KR20220023454A - Method for producing cathode active material for lithium secondary battery coated with lithium-tungsten oxide, positive electrode active material produced therefrom, and lithium secondary battery including the same - Google Patents

Method for producing cathode active material for lithium secondary battery coated with lithium-tungsten oxide, positive electrode active material produced therefrom, and lithium secondary battery including the same Download PDF

Info

Publication number
KR20220023454A
KR20220023454A KR1020200105192A KR20200105192A KR20220023454A KR 20220023454 A KR20220023454 A KR 20220023454A KR 1020200105192 A KR1020200105192 A KR 1020200105192A KR 20200105192 A KR20200105192 A KR 20200105192A KR 20220023454 A KR20220023454 A KR 20220023454A
Authority
KR
South Korea
Prior art keywords
lithium
active material
nickel
tungsten oxide
secondary battery
Prior art date
Application number
KR1020200105192A
Other languages
Korean (ko)
Inventor
진봉수
김현수
심성주
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020200105192A priority Critical patent/KR20220023454A/en
Publication of KR20220023454A publication Critical patent/KR20220023454A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for manufacturing an anode active material for a lithium secondary battery coated with a lithium-tungsten oxide, an anode active material manufactured therefrom, and a lithium secondary battery containing the same. The method for manufacturing an anode active material for a lithium secondary battery coated with a lithium-tungsten oxide according to the present invention comprises: a step of manufacturing a high-nickel (high-Ni) based lithium-nickel-cobalt-manganese oxide in which a lithium compound is exposed on a surface; a step of manufacturing a coating solution by dissolving a tungsten oxide in a basic solution; and a step of manufacturing the anode active material by mixing and drying the lithium-nickel-cobalt-manganese oxide and the coating solution, and heat-treating the same. The anode active material is characterized in that a coating layer composed of a lithium-tungsten oxide is formed on the outside of the lithium-nickel-cobalt-manganese oxide by combining lithium of the lithium compound with the tungsten oxide through heat treatment.

Description

리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법, 이로부터 제조되는 양극 활물질 및 이를 포함하는 리튬이차전지{Method for producing cathode active material for lithium secondary battery coated with lithium-tungsten oxide, positive electrode active material produced therefrom, and lithium secondary battery including the same}A method for producing a cathode active material for a lithium secondary battery coated with lithium-tungsten oxide, a cathode active material prepared therefrom, and a lithium secondary battery comprising the same material produced therefrom, and lithium secondary battery including the same}

본 발명은 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법, 이로부터 제조되는 양극 활물질 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a method of manufacturing a cathode active material for a lithium secondary battery coated with lithium-tungsten oxide, a cathode active material prepared therefrom, and a lithium secondary battery including the same.

리튬이차전지는 리튬이온을 삽입/탈리 가능한 양극과 음극, 그리고 리튬염과 비수계 전해질로 구성된다. 비수계 전해질을 사용하는 이유는 리튬이 물에 대하여 반응성이 높아서 안정하게 존재할 수 없기 때문이다.A lithium secondary battery is composed of a positive electrode and a negative electrode capable of inserting/deintercalating lithium ions, and a lithium salt and a non-aqueous electrolyte. The reason for using the non-aqueous electrolyte is that lithium cannot exist stably because of its high reactivity with water.

이때 양극은 Al foil 또는 Cu foil과 같은 집전체 상에 양극 활물질, 전해질, 도전재 및 결합제 등을 혼합한 슬러리를 도포하여 제조된다. 양극을 구성하는 양극 활물질로는 LiCoO2계, Li(NiCoMn)O2계, LiMn2O4계 등이 있으나, 방전용량이 제한적이고, 열적 안정성이 낮으며 재료가 고가인 단점이 있다. 이 때문에 최근 고용량을 얻기 위하여 Li(NiCoMn)O2계 조성의 양극 활물질에서 니켈의 양을 점점 증가시키고 있으며, 현재 니켈 함량이 약 80% 수준의 양극 활물질이 상용화되기 시작하고 있다.At this time, the positive electrode is manufactured by applying a slurry in which a positive electrode active material, an electrolyte, a conductive material, and a binder are mixed on a current collector such as Al foil or Cu foil. As a positive electrode active material constituting the positive electrode, there are LiCoO 2 based, Li(NiCoMn)O 2 based, LiMn 2 O 4 based, and the like, but there are disadvantages in that the discharge capacity is limited, the thermal stability is low, and the material is expensive. For this reason, in order to obtain a high capacity, the amount of nickel in the Li(NiCoMn)O 2 based positive electrode active material is gradually increasing.

리튬이차전지의 고에너지밀도를 얻기 위하여 니켈의 양이 최대화가 되어야 하나, 니켈의 양이 증가하게 되면 니켈이 리튬의 자리를 빼앗을 수 밖에 없고, 자리를 뺏앗긴 리튬이 자기자리를 찾지 못하여 외부로 노출됨으로 인해 양극 활물질 표면에 리튬이 돌출되고, 이 때문에 전해액이 부반응을 일으키거나, 전극 제조 시 슬러리의 겔화에 의하여 전극 제조가 곤란해지는 문제점이 발생한다.In order to obtain the high energy density of the lithium secondary battery, the amount of nickel must be maximized. However, if the amount of nickel increases, the nickel has no choice but to take the place of lithium, and the lost lithium cannot find its place, so Lithium protrudes from the surface of the positive electrode active material due to exposure, which causes a side reaction in the electrolyte or difficult electrode manufacturing due to gelation of the slurry during electrode manufacturing.

또한 니켈의 산화수가 불안하여 양극 활물질 표면에서 니켈 산화물 등이 존재함으로 인해 전극 수명 열화의 원인이 되기도 한다. 특히 Li(NiCoMn)O2계 조성에서 니켈의 양이 90mol% 이상이 되면 전극 수명 열화가 극대화되어 리튬이차전지에 적용하여 상용화하는데 까지 걸림돌이 되고 있다.In addition, the oxidation number of nickel is unstable, and the presence of nickel oxide on the surface of the positive electrode active material may cause deterioration of the electrode lifespan. In particular, when the amount of nickel in the Li(NiCoMn)O 2 composition is greater than 90 mol%, the deterioration of the electrode lifespan is maximized, which is an obstacle to commercialization by applying it to a lithium secondary battery.

따라서 높은 방전용량은 유지하고, 수명특성과 출력특성과 같은 전기화학적 특성을 높여 가격이 저렴하면서, 안정성이 높으며 고용량 및 장수명을 달성할 수 있는 양극 활물질에 대한 기술개발 연구가 절실히 요구되고 있는 시점이다.Therefore, it is a time when technology development research is urgently required for a cathode active material that can maintain high discharge capacity and achieve high electrochemical properties such as lifespan and output characteristics to achieve low price, high stability, and high capacity and long life. .

국내 등록특허공보 제10-1913939호, 2018.10.25.자 등록.Registered in Korea Patent Publication No. 10-1913939, October 25, 2018.

본 발명은 상기한 문제점을 해소하기 위하여 발명된 것으로, 방전용량을 높일 수 있을 뿐만 아니라, 수명특성 및 출력특성 등의 전기화학적 특성을 높일 수 있도록 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 하이-니켈계 양극 활물질의 제조방법, 이로부터 제조되는 양극 활물질 및 이를 포함하는 리튬이차전지를 제공하는 것을 기술적 해결과제로 한다.The present invention was invented to solve the above problems, and high-nickel for lithium secondary batteries coated with lithium-tungsten oxide so that not only discharge capacity can be increased, but also electrochemical properties such as lifespan characteristics and output characteristics can be improved It is a technical solution to provide a method for manufacturing a system positive electrode active material, a positive electrode active material prepared therefrom, and a lithium secondary battery including the same.

상기의 기술적 과제를 해결하기 위하여 본 발명은, 표면에 리튬 화합물이 노출된 하이-니켈(high-Ni)계 리튬-니켈-코발트-망간 산화물을 제조하는 단계; 염기성 용액에 텅스텐 산화물을 용해하여 코팅용액을 제조하는 단계; 및 상기 리튬-니켈-코발트-망간 산화물과 코팅용액을 혼합 및 건조한 후 열처리하여 양극 활물질을 제조하는 단계;를 포함하여 이루어지고, 상기 양극 활물질은, 상기 열처리를 통하여 상기 리튬 화합물의 리튬과 상기 텅스텐 산화물이 결합되면서, 상기 리튬-니켈-코발트-망간 산화물의 외부에 리튬-텅스텐 산화물로 이루어진 코팅층이 형성되는 것을 특징으로 하는 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법을 제공한다.In order to solve the above technical problem, the present invention provides a high-nickel (high-Ni)-based lithium-nickel-cobalt-manganese oxide having a lithium compound exposed on the surface thereof; preparing a coating solution by dissolving tungsten oxide in a basic solution; and mixing and drying the lithium-nickel-cobalt-manganese oxide and the coating solution to prepare a positive electrode active material by heat treatment; It provides a method of manufacturing a cathode active material for a lithium secondary battery coated with lithium-tungsten oxide, characterized in that a coating layer made of lithium-tungsten oxide is formed on the outside of the lithium-nickel-cobalt-manganese oxide while the oxide is combined.

