KR20220022734A - Hydrogen Liquefaction System and Method - Google Patents

Hydrogen Liquefaction System and Method Download PDF

Info

Publication number
KR20220022734A
KR20220022734A KR1020200104044A KR20200104044A KR20220022734A KR 20220022734 A KR20220022734 A KR 20220022734A KR 1020200104044 A KR1020200104044 A KR 1020200104044A KR 20200104044 A KR20200104044 A KR 20200104044A KR 20220022734 A KR20220022734 A KR 20220022734A
Authority
KR
South Korea
Prior art keywords
hydrogen
air
refrigerant
cooling
heat
Prior art date
Application number
KR1020200104044A
Other languages
Korean (ko)
Other versions
KR102470782B1 (en
Inventor
임동렬
염충섭
윤문규
이춘식
Original Assignee
고등기술연구원연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고등기술연구원연구조합 filed Critical 고등기술연구원연구조합
Priority to KR1020200104044A priority Critical patent/KR102470782B1/en
Publication of KR20220022734A publication Critical patent/KR20220022734A/en
Application granted granted Critical
Publication of KR102470782B1 publication Critical patent/KR102470782B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0222Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0251Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0252Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/10Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The present invention relates to a hydrogen liquefaction system and method for liquefying hydrogen gas. The hydrogen liquefaction system according to the present invention comprises: a hydrogen liquefaction unit liquefying hydrogen gas; a refrigerant circulation unit circulating a refrigerant for cooling the hydrogen gas; and an air power generation unit which provides cooling heat to hydrogen and the refrigerant by using liquid air and generates electric power using air whose temperature is increased while the cooling heat is provided.

Description

수소 액화 시스템 및 방법 {Hydrogen Liquefaction System and Method}Hydrogen Liquefaction System and Method

본 발명은 수소 기체를 액화시키기 위한 수소 액화 시스템 및 방법에 관한 것이다. The present invention relates to a hydrogen liquefaction system and method for liquefying hydrogen gas.

수소 에너지는 환경 친화적인 에너지원으로서, 자동차 동력원, 휴대용 전자기기용 연료전지의 연료로 활용이 가능하며, 연료전지 가격 또한 매년 감소하고 있어 수소에너지 시대가 앞당겨지고 있다. Hydrogen energy is an environmentally friendly energy source, and it can be used as a fuel for automobile power sources and fuel cells for portable electronic devices.

현재 산업에서 주로 채택되고 있는 가장 합리적인 수소의 저장 및 운송 기술은, 수소를 액화시켜 부피당 에너지 밀도가 가장 좋은 액화수소의 형태로 저장 및 운송하는 방법과, 수소를 고압으로 압축시켜 중량당 에너지 밀도가 가장 좋은 고압 기체 수소의 형태로 저장 및 운송하는 방법이다. The most reasonable hydrogen storage and transportation technology currently employed in industry is a method of storing and transporting hydrogen in the form of liquefied hydrogen with the best energy density per volume by liquefying it, and compressing hydrogen at high pressure to increase the energy density per weight. It is the best method of storage and transportation in the form of high-pressure gaseous hydrogen.

지구상에서 가장 가벼운 원소인 수소는, 응축 온도가 대기압 조건에서 약 20K(약 -253℃) 정도로 매우 낮기 때문에, 초저온 냉동기가 필요하며 액화 에너지가 많이 소모되는 단점이 있다. Hydrogen, which is the lightest element on earth, has a disadvantage in that it requires a cryogenic refrigerator and consumes a lot of liquefaction energy because its condensation temperature is very low, about 20K (about -253℃) under atmospheric pressure conditions.

도 1에는 종래의 수소 액화 시스템이 간략하게 도시되어 있다. 도 1을 참조하면, 기존의 수소 액화 방법은, 역브레이튼사이클(reverse Brayton cycle)(1)에 의하여 초저온이 되는 헬륨(He) 냉매와 수소 기체(H2)를 열교환기(2)에서 열교환시켜 수소 기체를 냉각시키고, 냉각된 수소 기체는 줄-톰슨 밸브(3)를 이용하여 팽창시켜 포화 상태의 액화수소(LH2)를 생성하며, 줄-톰슨 밸브(3)에서 액화되지 않은 포화 상태의 수소 기체는 열교환기(2)에서 수소 기체의 자가 냉각에 활용하는 방법을 사용한다. 1 schematically shows a conventional hydrogen liquefaction system. Referring to Figure 1, the conventional hydrogen liquefaction method, a helium (He) refrigerant and hydrogen gas (H 2 ), which are at a very low temperature by a reverse Brayton cycle (1), are heat exchanged in a heat exchanger (2). The hydrogen gas is cooled, and the cooled hydrogen gas is expanded using the Joule-Thomson valve (3) to produce saturated liquid hydrogen (LH 2 ), and the Joule-Thomson valve (3) is in a saturated state that is not liquefied. Hydrogen gas is used for self-cooling of the hydrogen gas in the heat exchanger (2).

또한, 기존의 수소 액화 방법은, 수소 액화 시스템의 운전 효율을 높이기 위하여, 수소 기체를 열교환기(2)에서 냉각시키기 전에 예냉시키는 수소 예냉기(4)와, 헬륨 냉매를 예냉시키는 헬륨 예냉기(5)에서, 수소 기체 및 헬륨 냉매를 예냉시킨다. 이때, 예냉에 필요한 냉열원으로서는 액체 질소(LN2) 또는 액화천연가스(LNG;Liquefied Natural Gas)를 사용하였다. In addition, in the conventional hydrogen liquefaction method, in order to increase the operating efficiency of the hydrogen liquefaction system, a hydrogen precooler 4 for precooling hydrogen gas before cooling in the heat exchanger 2 and a helium precooler for precooling a helium refrigerant ( In 5), hydrogen gas and helium refrigerant are pre-cooled. In this case, liquid nitrogen (LN 2 ) or liquefied natural gas (LNG) was used as a cooling heat source required for pre-cooling.

수소 기체 및 냉매로 사용되는 헬륨을 예냉시키는 냉열원으로서 액체 질소를 사용하는 경우, 대량으로 산업용 액체 산소와 액체 질소를 생산하는 공기분리 플랜트가 수소 액화 시스템이 구비되는 부지의 인근에 있거나, 또는 공기분리 플랜트로부터 생산된 액체 질소를 탱크로리 등의 운반 수단을 이용하여 수소 액화 시스템이 구비되는 부지로 이송해야 한다. When liquid nitrogen is used as a cooling heat source for pre-cooling hydrogen gas and helium used as a refrigerant, an air separation plant that produces industrial liquid oxygen and liquid nitrogen in large quantities is located in the vicinity of the site where the hydrogen liquefaction system is installed, or Liquid nitrogen produced from the separation plant must be transported to a site equipped with a hydrogen liquefaction system using a transport means such as a tank lorry.

또한, 냉열원으로서 LNG가 사용되는 경우에도, 주로 해안가에 위치하는 LNG 인수기지 인근에 수소 액화 시스템이 구비되거나, 또는 LNG 인수기지에서 탱크로리 등의 운반 수단을 이용하여 수소 액화 시스템이 구비되는 부지까지 이송해야 한다. In addition, even when LNG is used as a cooling and heat source, a hydrogen liquefaction system is provided near an LNG receiving base located mainly on the coast, or from an LNG receiving base to a site where a hydrogen liquefaction system is provided using a transport means such as a tank lorry. must be transported

즉, 이와 같이 냉열원으로서 액체 질소나 LNG를 사용하는 경우, 수소 액화 시스템의 설치 부지에 대한 지역적인 한계가 있고, 냉열원의 운송 비용이 소모된다는 단점이 있다. That is, when liquid nitrogen or LNG is used as a cooling heat source as described above, there is a regional limit for the installation site of the hydrogen liquefaction system, and there is a disadvantage that the transportation cost of the cooling heat source is consumed.

한편, 기존의 수소 액화 시스템에 의하면, 수소 기체를 압축하는 수소 압축기(6)와, 헬륨을 압축하는 헬륨 압축기(7)을 구동시키는데 필요한 전력 소모량이 수소 액화 시스템 전체 전력 소모량의 대부분을 차지한다. 따라서, 획기적인 절전 성능을 가진 수소 압축기와 헬륨 압축기가 개발되거나 탁월한 냉각 성능을 발휘하는 새로운 수소 액화 공정이 개발되지 않는 한, 수소 액화 시스템의 운전 효율을 높이기 쉽지 않다는 문제점이 있다. On the other hand, according to the existing hydrogen liquefaction system, the power consumption required to drive the hydrogen compressor 6 for compressing hydrogen gas and the helium compressor 7 for compressing helium accounts for most of the total power consumption of the hydrogen liquefaction system. Therefore, there is a problem in that it is not easy to increase the operating efficiency of the hydrogen liquefaction system unless a hydrogen compressor and a helium compressor with innovative power saving performance are developed or a new hydrogen liquefaction process exhibiting excellent cooling performance is developed.

따라서, 본 발명은 상술한 문제점을 해결하고자 하는 것을 목적으로 하며, 수소 액화 시스템의 부지 선정에 대한 제한을 거의 받지 않고, 자체 전력을 생산하여 높은 운전 효율을 달성할 수 있는 수소 액화 시스템 및 방법을 제공하고자 한다. Therefore, an object of the present invention is to solve the above-mentioned problems, and there is little restriction on the site selection of the hydrogen liquefaction system, and a hydrogen liquefaction system and method that can generate their own power to achieve high operating efficiency would like to provide

상술한 목적을 달성하기 위한 본 발명의 일 측면에 의하면, 수소 기체를 액화시키는 수소 액화부; 상기 수소 기체를 냉각시키기 위한 냉매를 순환시키는 냉매 순환부; 및 액체 공기를 이용하여 수소 및 냉매에 냉열을 제공하고, 상기 냉열이 제공하면서 온도가 높아진 공기를 이용하여 전력을 생산하는 공기 발전부;를 포함하는, 수소 액화 시스템이 제공된다. According to one aspect of the present invention for achieving the above object, a hydrogen liquefaction unit for liquefying hydrogen gas; a refrigerant circulation unit circulating a refrigerant for cooling the hydrogen gas; and an air power generation unit that provides cooling heat to hydrogen and a refrigerant by using liquid air, and generates electric power using the air whose temperature is increased while the cooling heat is provided.

