-10 WO PCT/US2020/037014 patent/WO2020252034A1/en active Application Filing
-
2021
- 2021-12-12 IL IL288892A patent/IL288892A/en unknown
Also Published As
Publication number | Publication date |
---|---|
IL288892A (en) | 2022-02-01 |
CA3143046A1 (en) | 2020-12-17 |
AU2020290438A1 (en) | 2022-01-27 |
CN114245727A (zh) | 2022-03-25 |
EP3982880A1 (en) | 2022-04-20 |
WO2020252034A1 (en) | 2020-12-17 |
US20220249223A1 (en) | 2022-08-11 |
BR112021024889A2 (pt) | 2022-05-03 |
MX2021015216A (es) | 2022-03-17 |
EP3982880A4 (en) | 2023-08-09 |
JP2022536702A (ja) | 2022-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11534291B2 (en) | Intraocular lens that improves overall vision where there is a local loss of retinal function | |
KR101302317B1 (ko) | 근시 교정을 위한 안과용 렌즈 부재 | |
KR100954675B1 (ko) | 콘택트 렌즈 또는 안구내 렌즈 및 이를 제조하기 위한 방법 | |
US11696823B2 (en) | High definition and extended depth of field intraocular lens | |
CN107847314B (zh) | 高清和景深扩展人工晶状体 | |
WO1992006400A1 (en) | Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens | |
US20230010847A1 (en) | High definition and extended depth of field intraocular lens | |
KR20220024469A (ko) | 고선명 및 연장된 피사계 심도 안내 렌즈 | |
US11547554B2 (en) | High definition and extended depth of field intraocular lens | |
RU2815293C2 (ru) | Интраокулярная линза и способ лечения глаза | |
RU2827085C2 (ru) | Интраокулярная линза с высоким разрешением и увеличенной глубиной поля зрения | |
JP2022527224A (ja) | 高精細および焦点深度拡張型の眼内レンズ |