본 발명에 있어서, 상기 리튬-니켈-코발트-망간 산화물은, 염기성 수용액과, 니켈원료, 코발트원료 및 망간원료를 이용하여 공침반응시켜 니켈-코발트-망간 산화물을 제조하는 단계; 및 상기 니켈-코발트-망간 산화물에 수산화리튬 수화물(LiOH·H2O)을 혼합한 후 열처리 및 소성하는 단계;를 통하여 제조되는 것을 특징으로 한다.In the present invention, the lithium-nickel-cobalt-manganese oxide is co-precipitated using a basic aqueous solution and a nickel raw material, a cobalt raw material and a manganese raw material to prepare a nickel-cobalt-manganese oxide; and mixing lithium hydroxide hydrate (LiOH·H 2 O) with the nickel-cobalt-manganese oxide, followed by heat treatment and sintering.

본 발명에 있어서, 상기 리튬-니켈-코발트-망간 산화물은, 니켈의 함량이 90mol% 이상인 것을 특징으로 한다.In the present invention, the lithium-nickel-cobalt-manganese oxide is characterized in that the nickel content is 90 mol% or more.

본 발명에 있어서, 상기 리튬-텅스텐 산화물은, 화학식 1의 LixWyOz(단, 0.1 ≤ x ≤ 6, 1 ≤ y ≤ 2, 3 ≤ z ≤ 9이다.)로 표시되는 것을 특징으로 한다.In the present invention, the lithium-tungsten oxide is represented by Li x W y O z of Formula 1 (provided that 0.1 ≤ x ≤ 6, 1 ≤ y ≤ 2, 3 ≤ z ≤ 9). do.

상기의 다른 기술적 과제를 해결하기 위하여 본 발명은, 상기 방법으로 제조되는 것을 특징으로 하는 양극 활물질을 제공한다.In order to solve the above other technical problems, the present invention provides a positive active material, characterized in that manufactured by the above method.

상기의 또 다른 기술적 과제를 해결하기 위하여 본 발명은, 상기 양극 활물질을 포함하는 리튬이차전지를 제공한다.In order to solve the another technical problem, the present invention provides a lithium secondary battery including the positive active material.

상기 과제의 해결 수단에 의한 본 발명의 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법에 따르면, 하이-니켈계 Li(NiCoMn)O2의 표면에 리튬-텅스텐 산화물을 코팅함으로써, 구조적인 안정성을 가질 뿐만 아니라 표면에서 부반응을 억제해주면서 표면 안정성을 높일 수 있는 양극 활물질을 제조할 수 있는 효과가 있다.According to the method of manufacturing a lithium-tungsten oxide-coated positive electrode active material for a lithium secondary battery of the present invention by means of solving the above problems, by coating the lithium-tungsten oxide on the surface of the high-nickel-based Li(NiCoMn)O 2 , the structure It has the effect of being able to manufacture a positive electrode active material that can improve surface stability while suppressing side reactions on the surface as well as having a positive stability.

또한 본 발명의 리튬-텅스텐 산화물이 코팅된 양극 활물질이 리튬이차전지에 적용 시, 리튬이온의 이동을 원활히 하여 리튬이온이 양극 활물질의 표면에서 삽입과 탈리가 쉽게 이루어질 수 있기 때문에, 높은 방전용량을 유지하면서 수명특성 및 출력특성 등 전기화학적 특성이 향상되어 고안정성을 가질 수 있으므로, 리튬이차전지 외에 각종 응용분야에 다양하게 활용될 수 있는 효과가 있다.In addition, when the lithium-tungsten oxide-coated positive electrode active material of the present invention is applied to a lithium secondary battery, it facilitates the movement of lithium ions so that lithium ions can be easily inserted and detached from the surface of the positive electrode active material. Since electrochemical characteristics such as lifespan characteristics and output characteristics are improved while maintaining high stability, there is an effect that can be used in various applications other than lithium secondary batteries.

도 1은 본 발명에 따른 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법을 나타낸 모식도.
도 2는 본 발명에 따른 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법을 나타낸 순서도.
도 3은 실시예 1 내지 실시예 3을 나타낸 사진.
도 4는 실시예 2에 따른 리튬-텅스텐 산화물의 코팅 여부를 확인하여 나타낸 사진.
도 5는 실시예 1 내지 실시예 3의 XRD 패턴을 나타낸 그래프.
도 6은 실시예 2의 XPS 스펙트라를 나타낸 그래프.
도 7은 실시예 1 내지 실시예 3의 0.1C에서 초기 충방전 곡선 및 0.5C에서 사이클링 성능을 나타낸 그래프.
도 8은 실시예 1 내지 실시예 3의 80 사이클 후 Nyquist plot를 나타낸 그래프.
도 9는 실시예 1 내지 3의 율속특성을 나타낸 그래프.
1 is a schematic view showing a method of manufacturing a lithium-tungsten oxide-coated positive electrode active material for a lithium secondary battery according to the present invention;
2 is a flow chart showing a method of manufacturing a lithium-tungsten oxide-coated positive electrode active material for a lithium secondary battery according to the present invention.
3 is a photograph showing Examples 1 to 3;
4 is a photograph showing whether or not the lithium-tungsten oxide is coated according to Example 2. FIG.
5 is a graph showing the XRD patterns of Examples 1 to 3;
6 is a graph showing the XPS spectra of Example 2.
7 is a graph showing the initial charge/discharge curve at 0.1C and cycling performance at 0.5C of Examples 1 to 3;
8 is a graph showing a Nyquist plot after 80 cycles of Examples 1 to 3;
9 is a graph showing the rate characteristics of Examples 1 to 3;

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

도 1은 본 발명에 따른 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법을 모식도로 나타낸 것이고, 도 2는 본 발명에 따른 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법을 순서도로 나타낸 것이다.1 is a schematic diagram showing a method of manufacturing a lithium secondary battery positive electrode active material coated with lithium-tungsten oxide according to the present invention, and FIG. 2 is a method of manufacturing a lithium secondary battery positive electrode active material coated with lithium-tungsten oxide according to the present invention is shown in the flowchart.

도 1 및 도 2를 참조하면, 본 발명의 리튬-텅스텐 산화물이 코팅된 양극 활물질은 표면에 리튬 화합물이 노출된 하이-니켈(high-Ni)계 리튬-니켈-코발트-망간 산화물을 제조하는 단계(S10a), 염기성 용액에 텅스텐 산화물을 용해하여 코팅용액을 제조하는 단계(S10b) 및 리튬-니켈-코발트-망간 산화물과 코팅용액을 혼합 및 건조한 후 열처리하여 양극 활물질을 제조하는 단계(S20)를 통하여 제조된다.1 and 2, the lithium-tungsten oxide-coated positive electrode active material of the present invention is prepared in a high-nickel (high-Ni)-based lithium-nickel-cobalt-manganese oxide with a lithium compound exposed on the surface (S10a), preparing a coating solution by dissolving tungsten oxide in a basic solution (S10b) and mixing and drying the lithium-nickel-cobalt-manganese oxide and the coating solution, followed by heat treatment to prepare a cathode active material (S20) manufactured through

상술한 제조방법에 따르면 먼저, 표면에 리튬 화합물이 노출된 하이-니켈계 리튬-니켈-코발트-망간 산화물을 제조한다(S10a).According to the above-described manufacturing method, first, a high-nickel-based lithium-nickel-cobalt-manganese oxide having a lithium compound exposed on the surface is prepared (S10a).

설명에 앞서, 하이-니켈이라 함은 양극 활물질 내 전이금속 전체 mol수에 대하여 니켈의 함량이 90mol%와 같이 니켈이 고함량 함유된 것으로, 니켈 함량이 60mol% 이하로 낮게 함유되는 경우에는 리튬의 표면으로 노출되는 양이 거의 없으나, 리튬-니켈-코발트-망간 산화물에 니켈의 양이 많아지게 되면 많은 양의 니켈에 의해 자리를 빼앗긴 리튬이 리튬-니켈-코발트-망간 산화물의 표면으로 돌출되어 노출된다.Prior to the description, high-nickel refers to a high nickel content such as 90 mol% of nickel with respect to the total number of moles of transition metals in the positive electrode active material. Although there is little amount exposed to the surface, if the amount of nickel in lithium-nickel-cobalt-manganese oxide increases, lithium displaced by a large amount of nickel protrudes and is exposed to the surface of lithium-nickel-cobalt-manganese oxide do.

이렇게 리튬-니켈-코발트-망간 산화물의 표면에 노출된 리튬 화합물은 수산화리튬(LiOH), 탄산리튬(Li2CO3)과 같은 물질일 수 있다. 보통의 경우, 결국에는 리튬-니켈-코발트-망간 산화물의 표면에 노출된 리튬 화합물을 수세한 후 열처리하여 양극 활물질을 제조하곤 하였으나, 본 발명에서는 굳이 수세 및 열처리를 거치지 않고, 전체 표면에 균일하게 노출되어 돌출 형성된 리튬 화합물을 이용하여 리튬 화합물의 리튬과의 반응 유도를 통하여 리튬-텅스텐 산화물로 이루어진 코팅층을 만들 수 있게 된다.The lithium compound exposed on the surface of the lithium-nickel-cobalt-manganese oxide may be a material such as lithium hydroxide (LiOH) or lithium carbonate (Li 2 CO 3 ). In general, in the end, the lithium compound exposed on the surface of lithium-nickel-cobalt-manganese oxide was washed with water and then heat-treated to prepare a positive electrode active material. A coating layer made of lithium-tungsten oxide can be made by inducing a reaction of the lithium compound with lithium using the exposed and protruding lithium compound.