바람직하게는, 상기 수소 액화부는, 상기 액화시킬 수소를 압축하는 수소 압축기;를 포함하고, 상기 냉매 순환부는, 상기 냉매를 압축하는 냉매 압축기;를 포함하며, 상기 공기 발전부에서 생산된 전력은 상기 수소 압축기 및 냉매 압축기를 구동시키는 전력으로 사용될 수 있다.Preferably, the hydrogen liquefaction unit includes a hydrogen compressor for compressing the hydrogen to be liquefied, and the refrigerant circulation unit includes a refrigerant compressor for compressing the refrigerant, and the power generated by the air power generation unit is the It can be used as electric power to drive a hydrogen compressor and a refrigerant compressor.

바람직하게는, 상기 냉매 순환부는, 상기 냉매 압축기에 의해 압축된 냉매를 냉각 매체와의 열교환에 의해 냉각시키는 중간 냉각기; 및 상기 중간 냉각기에서 냉각된 냉매와 상기 액체 공기를 열교환시켜 상기 냉매를 예냉시키는 냉매 예냉기;를 더 포함할 수 있다.Preferably, the refrigerant circulation unit includes: an intermediate cooler for cooling the refrigerant compressed by the refrigerant compressor by heat exchange with a cooling medium; and a refrigerant precooler configured to pre-cool the refrigerant by exchanging heat with the liquid air with the refrigerant cooled in the intermediate cooler.

바람직하게는, 상기 공기 발전부는, 상기 수소 및/또는 냉매를 냉각시키면서 온도가 높아진 공기를 가열하는 공기 과열기;를 포함하고, 상기 공기 과열기에서는, 상기 공기와, 상기 중간 냉각기에서 압축된 냉매를 냉각시키면서 온도가 높아진 고온의 냉각 매체가 열교환하여 상기 공기를 가열시킬 수 있다.Preferably, the air power generation unit includes; an air superheater that heats the air having a higher temperature while cooling the hydrogen and/or the refrigerant, and in the air superheater, the air and the refrigerant compressed in the intermediate cooler are cooled A high-temperature cooling medium having an increased temperature while doing heat exchange can heat the air.

바람직하게는, 상기 공기 발전부는, 상기 수소 및/또는 냉매를 예냉시키면서 온도가 높아진 공기를 작동 유체로 하여 구동되는 공기 터빈; 상기 공기 터빈과 연결되어 상기 공기 터빈의 구동력으로 전력을 생산하는 발전기;를 더 포함할 수 있다.Preferably, the air power generation unit, an air turbine driven by using the hydrogen and/or the temperature increased air while pre-cooling the refrigerant as a working fluid; It may further include; a generator connected to the air turbine to generate electric power using the driving force of the air turbine.

바람직하게는, 상기 공기 발전부는, 상기 수소 및/또는 냉매를 냉각시키면서 온도가 높아진 액체 공기의 냉열을 더 회수하여 상기 액체 공기를 기화시켜 상기 공기 터빈으로 공급하는 공기 열교환기; 및 상기 공기 열교환기에 의해 회수된 액체 공기의 냉열을 이용하여 공기를 액화시키는 공기 액화기;를 더 포함할 수 있다.Preferably, the air power generation unit, an air heat exchanger for supplying to the air turbine by further recovering the cooling heat of the liquid air having a temperature increased while cooling the hydrogen and / or the refrigerant to vaporize the liquid air; and an air liquefier for liquefying air by using the cooling heat of the liquid air recovered by the air heat exchanger.

바람직하게는, 상기 공기 터빈을 구동시키면서 압력 및 온도가 낮아진 공기를 인근 지역 또는 건물의 환기용 공기로 공급할 수 있다.Preferably, while driving the air turbine, air with reduced pressure and temperature may be supplied as ventilation air in a neighboring area or building.

바람직하게는, 상기 공기 터빈을 구동시키면서 압력 및 온도가 낮아진 공기를 인근 지역 또는 건물의 냉난방용 공기 또는 물과 열교환시키는 공조용 열교환기;를 더 포함할 수 있다.Preferably, the air-conditioning heat exchanger for heat-exchanging the air whose pressure and temperature have been lowered while driving the air turbine with air or water for heating and cooling of a nearby area or building; may further include.

바람직하게는, 상기 수소 액화부는, 상기 수소 압축기에 의해 압축된 수소와 상기 액체 공기를 열교환시켜 압축된 수소를 예냉하는 수소 예냉기; 상기 수소 예냉기에서 예냉된 수소를 상기 냉매와 열교환시켜 상기 수소를 냉각시키는 열교환기; 상기 열교환기에서 냉각된 수소를 팽창시켜 액화시키는 줄-톰슨 밸브; 및 상기 줄-톰슨 밸브에 의해 액화된 액체 수소와 액화되지 않은 기체 수소를 분리하는 기액 분리기;를 더 포함하고, 상기 기액 분리기에서 분리된 기체 수소는 상기 열교환기에서 상기 수소를 냉각시키는 자가 냉매로서 공급될 수 있다.Preferably, the hydrogen liquefaction unit includes: a hydrogen precooler for pre-cooling the compressed hydrogen by exchanging the hydrogen compressed by the hydrogen compressor with the liquid air; a heat exchanger for cooling the hydrogen by exchanging the hydrogen precooled in the hydrogen precooler with the refrigerant; a Joule-Thomson valve for expanding and liquefying hydrogen cooled in the heat exchanger; and a gas-liquid separator for separating liquefied liquid hydrogen and non-liquefied gaseous hydrogen by the Joule-Thompson valve, wherein the gaseous hydrogen separated in the gas-liquid separator is a self-refrigerant for cooling the hydrogen in the heat exchanger. can be supplied.

바람직하게는, 상기 냉매 순환부는, 상기 냉매 압축기에 의해 압축된 냉매와 상기 액체 공기를 열교환시켜 상기 냉매를 예냉시키는 냉매 예냉기; 및 상기 냉매 예냉기에서 냉각된 후 상기 열교환기에서 열교환하면서 온도가 높아진 냉매를 팽창시키는 냉매 팽창기;를 더 포함하고, 상기 냉매 팽창기에 의해 팽창된 냉매는 상기 열교환기에서 냉열이 더 회수된 후 상기 냉매 예냉기에서 냉매를 냉각시키는 자가 냉매로 공급될 수 있다. Preferably, the refrigerant circulation unit comprises: a refrigerant precooler for precooling the refrigerant by exchanging heat with the liquid air and the refrigerant compressed by the refrigerant compressor; and a refrigerant expander that expands a refrigerant whose temperature has increased while performing heat exchange in the heat exchanger after being cooled in the refrigerant precooler, wherein the refrigerant expanded by the refrigerant expander is further recovered after cooling heat is further recovered in the heat exchanger A self cooling the refrigerant in the refrigerant precooler may be supplied as the refrigerant.

상술한 목적을 달성하기 위한 본 발명의 다른 일 측면에 의하면, 공기를 액화시키고, 상기 액화된 액체 공기를 액화시킬 수소와 열교환시켜 수소를 예냉시키고, 상기 예냉된 수소를 냉매 순환부를 순환하는 냉매와 열교환시켜 냉각시키며, 상기 수소와 열교환시킬 냉매는 상기 액체 공기와 열교환시켜 예냉하고, 상기 수소 및 냉매를 예냉시키기 위한 냉열을 제공하면서 온도가 높아진 공기를 작동유체로 하여 터빈을 구동시켜 전력을 생산하는, 수소 액화 방법이 제공된다. According to another aspect of the present invention for achieving the above object, the air is liquefied, the liquefied liquid air is heat-exchanged with hydrogen to be liquefied to pre-cool the hydrogen, and the pre-cooled hydrogen is used with a refrigerant circulating in the refrigerant circulation unit and It is cooled by heat exchange, and the refrigerant to be exchanged with hydrogen is pre-cooled by heat exchange with the liquid air, and while providing cooling heat for pre-cooling the hydrogen and the refrigerant, the turbine is driven using the air whose temperature is increased as a working fluid to generate electric power , a hydrogen liquefaction method is provided.

바람직하게는, 상기 수소 및 냉매는 예냉시키기 전에 압축하고, 상기 공기를 이용하여 생산한 전력은 상기 수소 및 냉매를 압축하는데 사용할 수 있다. Preferably, the hydrogen and the refrigerant are compressed before pre-cooling, and electric power generated using the air may be used to compress the hydrogen and the refrigerant.

바람직하게는, 상기 압축된 냉매는 저온의 냉각 매체와 열교환시켜 냉각시키고, 상기 압축된 냉매를 냉각시키면서 온도가 상승한 고온의 냉각 매체와 상기 터빈으로 공급하는 공기를 열교환시켜 상기 공기를 가열할 수 있다.Preferably, the compressed refrigerant is cooled by heat exchange with a low-temperature cooling medium, and the air is heated by exchanging heat with the high-temperature cooling medium whose temperature is increased while cooling the compressed refrigerant and the air supplied to the turbine. .

바람직하게는, 상기 터빈을 구동시키면서 압력 및 온도가 낮아진 공기는 인근 지역 또는 건물의 환기용 공기로 공급하거나, 또는 냉난방용 공기 또는 물과 열교환시켜 열에너지를 회수할 수 있다. Preferably, the air, the pressure and temperature of which is lowered while driving the turbine, may be supplied as ventilation air in a nearby area or building, or heat energy may be recovered by heat exchange with air or water for heating and cooling.

본 발명에 따른 수소 액화 시스템 및 방법은, 부지 선정에 대한 제한을 거의 받지 않으면서도, 수소 및 냉매를 예냉하기 위한 냉열원의 운송 비용을 절감할 수 있다. The hydrogen liquefaction system and method according to the present invention can reduce the transportation cost of a cooling heat source for pre-cooling hydrogen and refrigerant, while receiving almost no restrictions on site selection.

또한, 액화 공기 시스템을 적용하여 수소 및 냉매를 예냉시키는 것과 동시에 자체 전력을 생산하여 사용할 수 있으므로 운전 효율을 높이고, 청정 공기를 이용하여 전력을 생산할 수 있어 친환경 발전이 가능하다. In addition, by applying a liquefied air system, hydrogen and refrigerant can be pre-cooled, and at the same time, it can generate and use its own electric power, thereby increasing operating efficiency and generating electric power using clean air, thereby enabling eco-friendly power generation.

또한, 발전에 사용된 청정 공기를 이용하여 인근 지역이나 건물의 냉방이나 난방 및 환기 등 공조 시스템에 활용할 수 있으므로, 지역 사회의 친환경 공조를 도모할 수 있다. In addition, since the clean air used for power generation can be used in an air conditioning system such as cooling, heating, and ventilation of a nearby area or building, it is possible to promote eco-friendly air conditioning in the local community.

도 1은 기존의 수소 액화 시스템을 간략하게 도시한 구성도이다.
도 2는 본 발명의 제1 실시예에 따른 수소 액화 시스템을 간략하게 도시한 구성도이다.
도 3은 본 발명의 제2 실시예에 따른 수소 액화 시스템을 간략하게 도시한 구성도이다.
도 4는 본 발명의 제3 실시예에 따른 수소 액화 시스템을 간략하게 도시한 구성도이다.
1 is a schematic diagram illustrating a conventional hydrogen liquefaction system.
2 is a schematic diagram illustrating a hydrogen liquefaction system according to a first embodiment of the present invention.
3 is a schematic diagram illustrating a hydrogen liquefaction system according to a second embodiment of the present invention.
4 is a schematic diagram illustrating a hydrogen liquefaction system according to a third embodiment of the present invention.

본 발명의 동작상 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부도면 및 첨부도면에 기재된 내용을 참조하여야만 한다. In order to fully understand the operational advantages of the present invention and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서, 각 도면의 구성요소들에 대해 참조부호를 부가함에 있어 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다. Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, in adding reference numerals to the components of each drawing, it should be noted that only the same components are marked with the same reference numerals as much as possible even though they are displayed on different drawings.

하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.The following examples may be modified in various other forms, and the scope of the present invention is not limited to the following examples.

이하, 도 2 내지 도 4를 참조하여, 본 발명의 일 실시예들에 따른 수소 액화 시스템 및 방법을 설명하기로 한다. Hereinafter, a hydrogen liquefaction system and method according to embodiments of the present invention will be described with reference to FIGS. 2 to 4 .

먼저, 도 2를 참조하여, 본 발명의 제1 실시예에 따른 수소 액화 시스템 및 방법을 설명한다. First, with reference to FIG. 2, a hydrogen liquefaction system and method according to a first embodiment of the present invention will be described.

본 발명의 제1 실시예에 따른 수소 액화 시스템은, 수소 기체를 액화시키는 수소 액화부; 수소 기체를 액화시키기 위한 냉매를 순환시키는 냉매 순환부; 및 액화 공기를 이용하여 수소 기체와 냉매를 예냉시키고 전력을 생산하는 공기 발전부;를 포함한다. A hydrogen liquefaction system according to a first embodiment of the present invention includes: a hydrogen liquefaction unit for liquefying hydrogen gas; a refrigerant circulation unit circulating a refrigerant for liquefying hydrogen gas; and an air power generation unit that pre-cools hydrogen gas and a refrigerant using liquefied air and generates electric power.

본 실시예의 수소 액화부는, 액화시킬 수소 기체를 압축하는 수소 압축기(101); 수소 압축기(101)에 의해 압축된 압축 수소 기체를 냉매 순환부를 순환하는 냉매와의 열교환에 의해 냉각시키는 열교환기(103, 104, 105); 수소 압축기(101)에 의해 압축된 압축 수소 기체를 열교환기(103, 104, 105)로 공급하기 전에 공기 발전부로부터 이송된 액체 공기와의 열교환에 의해 예냉시키는 수소 예냉기(102); 및 열교환기(103, 104, 105)에서 열교환에 의해 냉각된 수소를 팽창시켜 포화상태로 만드는 줄-톰슨 밸브(106);를 포함한다. The hydrogen liquefaction unit of this embodiment, the hydrogen compressor 101 for compressing the hydrogen gas to be liquefied; heat exchangers (103, 104, 105) for cooling the compressed hydrogen gas compressed by the hydrogen compressor (101) by heat exchange with a refrigerant circulating in the refrigerant circulation unit; a hydrogen precooler 102 for pre-cooling the compressed hydrogen gas compressed by the hydrogen compressor 101 by heat exchange with liquid air transferred from the air power generation unit before supplying the compressed hydrogen gas to the heat exchangers 103, 104, 105; and a Joule-Thomson valve 106 that expands the hydrogen cooled by heat exchange in the heat exchangers 103, 104, and 105 to make it saturated.

수소 압축기(101)로 공급되는 액화시킬 수소는, 외부에서 공급되는 수소이거나, 또는 수소 액화 시스템이 구비되는 부지 내에서 생산된 수소일 수 있다.The hydrogen to be liquefied supplied to the hydrogen compressor 101 may be hydrogen supplied from the outside, or hydrogen produced in a site in which a hydrogen liquefaction system is provided.

외부에서 공급되는 수소는 예를 들어 타 공정에서 생성된 부생수소일 수 있다. 이 경우 부생수소는 타 공정 플랜트와 연결된 배관을 통해 수소 액화 시스템으로 이송되거나 또는 운송 수단에 의해 이송될 수 있다. The hydrogen supplied from the outside may be, for example, by-product hydrogen generated in another process. In this case, the by-product hydrogen may be transferred to the hydrogen liquefaction system through a pipe connected to another process plant, or may be transferred by means of transport.

수소 액화 시스템이 구비되는 부지 내에서 생산된 수소는, 예를 들어, 스팀-메탄 개질 방법에 의해 생산된 수소이거나, 또는 수전해에 의해 생산된 수소일 수 있으며, 이 경우 수소 액화 시스템이 구비되는 부지 내에는 개질 시스템 또는 수전해 시스템이 함께 구비될 수 있다. Hydrogen produced in the site where the hydrogen liquefaction system is provided may be, for example, hydrogen produced by a steam-methane reforming method, or hydrogen produced by water electrolysis, in which case the hydrogen liquefaction system is provided. A reforming system or a water electrolysis system may be provided in the site.

본 실시예의 열교환기(103, 104, 105)는, 수소 예냉기(102)에서 예냉된 수소 기체를 1차로 냉각시키는 제1 열교환기(103); 제1 열교환기(103)에서 1차 냉각된 수소 기체를 2차로 냉각시키는 제2 열교환기(104); 및 제2 열교환기(105)에서 2차 냉각된 수소 기체를 3차로 냉각시키는 제3 열교환기(105);를 포함할 수 있다. The heat exchangers 103 , 104 , and 105 of this embodiment include: a first heat exchanger 103 for primarily cooling the hydrogen gas precooled in the hydrogen precooler 102 ; a second heat exchanger 104 for secondarily cooling the hydrogen gas cooled primarily in the first heat exchanger 103; and a third heat exchanger 105 for tertiarily cooling the hydrogen gas that has been secondarily cooled in the second heat exchanger 105 .

본 실시예의 제1 열교환기(103), 제2 열교환기(104) 및 제3 열교환기(105)는 도 2에 도시된 바와 같이 직렬로 연결되어 3단계에 걸쳐 압축 수소 기체를 냉각시킬 수 있다. 본 실시예에서는 3개의 열교환기를 포함하여 3단 열교환에 의해 압축 수소 기체를 냉각시키는 것을 예로 들어 설명하나, 열교환 단수는 이에 한정하는 것은 아니다. The first heat exchanger 103, the second heat exchanger 104, and the third heat exchanger 105 of this embodiment are connected in series as shown in FIG. 2 to cool the compressed hydrogen gas over three steps. . In this embodiment, cooling the compressed hydrogen gas by three-stage heat exchange including three heat exchangers is described as an example, but the number of heat exchange stages is not limited thereto.

또한, 본 실시예에 따르면 제3 열교환기(105)에서 냉매와의 열교환에 의해 초저온으로 냉각된 수소 기체는, 줄-톰슨 밸브(106)에 의해 팽창되면서 압력 및 온도가 낮아져 포화상태가 되며, 포화 액체 상태와 포화 기체 상태가 공존하는 2상(2-phase)의 수소가 된다.In addition, according to the present embodiment, the hydrogen gas cooled to a very low temperature by heat exchange with the refrigerant in the third heat exchanger 105 is expanded by the Joule-Thomson valve 106 and the pressure and temperature are lowered to become saturated, It becomes a two-phase hydrogen in which a saturated liquid state and a saturated gas state coexist.

본 실시예에 따르면, 줄-톰슨 밸브(106)에 의해 생성된 액체 상태의 액화수소를, 액화되지 않은 포화 수소 기체로부터 분리하는 기액 분리기(107);를 더 포함할 수 있다. According to this embodiment, a gas-liquid separator 107 for separating the liquid hydrogen generated by the Joule-Thompson valve 106 from the non-liquefied saturated hydrogen gas; may further include.

기액 분리기(107)에서 기액 분리된 액체 상태의 액화수소는 수소 저장탱크 또는 수소 수요처로 공급되고, 기액 분리기(107)에서 기액분리된 기체 상태의 포화 수소는 열교환기(103, 104, 105)로 공급되어 압축 수소 기체를 냉각시키는 냉매로 활용될 수 있다. Liquid hydrogen in the gas-liquid state separated by the gas-liquid separator 107 is supplied to a hydrogen storage tank or a hydrogen demander, and the gas-liquid saturated hydrogen separated by the gas-liquid separator 107 is transferred to the heat exchangers 103, 104, and 105. It can be supplied and used as a refrigerant to cool the compressed hydrogen gas.

즉, 본 실시예의 기액 분리기(107)에서 기액 분리된 기체 상태의 포화 수소는 압축 수소를 자가 냉각시키는 자가 냉매로 활용될 수 있다. That is, the gas-liquid saturated hydrogen separated in the gas-liquid separator 107 of the present embodiment may be utilized as a self-cooling refrigerant for self-cooling the compressed hydrogen.