이를 위해 NiSO4·6H2O와 같은 니켈원료, CoSO4·7H2O와 같은 코발트원료 및 MnSO4·H2O와 같은 망간원료를 이용하고, 수산화나트륨(NaOH) 수용액, 암모니아(NH4OH) 수용액과 같은 염기성 용액을 킬레이트제로 이용함으로써, 반응기 내에서 공침반응을 통하여 Ni0.90Co0.05Mn0.05(OH)2 전구체를 얻게 된다. 이렇게 얻어진 Ni0.90Co0.05Mn0.05(OH)2 전구체를 수산화리튬 수화물(LiOH·H2O)과 1 : 1.05의 mol비로 혼합하고, 450~550℃에서 2~8시간 동안 열처리한 후, 공기중 대기 하의 600~700℃에서 소성하여 LiNi0.90Co0.05Mn0.05O2의 합성이 완료된다.For this purpose, nickel raw materials such as NiSO 4 ·6H 2 O, cobalt raw materials such as CoSO 4 ·7H 2 O, and manganese raw materials such as MnSO 4 ·H 2 O are used, sodium hydroxide (NaOH) aqueous solution, ammonia (NH 4 OH) ) By using a basic solution such as an aqueous solution as a chelating agent, a Ni 0.90 Co 0.05 Mn 0.05 (OH) 2 precursor is obtained through a co-precipitation reaction in the reactor. The Ni 0.90 Co 0.05 Mn 0.05 (OH) 2 precursor thus obtained was mixed with lithium hydroxide hydrate (LiOH·H 2 O) in a mol ratio of 1:1.05, heat-treated at 450 to 550° C. for 2 to 8 hours, and then in air. LiNi 0.90 Co 0.05 Mn 0.05 O 2 Synthesis of LiNi 0.90 Co 0.05 Mn 0.05 O 2 is completed by calcination at 600 ~ 700 ℃ under the atmosphere.

이때 수분이 전구체 내에 많이 함유되면 리튬이차전지의 특성이 저하되기 때문에, 450~550℃에서 우선적으로 열처리한 다음 온도를 높여 600~700℃에서 소성하는 것이 바람직하다. 450℃ 미만에서 열처리하면 수용액 내의 수분을 증발시키기에 부족한 온도이고, 550℃를 초과하는 온도에서 열처리하면 그 이하의 온도로 열처리한 경우와 비교하여 탁월한 효과가 없기 때문에 굳이 고온으로 열처리할 필요성이 없다. 이어서 600℃ 미만으로 소성시키면 LiNi0.90Co0.05Mn0.05O2의 구형 형상을 견고하게 유지해주기 부족하며, 700℃를 초과하여 소성시키면 오히려 물성 변형을 초래할 수 있다.At this time, if a lot of moisture is contained in the precursor, since the characteristics of the lithium secondary battery are deteriorated, it is preferable to heat treatment at 450 to 550 ° C. Heat treatment at less than 450 ° C. is insufficient to evaporate moisture in the aqueous solution. Heat treatment at a temperature exceeding 550 ° C. . Subsequently, when calcined at less than 600° C., it is insufficient to firmly maintain the spherical shape of LiNi 0.90 Co 0.05 Mn 0.05 O 2 , and when calcined at more than 700° C., it may rather cause physical property deformation.

다음으로, 염기성 용액에 텅스텐 산화물을 용해하여 코팅용액을 제조한다(S10b).Next, a coating solution is prepared by dissolving tungsten oxide in a basic solution (S10b).

텅스텐 산화물은 일반적인 물에 용해되지 않기 때문에, 염기성 용액에 텅스텐 산화물을 용해시키는 것이 바람직하다. 이를 위해 염기성 용액 100wt% 중에서 텅스텐 산화물을 0.1~1wt% 범위로 용해시켜 코팅용액을 제조한다.Since tungsten oxide is insoluble in general water, it is preferable to dissolve tungsten oxide in a basic solution. To this end, a coating solution is prepared by dissolving tungsten oxide in a range of 0.1 to 1 wt% in 100 wt% of a basic solution.

텅스텐 산화물이 0.1wt% 미만이 되면 리튬-니켈-코발트-망간 산화물 표면의 리튬 화합물과 반응될 수 있는 양이 적어져 리튬-니켈-코발트-망간 산화물의 표면에 코팅층이 형성되지 못한 부분이 잔존하기 때문에 완전한 코팅층을 이루기 어려워진다.When the tungsten oxide content is less than 0.1 wt%, the amount that can react with the lithium compound on the surface of the lithium-nickel-cobalt-manganese oxide decreases, so that the portion where the coating layer is not formed on the surface of the lithium-nickel-cobalt-manganese oxide remains. Therefore, it becomes difficult to achieve a complete coating layer.

반대로 텅스텐 산화물이 1wt%를 초과하면 텅스텐 산화물의 양이 과량 존재하기 때문에 리튬-니켈-코발트-망간 산화물 표면의 리튬 화합물과 반응되지 못하는 잔류 텅스텐이 남게 되어 오히려 리튬이차전지의 전기화학적 특성에 좋은 효과를 부여하지 못하게 된다.Conversely, when tungsten oxide exceeds 1 wt%, residual tungsten that cannot react with the lithium compound on the surface of lithium-nickel-cobalt-manganese oxide remains because the amount of tungsten oxide is excessive. cannot be given.

마지막으로, 리튬-니켈-코발트-망간 산화물과 코팅용액을 혼합 및 건조한 후 열처리하여 양극 활물질을 제조한다(S20).Finally, after mixing and drying the lithium-nickel-cobalt-manganese oxide and the coating solution, heat treatment is performed to prepare a positive electrode active material (S20).

앞서 제조된 코팅용액을 리튬-니켈-코발트-망간 산화물에 천천히 투입하면서 유발을 이용하여 혼합한다. 이후 70~90℃에서 8~12시간 동안 진공건조할 수 있으며, 진공건조가 완료되면 공기중의 대기 분위기 하에서 300~500℃ 온도범위로 1~10시간 동안 열처리하여 하이-니켈계 리튬-니켈-코발트-망간 산화물 표면의 리튬 화합물과 텅스텐 산화물이 반응하여 리튬-텅스텐 산화물로 이루어진 코팅층을 형성하게 된다.The coating solution prepared above is slowly added to lithium-nickel-cobalt-manganese oxide and mixed using a mortar. After that, it can be vacuum dried at 70~90℃ for 8~12 hours, and when vacuum drying is completed, it is heat treated at a temperature of 300~500℃ for 1~10 hours under an atmospheric atmosphere in the air to high-nickel lithium-nickel- The lithium compound on the surface of the cobalt-manganese oxide and the tungsten oxide react to form a coating layer made of lithium-tungsten oxide.

이렇게 리튬-니켈-코발트-망간 산화물이 코어에 배치되고, 리튬-텅스텐 산화물로 이루어진 코팅층이 쉘로 배치되며, 특히 리튬-니켈-코발트-망간 산화물 표면에 노출된 리튬 화합물에 포함된 리튬과 텅스텐 산화물과의 반응으로 형성되는 리튬-텅스텐 산화물이 리튬이온전도체이기 때문에, 양극 활물질의 구조적인 안정성을 높여주면서 양극 활물질 표면에서 부반응을 억제해줄 수 있게 된다.In this way, lithium-nickel-cobalt-manganese oxide is disposed on the core, and a coating layer made of lithium-tungsten oxide is disposed as a shell. In particular, lithium and tungsten oxide contained in the lithium compound exposed on the surface of lithium-nickel-cobalt-manganese oxide and Since the lithium-tungsten oxide formed by the reaction of is a lithium ion conductor, it is possible to suppress side reactions on the surface of the positive electrode active material while increasing the structural stability of the positive electrode active material.

코팅층을 이루는 리튬-텅스텐 산화물은 하기 화학식 1로 표시되는 조성으로 이루어질 수 있다. 이에 따른 리튬-텅스텐 산화물의 예로는 LiWO3, Li2WO4 및 Li6W2O9 등이 될 수 있다.The lithium-tungsten oxide constituting the coating layer may have a composition represented by the following formula (1). Examples of the lithium-tungsten oxide according to this may include LiWO 3 , Li 2 WO 4 , and Li 6 W 2 O 9 .

[화학식 1][Formula 1]

LixWyOz Li x W y O z

(단, 0.1 ≤ x ≤ 6, 1 ≤ y ≤ 2, 3 ≤ z ≤ 9이다.)(However, 0.1 ≤ x ≤ 6, 1 ≤ y ≤ 2, 3 ≤ z ≤ 9.)