도 2에 도시된 바와 같이, 기액 분리기(107)에서 기액 분리된 기체 상태의 수소는, 제3 열교환기(105)에서 압축 수소 기체를 냉각시키면서 1차로 냉열이 회수되고, 제2 열교환기(104)에서 2차로 냉열이 회수되며, 제1 열교환기(103)에서 3차로 냉열이 회수된 후, 수소 압축기(101)로 공급되는 수소 기체 흐름에 합류될 수 있다. As shown in FIG. 2 , the gas-liquid hydrogen separated in the gas-liquid separator 107 is primarily recovered as cooling heat while cooling the compressed hydrogen gas in the third heat exchanger 105 , and the second heat exchanger 104 . ) in the secondary cooling heat is recovered, and after the cooling heat is recovered in the third in the first heat exchanger 103 , it may be joined to the hydrogen gas flow supplied to the hydrogen compressor 101 .

또한, 제1 열교환기(103)에서 3차로 냉열이 회수된 수소 기체는 수소 예냉기(102)에서 냉열이 더 회수된 후 수소 압축기(101)로 재순환될 수 있다. In addition, the hydrogen gas from which cooling heat is recovered tertiarily in the first heat exchanger 103 may be recycled to the hydrogen compressor 101 after cooling heat is further recovered in the hydrogen precooler 102 .

즉, 본 실시예의 제1 열교환기(103), 제2 열교환기(104) 및 제3 열교환기(105)는 압축 수소 기체와, 냉매와, 기액분리기(107)에서 분리된 포화 수소 기체가 열교환하여, 냉매와 포화 수소 기체는 냉열이 회수되고, 압축 수소 기체는 냉매와 포화 수소 기체의 냉열에 의해 냉각되는, 적어도 3개 이상의 흐름이 열교환하는 3 스트림 또는 4 스트림 열교환기일 수 있다.That is, in the first heat exchanger 103 , the second heat exchanger 104 , and the third heat exchanger 105 of this embodiment, the compressed hydrogen gas, the refrigerant, and the saturated hydrogen gas separated in the gas-liquid separator 107 exchange heat exchange. Thus, cooling heat is recovered from the refrigerant and the saturated hydrogen gas, and the compressed hydrogen gas is cooled by the cooling heat of the refrigerant and the saturated hydrogen gas.

또한, 본 실시예의 수소 예냉기(102)는, 압축 수소 기체와, 공기 발전부로부터 이송된 액체 공기와, 기액분리기(107)에서 분리되고 제3 열교환기(105), 제2 열교환기(104) 및 제1 열교환기(103)에서 순차적으로 열교환하면서 온도가 높아진 수소 기체가 열교환하여 압축 수소 기체가 냉각되는 3 스트림 열교환기일 수 있다. In addition, in the hydrogen precooler 102 of this embodiment, compressed hydrogen gas, liquid air transferred from the air power generation unit, and the gas-liquid separator 107 are separated in the third heat exchanger 105 and the second heat exchanger 104 . ) and the first heat exchanger 103 may be a three-stream heat exchanger in which the compressed hydrogen gas is cooled by heat-exchanging the hydrogen gas, which has increased in temperature while sequentially heat-exchanging it.

본 실시예에 따르면, 수소 기체는, 수소 라인(HL)을 따라 수소 압축기(101), 수소 예냉기(102), 제1 열교환기(103), 제2 열교환기(104), 제3 열교환기(105) 및 줄-톰슨 밸브(106)를 순차적으로 거쳐 액화된 후, 기액분리기(107)로 공급된다. 또한, 기액분리기(107)에서 분리된 액체 수소는 수소 저장소 또는 수소 수요처로 공급되고, 분리된 기체 수소는 수소 회수라인(GL)을 따라 제3 열교환기(105), 제2 열교환기(104), 제1 열교환기(103) 및 수소 예냉기(102)를 순차적으로 거치면서 수소 라인(HL)을 따라 유동하는 수소 기체를 자가 냉각시킨 후, 수소 압축기(101) 상류에서 수소 라인(HL)으로 합류된다. According to this embodiment, the hydrogen gas is a hydrogen compressor 101 , a hydrogen precooler 102 , a first heat exchanger 103 , a second heat exchanger 104 , and a third heat exchanger along the hydrogen line HL. After being liquefied sequentially through 105 and Joule-Thompson valve 106 , it is supplied to the gas-liquid separator 107 . In addition, the liquid hydrogen separated in the gas-liquid separator 107 is supplied to a hydrogen storage or a hydrogen demand source, and the separated gaseous hydrogen is a third heat exchanger 105 and a second heat exchanger 104 along the hydrogen recovery line GL. , after self-cooling the hydrogen gas flowing along the hydrogen line HL while sequentially passing through the first heat exchanger 103 and the hydrogen precooler 102 , from the upstream of the hydrogen compressor 101 to the hydrogen line HL are joined

한편, 본 실시예의 냉매 순환부는, 냉매를 압축하는 냉매 압축기(122); 압축 냉매를 액체 공기와의 열교환에 의해 예냉시키는 냉매 예냉기(121); 및 팽창에 의해 압축 냉매의 압력 및 온도를 낮추는 냉매 팽창기(123, 124);를 포함한다.On the other hand, the refrigerant circulation unit of the present embodiment, the refrigerant compressor 122 for compressing the refrigerant; a refrigerant pre-cooler 121 for pre-cooling the compressed refrigerant by heat exchange with liquid air; and refrigerant expanders 123 and 124 for lowering the pressure and temperature of the compressed refrigerant by expansion.

본 실시예에서 냉매 순환부를 순환하는 냉매는 헬륨(He)일 수 있다. In this embodiment, the refrigerant circulating in the refrigerant circulation unit may be helium (He).

또한, 냉매 압축기(122)와 냉매 예냉기(121) 사이에는, 냉매 압축기(122)에서 압축에 의해 온도가 높아진 압축 냉매를 냉각시키는 중간 냉각기(131);를 더 포함할 수 있고, 중간 냉각기(131)에 의해 냉각된 냉매는 냉매 라인(ML)을 따라 냉매 예냉기(121)로 공급될 수 있다. In addition, between the refrigerant compressor 122 and the refrigerant precooler 121, an intermediate cooler 131 for cooling the compressed refrigerant whose temperature is increased by compression in the refrigerant compressor 122; may further include, and the intermediate cooler ( The refrigerant cooled by 131 may be supplied to the refrigerant precooler 121 along the refrigerant line ML.

본 실시예에 따르면, 냉매 압축기(122)에 의해 압축된 헬륨은 중간 냉각기(131)에서 저온 냉각 매체와의 열교환에 의해 상온까지 냉각될 수 있다. According to this embodiment, the helium compressed by the refrigerant compressor 122 may be cooled to room temperature by heat exchange with a low-temperature cooling medium in the intermediate cooler 131 .

본 실시예의 중간 냉각기(131)에서 압축 냉매를 냉각시키는 저온 냉각 매체는 저온 냉각수(CW; Cooling Water)일 수 있다. The low-temperature cooling medium for cooling the compressed refrigerant in the intermediate cooler 131 of this embodiment may be low-temperature cooling water (CW).

중간 냉각기(131)에서 냉각된 헬륨은, 냉매 예냉기(121)에서 공기 발전부로부터 이송된 액체 공기와의 열교환에 의해 예냉된다.The helium cooled by the intermediate cooler 131 is precooled by heat exchange with liquid air transferred from the air generator in the refrigerant precooler 121 .

냉매 예냉기(121)에서 액체 공기와의 열교환에 의해 냉각된 헬륨은 열교환기(103, 104, 105)로 공급되어 압축 수소 기체와의 열교환에 의해 압축 수소 기체를 냉각시키면서 냉열이 회수된다.The helium cooled by heat exchange with liquid air in the refrigerant precooler 121 is supplied to the heat exchangers 103, 104, and 105, and cooling heat is recovered while cooling the compressed hydrogen gas by heat exchange with the compressed hydrogen gas.

열교환기(103, 104, 105)에서 냉열이 회수되면서 온도가 높아진 헬륨은 냉매 팽창기(123, 124)에 의해 팽창되면서 압력 및 온도가 낮아지고, 냉매 팽창기(123, 124)에 의해 팽창되면서 압력 및 온도가 낮아진 저온의 헬륨은 열교환기(103, 104, 105)에서 냉열이 더 회수된다. Helium, which has increased in temperature as the cooling heat is recovered from the heat exchangers 103, 104, and 105, is expanded by the refrigerant expanders 123 and 124, and the pressure and temperature are decreased, and the pressure and In the low-temperature helium having a lowered temperature, cold heat is further recovered in the heat exchangers 103 , 104 , and 105 .

열교환기(103, 104, 105)에서 냉열이 회수된 헬륨은 압축 헬륨을 냉각시키기 위한 자가 냉매로서 냉매 예냉기(121)로 공급되어 나머지 냉열이 더 회수된 후, 냉매 압축기(122)로 재순환되는 사이클을 형성할 수 있다. The helium from which the cooling heat is recovered in the heat exchangers 103, 104, and 105 is supplied to the refrigerant precooler 121 as a self-refrigerant for cooling the compressed helium, and after the remaining cooling heat is further recovered, it is recycled to the refrigerant compressor 122. cycle can be formed.

즉, 본 실시예에서 열교환기(103, 104, 105)는, 압축 수소 기체와, 냉매 예냉기(121)에서 예냉된 냉매와, 냉매 팽창기(123, 124)에서 팽창된 냉매와, 기액분리기(107)에서 분리된 포화 수소 기체가 열교환하여, 냉매 및 포화 수소 기체는 냉열이 회수되고, 압축 수소 기체는 냉매와 포화 수소 기체의 냉열에 의해 냉각되는 3 스트림 열교환기 또는 4 스트림 열교환기일 수 있다. That is, in the present embodiment, the heat exchangers 103, 104, and 105 include compressed hydrogen gas, the refrigerant pre-cooled in the refrigerant precooler 121, the refrigerant expanded in the refrigerant expanders 123 and 124, and the gas-liquid separator ( 107), the saturated hydrogen gas exchanges heat, cooling heat is recovered from the refrigerant and the saturated hydrogen gas, and the compressed hydrogen gas may be a three-stream heat exchanger or a four-stream heat exchanger cooled by the cooling heat of the refrigerant and saturated hydrogen gas.