이때 70~90℃에서 8~12시간 동안 진공건조하는 이유는 리튬 화합물의 리튬을 텅스텐 산화물과의 반응이 잘 이루어질 수 있도록 하기 위하여 코팅용액의 용매를 제거해주는 것으로, 70℃ 미만이거나 8시간 미만으로 진공건조하면 수분과 암모니아가 증발되지 못하여 불순물 잔류로 인해 결국 리튬이차전지의 특성이 열화되고, 반면 90℃를 초과하는 온도이거나 12시간을 초과하는 조건에서 진공건조하면 오히려 용매의 펌핑 현상이 발생하여 물성 변형이 초래될 수 있다.At this time, the reason for vacuum drying at 70~90℃ for 8~12 hours is to remove the solvent of the coating solution so that the lithium of the lithium compound can react well with tungsten oxide. When vacuum-drying, moisture and ammonia are not evaporated, and the characteristics of the lithium secondary battery are eventually deteriorated due to residual impurities. Physical properties may be altered.

열처리 시, 300℃ 미만이거나 1시간 미만이면 리튬 화합물의 리튬과 텅스텐 산화물이 반응되지 못하여 리튬과 텅스텐의 결합을 유도할 수 없어 리튬-텅스텐 산화물로 이루어진 코팅층이 만들어지지 못하고, 500℃를 초과하거나 10시간을 초과하면 그 이하의 온도 또는 시간에서 열처리한 경우와 대비하여 리튬과 텅스텐의 반응에 좋은 효과가 도출되지 않아 온도를 높이게 되면 오히려 비효율적인 공정이 되어버리기 때문에 주의할 필요성이 있다. 또한 열처리 시 대기 분위기가 조성되어야지만 리튬 화합물의 리튬과 텅스텐 산화물의 완전한 반응이 이루어질 수 있다.During heat treatment, if the temperature is less than 300°C or less than 1 hour, the lithium and tungsten oxide of the lithium compound do not react and the combination of lithium and tungsten cannot be induced, so that a coating layer made of lithium-tungsten oxide cannot be formed, If the time is exceeded, there is a need to be careful because a good effect on the reaction of lithium and tungsten is not derived compared to the case of heat treatment at a temperature or time lower than that, and if the temperature is raised, it becomes an inefficient process. In addition, the complete reaction of lithium and tungsten oxide of the lithium compound can be achieved only when an atmospheric atmosphere is created during the heat treatment.

정리하면, 상술한 방법에 따라 제조되는 양극 활물질은 높은 방전용량을 유지해주면서, 수명특성 및 출력특성 등 전기화학적 특성이 향상되어 저렴하고 안정성이 높은 리튬이차전지를 제작할 수 있게 되는 장점이 있다.In summary, the positive electrode active material manufactured according to the above-described method has an advantage in that it is possible to manufacture a lithium secondary battery with high stability and low cost due to improved electrochemical characteristics such as lifespan characteristics and output characteristics while maintaining high discharge capacity.

이하, 본 발명의 실시예를 더욱 상세하게 설명하면 다음과 같다. 단, 이하의 실시예는 본 발명의 이해를 돕기 위하여 예시하는 것일 뿐, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, an embodiment of the present invention will be described in more detail as follows. However, the following examples are merely illustrative to aid the understanding of the present invention, and the scope of the present invention is not limited thereby.

<실시예 1><Example 1>

먼저, Ni0.90Co0.05Mn0.05(OH)2 전구체를 공침법으로 합성하였다. 원료로는 NiSO4·6H2O, CoSO4·7H2O, MnSO4·H2O를 사용하였고, NaOH 및 NH4OH 용액을 chelating agent로 사용하였다. 얻어진 구형의 Ni0.90Co0.05Mn0.05(OH)2 전구체는 LiOH·H2O와 1 : 1.05 mol비로 혼합하여 500℃에서 5시간, 이후 680℃에서 15시간 공기중에서 소성하여 LiNi0.90Co0.05Mn0.05O2를 합성하였다. 이렇게 합성된 LiNi0.90Co0.05Mn0.05O2를 pristine NCM이라 하기로 한다.First, a Ni 0.90 Co 0.05 Mn 0.05 (OH) 2 precursor was synthesized by a co-precipitation method. As raw materials, NiSO 4 ·6H 2 O, CoSO 4 ·7H 2 O, and MnSO 4 ·H 2 O were used, and NaOH and NH 4 OH solutions were used as chelating agents. The obtained spherical Ni 0.90 Co 0.05 Mn 0.05 (OH) 2 precursor was mixed with LiOH·H 2 O in a 1:1.05 mol ratio and calcined at 500° C. for 5 hours and then at 680° C. for 15 hours in air, followed by LiNi 0.90 Co 0.05 Mn 0.05 O 2 was synthesized. LiNi 0.90 Co 0.05 Mn 0.05 O 2 synthesized in this way will be referred to as pristine NCM.

한편, 텅스텐 산화물 분말을 NH4OH 용액 100wt% 중 0.1wt%가 되도록 넣어 용해시켜 코팅용액을 제조하였다. 코팅용액을 pristine NCM에 천천히 투입하면서 유발을 이용하여 혼합하였다. 코팅용액과 혼합된 pristine NCM의 용매 제거를 위하여 80℃에서 10시간 진공건조하였다. 이어서 400℃에서 5시간 동안 대기 분위기에서 열처리하여 리튬-텅스텐 산화물이 코팅된 LiNi0.90Co0.05Mn0.05O2를 합성하였다. 이렇게 합성된 것을 "0.1wt% LWO-NCM"이라 하기로 한다.Meanwhile, a coating solution was prepared by dissolving tungsten oxide powder into 0.1 wt% of 100 wt% of NH 4 OH solution. The coating solution was slowly added to the pristine NCM and mixed using a mortar. In order to remove the solvent of the pristine NCM mixed with the coating solution, it was vacuum dried at 80° C. for 10 hours. Subsequently, lithium-tungsten oxide-coated LiNi 0.90 Co 0.05 Mn 0.05 O 2 was synthesized by heat treatment at 400° C. for 5 hours in an atmospheric atmosphere. The synthesized one will be referred to as "0.1wt% LWO-NCM".

<실시예 2><Example 2>

실시예 1과 동일한 방법으로 진행되되, 텅스텐 산화물 분말을 NH4OH 용액 100wt% 중 0.5wt%가 되도록 넣어 리튬-텅스텐 산화물이 코팅된 LiNi0.90Co0.05Mn0.05O2를 합성하였다. 이렇게 합성된 것을 "0.5wt% LWO-NCM"이라 하기로 한다.In the same manner as in Example 1, tungsten oxide powder was added so as to be 0.5 wt% in 100 wt% of NH 4 OH solution to synthesize lithium-tungsten oxide-coated LiNi 0.90 Co 0.05 Mn 0.05 O 2 . The synthesized one will be referred to as "0.5wt% LWO-NCM".

<실시예 3><Example 3>

실시예 1과 동일한 방법으로 진행되되, 텅스텐 산화물 분말을 NH4OH 용액 100wt% 중 1wt%가 되도록 넣어 리튬-텅스텐 산화물이 코팅된 LiNi0.90Co0.05Mn0.05O2를 합성하였다. 이렇게 합성된 것을 "1wt% LWO-NCM"이라 하기로 한다.In the same manner as in Example 1, tungsten oxide powder was added to 1wt% of 100wt% of NH 4 OH solution to synthesize lithium-tungsten oxide-coated LiNi 0.90 Co 0.05 Mn 0.05 O 2 . The synthesized one will be referred to as "1wt% LWO-NCM".

실시예 1 내지 3에 따라 제조되는 양극 활물질을 FESEM(field emission scanning electron microscopy)을 이용하여 형상 확인과, EDX(energy dispersive X-ray detector) 분석을 통하여 성분 분포를 확인해 보았다.The positive active materials prepared according to Examples 1 to 3 were checked for shape using field emission scanning electron microscopy (FESEM) and component distribution was checked through energy dispersive X-ray detector (EDX) analysis.

관련하여, 도 3은 실시예 1 내지 실시예 3을 사진으로 나타내어 표면 균일도를 확인해 본 것으로, 도 3(a)는 pristine NCM을 FESEM 이미지로 나타낸 것이고, 도 3(b)는 0.1wt% LWO-NCM을 FESEM 이미지로 나타낸 것이고, 도 3(c)는 0.5wt% LWO-NCM을 FESEM 이미지로 나타낸 것이며, 도 3(d)는 1wt% LWO-NCM을 FESEM 이미지로 나타낸 것이다.In relation to this, Figure 3 shows the photos of Examples 1 to 3 to confirm the surface uniformity, Figure 3 (a) is a FESEM image of the pristine NCM, Figure 3 (b) is 0.1wt% LWO- NCM is shown as a FESEM image, Figure 3 (c) is shown as a FESEM image of 0.5wt% LWO-NCM, Figure 3 (d) is shown as a FESEM image of 1wt% LWO-NCM.