본 실시예의 냉매 팽창기(123, 124)는, 냉매 예냉기(121)에서 예냉되고 제1 열교환기(103)에서 열교환 후 온도가 상승한 헬륨을 팽창시키는 제1 냉매 팽창기(123); 및 제1 냉매 팽창기(123)에서 팽창된 후 제2 열교환기(104)에서 열교환하면서 온도가 상승한 헬륨을 팽창시키는 제2 냉매 팽창기(124);를 포함할 수 있다. The refrigerant expanders 123 and 124 of this embodiment include: a first refrigerant expander 123 which is pre-cooled in the refrigerant pre-cooler 121 and expands helium whose temperature rises after heat exchange in the first heat exchanger 103; and a second refrigerant expander 124 that expands helium whose temperature rises while exchanging heat in the second heat exchanger 104 after being expanded in the first refrigerant expander 123 .

즉, 본 실시예에서 냉매 예냉기(121)에서 액체 공기의 냉열에 의해 냉각된 헬륨은, 제1 열교환기(103)로 공급되어 냉열이 회수된 후, 제1 냉매 팽창기(123)로 공급되어 1차로 팽창된다. 제1 냉매 팽창기(123)에서 팽창된 1차 팽창 헬륨은 제2 열교환기(104)로 공급되어 냉열이 회수된 후, 제2 냉매 팽창기(124)로 공급되어 2차로 팽창된다. 제2 냉매 팽창기(124)에서 팽창된 초저온의 2차 팽창 헬륨은 제3 열교환기(105)로 공급되어 냉열이 회수된 후, 제2 열교환기(104) 및 제1 열교환기(103)를 순차적으로 통과하면서 냉열이 더 회수된다. 제1 열교환기(103)로 부터 배출되는 2차 팽창 헬륨은 헬륨 예냉기(121)에서 냉열이 더 회수된 후 냉매 압축기(122)로 재순환된다. That is, in the present embodiment, the helium cooled by the cooling heat of liquid air in the refrigerant precooler 121 is supplied to the first heat exchanger 103 and the cooling heat is recovered, and then supplied to the first refrigerant expander 123 and expands by one. The primary expanded helium expanded in the first refrigerant expander 123 is supplied to the second heat exchanger 104 to recover cooling heat, and then is supplied to the second refrigerant expander 124 to be secondarily expanded. The cryogenic secondary expanded helium expanded in the second refrigerant expander 124 is supplied to the third heat exchanger 105 to recover cold heat, and then the second heat exchanger 104 and the first heat exchanger 103 are sequentially connected to each other. As it passes through, more cold heat is recovered. The secondary expanded helium discharged from the first heat exchanger 103 is recirculated to the refrigerant compressor 122 after cooling heat is further recovered in the helium precooler 121 .

본 실시예의 냉매 예냉기(121)는, 액체 공기와, 2차 팽창 헬륨과, 압축 헬륨이 열교환하여, 압축 헬륨을 냉각시키는 3 스트림 열교환기일 수 있다. The refrigerant precooler 121 of this embodiment may be a three-stream heat exchanger in which liquid air, secondary expanded helium, and compressed helium exchange heat to cool compressed helium.

본 실시예의 제1 열교환기(103)에서는, 수소 예냉기(102)에서 액체 수소와의 열교환에 의해 예냉된 예냉 수소; 기액 분리기(107)에서 분리된 후 제3 열교환기(105) 및 제2 열교환기(104)에서 순차적으로 냉열이 회수된 포화 기체 수소; 냉매 예냉기(121)에서 액체 공기와의 열교환에 의해 예냉된 예냉 헬륨; 및 제2 냉매 팽창기(124)에서 팽창된 후 제3 열교환기(105) 및 제2 열교환기(104)에서 순차적으로 냉열이 회수된 2차 팽창 헬륨;이 열교환하여, 예냉 수소를 냉각시킨다. In the first heat exchanger 103 of this embodiment, precooled hydrogen precooled by heat exchange with liquid hydrogen in the hydrogen precooler 102; Saturated gas hydrogen from which cooling heat is sequentially recovered in the third heat exchanger 105 and the second heat exchanger 104 after being separated in the gas-liquid separator 107; precooled helium precooled by heat exchange with liquid air in the refrigerant precooler 121; and secondary expanded helium in which cooling heat is sequentially recovered in the third heat exchanger 105 and the second heat exchanger 104 after being expanded in the second refrigerant expander 124; heat exchange and cool the precooled hydrogen.

본 실시예의 제2 열교환기(104)에서는, 제1 열교환기(103)에서 1차로 냉각된 1차 냉각 수소; 기액분리기(107)에서 분리된 후 제3 열교환기(105)에서 1차로 냉열이 회수된 포화 기체 수소; 제1 냉매 팽창기(123)에서 팽창된 1차 팽창 헬륨; 및 제2 냉매 팽창기(124)에서 2차로 팽창된 후 제3 열교환기(105)에서 1차로 냉열이 회수된 2차 팽창 헬륨;이 열교환하여, 1차 냉각 수소를 냉각시킨다. In the second heat exchanger 104 of this embodiment, the primary cooling hydrogen primarily cooled in the first heat exchanger 103; After being separated in the gas-liquid separator 107, saturated gas hydrogen from which the cooling heat is primarily recovered in the third heat exchanger 105; first expanded helium expanded in the first refrigerant expander 123; and secondary expanded helium from which cooling heat is primarily recovered in the third heat exchanger 105 after being secondarily expanded in the second refrigerant expander 124; by heat exchange, the primary cooled hydrogen is cooled.

또한, 본 실시예의 제3 열교환기(105)에서는, 제2 열교환기(104)에서 2차로 냉각된 2차 냉각 수소; 기액분리기(107)에서 분리된 포화 기체 수소; 및 제2 냉매 팽창기(124)에서 2차로 팽창된 2차 팽창 헬륨;이 열교환하여, 2차 냉각 수소를 초저온으로 냉각시킨다. In addition, in the third heat exchanger 105 of the present embodiment, the secondary cooling hydrogen secondarily cooled in the second heat exchanger 104; saturated gas hydrogen separated in the gas-liquid separator 107; and secondary expanded helium, which is secondarily expanded in the second refrigerant expander 124; heat exchange, and cool the secondary cooling hydrogen to a very low temperature.

본 실시예에 따르면, 냉매 순환부를 순환하는 냉매, 즉 본 실시예에서 헬륨은, 냉매 라인(ML)을 따라 유동하며, 냉매 압축기(122)에서 압축되고, 중간 냉각기(131)에서 냉각된 후, 냉매 예냉기(121)에서 예냉되고, 제1 열교환기(103)에서 냉열이 회수되며, 제1 냉매 팽창기(123)에서 팽창된 후 제2 열교환기(104)에서 냉열이 회수되고, 제2 냉매 팽창기(124)에서 팽창된 후 제3 열교환기(105), 제2 열교환기(104) 및 제1 열교환기(103)에서 순차적으로 냉열이 회수되며, 그 후 냉매 예냉기(121)에서 헬륨을 자가 냉각시킨 후 다시 냉매 압축기(122)로 재순환된다. According to this embodiment, the refrigerant circulating in the refrigerant circulation unit, that is, helium in this embodiment, flows along the refrigerant line ML, is compressed in the refrigerant compressor 122, and cooled in the intermediate cooler 131, The refrigerant is pre-cooled in the pre-cooler 121 , the cooling heat is recovered in the first heat exchanger 103 , and the cooling heat is recovered in the second heat exchanger 104 after being expanded in the first refrigerant expander 123 , and the second refrigerant After being expanded in the expander 124 , cooling heat is sequentially recovered in the third heat exchanger 105 , the second heat exchanger 104 , and the first heat exchanger 103 , and then helium is produced in the refrigerant precooler 121 . After self-cooling, it is recirculated back to the refrigerant compressor 122 .

본 실시예의 공기 액화 및 발전부는, 공기를 액화시키는 공기 액화기(201); 공기 액화기(201)에 의해 액화된 액체 공기를 저장하는 액체공기 저장소(202); 액체공기 저장소(202)에 저장된 액체 공기를 수소 예냉기(102) 및 냉매 예냉기(121) 중 어느 하나 이상의 냉매로서 공급하는 펌프(203); 및 수소 예냉기(102) 및 냉매 예냉기(121) 중 어느 하나 이상에서 냉열이 회수되어 온도가 상승한 공기를 작동유체로 사용하여 구동되는 공기 터빈(206); 및 공기 터빈(206)에 연결되어 공기 터빈(206)의 구동력으로 전력을 생산하는 발전기(207);를 포함한다. Air liquefaction and power generation unit of this embodiment, the air liquefier 201 for liquefying air; a liquid air reservoir 202 for storing liquid air liquefied by the air liquefier 201; a pump 203 for supplying the liquid air stored in the liquid air reservoir 202 as a refrigerant of any one or more of the hydrogen precooler 102 and the refrigerant precooler 121; and an air turbine 206 driven by using, as a working fluid, air whose temperature is increased by recovering cooling heat from at least one of the hydrogen precooler 102 and the refrigerant precooler 121 ; and a generator 207 connected to the air turbine 206 to generate electric power using the driving force of the air turbine 206 .

또한, 본 실시예의 펌프(203)와 공기 터빈(206) 사이에는, 수소 예냉기(102) 및 냉매 예냉기(121) 중 어느 하나 이상에서 냉열이 회수되어 온도가 상승한 액체 공기의 냉열을 더 회수하는 공기 열교환기(205);를 더 포함할 수 있다. 이때, 공기 열교환기(205)에서 냉열이 회수되면서 온도가 상승한 공기가 공기 터빈(206)으로 공급될 수 있다. In addition, between the pump 203 and the air turbine 206 of this embodiment, cooling heat is recovered from any one or more of the hydrogen precooler 102 and the refrigerant precooler 121 to further recover the cooling heat of the liquid air whose temperature has risen. It may further include an air heat exchanger (205). At this time, the air having a temperature increased while the cooling heat is recovered from the air heat exchanger 205 may be supplied to the air turbine 206 .