도 3(a), 도 3(b), 도 3(c) 및 도 3(d)에서와 같이, 모든 샘플들은 구형으로 유사한 형태를 가지고 있으며, 코팅한 후 입자 형상의 큰 변화는 관찰되지 않았다. 하지만 텅스텐 산화물의 함량이 1wt%까지 증가되었을 때, 표면에 작은 입자들이 관찰되었다. 반면, 0.1wt% LWO-NCM 및 0.5wt% LWO-NCM에서는 표면에 코팅층이 관찰되지 않았는데, 이는 코팅층이 표면에 균일하게 형성된 것이기 때문인 것으로 파악된다. 이때 도 3(e)는 0.5wt% LWO-NCM을 EDX mapping으로 관찰하였을 때, 텅스텐의 존재가 확인되고, 이를 통해 텅스텐의 분포를 확인할 수 있다.As in Figs. 3(a), 3(b), 3(c) and 3(d), all samples had a similar spherical shape, and no significant change in particle shape was observed after coating. . However, when the content of tungsten oxide was increased to 1 wt%, small particles were observed on the surface. On the other hand, in 0.1wt% LWO-NCM and 0.5wt% LWO-NCM, a coating layer was not observed on the surface, which is thought to be because the coating layer was uniformly formed on the surface. At this time, FIG. 3(e) shows that when 0.5wt% LWO-NCM was observed by EDX mapping, the presence of tungsten was confirmed, and thus the distribution of tungsten could be confirmed.

도 4는 실시예 2에 따른 리튬-텅스텐 산화물의 코팅 여부를 확인하기 위하여 FETEM(field emission transmission electron microscope) 이미지로 나타낸 사진으로, FETEM을 이용하여 샘플 표면 코팅층의 미세형상을 확인할 수 있다.4 is a photograph showing a field emission transmission electron microscope (FETEM) image in order to confirm whether lithium-tungsten oxide is coated according to Example 2, and the micro-shape of the sample surface coating layer can be confirmed using FETEM.

도 4(a)는 pristine NCM을 FETEM 이미지로 나타낸 것이고, 도 4(b)는 0.5wt% LWO-NCM을 FETEM 이미지로 나타낸 것이다. 도 4(a)의 pristine NCM에서는 표면에 다른 물질이 존재하지 않는 것으로 관찰되지만, 도 4(b)의 LWO layer에서와 같이 0.5wt% LWO-NCM에서는 표면에 약 5nm 두께의 코팅층이 존재함을 확인할 수 있다.Figure 4 (a) shows the pristine NCM as a FETEM image, Figure 4 (b) is a FETEM image of 0.5wt% LWO-NCM. In the pristine NCM of FIG. 4(a), it is observed that no other material is present on the surface, but in the 0.5wt% LWO-NCM as in the LWO layer of FIG. 4(b), the presence of a coating layer with a thickness of about 5 nm on the surface can be checked

<시험예 1><Test Example 1>

시험예 1에서는 실시예 1 내지 실시예 3에 따른 pristine NCM과, 이에 따른 LWO-NCM 간의 결정구조를 확인하기 위하여 XRD 패턴(X-ray diffraction)을 분석해 보았다.In Test Example 1, an XRD pattern (X-ray diffraction) was analyzed to confirm the crystal structure between the pristine NCM according to Examples 1 to 3 and the LWO-NCM according to this.

관련하여, 도 5는 실시예 1 내지 3에 따른 pristine NCM 및 LWO-NCM의 XRD 패턴을 그래프로 나타낸 것으로, 이를 살펴보면, 2θ 값을 10~80° 범위 내에서 측정한 것임을 알 수 있다.In relation to this, Figure 5 is a graph showing the XRD patterns of pristine NCM and LWO-NCM according to Examples 1 to 3, and looking at this, it can be seen that the 2θ value is measured within the range of 10 to 80 °.

도 5의 (003) 피크를 참조하면, Li-O-M-O-Li-O-M-0-Li이 반복적으로 형성되어 층상구조 발달이 잘 되어 있음을 알 수 있다. 텅스텐이 리튬이나 메탈에 들어가게 되면 (104) 피크가 움직이게 되는데, (104) 피크가 변화되지 않고 유지되고 있는걸로 보아, 텅스텐 산화물이 리튬과의 반응으로 리튬-니켈-코발트-망간 산화물의 표면에서 표면처리가 이루어지고, 결정의 격자 내부로 들어가지 않으면서 코팅층으로 존재할 수 있음이 확인된다.Referring to the (003) peak of FIG. 5 , it can be seen that Li-O-M-O-Li-O-M-0-Li is repeatedly formed and the layered structure is well developed. When tungsten enters lithium or metal, the (104) peak moves. Judging from the fact that the (104) peak remains unchanged, tungsten oxide reacts with lithium from the surface of lithium-nickel-cobalt-manganese oxide to the surface It is treated and confirmed that it can exist as a coating layer without getting inside the lattice of the crystal.

다시 말해, 모든 샘플의 XRD 패턴은 층상구조의 hexagonal α-NaFeO2 구조를 나타내며 R

Figure pat00001
m 공간군에 속하고 있으며, 모들 샘플들의 (006)/(102)와 (108)/(110) 피크가 분명하게 분리되어 있어 층상구조가 잘 발달되었다는 것을 알 수 있다. 단, 리튬-텅스텐 산화물은 소량 포함되어 있어서 XRD 패턴에서는 나타나지 않았다.In other words, the XRD patterns of all samples showed a layered hexagonal α-NaFeO 2 structure, and R
Figure pat00001
It belongs to the m space group, and the (006)/(102) and (108)/(110) peaks of all samples are clearly separated, indicating that the layered structure is well developed. However, since a small amount of lithium-tungsten oxide was included, it did not appear in the XRD pattern.

따라서 모든 샘플들에서 피크의 이동은 발생되지 않았으며, 이는 텅스텐이 NCM 결정구조 내부로 확산되지 않은 것을 뒷받침할 수 있으며, 도핑이 아닌 NCM 표면에 코팅층의 형태로 존재함이 확인된다. 이때 양이온 혼합인 pristine NCM 및 LWO-NCM의 I(003)/I(104) 값을 하기 표 1에 나타내었다.Therefore, the shift of the peak did not occur in all samples, which can support that tungsten did not diffuse into the NCM crystal structure, and it is confirmed that it exists in the form of a coating layer on the surface of the NCM rather than doping. At this time, the values of I (003) /I (104) of pristine NCM and LWO-NCM, which are cation mixtures, are shown in Table 1 below.

Figure pat00002
Figure pat00002

양이온 혼합은 Li+(0.76Å)과 Ni2+(0.69Å)의 이온반경이 비슷하여 Ni2+가 Li+ 3a 자리에 위치하는 것을 의미하며, 이는 수명의 감소로 이어지게 된다. 코팅 공정 후, 양이온 혼합값이 비슷한 것으로 확인되며, NCM 결정 내의 Li이 소모되지 않고 결정구조에도 변화가 없는 것으로 확인된다. 이와 같이 리튬-텅스텐 산화물 코팅 공정이 pristine NCM의 결정구조에는 영향을 미치지 않으면서 pristine NCM의 잔류 리튬 화합물(LiOH, Li2CO3)과 반응을 하여 코팅층을 형성한 것임을 알 수 있다.Cationic mixing means that the ionic radii of Li + (0.76 Å) and Ni 2+ (0.69 Å) are similar, meaning that Ni 2+ is located at the Li + 3a site, which leads to a decrease in lifetime. After the coating process, it is confirmed that the cation mixture values are similar, and it is confirmed that Li in the NCM crystal is not consumed and there is no change in the crystal structure. As such, it can be seen that the lithium-tungsten oxide coating process reacted with the residual lithium compound (LiOH, Li 2 CO 3 ) of the pristine NCM without affecting the crystal structure of the pristine NCM to form a coating layer.

<시험예 2><Test Example 2>

시험예 2에서는 실시예 1에 따른 pristine NCM과, 이에 따른 LWO-NCM의 Ni2p, Co2p, Mn2p, C1s 및 W4f의 XPS(X-ray photoelectron spectroscopy) 스펙트럼을 분석해 보았다.In Test Example 2, XPS (X-ray photoelectron spectroscopy) spectra of the pristine NCM according to Example 1 and Ni2p, Co2p, Mn2p, C1s and W4f of the LWO-NCM were analyzed.

이와 같은 XPS 분석을 통하여 샘플 표면의 각 원소들의 화학적 결합 상태를 확인할 수 있다. 관련하여, 도 6은 실시예 2에 따른 pristine NCM 및 LWO-NCM의 XPS 스펙트라를 그래프로 나타낸 것이다. 이때 도 6(a)는 Ni2p의 XPS 스펙트럼을, 도 6(b)는 Co2p의 XPS 스펙트럼을, 도 6(c)는 Mn2p의 XPS 스펙트럼을, 도 6(d)는 C1s의 XPS 스펙트럼을, 도 6(e)는 W4f의 XPS 스펙트럼을 나타내었다.Through this XPS analysis, the chemical bonding state of each element on the sample surface can be confirmed. In this regard, Figure 6 is a graph showing the XPS spectra of pristine NCM and LWO-NCM according to Example 2. At this time, FIG. 6(a) is the XPS spectrum of Ni2p, FIG. 6(b) is the XPS spectrum of Co2p, FIG. 6(c) is the XPS spectrum of Mn2p, FIG. 6(d) is the XPS spectrum of C1s, FIG. 6(e) shows the XPS spectrum of W4f.

상세히, pristine NCM과 LWO-NCM 표면의 각 원소의 화학적 결합 상태를 확인하기 위하여 XPS 분석을 하였으며, pristine NCM과 0.5wt% LWO-NCM의 Ni2p, Co2p, Mn2p, C1s, W4f spectra를 확인할 수 있다.In detail, XPS analysis was performed to confirm the chemical bonding state of each element on the surface of pristine NCM and LWO-NCM, and Ni2p, Co2p, Mn2p, C1s, W4f spectra of pristine NCM and 0.5wt% LWO-NCM can be confirmed.

코팅 후 Ni2p, Co2p, Mn2p의 결합에너지 피크의 위치는 변하지 않은 것으로 확인되며, 이는 각 Ni, Co, Mn의 산화수 변화가 없는 것임을 알 수 있다. Ni2p의 결합에너지 피크는 854.9eV와 872.5eV에 위치하고 있으며, Ni2p3/2와 Ni2p1/2에 해당된다. 또한, 861.1eV(Nip3/2)와 880.0eV(Nip1/2)는 satellite에 해당된다. 보통 Ni2p3/2의 결합에너지 피크는 854~856eV 범위에서 나타나며, NiO와 Ni2O3 결합으로부터의 Ni2+와 Ni3+로 존재한다고 보고되어 있다. Co3+는 Co2p3/2로부터 780.3eV에서 관찰되며, Mn4+는 Mn2p3/2로부터 642.3eV에서 관찰된다.It is confirmed that the positions of the binding energy peaks of Ni2p, Co2p, and Mn2p are not changed after coating, which means that there is no change in the oxidation numbers of each Ni, Co, and Mn. The binding energy peaks of Ni2p are located at 854.9 eV and 872.5 eV, which correspond to Ni2p 3/2 and Ni2p 1/2 . In addition, 861.1eV (Nip 3/2 ) and 880.0eV (Nip 1/2 ) correspond to satellite. Usually, the binding energy peak of Ni2p 3/2 appears in the range of 854-856 eV, and it is reported that Ni 2+ and Ni 3+ from NiO and Ni 2 O 3 bond exist. Co 3+ is observed at 780.3 eV from Co2p 3/2 , and Mn 4+ is observed at 642.3 eV from Mn 2 p 3/2 .

0.5wt% LWO-NCM의 경우, W4f는 34.9eV와 36.7eV에 위치하며 각각 W4f7/2, W4f5/2에 해당된다. 이는 W가 W5+로 존재함을 의미한다. 게다가 37.8eV에서 하나의 피크가 존재하는데, 이는 W6+의 존재를 의미한다.In the case of 0.5wt% LWO-NCM, W4f is located at 34.9eV and 36.7eV, corresponding to W4f 7/2 and W4f 5/2 , respectively. This means that W exists as W 5+ . Moreover, there is one peak at 37.8 eV, indicating the presence of W 6+ .

소량의 텅스텐 함유로 XRD에서는 텅스텐의 유무를 확인할 수 없었지만 XPS 분석을 통하여 LWO-NCM에서 텅스텐의 존재를 확인할 수가 있었다. 또한 XPS 결과를 통하여 코팅층의 결합 상태를 확인할 수 있었으며 LiWO3, Li2WO4와 같은 LixWOy 형태로 존재하는 것으로 보인다. LixWOy는 잔류 리튬 화합물(LiOH, Li2CO3)과 반응을 하여 생성되므로 국부적으로 존재하는 잔류 리튬으로 인하여 다양한 리튬-텅스텐 화합물이 생성된 것임을 알 수 있다. 이러한 LixWOy 코팅층은 리튬이온이 양극 활물질의 표면에서 삽입과 탈리를 통하여 리튬이온의 이동을 원활하게 해줄 수 있게 된다.The presence of tungsten could not be confirmed by XRD due to the small amount of tungsten, but the presence of tungsten could be confirmed in LWO-NCM through XPS analysis. In addition, the bonding state of the coating layer could be confirmed through the XPS result, and it seems that it exists in the form of Li x WO y such as LiWO 3 , Li 2 WO 4 . Since Li x WO y is produced by reacting with residual lithium compounds (LiOH, Li 2 CO 3 ), it can be seen that various lithium-tungsten compounds are produced due to the locally present residual lithium. This Li x WO y coating layer can facilitate the movement of lithium ions through insertion and desorption of lithium ions from the surface of the positive electrode active material.

도 6(d)의 C1s 스펙트럼을 살펴보면, 288.8eV에서 관찰되는 Li2CO3의 피크의 강도가 코팅을 한 후 감소하는데, 이는 리튬-텅스텐 산화물이 pristine NCM의 표면에 존재하는 잔류 리튬 화합물과 반응하여 생성되었다는 것임을 확인할 수 있다. 이렇게 생성된 리튬-텅스텐 산화물을 통하여 NCM의 수명특성과 전기전도도를 향상시킬 수 있게 된다.Looking at the C1s spectrum of FIG. 6(d), the intensity of the peak of Li 2 CO 3 observed at 288.8 eV decreases after coating, which is a lithium-tungsten oxide reaction with the residual lithium compound present on the surface of the pristine NCM. to confirm that it was created. Through the lithium-tungsten oxide produced in this way, it is possible to improve the lifespan characteristics and electrical conductivity of the NCM.

<시험예 3><Test Example 3>

시험예 3에서는 실시예 1 내지 3에 따른 양극 활물질이 적용된 리튬이차전지의 전기화학적 특성을 분석해 보았다.In Test Example 3, the electrochemical characteristics of the lithium secondary batteries to which the positive active materials according to Examples 1 to 3 were applied were analyzed.

관련하여, 전기화학적 특성 평가를 위하여 2032 코인셀 타입을 이용하였으며, 양극 활물질, 도전재(Super-P black), 바인더(PVDF: polyvinylidene fluoride)를 96 : 2 : 2의 중량비율로 혼합하여 슬러리를 제조하고, Al 집전체(두께 16㎛)에 코팅 후, 100℃에서 10시간 동안 진공건조하여 용매를 제거하였다. 전극의 로딩량과 합제밀도는 각각 15mg/cm2와 3.3g/cm3로 맞추었다. 양극 극판을 14mm 직경으로 타발한 후, 120℃에서 10시간 동안 진공건조하였다. 음극은 리튬 금속(두께 500㎛, 직경 16mm)을 사용하였고, 분리막은 PE 필름(두께 20㎛)을 사용하였다. 전해질은 1M LiPF6 EC/DMC/EMC(1 : 1 : 1, v/v/v)를 사용하였다. 코인셀의 조립은 아르곤(Ar) 분위기의 글로브박스(glove box) 안에서 이루어졌다.In relation to this, a 2032 coin cell type was used for electrochemical property evaluation, and a slurry was prepared by mixing a positive electrode active material, a conductive material (Super-P black), and a binder (PVDF: polyvinylidene fluoride) in a weight ratio of 96: 2: 2 prepared, coated on an Al current collector (thickness 16 μm), and vacuum-dried at 100° C. for 10 hours to remove the solvent. The loading amount of the electrode and the density of the mixture were adjusted to 15mg/cm 2 and 3.3g/cm 3 , respectively. After the positive electrode plate was punched with a diameter of 14 mm, it was vacuum-dried at 120° C. for 10 hours. A lithium metal (thickness of 500 μm, diameter of 16 mm) was used for the negative electrode, and a PE film (thickness of 20 μm) was used as the separator. 1M LiPF 6 EC/DMC/EMC (1 : 1 : 1, v/v/v) was used as the electrolyte. The coin cell was assembled in an argon (Ar) atmosphere glove box.

초기 충방전 용량은 25℃에서 0.1C(1C=210mAh g-1)로 정전류(CC) 4.3V가 될 때까지 충전하고, 이후 4.3V의 정전압(CV)으로 충전하여 충전전류가 0.01C가 될 때까지 1회 충전하였다. 수명은 0.5C의 전류로 정전류-정전압 충전과 정전류 방전으로 80 사이클을 반복하였다. 순환전압주사법(CV: cyclic voltammetry)은 25℃에서 3.0~4.3V의 전압범위에서 0.1mV s-1의 주사속도로 진행하였다. 임피던스(EIS: electrochemical impedance spectroscopy) 측정은 1MHz~10mHz 주파수 범위에서 5mV의 진폭으로 진행하였다.The initial charge/discharge capacity is charged at 25℃ at 0.1C (1C=210mAh g -1 ) until the constant current (CC) becomes 4.3V, and then is charged at a constant voltage (CV) of 4.3V so that the charging current becomes 0.01C. was charged once until The lifespan was repeated 80 cycles with constant current-constant voltage charging and constant current discharging with a current of 0.5C. Cyclic voltammetry (CV) was performed at a scanning rate of 0.1 mV s −1 in a voltage range of 3.0 to 4.3 V at 25°C. Impedance (EIS: electrochemical impedance spectroscopy) was measured in a frequency range of 1 MHz to 10 mHz with an amplitude of 5 mV.