본 실시예의 공기 액화부(201)는, 대기 중의 공기를 여과시켜 불순물을 제거하는 여과부(미도시); 여과부에서 여과된 공기를 압축하는 압축부(미도시); 압축부에 의해 압축된 압축 공기를 냉각시키는 냉각부(미도시); 및 냉각부에 의해 냉각된 압축 공기를 팽창시키는 팽창부(미도시);를 포함할 수 있다. 그러나 이에 한정하는 것은 아니며, 공기를 액화시키는 공정에 따라 그 구성은 달라질 수 있다. The air liquefaction unit 201 of this embodiment includes a filtering unit (not shown) for filtering air in the atmosphere to remove impurities; a compression unit (not shown) for compressing the air filtered by the filter unit; a cooling unit (not shown) for cooling the compressed air compressed by the compression unit; and an expansion unit (not shown) for expanding the compressed air cooled by the cooling unit. However, the present invention is not limited thereto, and the configuration may vary depending on the process of liquefying air.

한편, 본 실시예의 공기 액화부(201)에서 공기를 액화시키는데 필요한 전력은, 계내, 예를 들어 발전기(207)에서 생성된 후 전력 수요처에서 사용하고 남은 잉여 전력 또는 재생 에너지를 이용하여 생성한 친환경 에너지를 사용한다. On the other hand, the electric power required to liquefy the air in the air liquefaction unit 201 of the present embodiment is generated using the surplus power or renewable energy remaining after being generated in the system, for example, by the generator 207 and used by the power demander. use energy.

공기 액화기(201)에 의해 생성된 액체 공기는 공기 라인(AL)을 따라 액체 공기 저장소(202)로 이송되며 액체 공기 저장소(202)에 저장된다. 본 실시예의 액체 공기 저장소(202)에 저장되는 액체 공기의 온도는 약 79K일 수 있고, 압력은 약 0.1 MPa(1기압)일 수 있다. The liquid air produced by the air liquefier 201 is transferred along an air line AL to a liquid air reservoir 202 and is stored in the liquid air reservoir 202 . The temperature of the liquid air stored in the liquid air reservoir 202 of this embodiment may be about 79K, and the pressure may be about 0.1 MPa (1 atm).

액체 공기 저장소(202)로부터 공기 라인(AL)을 따라 배출되는 액체 공기는 펌프(203)에 의해 압축되며, 수소 예냉기(102) 및 냉매 예냉기(121)로 각각 냉매로서 공급된다. Liquid air discharged from the liquid air reservoir 202 along the air line AL is compressed by the pump 203 and supplied as a refrigerant to the hydrogen precooler 102 and the refrigerant precooler 121 , respectively.

본 실시예에 따르면, 공기 라인(AL)은 펌프(203)의 하류에서 수소 예냉기(102)로 연결되는 제1 공기라인(AL1); 및 냉매 예냉기(121)로 연결되는 제2 공기라인(AL2);으로 분기되며, 펌프(203)에 의해 압축된 액체 공기는 제1 공기라인(AL1)과 제2 공기라인(AL2)으로 각각 분기되어 이송된다. According to this embodiment, the air line AL is downstream of the pump 203 . a first air line (AL1) connected to the hydrogen precooler (102); and a second air line AL2 connected to the refrigerant precooler 121; and the liquid air compressed by the pump 203 is divided into a first air line AL1 and a second air line AL2, respectively. branched and transported.

수소 예냉기(102)에서 수소를 예냉시키면서 냉열이 회수된 공기는 제1 공기라인(AL1)을 따라 공기 열교환기(205)로 이송된다. Air recovered from cooling heat while precooling hydrogen in the hydrogen precooler 102 is transferred to the air heat exchanger 205 along the first air line AL1.

또한, 냉매 예냉기(121)에서 냉매를 예냉시키면서 냉열이 회수된 공기는 제2 공기라인(AL2)을 따라 공기 열교환기(205)로 이송된다. In addition, the air recovered from cooling heat while pre-cooling the refrigerant in the refrigerant precooler 121 is transferred to the air heat exchanger 205 along the second air line AL2 .

본 실시예에 따르면, 제1 공기라인(AL1)과 제2 공기라인(AL1)은 공기 열교환기(205)의 상류에서 하나의 공기 라인(AL)으로 합쳐질 수 있다. According to this embodiment, the first air line AL1 and the second air line AL1 may be combined into one air line AL upstream of the air heat exchanger 205 .

본 실시예의 공기 열교환기(205)는 수소 예냉기(102) 및 냉매 예냉기(121)에서 냉열이 회수된 액체 공기의 냉열을 더 회수하여 액체 공기를 기화시킨다. The air heat exchanger 205 of this embodiment further recovers the cooling heat of the liquid air recovered from the cooling heat in the hydrogen precooler 102 and the refrigerant precooler 121 to vaporize the liquid air.

본 실시예에 따른 공기 발전부는 공기 열교환기(205)에서 액체 공기를 기화시키면서 회수한 냉열을 저장하는 냉열 저장소(204);를 더 포함한다. The air power generation unit according to the present embodiment further includes; a cooling heat storage 204 for storing the recovered cooling heat while vaporizing liquid air in the air heat exchanger 205 .

냉열 저장소(204)에 저장된 냉열은 공기 액화기(201)에서 공기를 액화시키는데 필요한 냉열로 사용된다. 즉, 본 실시예에 따른 공기 발전부에서는 기체 공기를 자가 냉열에 의해 액화시킴으로써, 공기 액화에 필요한 에너지를 절감할 수 있다. The cooling heat stored in the cooling heat storage 204 is used as cooling heat required to liquefy the air in the air liquefier 201 . That is, in the air power generation unit according to the present embodiment, by liquefying gaseous air by self-cooling, energy required for air liquefaction can be reduced.

공기 열교환기(205)에서 기화된 공기는 공기 라인(AL)을 따라 공기 터빈(206)으로 공급되며, 전력을 생산하는 발전원으로 사용될 수 있다. Air vaporized in the air heat exchanger 205 is supplied to the air turbine 206 along the air line AL, and may be used as a power generation source for generating electric power.

본 실시예의 발전기(207)는 공기 터빈(206)의 구동력을 전력으로 변환시키는데, 발전기(207)에서 생산된 전력은 수소 압축기(101) 및/또는 냉매 압축기(122)에서 필요로 하는 전력으로 사용된다. The generator 207 of this embodiment converts the driving force of the air turbine 206 into electric power, and the electric power produced by the generator 207 is used as electric power required by the hydrogen compressor 101 and/or the refrigerant compressor 122 . do.

수소 액화 시스템의 운전 효율은 수소 1kg을 액화시키는데 소비되는 전력의 양(kWh)로 정의된다. 따라서, 본 실시예에 따르면, 발전기(207)에서 전력을 생산하고, 생산된 전력을 수소 액화에 활용함으로써 전체 소비 전력을 절감시킬 수 있으므로, 수소 액화 시스템의 운전 효율을 높일 수 있다. The operating efficiency of a hydrogen liquefaction system is defined as the amount of power (kWh) consumed to liquefy 1 kg of hydrogen. Therefore, according to the present embodiment, since the electric power is generated by the generator 207 and the total power consumption can be reduced by using the produced electric power for hydrogen liquefaction, it is possible to increase the operating efficiency of the hydrogen liquefaction system.

다음으로, 도 3을 참조하여, 본 발명의 제2 실시예에 따른 수소 액화 시스템 및 방법을 설명하기로 한다. Next, with reference to FIG. 3, a hydrogen liquefaction system and method according to a second embodiment of the present invention will be described.

본 실시예에 따른 수소 액화 시스템은, 상술한 제1 실시예의 변형예로서, 공기 과열기(211)를 더 포함한다는 점에서 제1 실시예와 차이가 있다. 이하, 제1 실시예와의 차이점을 중점적으로 설명하기로 하며, 나머지 동일한 구성요소에 대해서는 그 설명을 생략하고 제1 실시예가 동일하게 적용될 수 있다. The hydrogen liquefaction system according to the present embodiment is different from the first embodiment in that it further includes an air superheater 211 as a modification of the first embodiment described above. Hereinafter, differences from the first embodiment will be mainly described, and descriptions of the remaining identical components will be omitted, and the first embodiment may be equally applied.

본 실시예에 따른 공기 발전부는, 공기 열교환기(205)에서 냉열이 회수된 공기를 더 가열하는 공기 과열기(211);를 더 포함한다. The air power generation unit according to the present embodiment further includes an air superheater 211 for further heating the air recovered from the cooling heat in the air heat exchanger 205 .

본 실시예에 따르면, 공기 열교환기(205)에서 기화된 공기는 공기 라인(AL)을 따라 공기 과열기(211)로 공급되며, 공기 과열기(211)에서 가열된 공기는 공기 라인(AL)을 따라 공기 터빈(206)으로 공급된다. According to this embodiment, the air vaporized in the air heat exchanger 205 is supplied to the air superheater 211 along the air line AL, and the air heated in the air superheater 211 is supplied along the air line AL. It is fed to an air turbine 206 .

이와 같이 공기 터빈(206)으로 공급되는 공기를 공기 과열기(211)에서 더 가열시켜 공급함으로써 공기 터빈(206)의 효율을 높일 수 있다. As described above, the efficiency of the air turbine 206 may be increased by further heating and supplying the air supplied to the air turbine 206 by the air superheater 211 .

본 실시예의 공기 과열기(211)에서 공기를 가열하는 열원은, 냉매 순환부의 중간 냉각기(131)에서 압축된 냉매를 냉각시키면서 온도가 상승한 고온의 냉각 매체, 즉 본 실시예에서 고온 냉각수(HW; Hot water)일 수 있다. The heat source for heating the air in the air superheater 211 of this embodiment is a high-temperature cooling medium whose temperature rises while cooling the refrigerant compressed in the intermediate cooler 131 of the refrigerant circulation unit, that is, high-temperature cooling water (HW; Hot) in this embodiment. water) may be

공기 과열기(211)에서는, 공기 열교환기(205)로부터 이송된 공기와 중간 냉각기(131)에서 헬륨에 의해 가열된 고온 냉각수(HW)가 열교환하여 공기는 상온 이상으로 가열되고, 고온 냉각수(HW)는 냉각된다. In the air superheater 211, the air transferred from the air heat exchanger 205 and the high-temperature coolant (HW) heated by helium in the intermediate cooler 131 exchange heat exchange, so that the air is heated to room temperature or higher, and the high-temperature coolant (HW) is cooled

다음으로, 도 4를 참조하여, 본 발명의 제3 실시예에 따른 수소 액화 시스템 및 방법을 설명하기로 한다. Next, with reference to FIG. 4, a hydrogen liquefaction system and method according to a third embodiment of the present invention will be described.