초기 충방전 및 사이클링 성능 시험Initial charge/discharge and cycling performance test

도 7은 실시예 1 내지 실시예 3의 0.1C에서 초기 충방전 곡선 및 0.5C에서 사이클링 성능을 그래프로 나타낸 것으로, 도 7(a)는 0.1C에서의 초기 충방전 곡선을 나타낸 것이고, 도 7(b)는 0.5C에서 사이클링 성능인 수명특성을 나타낸 것이다. 25℃에서 3.0~4.3V의 전압범위에서 0.1C의 전류밀도로 초기 충방전 특성을 확인할 수 있었고, 이후 0.5C의 전류밀도로 수명특성을 확인하였다. 우선, 초기 충방전 결과를 하기 표 2에 나타내었다.7 is a graph showing the initial charge/discharge curve at 0.1C and the cycling performance at 0.5C of Examples 1 to 3, and FIG. 7(a) shows the initial charge/discharge curve at 0.1C, FIG. (b) shows the life characteristics of cycling performance at 0.5C. The initial charge/discharge characteristics were confirmed with a current density of 0.1C in the voltage range of 3.0~4.3V at 25℃, and then the lifespan characteristics were confirmed with a current density of 0.5C. First, the initial charging and discharging results are shown in Table 2 below.

Figure pat00003
Figure pat00003

표 2를 참조하면, 모든 샘플들이 유사한 충방전 곡선을 나타내었으며, 이는 코팅층이 충방전 거동에는 영향을 미치지 않는 것임을 알 수 있다. pristine NCM이 가장 높은 충전용량(239.5mAh g-1)을 보였지만, 낮은 쿨롱효율(89.5%)로 가장 낮은 방전용량(214.5mAh g-1)을 나타내었다. 반면, LWO-NCM 샘플들은 pristine NCM보다 높은 쿨롱효율을 보이며, 비록 코팅층의 중량으로 인하여 초기 충전은 낮지만 pristine NCM보다 높은 초기 방전용량을 나타내었다. 이는 코팅층이 리튬이온의 전도체 역할을 수행하기 때문임을 알 수 있다.Referring to Table 2, all samples showed similar charge-discharge curves, which indicates that the coating layer does not affect the charge-discharge behavior. Although pristine NCM showed the highest charge capacity (239.5 mAh g -1 ), it exhibited the lowest discharge capacity (214.5 mAh g -1) with a low coulombic efficiency (89.5%). On the other hand, the LWO-NCM samples showed a higher coulombic efficiency than the pristine NCM, and although the initial charge was low due to the weight of the coating layer, the initial discharge capacity was higher than that of the pristine NCM. It can be seen that this is because the coating layer serves as a conductor of lithium ions.

도 7(a)를 참조하면, pristine NCM과 LWO-NCM의 수명특성을 확인할 수 있다. LWO-NCM 샘플들이 pristine NCM보다 수명특성이 향상되었으며, 특히 0.5wt% LWO-NCM 샘플이 가장 우수한 수명특성을 나타내었다. 80 사이클 후, pristine NCM은 76.6%의 용량유지율을 보였으며, 0.1wt% LWO-NCM은 81.6%, 0.5wt% LWO-NCM은 84.6%, 1wt% LWO-NCM은 83.2%를 나타내었다. 이는 코팅층의 생성으로 인하여 LiOH와 Li2CO3와 같은 잔류 리튬 화합물의 감소로 부반응의 감소와 고전압에서의 산화력으로부터 전해질의 분해를 억제하는 보호막 역할을 수행하기 때문임을 알 수 있었다.Referring to Figure 7 (a), it can be confirmed the life characteristics of the pristine NCM and LWO-NCM. LWO-NCM samples had improved lifespan characteristics than pristine NCM, and in particular, 0.5wt% LWO-NCM samples showed the best lifespan characteristics. After 80 cycles, pristine NCM showed a capacity retention rate of 76.6%, 0.1wt% LWO-NCM showed 81.6%, 0.5wt% LWO-NCM showed 84.6%, and 1wt% LWO-NCM showed 83.2%. It can be seen that this is because the formation of the coating layer reduces side reactions due to the reduction of residual lithium compounds such as LiOH and Li 2 CO 3 , and acts as a protective film to suppress the decomposition of the electrolyte from the oxidation power at high voltage.

EIS 시험EIS exam

도 8은 실시예 1 내지 실시예 3의 80 사이클 후 Nyquist plot를 그래프로 나타낸 것으로, 리튬-텅스텐 산화물 코팅에 의한 표면에서의 반응상태를 확인하기 위하여 80 사이클 후의 EIS를 측정하여 나타낸 것이다.8 is a graph showing the Nyquist plot after 80 cycles of Examples 1 to 3, and shows the EIS after 80 cycles to confirm the reaction state on the surface by lithium-tungsten oxide coating.

EIS 그래프는 2개의 반원과 하나의 직선으로 이루어져 있으며, 이의 등가회로를 나타낸 것이다. 등가회로에서 Rs는 전해질의 저항, 첫 번째 반원인 RSEI는 필름 저항, 두 번째 반원인 Rct는 표면에서 벌크로의 전하이동을 의미하며, 직선으로 나타나는 Zw는 리튬이온의 확산과 관련있는 Warburg 저항을 의미한다. 80 사이클 후, LWO-NCM 샘플들이 pristine NCM 보다 낮은 RSEI와 Rct 값을 나타내었다. pristine NCM은 29.7Ω, 567.2Ω의 가장 높은 RSEI와 Rct 값을 나타낸 반면 0.5wt% LWO-NMC은 14.0Ω, 42.7Ω의 가장 낮은 RSEI와 Rct 값을 나타내었다.The EIS graph consists of two semicircles and a straight line, and shows its equivalent circuit. In the equivalent circuit, R s is the resistance of the electrolyte, the first semicircle R SEI is the film resistance, the second semicircle R ct is the charge transfer from the surface to the bulk, and Z w shown as a straight line is related to the diffusion of lithium ions. means the Warburg resistance. After 80 cycles, LWO-NCM samples showed lower R SEI and R ct values than pristine NCM. The pristine NCM showed the highest R SEI and R ct values of 29.7 Ω and 567.2 Ω, whereas the 0.5wt% LWO-NMC showed the lowest R SEI and R ct values of 14.0 Ω and 42.7 Ω.

Figure pat00004
Figure pat00004

EIS 결과에 따르면, 충방전 동안 코팅층이 전기저항의 증가를 억제해주며, 특히 Rct 저항의 증가를 억제해주는 것을 확인할 수가 있다. 이는 LixWOy층에서 리튬이온이 삽입과 탈리를 통하여 양극 활물질 벌크로의 이동을 원할히 해주는 역할을 수행하기 때문이다. 80 사이클 후 EIS의 각 성분 값은 상기 표 3에서 확인 가능하다.According to the EIS results, it can be confirmed that the coating layer suppresses an increase in electrical resistance during charging and discharging, and in particular, suppresses an increase in R ct resistance. This is because lithium ions in the Li x WO y layer play a role of smoothly moving to the bulk of the positive electrode active material through insertion and desorption. Each component value of EIS after 80 cycles can be confirmed in Table 3 above.

율속특성 시험Rate characteristic test

리튬이온의 확산도를 확인하기 위하여 율속특성을 시험해 보았으며, 이는 도 9를 통해 확인할 수 있다. 즉 도 9는 실시예 1 내지 3의 율속특성을 그래프로 나타낸 것으로, 25℃에서 3.0~4.3V의 전압범위에서 0.5C, 1C, 2C, 3C 및 5C의 pristine NCM과 LWO-NCM 샘플의 방전 율속특성을 확인하여 나타낸 것이다.The rate-rate characteristic was tested to confirm the diffusion of lithium ions, which can be confirmed through FIG. 9 . That is, FIG. 9 is a graph showing the rate characteristics of Examples 1 to 3, and the discharge rate rates of the pristine NCM and LWO-NCM samples of 0.5C, 1C, 2C, 3C and 5C in the voltage range of 3.0 to 4.3V at 25°C. Characteristics are confirmed and indicated.

도 9를 참조하면, 전류밀도가 증가함에 따라서 pristine NCM과 LWO-NCM 샘플의 방전용량 값이 확연히 차이가 나는 것을 확인할 수가 있었다. 이러한 결과를 토대로 코팅층의 영향으로 NCM 표면이 낮은 저항을 가지며, 이는 리튬이온이 표면에서 벌크로의 이동을 원활히 해주는 것으로 확인된다. 이를 통해 높은 전류밀도에서도 LWO-NCM이 뛰어난 구조적 안정을 유지하는 것임을 알 수 있다.Referring to FIG. 9 , it was confirmed that the discharge capacity values of the pristine NCM and LWO-NCM samples were significantly different as the current density increased. Based on these results, it is confirmed that the NCM surface has a low resistance under the influence of the coating layer, which facilitates the movement of lithium ions from the surface to the bulk. This shows that LWO-NCM maintains excellent structural stability even at high current density.