본 실시예에 따른 수소 액화 시스템은, 상술한 제2 실시예의 변형예로서, 공기 터빈(206)에서 팽창된 공기를 인근 건물(222)의 공조용으로 사용한다는 점에서 제2 실시예와 차이가 있다. 이하, 제2 실시예와의 차이점을 중점적으로 설명하기로 하며, 나머지 동일한 구성요소에 대해서는 그 설명을 생략하고 제2 실시예가 동일하게 적용될 수 있다. The hydrogen liquefaction system according to this embodiment is a modified example of the second embodiment described above, and is different from the second embodiment in that the air expanded by the air turbine 206 is used for air conditioning of a nearby building 222 . there is. Hereinafter, differences from the second embodiment will be mainly described, and descriptions of the remaining identical components will be omitted, and the second embodiment may be equally applied.

본 실시예에 따른 수소 액화 시스템은, 공기 터빈(206)을 구동시키면서 온도 및 압력이 낮아진 청정 공기를 지역 냉방이나 지역 난방과 같은 건물(222)의 공조를 위해 사용되는 공조용 열교환기(221)에서 냉난방용 열원을 제공하는 용도로 사용할 수 있다. 또는, 환기용 공기로서 건물(222)로 직접 공급될 수 있다. The hydrogen liquefaction system according to the present embodiment is an air-conditioning heat exchanger 221 used for air conditioning of the building 222, such as district cooling or district heating, with clean air having a lower temperature and pressure while driving the air turbine 206. It can be used to provide a heat source for heating and cooling. Alternatively, it may be directly supplied to the building 222 as ventilation air.

본 실시예의 공기 터빈(206)을 구동시킨 후 배출되는 공기의 온도는 약 265K 내지 325K일 수 있다.The temperature of the air discharged after driving the air turbine 206 of the present embodiment may be about 265K to 325K.

상술한 바와 같이, 본 발명에 따른 수소 액화 시스템 및 방법은, 수소 및 냉매의 예냉을 위하여 액체 공기를 사용함으로써 종래의 예냉 방법에 비해 수소 액화 시스템의 설치 부지에 대한 지역적인 제한을 거의 받지 않을 수 있다.As described above, the hydrogen liquefaction system and method according to the present invention use liquid air for pre-cooling of hydrogen and refrigerant, so that there are few regional restrictions on the installation site of the hydrogen liquefaction system compared to the conventional pre-cooling method. there is.

또한, 예냉에 사용된 공기를 이용하여 전기를 생산하여 수소 압축기 및 냉매 압축기를 구동시키는데 사용함으로써, 수소 액화 시스템의 운전 효율을 높일 수 있다.In addition, by using the air used for pre-cooling to generate electricity and use it to drive a hydrogen compressor and a refrigerant compressor, it is possible to increase the operating efficiency of the hydrogen liquefaction system.

또한, 발전에 사용된 청정 공기는 지역 냉방이나 난방 및 환기와 같은 수소 액화 시스템 인근의 건물 또는 지역을 위한 친환경적인 공조에 활용될 수 있다. In addition, the clean air used for power generation can be utilized for environmentally friendly air conditioning for buildings or areas near the hydrogen liquefaction system, such as district cooling or heating and ventilation.

본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다. The present invention is not limited to the above embodiments, and it is apparent to those of ordinary skill in the art that various modifications or variations can be implemented without departing from the technical gist of the present invention. did it

101 : 수소 압축기 102 : 수소 예냉기
103 : 제1 열교환기 104 : 제2 열교환기
105 : 제3 열교환기 106 : 줄-톰슨 밸브
107 : 기액 분리기
121 : 냉매 예냉기 122 : 냉매 압축기
123 : 제1 냉매 팽창기 124 : 제2 냉매 팽창기
131 : 중간 냉각기
201 : 공기 액화기 202 : 액체 공기 저장소
203 : 펌프 204 : 냉열저장소
205 : 공기 열교환기 206 : 공기 터빈
207 : 발전기 211 : 공기과열기
221 : 공조용 열교환기 222 : 건물
101: hydrogen compressor 102: hydrogen precooler
103: first heat exchanger 104: second heat exchanger
105: third heat exchanger 106: Joule-Thompson valve
107: gas-liquid separator
121: refrigerant precooler 122: refrigerant compressor
123: first refrigerant expander 124: second refrigerant expander
131: intermediate cooler
201 air liquefier 202 liquid air reservoir
203: pump 204: cold storage
205: air heat exchanger 206: air turbine
207: generator 211: air superheater
221: heat exchanger for air conditioning 222: building

Claims (14)

수소 기체를 액화시키는 수소 액화부;
상기 수소 기체를 냉각시키기 위한 냉매를 순환시키는 냉매 순환부; 및
액체 공기를 이용하여 수소 및 냉매에 냉열을 제공하고, 상기 냉열이 제공하면서 온도가 높아진 공기를 이용하여 전력을 생산하는 공기 발전부;를 포함하는, 수소 액화 시스템.
a hydrogen liquefaction unit for liquefying hydrogen gas;
a refrigerant circulation unit circulating a refrigerant for cooling the hydrogen gas; and
A hydrogen liquefaction system comprising a; providing cooling heat to hydrogen and a refrigerant by using liquid air, and generating electric power using the air whose temperature is increased while the cooling heat is provided.
청구항 1에 있어서,
상기 수소 액화부는,
상기 액화시킬 수소를 압축하는 수소 압축기;를 포함하고,
상기 냉매 순환부는,
상기 냉매를 압축하는 냉매 압축기;를 포함하며,
상기 공기 발전부에서 생산된 전력은 상기 수소 압축기 및 냉매 압축기를 구동시키는 전력으로 사용되는, 수소 액화 시스템.
The method according to claim 1,
The hydrogen liquefaction unit,
Including; a hydrogen compressor for compressing the hydrogen to be liquefied;
The refrigerant circulation unit,
Including; a refrigerant compressor for compressing the refrigerant;
Power generated by the air power generation unit is used as power to drive the hydrogen compressor and the refrigerant compressor, hydrogen liquefaction system.
청구항 2에 있어서,
상기 냉매 순환부는,
상기 냉매 압축기에 의해 압축된 냉매를 냉각 매체와의 열교환에 의해 냉각시키는 중간 냉각기; 및
상기 중간 냉각기에서 냉각된 냉매와 상기 액체 공기를 열교환시켜 상기 냉매를 예냉시키는 냉매 예냉기;를 더 포함하는, 수소 액화 시스템.
3. The method according to claim 2,
The refrigerant circulation unit,
an intermediate cooler for cooling the refrigerant compressed by the refrigerant compressor by heat exchange with a cooling medium; and
The hydrogen liquefaction system further comprising a; refrigerant precooler for pre-cooling the refrigerant by exchanging the liquid air with the refrigerant cooled in the intermediate cooler.
청구항 3에 있어서,
상기 공기 발전부는,
상기 수소 및/또는 냉매를 냉각시키면서 온도가 높아진 공기를 가열하는 공기 과열기;를 포함하고,
상기 공기 과열기에서는,
상기 공기와, 상기 중간 냉각기에서 압축된 냉매를 냉각시키면서 온도가 높아진 고온의 냉각 매체가 열교환하여 상기 공기를 가열시키는, 수소 액화 시스템.
4. The method according to claim 3,
The air power generation unit,
Including a;
In the air superheater,
A hydrogen liquefaction system for heating the air by heat exchange between the air and a high-temperature cooling medium whose temperature is increased while cooling the refrigerant compressed in the intermediate cooler.
청구항 2에 있어서,
상기 공기 발전부는,
상기 수소 및/또는 냉매를 예냉시키면서 온도가 높아진 공기를 작동 유체로 하여 구동되는 공기 터빈;
상기 공기 터빈과 연결되어 상기 공기 터빈의 구동력으로 전력을 생산하는 발전기;를 더 포함하는, 수소 액화 시스템.
3. The method according to claim 2,
The air power generation unit,
an air turbine driven by using, as a working fluid, air having a temperature increased while pre-cooling the hydrogen and/or the refrigerant;
A generator connected to the air turbine to generate electric power by driving force of the air turbine; further comprising, a hydrogen liquefaction system.
청구항 5에 있어서,
상기 공기 발전부는,
상기 수소 및/또는 냉매를 냉각시키면서 온도가 높아진 액체 공기의 냉열을 더 회수하여 상기 액체 공기를 기화시켜 상기 공기 터빈으로 공급하는 공기 열교환기; 및
상기 공기 열교환기에 의해 회수된 액체 공기의 냉열을 이용하여 공기를 액화시키는 공기 액화기;를 더 포함하는, 수소 액화 시스템.
6. The method of claim 5,
The air power generation unit,
an air heat exchanger that further recovers cooling heat of liquid air whose temperature has increased while cooling the hydrogen and/or refrigerant, vaporizes the liquid air, and supplies it to the air turbine; and
The hydrogen liquefaction system further comprising a; air liquefier for liquefying air using the cooling heat of the liquid air recovered by the air heat exchanger.
청구항 5에 있어서,
상기 공기 터빈을 구동시키면서 압력 및 온도가 낮아진 공기를 인근 지역 또는 건물의 환기용 공기로 공급하는, 수소 액화 시스템.
6. The method of claim 5,
A hydrogen liquefaction system for supplying air with reduced pressure and temperature as air for ventilation of a nearby area or building while driving the air turbine.
청구항 5에 있어서,
상기 공기 터빈을 구동시키면서 압력 및 온도가 낮아진 공기를 인근 지역 또는 건물의 냉난방용 공기 또는 물과 열교환시키는 공조용 열교환기;를 더 포함하는, 수소 액화 시스템.
6. The method of claim 5,
The hydrogen liquefaction system further comprising a; air-conditioning heat exchanger for exchanging the air whose pressure and temperature have been lowered while driving the air turbine with air or water for heating and cooling of a nearby area or building.
청구항 2에 있어서,
상기 수소 액화부는,
상기 수소 압축기에 의해 압축된 수소와 상기 액체 공기를 열교환시켜 압축된 수소를 예냉하는 수소 예냉기;
상기 수소 예냉기에서 예냉된 수소를 상기 냉매와 열교환시켜 상기 수소를 냉각시키는 열교환기;
상기 열교환기에서 냉각된 수소를 팽창시켜 액화시키는 줄-톰슨 밸브; 및
상기 줄-톰슨 밸브에 의해 액화된 액체 수소와 액화되지 않은 기체 수소를 분리하는 기액 분리기;를 더 포함하고,
상기 기액 분리기에서 분리된 기체 수소는 상기 열교환기에서 상기 수소를 냉각시키는 자가 냉매로서 공급되는, 수소 액화 시스템.
3. The method according to claim 2,
The hydrogen liquefaction unit,
a hydrogen precooler for precooling the compressed hydrogen by exchanging heat with the liquid air with hydrogen compressed by the hydrogen compressor;
a heat exchanger configured to heat the hydrogen precooled in the hydrogen precooler with the refrigerant to cool the hydrogen;
a Joule-Thomson valve for expanding and liquefying hydrogen cooled in the heat exchanger; and
A gas-liquid separator for separating liquefied liquid hydrogen and non-liquefied gaseous hydrogen by the Joule-Thomson valve; further comprising,
The gaseous hydrogen separated in the gas-liquid separator is supplied as a self-refrigerant for cooling the hydrogen in the heat exchanger.
청구항 9에 있어서,
상기 냉매 순환부는,
상기 냉매 압축기에 의해 압축된 냉매와 상기 액체 공기를 열교환시켜 상기 냉매를 예냉시키는 냉매 예냉기; 및
상기 냉매 예냉기에서 냉각된 후 상기 열교환기에서 열교환하면서 온도가 높아진 냉매를 팽창시키는 냉매 팽창기;를 더 포함하고,
상기 냉매 팽창기에 의해 팽창된 냉매는 상기 열교환기에서 냉열이 더 회수된 후 상기 냉매 예냉기에서 냉매를 냉각시키는 자가 냉매로 공급되는, 수소 액화 시스템.
10. The method of claim 9,
The refrigerant circulation unit,
a refrigerant precooler for precooling the refrigerant by exchanging heat with the liquid air and the refrigerant compressed by the refrigerant compressor; and
Further comprising; a refrigerant expander that expands the refrigerant whose temperature has risen while exchanging heat in the heat exchanger after being cooled in the refrigerant precooler;
The refrigerant expanded by the refrigerant expander is supplied as a self refrigerant that cools the refrigerant in the refrigerant precooler after cooling heat is further recovered from the heat exchanger.
공기를 액화시키고,
상기 액화된 액체 공기를 액화시킬 수소와 열교환시켜 수소를 예냉시키고,
상기 예냉된 수소를 냉매 순환부를 순환하는 냉매와 열교환시켜 냉각시키며,
상기 수소와 열교환시킬 냉매는 상기 액체 공기와 열교환시켜 예냉하고,
상기 수소 및 냉매를 예냉시키기 위한 냉열을 제공하면서 온도가 높아진 공기를 작동유체로 하여 터빈을 구동시켜 전력을 생산하는, 수소 액화 방법.
liquefy air,
Pre-cooling the hydrogen by heat-exchanging the liquefied liquid air with hydrogen to be liquefied,
Cooling the pre-cooled hydrogen by heat exchange with the refrigerant circulating in the refrigerant circulation unit,
The refrigerant to exchange heat with the hydrogen is pre-cooled by heat exchange with the liquid air,
A hydrogen liquefaction method for generating electric power by driving a turbine using air having a higher temperature as a working fluid while providing cooling heat for pre-cooling the hydrogen and the refrigerant.
청구항 11에 있어서,
상기 수소 및 냉매는 예냉시키기 전에 압축하고,
상기 공기를 이용하여 생산한 전력은 상기 수소 및 냉매를 압축하는데 사용하는, 수소 액화 방법.
12. The method of claim 11,
The hydrogen and the refrigerant are compressed before pre-cooling,
Power generated by using the air is used to compress the hydrogen and the refrigerant, hydrogen liquefaction method.
청구항 12에 있어서,
상기 압축된 냉매는 저온의 냉각 매체와 열교환시켜 냉각시키고,
상기 압축된 냉매를 냉각시키면서 온도가 상승한 고온의 냉각 매체와 상기 터빈으로 공급하는 공기를 열교환시켜 상기 공기를 가열하는, 수소 액화 방법.
13. The method of claim 12,
The compressed refrigerant is cooled by heat exchange with a low-temperature cooling medium,
A hydrogen liquefaction method for heating the air by exchanging heat with a high-temperature cooling medium whose temperature has risen while cooling the compressed refrigerant and air supplied to the turbine.
청구항 11에 있어서,
상기 터빈을 구동시키면서 압력 및 온도가 낮아진 공기는 인근 지역 또는 건물의 환기용 공기로 공급하거나, 또는 냉난방용 공기 또는 물과 열교환시켜 열에너지를 회수하는, 수소 액화 방법.