상술한 바와 같이, 본 발명은 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법에 관한 것으로, 표면에 리튬 화합물이 노출된 하이-니켈계 리튬-니켈-코발트-망간 산화물과, 염기성 용액에 텅스텐 산화물을 용해시킨 코팅용액을 혼합 및 건조한 후 열처리함으로써, 리튬 화합물과 텅스텐 산화물이 반응되면서 리튬-니켈-코발트-망간 산화물의 외부에 리튬-텅스텐 산화물이 코팅된 양극 활물질을 제조할 수 있는데 특징이 있다.As described above, the present invention relates to a method for manufacturing a cathode active material for a lithium secondary battery coated with lithium-tungsten oxide, a high-nickel-based lithium-nickel-cobalt-manganese oxide having a lithium compound exposed on the surface thereof, and a basic solution A cathode active material in which lithium-nickel-cobalt-manganese oxide is coated on the outside of lithium-nickel-cobalt-manganese oxide is coated with a cathode active material by mixing and drying a coating solution in which tungsten oxide is dissolved and then heat-treating. There is this.

이처럼 본 발명에 따른 리튬-텅스텐 산화물이 코팅된 양극 활물질은, 구조적인 안정성을 가질 뿐만 아니라 표면에서 부반응을 억제해주면서 표면 안정성을 높여일 수 있다는 점에 큰 의미가 있다.As such, the lithium-tungsten oxide-coated cathode active material according to the present invention has great significance in that it can improve surface stability while suppressing side reactions on the surface as well as having structural stability.

따라서 본 발명에서와 같은 양극 활물질이 리튬이차전지에 적용 시, 높은 방전용량을 유지하면서 수명특성 및 출력특성 등 전기화학적 특성이 향상됨으로써 고안정성을 만족할 수 있으므로, 리튬이차전지 외에 다양한 분야에 활용 가능할 것으로 기대된다.Therefore, when the positive electrode active material as in the present invention is applied to a lithium secondary battery, high stability can be satisfied by maintaining high discharge capacity and improving electrochemical characteristics such as lifespan characteristics and output characteristics, so it can be used in various fields other than lithium secondary batteries is expected to

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것도 아니다. 본 발명의 보호 범위는 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical spirit of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (6)

표면에 리튬 화합물이 노출된 하이-니켈(high-Ni)계 리튬-니켈-코발트-망간 산화물을 제조하는 단계;
염기성 용액에 텅스텐 산화물을 용해하여 코팅용액을 제조하는 단계; 및
상기 리튬-니켈-코발트-망간 산화물과 코팅용액을 혼합 및 건조한 후 열처리하여 양극 활물질을 제조하는 단계;를 포함하여 이루어지고,
상기 양극 활물질은,
상기 열처리를 통하여 상기 리튬 화합물의 리튬과 상기 텅스텐 산화물이 결합되면서, 상기 리튬-니켈-코발트-망간 산화물의 외부에 리튬-텅스텐 산화물로 이루어진 코팅층이 형성되는 것을 특징으로 하는 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법.
Preparing a high-nickel (high-Ni)-based lithium-nickel-cobalt-manganese oxide with a lithium compound exposed on the surface;
preparing a coating solution by dissolving tungsten oxide in a basic solution; and
The lithium-nickel-cobalt-manganese oxide and the coating solution are mixed and dried, followed by heat treatment to prepare a positive electrode active material;
The positive active material is
Lithium-tungsten oxide-coated, characterized in that a coating layer made of lithium-tungsten oxide is formed on the outside of the lithium-nickel-cobalt-manganese oxide while lithium of the lithium compound and the tungsten oxide are combined through the heat treatment A method of manufacturing a cathode active material for a lithium secondary battery.
제1항에 있어서,
상기 리튬-니켈-코발트-망간 산화물은,
염기성 수용액과, 니켈원료, 코발트원료 및 망간원료를 이용하여 공침반응시켜 니켈-코발트-망간 산화물을 제조하는 단계; 및
상기 니켈-코발트-망간 산화물에 수산화리튬 수화물(LiOH·H2O)을 혼합한 후 열처리 및 소성하는 단계;를 통하여 제조되는 것을 특징으로 하는 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법.
According to claim 1,
The lithium-nickel-cobalt-manganese oxide is
preparing a nickel-cobalt-manganese oxide by coprecipitating a basic aqueous solution with a nickel raw material, a cobalt raw material and a manganese raw material; and
Lithium-tungsten oxide-coated cathode active material for lithium secondary battery, characterized in that it is prepared by mixing lithium hydroxide hydrate (LiOH·H 2 O) with the nickel-cobalt-manganese oxide, followed by heat treatment and sintering; method.
제1항에 있어서,
상기 리튬-니켈-코발트-망간 산화물은,
니켈의 함량이 90mol% 이상인 것을 특징으로 하는 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법.
According to claim 1,
The lithium-nickel-cobalt-manganese oxide is
A method for producing a cathode active material for a lithium secondary battery coated with lithium-tungsten oxide, wherein the nickel content is 90 mol% or more.
제1항에 있어서,
상기 리튬-텅스텐 산화물은,
하기 화학식 1로 표시되는 것을 특징으로 하는 리튬-텅스텐 산화물이 코팅된 리튬이차전지용 양극 활물질의 제조방법.
[화학식 1]
LixWyOz
(단, 0.1 ≤ x ≤ 6, 1 ≤ y ≤ 2, 3 ≤ z ≤ 9이다.)
According to claim 1,
The lithium-tungsten oxide is
A method of manufacturing a cathode active material for a lithium secondary battery coated with lithium-tungsten oxide, characterized in that it is represented by the following formula (1).
[Formula 1]
Li x W y O z
(However, 0.1 ≤ x ≤ 6, 1 ≤ y ≤ 2, 3 ≤ z ≤ 9.)
제1항 내지 제4항 중 어느 한 항의 방법으로 제조되는 것을 특징으로 하는 양극 활물질.A positive active material, characterized in that produced by the method of any one of claims 1 to 4. 제5항에 따른 양극 활물질을 포함하는 리튬이차전지.A lithium secondary battery comprising the positive active material according to claim 5.
KR1020200105192A 2020-08-21 2020-08-21 Method for producing cathode active material for lithium secondary battery coated with lithium-tungsten oxide, positive electrode active material produced therefrom, and lithium secondary battery including the same KR20220023454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200105192A KR20220023454A (en) 2020-08-21 2020-08-21 Method for producing cathode active material for lithium secondary battery coated with lithium-tungsten oxide, positive electrode active material produced therefrom, and lithium secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200105192A KR20220023454A (en) 2020-08-21 2020-08-21 Method for producing cathode active material for lithium secondary battery coated with lithium-tungsten oxide, positive electrode active material produced therefrom, and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
KR20220023454A true KR20220023454A (en) 2022-03-02

Family

ID=80815462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200105192A KR20220023454A (en) 2020-08-21 2020-08-21 Method for producing cathode active material for lithium secondary battery coated with lithium-tungsten oxide, positive electrode active material produced therefrom, and lithium secondary battery including the same

Country Status (1)

Country Link
KR (1) KR20220023454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12024441B1 (en) 2022-12-07 2024-07-02 Sk On Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913939B1 (en) 2017-04-17 2018-10-31 인천대학교 산학협력단 Organic additive coating method for improving interfacial stability of cathode material for lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913939B1 (en) 2017-04-17 2018-10-31 인천대학교 산학협력단 Organic additive coating method for improving interfacial stability of cathode material for lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12024441B1 (en) 2022-12-07 2024-07-02 Sk On Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
US11108043B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP6635656B2 (en) Positive electrode active material, positive electrode and lithium battery employing the same, and method for producing the positive electrode active material
US10854873B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
Yao et al. Oxalate co-precipitation synthesis of LiNi0. 6Co0. 2Mn0. 2O2 for low-cost and high-energy lithium-ion batteries
US8007941B2 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP4546937B2 (en) Cathode active material for non-aqueous electrolyte lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR100428616B1 (en) Positive active material for lithium secondary battery and method of preparing same
US11056681B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR100797099B1 (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
CN112219297B (en) Positive electrode active material precursor and lithium secondary battery using same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
KR102357836B1 (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
US11677065B2 (en) Cathode active material of lithium secondary battery
KR20130125124A (en) Fabrication method of nanocomposite for lithium secondary battery
Rapulenyane et al. High-performance Li1. 2Mn0. 6Ni0. 2O2 cathode materials prepared through a facile one-pot co-precipitation process for lithium ion batteries
Li et al. Effects of Nb substitution on structure and electrochemical properties of LiNi 0.7 Mn 0.3 O 2 cathode materials
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
Sun et al. Improved performances of a LiNi 0.6 Co 0.15 Mn 0.25 O 2 cathode material with full concentration-gradient for lithium ion batteries
CN112424976A (en) Positive electrode active material and secondary battery
CN114256450A (en) Positive electrode active material for lithium secondary battery and method for producing same
US11329274B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
KR20110072919A (en) Cathode active material, cathode and lithium battery containing the material and preparation method thereof
Cao et al. Influence of different lithium sources on the morphology, structure and electrochemical performances of lithium-rich layered oxides