12. The method of claim 11,
A method for liquefying hydrogen, wherein the air whose pressure and temperature is lowered while driving the turbine is supplied as ventilation air in a nearby area or building, or heat-exchanged with air or water for heating and cooling to recover thermal energy.

KR1020200104044A 2020-08-19 2020-08-19 Hydrogen Liquefaction System and Method KR102470782B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200104044A KR102470782B1 (en) 2020-08-19 2020-08-19 Hydrogen Liquefaction System and Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200104044A KR102470782B1 (en) 2020-08-19 2020-08-19 Hydrogen Liquefaction System and Method

Publications (2)

Publication Number Publication Date
KR20220022734A true KR20220022734A (en) 2022-02-28
KR102470782B1 KR102470782B1 (en) 2022-11-28

Family

ID=80497467

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200104044A KR102470782B1 (en) 2020-08-19 2020-08-19 Hydrogen Liquefaction System and Method

Country Status (1)

Country Link
KR (1) KR102470782B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115451647A (en) * 2022-08-29 2022-12-09 北京科技大学 Hydrogen liquefaction system integrated with liquefied air energy storage system
CN115751755A (en) * 2022-11-22 2023-03-07 北京航天试验技术研究所 Multi-combination low-temperature propellant deep supercooling integrated system and method thereof
WO2024084489A1 (en) * 2022-10-22 2024-04-25 Brise Chemicals Private Limited Power efficient hydrogen liquefaction system and process thereof using green technology
WO2024106678A1 (en) * 2022-11-17 2024-05-23 삼성이앤에이 주식회사 Hydrogen liquefaction apparatus
WO2024106679A1 (en) * 2022-11-17 2024-05-23 삼성이앤에이 주식회사 Hydrogen liquefaction device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540259A (en) * 2006-06-12 2009-11-19 リンデ アクチエンゲゼルシヤフト Hydrogen liquefaction method
KR20190101033A (en) * 2018-02-22 2019-08-30 고등기술연구원연구조합 Liquefied Air Energy Storage System and Method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540259A (en) * 2006-06-12 2009-11-19 リンデ アクチエンゲゼルシヤフト Hydrogen liquefaction method
KR20190101033A (en) * 2018-02-22 2019-08-30 고등기술연구원연구조합 Liquefied Air Energy Storage System and Method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115451647A (en) * 2022-08-29 2022-12-09 北京科技大学 Hydrogen liquefaction system integrated with liquefied air energy storage system
CN115451647B (en) * 2022-08-29 2023-08-11 北京科技大学 Hydrogen liquefaction system integrated with liquefied air energy storage system
WO2024084489A1 (en) * 2022-10-22 2024-04-25 Brise Chemicals Private Limited Power efficient hydrogen liquefaction system and process thereof using green technology
WO2024106678A1 (en) * 2022-11-17 2024-05-23 삼성이앤에이 주식회사 Hydrogen liquefaction apparatus
WO2024106679A1 (en) * 2022-11-17 2024-05-23 삼성이앤에이 주식회사 Hydrogen liquefaction device
CN115751755A (en) * 2022-11-22 2023-03-07 北京航天试验技术研究所 Multi-combination low-temperature propellant deep supercooling integrated system and method thereof
CN115751755B (en) * 2022-11-22 2024-05-17 北京航天试验技术研究所 Multi-combination low-temperature propellant deep supercooling integrated system and method thereof

Also Published As

Publication number Publication date
KR102470782B1 (en) 2022-11-28

Similar Documents

Publication Publication Date Title
KR102470782B1 (en) Hydrogen Liquefaction System and Method
US10138810B2 (en) Method and apparatus for power storage
EP2629035B1 (en) Liquefaction device and floating liquefied gas production equipment comprising the device
JP4521833B2 (en) Cryogenic refrigeration method and apparatus
CN101180509B (en) Process for sub-cooling an GNL stream obtained by cooling by means of a first refrigeration cycle, and associated installation
KR102267677B1 (en) System for cold heat transfer and hydrogen liquefaction using cold heat circulation of liguified hydrogen
JP3040442B2 (en) Gas turbine power generation equipment
KR102005812B1 (en) Air Liquefaction System and Method
US20110308275A1 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
CN216620451U (en) LNG reforming hydrogen production and LNG cold energy liquefied hydrogen integrated system
US20110308276A1 (en) Method and system for periodic cooling, storing, and heating with multiple regenerators
CN115451647A (en) Hydrogen liquefaction system integrated with liquefied air energy storage system
KR102388256B1 (en) Liquid hydrogen plant
CN209279430U (en) A kind of refrigeration equipment producing liquefied natural gas
CN117168087A (en) Modular hydrogen liquefaction system
KR101103337B1 (en) Gas Precooling Equipment for Natural Gas Liquefaction Using Absorption Refrigeration
KR20210092106A (en) Environment-friendly, high-efficiency heat pump system with reduced energy and carbon emissions for both industrial steam, hot water and cold water
WO2023232837A1 (en) An installation comprising lng and renewable electricity facilities with at least one thermal energy storage system
CN112444099B (en) Natural gas liquefaction equipment
JP4879606B2 (en) Cold supply system
CN118030220A (en) Transcritical self-condensing compressed carbon dioxide energy storage system and method
KR20230138230A (en) Data center cooling system using LNG
PL243767B1 (en) Method of storing carbon dioxide, especially in food industry
KR20240033997A (en) Facility for liquefying hydrogen using cold heat energy of liquefied natural gas and system for producting liquid hydrogen with the same
CN117870181A (en) Comprehensive energy supply system and method based on LNG receiving station

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant