KR20220004647A - 타임-오브-플라이트 디바이스 및 방법 - Google Patents

타임-오브-플라이트 디바이스 및 방법 Download PDF

Info

Publication number
KR20220004647A
KR20220004647A KR1020217034917A KR20217034917A KR20220004647A KR 20220004647 A KR20220004647 A KR 20220004647A KR 1020217034917 A KR1020217034917 A KR 1020217034917A KR 20217034917 A KR20217034917 A KR 20217034917A KR 20220004647 A KR20220004647 A KR 20220004647A
Authority
KR
South Korea
Prior art keywords
portions
photoconversion
biasing voltage
transfer gates
pixel
Prior art date
Application number
KR1020217034917A
Other languages
English (en)
Inventor
미치엘 팀메르만스
Original Assignee
소니 세미컨덕터 솔루션즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 세미컨덕터 솔루션즈 가부시키가이샤 filed Critical 소니 세미컨덕터 솔루션즈 가부시키가이샤
Publication of KR20220004647A publication Critical patent/KR20220004647A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Abstract

본 개시내용은 적어도 하나의 광변환 부분, 및 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분을 갖는 타임-오브-플라이트 디바이스에 관한 것이다.
도 2

Description

타임-오브-플라이트 디바이스 및 방법
본 개시내용은 일반적으로 타임-오브-플라이트 디바이스(time-of-flight device) 및 타임-오브-플라이트 디바이스를 제어하기 위한 방법에 관한 것이다.
알려진 타임-오브-플라이트 시스템들은 전형적으로, 관심 영역(예를 들어, 객체, 장면 또는 이와 유사한 것)을 조명하기 위한 광원, 및 광원과 관심 영역 사이의 거리를 결정하기 위해 관심 영역으로부터 유래하는 광을 검출하기 위한 센서를 갖고 있다.
거리는, 예를 들어, 광원에 의해 방출되고 관심 영역에서 반사되는 광자들의 타임-오브-플라이트에 기초하여 결정될 수 있는데, 이 타임-오브-플라이트는, 차례로, 거리와 연관된다. 이 기술은 직접 타임-오브-플라이트(direct time-of-flight)(dToF)라고도 또한 지칭되고, 그것은, 예를 들어, 광원으로부터 관심 영역으로 그리고 다시 센서로 이동할 때 광의 왕복 시간을 결정하는 것에 기초할 수 있다.
더욱이, 장면으로부터 반사되는 검출된 광의 위상 시프트(phase shift)를 검출함으로써 거리 측정치들을 간접적으로 획득하는 간접 타임-오브-플라이트 디바이스(indirect time-of-flight device)(iToF)가 알려져 있다. iToF의 경우, 예를 들어, 연속적으로, 변조된 광을 장면에 방출하고 반사된 광을 복조하며 위상 시프트를 결정하는 것으로 알려져 있는데, 이 위상 시프트는, 차례로, 거리에 비례한다.
일반적으로, iToF의 경우, 수 개의 센서 기술들, 예를 들어, 게이트형 센서(gated sensor)들, 전류 보조 센서(current assisted sensor)들 등이 알려져 있다.
타임-오브-플라이트 센서들 및 이들을 제어하기 위한 방법들이 존재하지만, 장면으로부터 반사된 광의 검출을 향상시키는, 타임-오브-플라이트 디바이스 및 타임-오브-플라이트 디바이스를 제어하기 위한 방법을 제공하는 것이 일반적으로 바람직하다.
제1 양태에 따르면, 본 개시내용은, 적어도 하나의 광변환 부분(photo conversion portion), 및 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분(light detection portion)을 갖는 타임-오브-플라이트 디바이스를 제공한다.
제2 양태에 따르면, 본 개시내용은, 적어도 하나의 광변환 부분, 및 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분을 포함하는 타임-오브-플라이트 디바이스를 제어하기 위한 방법을 제공하고, 이 방법은, 제1 및 제2 바이어싱 전압 부분들에 전압을 인가함으로써 바이어싱 전압을 인가하는 단계를 포함한다.
추가의 양태들이 종속 청구항들, 다음의 설명 및 도면들에 제시되어 있다.
실시예들은 첨부 도면들과 관련하여 예로서 설명되고, 여기서:
도 1은 타임-오브-플라이트 디바이스의 일 실시예를 개략적으로 예시한다.
도 2는 광 검출 부분의 일 실시예를 예시한다.
도 3은 광 검출 부분의 동작의 타이밍 다이어그램을 예시한다.
도 4는 광 검출 부분의 픽셀 및 그 픽셀을 통한 절단 라인(cut-line)을 예시한다.
도 5는 도 4에 예시된 절단 라인에 따른 도 4의 픽셀에서의 에너지 레벨을 예시한다.
도 6은 광 검출 부분의 픽셀을 통한 2개의 단면들을 개략적으로 도시한다.
도 7은 광 검출 부분의 다른 실시예를 예시한다.
도 8은 광 검출 부분의 다른 실시예를 예시한다.
도 9는 광 검출 부분의 다른 실시예를 예시한다.
도 10은 4개의 트랜스퍼 게이트(transfer gate)들이 각각의 픽셀에 제공되는 광 검출 부분의 일 실시예를 예시한다.
도 11은 타임-오브-플라이트 디바이스를 제어하기 위한 방법의 흐름도이다.
도 12는 도 8의 광 검출 부분의 실시예의 변형을 예시한다.
도 13은 도 12의 광 검출 부분의 동작의 타이밍 다이어그램을 예시한다.
도 1의 참조 하에서 실시예들의 상세한 설명이 제공되기 전에, 일반적인 설명들이 이루어진다.
서두에서 언급된 바와 같이, 일반적으로, 직접 타임-오브-플라이트(dToF) 및 간접 타임-오브-플라이트 디바이스(iToF)와 같은 상이한 타임-오브-플라이트(ToF) 기술들이 알려져 있는데, 이 iToF는 장면으로부터 반사되는 검출된 광의 위상 시프트를 검출함으로써 거리 측정치들을 간접적으로 획득한다.
따라서, 일부 실시예들은 일반적으로 iToF에 관한 것이고, 일부 실시예들에서, iToF 센서에서 전하 캐리어 수송을 향상시키기 위해, 아래에 추가로 또한 논의되는 바와 같이, 전계를 생성하고 그것을 그 iToF 센서에 인가함으로써 광 검출 및 복조가 개선될 수도 있다는 것이 인지되었다.
결과적으로, 일부 실시예들은 적어도 하나의 광변환 부분, 및 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분을 포함하는 타임-오브-플라이트 디바이스에 관한 것이다.
논의된 바와 같이, 일부 실시예들에서, 타임-오브-플라이트 디바이스는 iToF에 관한 것이고, 따라서, 예를 들어, 그것은, iToF에 대해 일반적으로 알려져 있는 바와 같이, 장면으로부터 반사되고 광 검출 부분에 의해 검출되는 방출된 변조된 광의 위상 시프트를 검출하는 것에 기초하여 거리를 결정한다.
일반적으로, 광 검출 부분은 임의의 종류의 광 검출 기술에 기초할 수도 있지만, 일부 실시예들에서 그것은 iToF 광 검출 기술에 기초하고, 따라서, 적어도 하나의 광변환 부분은, 광자들을 양전하 및 음전하 캐리어들로 변환하는 것이 가능한 반도체 구조체에 기초할 수도 있다. 전하 캐리어들이, 예를 들어, 커패시터 또는 이와 유사한 것에 축적된다. 검출된 광의 복조를 위해, 일부 실시예들에서, 적어도 하나의 광변환 부분은 전류 보조 광자 복조기(current assisted photonic demodulator)(CAPD)로서 구현될 수도 있다. 다른 실시예들에서, 적어도 하나의 광변환 부분은, 전류 보조 게이트형 iToF(current assisted gated iToF)(CAG iToF)라고도 또한 지칭되는 전류 보조 게이트형 광변환 부분으로서 구현될 수도 있다.
일부 실시예들에서, 광변환 부분들 내에 또는 이들에 제공되는 적어도 2개의 복조 부분들(예를 들어, 게이트들 또는 이와 유사한 것)을 제공함으로써 광자 복조가 수행되고, 여기서 전하 캐리어들은, 예를 들어, 전기 캐리어들/전하들을 저장하도록 적응(adapt)되는 커패시터 또는 다른 저장 부분으로 또는 그 내에 전기 전하 캐리어들/전하들이 방전 또는 축적되도록 구동되는 2개의 복조 부분들로 이동한다. 복조 부분들은, 예를 들어, 180°의 위상 차이로 구동될 수도 있다(그와 관련하여 본 개시내용을 제한하는 일 없이; 위상 차이는 일부 실시예들에서 제공된 게이트들의 수에 또한 의존할 수도 있는데, 예를 들어, 4개의 게이트들의 경우, 위상 차이는 각각 90°일 수도 있다).
언급된 바와 같이, 광 검출 부분은, 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 적어도 갖는다. 제1 및 제2 바이어싱 전압 부분들은 반도체 기판에서의 부분에 미리 결정된 도핑을 제공함으로써, 개개의 전도성 재료를 제공함으로써 등으로 형성될 수도 있다. 제1 및 제2 바이어싱 전압 부분들에는 대응하는 바이어싱 전압이 인가될 수 있어서, 전계가 광변환 부분에 걸쳐 생성될 수 있도록 함으로써, 전하 캐리어 수송이 향상될 수도 있다.
일부 실시예들에서, 적어도 하나의 광변환 부분은 제1 트랜스퍼 게이트 및 제2 트랜스퍼 게이트를 포함한다. 예를 들어, 게이트형 iToF에서, 2개의 트랜스퍼 게이트들에 의해 변조되는 영역이 매우 크지 않을 수도 있다. 광변환 부분(예를 들어, 픽셀 구역)이 큰 경우들에서, 이것은 더 낮은 변조 콘트라스트(modulation contrast)로 이어질 수도 있는데, 이는, 일부 실시예들에서, iToF에 대해 알려져 있는 바와 같이, 반사된 광 신호를 기준 신호로 복조하는 픽셀(광변환 부분)의 능력에 대한 메트릭이다. 전계를 인가함으로써, 변조 콘트라스트가 일부 실시예들에서 향상될 수도 있다.
제1 및 제2 바이어싱 전압 부분들을 제공함으로써, 바이어싱 전압이 제1 및 제2 바이어싱 전압 부분들에 인가될 수 있어서, 그에 의해, 예를 들어, 현재 활성인 트랜스퍼 게이트로의 전하 캐리어 수송이 향상될 수도 있도록 하는 구배(gradient)를 갖는 전계가 생성될 수 있다.
제1 및 제2 바이어싱 전압 부분들로의 신호의 전달이 상이한 방식들로 구현될 수 있다. 예를 들어, 일부 실시예들에서, 별개의 (추가) 라우팅 신호들이 제공되고, 다른 실시예들에서 트랜스퍼 게이트 신호가 제1 및 제2 바이어싱 전압 부분들에 직접 인가되고, 또 다른 실시예들에서, 트랜스퍼 게이트 신호(들)가, 제1/제2 바이어싱 전압 부분들을 별개의 바이어스 전압에 연결하는 스위치를 스위칭하는 데 사용될 수도 있다.
일부 실시예들에서, 광변환 부분은 피닝 층(pinning layer) 및 측벽을 가지며, 제1 및 제2 바이어싱 전압 부분들에 바이어싱 전압들을 인가함으로써, 광변환 부분들의 피닝 층 및 측벽들이 전기 전위 도메인에서 풀 업될(pulled up) 수도 있어서(이는 저 전기 에너지를 의미하고, 그 반대의 경우도 가능하다), 전하 캐리어 수송이 향상될 수도 있는데, 이는 전하들이 저 에너지 영역, 즉, 고 전위 영역으로 흐르기 때문이다. 더욱이, 광변환 부분이 플로팅(floating) 상태일 때, 그의 전위가 피닝 층의 전위를 따를 수도 있다. 하이 바이어싱 전압(high biasing voltage)을 제1 바이어싱 전압 부분에 그리고 로우 바이어싱 전압(low biasing voltage)을 제2 바이어싱 전압 부분에 인가함으로써(그리고 그 반대의 경우도 가능하다), 일부 실시예들에서 광변환 부분의 양측 면들에서 피닝 층이 상이한 전위로 풀 업되기 때문에, 광변환 전위 내측에 반영될 것이고 전계를 생성하는 전계 또는 전기 전위 구배가 존재한다.
일부 실시예들에서, 제1 및 제2 바이어싱 전압 부분들에 인가된 전계는 제1 게이트 및 제2 게이트와 정렬되는데, 예를 들어, 전계 라인들이 기본적으로 제1 트랜스퍼 게이트로부터 제2 트랜스퍼 게이트로(또는 그 반대의 경우도 가능하다) (이 방향에 대해 정렬된) 방향으로 있다.
일부 실시예들에서, 상기의 논의로부터 또한 명백한 바와 같이, 전계는 적어도 하나의 광변환 부분에 입사된 광자들에 의해 생성되는 전기 전하 캐리어들이 제1 게이트 및 제2 게이트로 각각 지향되도록 인가된다.
일부 실시예들에서, 광 검출 부분은, 어레이에 배열되는 다수의 광변환 부분들을 포함한다. 다수의 광 검출 부분들은 픽셀들로서 구성될 수도 있다.
일부 실시예들에서, 제1 및 제2 바이어싱 전압 부분들은 각각, 인접한 광변환 부분들 사이에 위치되어, 바이어싱 전압 부분들이, 중간 구역에서 한 라인 상에 배열된 광변환 부분들과 교차되는 중간 라인 상에 있도록 한다. 예를 들어, 광변환 부분들이 행(row)들 및 열(column)들에 배열되는 어레이에서, 제1 및 제2 바이어싱 전압 부분들은 광변환 부분들의 행(열)의 행(열)에 배열되고, 여기서 제1 및 제2 바이어싱 전압 부분들은, 중간 구역에서 행(열)에서의 광변환 부분들 각각과 교차되는 라인 상에 위치된다.
일부 실시예들에서, 제1 및 제2 바이어싱 전압 부분들은 각각 4개의 광변환 부분들에 인접하게 배열된다. 예를 들어, 제1 및 제2 바이어싱 전압 부분들은 각각 4개의 인접한 광변환 부분들의 4개의 코너들 사이의 중간 구역에 배열된다.
그러한 실시예들에서, 제3 및 제4 트랜스퍼 게이트가 제공될 수도 있어서, 광변환 부분들 각각은 4개의 트랜스퍼 게이트들(제1, 제2, 제3 및 제4)을 가질 수도 있는데, 이들은 광변환 부분들의 4개의 코너 구역들에 위치된다(그리고 이들은 공통 영역을 둘러쌀 수도 있다).
일부 실시예들에서, 다수의 변환 부분들은 4개의 광변환 부분들의 제1 트랜스퍼 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분들의 제2 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분의 제3 트랜스퍼 게이트들이 서로 옆에 위치되며 4개의 광변환 부분들의 제4 트랜스퍼 게이트들이 서로 옆에 위치되도록 배열된다. 그에 의해, 제1 및 제2 바이어싱 전압 부분들은, 서로 옆에 위치되는 제1/제2/제3/제4 트랜스퍼 게이트들의 중간 구역에(즉, 제1 트랜스퍼 게이트들, 제2 트랜스퍼 게이트들, 제3 트랜스퍼 게이트들 또는 제4 트랜스퍼 게이트들에 의해 둘러싸인 공통 영역의 중앙에) 배열될 수 있다.
언급된 바와 같이, 일부 실시예들에서, 적어도 하나의 광변환 부분은 전류 보조 광자 복조기로서 구성된다.
상기에 논의된 바와 같이, 일부 실시예들에서, 제1(제2, 제3, 제4) 바이어싱 전압 부분과 제1(제2, 제3, 제4) 트랜스퍼 게이트는 서로 연관되어 있다. 따라서, 일부 실시예들에서, 상이한 이웃하는 광변환 부분들(예를 들어, 픽셀들)의 제1(제2, 제3, 제4 등) 트랜스퍼 게이트들은 이들이 공통 제1(제2, 제3, 제4 등) 바이어싱 전압 부분을 공유할 수도 있도록 배열된다.
일부 실시예들은, 상기에 논의된 바와 같이, 적어도 하나의 광변환 부분, 및 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분을 포함하는 타임-오브-플라이트 디바이스를 제어하기 위한 방법에 관한 것이고, 여기서 이 방법은, 상기에 또한 논의된 바와 같이, 제1 및 제2 바이어싱 전압 부분들에 전압을 인가함으로써 바이어싱 전압을 인가하는 단계를 포함한다.
상기에 언급된 바와 같이, 바이어싱 전압을 인가하는 단계는, 제1 바이어싱 전압 부분에의 하이 바이어싱 전압 그리고 제2 바이어싱 전압 부분에의 로우 바이어싱 전압의 인가를 포함할 수도 있고, 그 반대의 경우도 가능하다. 이것은, 제1 바이어싱 전압 부분에 하이 및 로우 바이어싱 전압이 교호로 공급될 수도 있고 제2 바이어싱 전압 부분에 로우 및 하이 바이어싱 전압이 교호로 공급될 수도 있도록, 교호로 또한 수행될 수도 있다.
일부 실시예들에서, 논의된 바와 같이, 적어도 하나의 광변환 부분은 제1 트랜스퍼 게이트 및 제2 트랜스퍼 게이트를 포함하고, 이 방법은, 검출된 광 신호(예를 들어, 그와 관련하여 본 개시내용을 제한하는 일 없이 180°의 위상 시프트를 가짐)의 복조를 수행하기 위해 연속적으로 제1 및 제2 트랜스퍼 게이트를 제어하는 단계를 더 포함한다. 더욱이, 바이어싱 전압의 인가는, 예를 들어, 제1 게이트가 구동(개방)될 때에는, 제1 바이어싱 전압 부분에 하이 바이어싱 전압이 공급되고 제2 바이어싱 전압 부분에 로우 바이어싱 전압이 공급되고, 제2 트랜스퍼 게이트가 구동될 때에는, 제1 바이어싱 전압 부분에 로우 바이어싱 전압이 공급되고 제2 바이어싱 전압 부분에 하이 바이어싱 전압이 공급되도록, 상기에 논의된 바와 같이, 제1 및 제2 트랜스퍼 게이트들의 구동과 동기화될 수도 있다.
일부 실시예들에서, 논의된 바와 같이, 제1 및 제2 바이어싱 전압 부분들은 각각, 인접한 광변환 부분들 사이에 위치되어, 바이어싱 전압 부분들이, 중간 구역에서 한 라인 상에 배열된 광변환 부분들과 교차되는 중간 라인 상에 있도록 하고, 여기서 바이어싱 전압의 인가는 2개의 이웃하는 광변환 부분들의 트랜스퍼 게이트들의 구동에 적응된다.
일부 실시예들에서, 제1 및 제2 바이어싱 전압 부분들은 한 라인 상에 위치되는데, 이 라인은, 픽셀의 중간에 있지 않지만, 예를 들어, 트랜스퍼 게이트들에 더 가까워지도록 하기 위해, 중간으로부터 멀어지도록 소량 시프트되어 위치된다.
일부 실시예들에서, 논의된 바와 같이, 제1 및 제2 바이어싱 전압 부분들은 각각 4개의 광변환 부분들과 인접하게 배열되고, 바이어싱 전압의 인가는 4개의 이웃하는 광변환 부분들의 트랜스퍼 게이트들의 구동에 적응된다.
일부 실시예들에서, 논의된 바와 같이, 다수의 변환 부분들은 4개의 광변환 부분들의 제1 트랜스퍼 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분들의 제2 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분의 제3 트랜스퍼 게이트들이 서로 옆에 위치되며 4개의 광변환 부분들의 제4 트랜스퍼 게이트들이 서로 옆에 위치되도록 배열되고, 여기서 바이어싱 전압의 인가는 4개의 이웃하는 광변환 부분들의 제1 내지 제4 트랜스퍼 게이트들의 구동에 적응된다.
더욱이, 일부 실시예들에서, 제1 및 제2 바이어싱 전압 부분들은 (단지) 고성능(예를 들어, 높은 변조 주파수 또는 높은 복조 콘트라스트)이 필요할 때에만 그리고/또는 다른 경우에는 특정 적용예들 또는 조건들에서만 활성화될 수도 있다. 그에 의해, 일부 실시예들에서, 추가 전계를 인가하기 위한 전력 소비의 증가가 모든 경우들에서 요구되지 않을 수도 있다.
도 1로 돌아가면, 깊이 감지를 위해 또는, 특히 본 명세서에서 논의되는 바와 같은 기술의 경우에는, 거리 측정치를 제공하기 위해 사용될 수 있는 타임-오브-플라이트(ToF) 디바이스(1)의 일 실시예가 예시되어 있다. ToF 디바이스(1)는, 본 명세서에서 논의되는 바와 같은(그리고 아래에 추가로 논의되는) 방법들을 수행하도록 구성되고 ToF 디바이스(1)의 컨트롤(control)을 형성하는 회로부(8)를 갖는다(그리고 그것은, 통상의 기술자에게 일반적으로 알려져 있는 바와 같은, 도시되지 않은, 대응하는 프로세서들, 메모리 및 스토리지를 포함한다).
ToF 디바이스(1)는, 변조된 광을 방출하도록 구성되는 광원(2)을 가지며, 그것은 (레이저 다이오드들에 기초하는) 발광 요소들을 포함하고, 여기서 본 실시예에서, 발광 요소들은 협대역 레이저 요소들이다.
광원(2)은 변조된 광을 장면(3)(관심 영역 또는 객체)에 방출하는데, 이 장면(3)은 광을 반사시킨다. 통상의 기술자에게 일반적으로 알려져 있는 바와 같이, 장면(3)에 광을 반복적으로 방출함으로써, 장면(3)이 스캐닝될 수 있다. 반사된 광은 광학 스택(4)에 의해 광 검출기(5)에 포커싱된다.
광 검출기(5)는, 픽셀들의 어레이에 형성되는 다수의 CAGs(current assisted gated photo conversion) 픽셀들에 기초하여 구현되는 이미지 센서(6), 및 장면(3)으로부터 반사된 광을 이미지 센서(6)에(이미지 센서(6)의 각각의 픽셀에) 포커싱하는 마이크로렌즈 어레이(7)를 갖는다.
장면(3)으로부터 반사되는 광이 검출될 때, 이미지 센서(6)로부터 개개의 정보를 또한 수신하는 타임-오브-플라이트 측정 유닛(9)을 포함하는 회로부 또는 컨트롤(8)에 발광 시간 및 변조 정보가 공급된다. 변조된 광은 이미지 센서(6)에 의해 복조됨으로써, 타임-오브-플라이트 측정 유닛(9)이, 광원(2)으로부터 방출되고 장면(3)에 의해 반사된 수신된 변조된 것의 위상 시프트를 컴퓨팅하고, 이에 기초하여 그것은, 상기에 또한 논의된 바와 같이, 이미지 센서(6)와 장면(3) 사이의 거리 d(깊이 정보)를 컴퓨팅한다.
깊이 정보는 타임-오브-플라이트 측정 유닛(9)으로부터 회로부(8)의 3D 이미지 재구축 유닛(10)으로 공급되는데, 이 3D 이미지 재구축 유닛(10)은 타임-오브-플라이트 측정 유닛(9)으로부터 수신된 깊이 정보에 기초하여 장면(3)의 3D 이미지를 재구축(생성)한다.
도 2는 도 1의 ToF 디바이스의 이미지 센서(6)에서 구현될 수도 있는 광 검출 부분(20)의 제1 실시예를 예시하고, 여기서 광 검출 부분(20)은 상면도로 예시되어 있다.
광 검출 부분(20)은 다수의 광변환 부분들(21)을 갖는데, 이 다수의 광변환 부분들(21)이 다음의 설명에서는 픽셀들(21)이라고도 또한 지칭된다.
픽셀들(21) 각각은 오버플로 게이트(overflow gate)(OFG) 및 제1 트랜스퍼 게이트(TG0) 그리고 제2 트랜스퍼 게이트(TG1)를 가지며, 여기서 각각의 트랜스퍼 게이트(TG0 및 TG1)에는 플로팅 디퓨전(floating diffusion)(FD) 부분이 제공된다. 픽셀들(21) 각각은, 8변과 8변을 갖는 단면을 갖는 대칭 형상, 즉, 팔각형 형상을 갖는다.
도 2의 제1 실시예에서는, 2개의 타입들의 픽셀들(21), 즉, 제1 타입(21A) 및 제2 타입(21B)이 제공된다.
각각의 픽셀(21A)은, 도 2에서 상부 좌측 상에 트랜스퍼 게이트(TG0)를 그리고 상부 우측 상에 트랜스퍼 게이트(TG1)를 가지며, 여기서 각각의 픽셀(21B)은, 도 2에서 상부 좌측 상에 트랜스퍼 게이트(TG1)를 그리고 상부 우측 상에 트랜스퍼 게이트(TG0)를 갖는다. OFG는 픽셀들(21A 및 21B)에 대해 저부측 상에 위치된다.
픽셀들(21)은 행들 및 열들의 어레이에 배열되고, 여기서 제1 열에는 픽셀들(21A)이 제공되고, 제2 열에는 픽셀들(21B)이 제공되고, 제3 열에는 픽셀들(21A)이 제공되며, 제4 열에는 픽셀들(21B)이 제공된다. 행들의 경우, 이것은, 픽셀 어레이에 대해 일반적으로 알려져 있는 바와 같이, 모든 행이 픽셀(21A)로 시작하여 그 다음에 픽셀(21B)이 뒤이어지고, 그 다음에 픽셀(21A)이 뒤이어지고 마지막 픽셀이 픽셀(21B)이라는 것과 픽셀들이 행들 및 열들의 직선(평행) 라인들 상에 배열된다는 것을 의미한다.
이 배열에 의하면, 2개의 이웃하는 픽셀들의 TG0 각각이 서로 대향하여 배열되고, 2개의 이웃하는 픽셀들의 TG1 각각이 서로 대향하여 배열된다.
예를 들어, 픽셀(21A)의 TG1(픽셀(21A)의 우측 상에 있음)이 이웃하는 픽셀(21B)의 TG1(픽셀(21B)의 좌측 상에 있음) 옆에 있고, 여기서 픽셀(21B)의 TG0(우측 상에 있음)가 우측의 이웃하는 픽셀(21A) 옆에 있다는 것 등이다.
더욱이, 행에서의 각각의 2개의 이웃하는 픽셀 사이에는 바이어싱 전압 부분(22)이 제공되고, 여기서 이 실시예에서, 2개의 제1 트랜스퍼 게이트들(TG0) 사이에 제1 바이어싱 전압 부분(22A)이 제공되고, 2개의 제2 트랜스퍼 게이트들(TG0) 사이에 제2 바이어싱 전압 부분(22B)이 제공되는데, 이는 제1 바이어싱 전압 부분들(22A)은 TG0 트랜스퍼 게이트들과 연관되고 제2 바이어싱 전압 부분들(22B)은 TG1 트랜스퍼 게이트들과 연관되기 때문이다. 제1 바이어싱 전압 부분들(22A) 및 제2 바이어싱 전압 부분들(22B)은, 픽셀들의 (중앙/대칭 라인을 통한) 중간 구역에서 행의 픽셀들(21A 및 21B)과 교차하는 라인 상에 배열된다.
바이어싱 전압 부분들(22)은 광 검출 부분(20)의 기판에 주입(예를 들어, p-도핑)함으로써 제공되고, 이들은 도 3의 참조 하에 논의되는 바와 같이 이들의 연관된 트랜스퍼 게이트들과 동기하여 바이어싱된다.
도 3은 TG0 및 TG1 게이트들과 제1 및 제2 바이어싱 전압 부분들(22A 및 22B)을 구동하기 위한 타이밍 다이어그램을 예시하고, 여기서 도 3에서는 제1 바이어싱 전압 부분들이 "MIX0"이라고 지칭되고 제2 바이어싱 전압 부분들이 "MIX1"이라고 지칭된다.
도 3의 타이밍 다이어그램은 가로좌표 상에서는 시간을 그리고 세로좌표 상에서는 TG0, TG1, MIX0 및 MIX1에 대한 상이한 구동 신호들의 전압들을 예시한다.
더욱이, 도 3은 2개의 시간 간격들, 즉, 픽셀들(21A 및 21B)이 리셋되는 "리셋" 시간 간격, 및 광원이 구동되고 반사된 광이 픽셀들(21A 및 21B)에 의해 검출되는 "노출" 시간 간격을 도시한다.
도 3으로부터 취득될 수 있는 바와 같이, 구동 신호가 제1 트랜스퍼 게이트들(TG0)에 인가될 때, 제1 바이어싱 전압 부분들(22A) "MIX0"도 또한 구동되고, 구동 신호가 제2 트랜스퍼 게이트들(TG1)에 인가될 때, 제2 바이어싱 전압 부분들(22B) "MIX1"도 또한 구동된다.
도 2는 제2 트랜스퍼 게이트(TG1)가 하이 상태(즉, 고 전기 전위를 가짐)에 있고, 따라서, 제2 바이어싱 전압 부분들(22B)(MIX1)에는, "+"로 표시되는 하이 바이어싱 전압이 인가되는 반면, 제1 바이어싱 전압 부분들(22A)(MIX0)에는, "-"로 표시되는 로우 바이어싱 전압(즉, 저 전기 전위를 가짐)이 인가되는 상황을 예시한다.
도 3의 타이밍 다이어그램으로부터 취득될 수 있는 바와 같이, 다음 상황에서, TG0이 구동되어, 제1 바이어싱 전압 부분들(22A)(MIX0)이 하이 바이어싱 전압으로 바이어싱될 것이고 제2 바이어싱 전압 부분들(22B)(MIX1)이 로우 바이어싱 전압으로 바이어싱될 것이다.
그에 의해, 제1 및 제2 트랜스퍼 게이트들(TG0 및 TG1)의 구동 및 트랜스퍼 게이트들(TG0 및 TG1)과 연관되는 연관된 제1 및 제2 바이어싱 전압 부분들(22A 및 22B) 각각에의 바이어싱 전압들의 인가가 동기화되어(그리고 이에 따라 교번하여), 제1 및 제2 바이어싱 전압 부분들(22A 및 22B)에 베이싱 전압들을 인가함으로써 생성된 전계의 구배가, 연관된 트랜스퍼 게이트 TG0(제1 바이어싱 전압 부분들(22A)과 연관됨) 및 TG1(제2 바이어싱 전압 부분들(22B)과 연관됨)에의 전하 캐리어 수송을 향상시킨다.
도 4는 우측 상에는 제1 바이어싱 전압 부분(22A)("MIX0")(이는 TG0과 연관된다)을 그리고 좌측 상에는 제2 바이어싱 전압 부분(22B)("MIX1")(이는 TG1과 연관된다)을 갖는 하나의 픽셀(21A)을 예시한다. 더욱이, 점선 라인이, 도 5에 도시된 바와 같은, 상이한 에너지 레벨들을 예시하기 위한 구조체 픽셀(21A)을 통한 경로를 예시한다.
도 5는 도 4의 참조 하에 설명된 라인을 통한 에너지 레벨들을 도시하고 세로좌표가 에너지를 나타내고 가로좌표가 도 4의 절단 라인을 나타내며, 여기서 이 예에서는 TG1 하이 경우에 대한 레벨 다이어그램이 도시되어 있고(즉, 여기서 TG1은 대응하는 바이어싱 전압의 인가로 인해 고 전위에 있다), 여기서 도 5는 세로좌표 상에 에너지 레벨을 예시한다. 언급된 바와 같이, 고 에너지 레벨이 저 전위를 의미하고 그 반대의 경우도 가능하다.
그것은 트랜스퍼 게이트(TG0)에서의 플로팅 디퓨전(FD0)에서 저 에너지 레벨(고 전위)로 시작한 후에, 고 에너지 레벨이 TG0 트랜스퍼 게이트 영역에 존재한다. 픽셀(21A)의 내부에서, 즉, 포토-다이오드(PD) 영역에서, 점선 라인은 MIX0 및 MIX1 없이 그리고 바이어싱 전압들을 인가하는 일 없이 PD 에너지 레벨을 표현하고, 여기서 정규 라인은 부가된 바이어싱 전압들을 갖는 PD 에너지를 표현한다. 도 5로부터 취득될 수 있는 바와 같이, 제1 트랜스퍼 게이트(TG0)로부터, 고 전위, 즉, 저 에너지 레벨에 있는 제2 트랜스퍼 게이트(TG1)로 갈 때, 픽셀(21A) 내에서 전기 에너지가 감소한다(즉, 전위가 증가한다). TG 1 영역에서는, 에너지 레벨이 더 낮고, FD1 영역에서는, 에너지 레벨이 FD0 에너지 레벨에 필적한다.
TG0 하이 상태의 경우에, 전기 에너지는 반대의 감소를 가질 것이다, 즉, 그것은 제2 트랜스퍼 게이트(TG1)로부터 제1 트랜스퍼 게이트(TG0)로 감소할 것이다(그리고, 따라서, 전위는 제2 트랜스퍼 게이트(TG1)로부터 제1 트랜스퍼 게이트(TG0)로 증가할 것이다).
픽셀들의 구조체가 도 6의 참조 하에서 예시적으로 설명되어, 상부 우측 상에 도시된 픽셀(21A)을 통한 점선 라인에 의해 규정되는, 픽셀(21A)을 통한 단면을 상부측 상에 예시하고, 하부측 상에서 도 6은, 하부 우측 상에 도시된 바와 같이 픽셀(21A)을 통한 점선 라인에 의해 규정되는 바와 같은, 픽셀(21A)을 통한 다른 단면을 예시한다.
픽셀(21A)은, 본 실시예에서 p- 반도체 기판인 기판 부분(25)을 갖는다. 상부 영역(26)은 이 영역에서 더 심하게 p-도핑되고, 플로팅 디퓨전(FD0 및 FD1)이 주입된다. 더욱이, 중간 영역에는, n-타입 도핑되는 광변환 부분 또는 포토다이오드 부분(27)이 제공되고, 여기서 그 부분(27)의 상부 상에는 심하게 p-도핑된 층(28)이 제공된다. 트랜스퍼 게이트들(TG0 및 TG1)이 p-도핑된 부분(26)의 상부 상에 제공되고, 광변환 부분의 n-타입 영역을 플로팅 디퓨전 부분들(FD0 및 FD1)에 각각 상호연결하도록 구성된다. 광변환 부분(27)에 의해 생성된 전자들이 n-타입 영역(부분(27)의 상부 영역)에서 수집된 후에, TG0 및 TG1 아래에서 FD0 및 FD1로 각각 전달된다.
기판 부분(25)은 또한 n- 기판일 수 있다. 언급된 바와 같이, 영역(26)은 이 실시예에서 "더 심하게 p-도핑"된다. FD0/1 영역은 이 실시예에서 매우 심하게 n-도핑(n+)된다. MIX-영역들(22A 및 22B)은, 이 실시예에서, 매우 심하게 p-타입 도핑된다, 즉, p+ 주입된다.
도 6의 하부측 상의 단면으로부터 취득될 수 있는 바와 같이. 제1 바이어싱 전압 부분(22A)이 도 6의 좌측 상에서 광변환 부분(27)에 대해 미리 정의된 거리로 제공되고, 제2 바이어싱 전압 부분(22B)이 도 6의 우측 상에서 광변환 부분(27)에 대해 미리 정의된 거리로 제공되고, 여기서 제1 및 제2 바이어싱 전압 부분들(22A 및 22B)에 대한 미리 정의된 거리는 (그와 관련하여 본 개시내용을 제한하는 일 없이) 동일하다.
다음에는, 광 검출 부분들이 어떠한지에 대한 수 개의 상이한 실시예들이 논의되고, 여기서 픽셀들의 일반적인 구조체(기본적으로) 및 이들을 제어하기 위한 방법이 도 2 내지 도 6의 참조 하에 논의된 바와 같은 픽셀에 대응한다.
도 7은, 도 2 내지 도 6의 참조 하에 논의된 바와 같이, 복수의 픽셀들(21A 및 21B)이 제공되는 광 검출 부분(30)의 일 실시예를 예시한다. 그러나, 도 2와는 대조적으로, 픽셀들(21A 및 21B)은 행들에서 그리고 열들에서 교호로 배열된다.
따라서, 제1 행은 좌측 상의 픽셀(21A)로 시작하여, 그 다음에 픽셀(21B)이 뒤이어지고, 그 다음에 21A가 뒤이어지고, 그 다음에 21B가 뒤이어지는 것 등으로 된다.
제1 열은 좌측 상의 픽셀(21A)로 시작하여, (좌측으로부터 우측으로) 그 다음에 아래의 픽셀(21B)이 뒤이어지고, 그 다음에 아래의 픽셀(21A)이 뒤이어지는 것 등으로 된다.
제2 행은 픽셀(21B)로 시작하여, (좌측으로부터 우측으로) 그 다음에 픽셀(21A)이 뒤이어지고, 그 다음에 픽셀(21B)이 뒤이어지고, 그 다음에 픽셀(21A)이 뒤이어지는 것 등으로 된다.
다시 말해, 각각의 행에서 그리고 각각의 열에서 픽셀(21A) 다음에 픽셀(21B)이 뒤이어지고, 그 반대의 경우도 가능하다.
따라서, 제1 바이어싱 전압 부분들(22A) 및 제2 바이어싱 전압 부분들(22B)도 또한 교번 방식으로 배열되고, 여기서, 도 2의 참조 하에 또한 논의된 바와 같이, 이웃하는 픽셀들(21A 및 21B)의 2개의 (제1) 트랜스퍼 게이트들(TG0) 사이에 제1 바이어싱 전압 부분(22A)이 배열되고 2개의 (제2) 트랜스퍼 게이트들(TG1) 사이에 제2 바이어싱 전압 부분(22B)이 배열되어, 이웃하는 또는 인접한 제1 트랜스퍼 게이트들(TG0)이 공통의 제1 바이어싱 전압 부분(22A)을 공유하고, 이웃하는 또는 인접한 제2 트랜스퍼 게이트들(TG1)이 공통의 제2 바이어싱 전압 부분(22B)을 공유한다.
결과적으로, 도 7에 예시된 바와 같이, TG1이 하이 상태에 있는 상태에서, 제2 바이어싱 전압 부분들(22B)은 하이 바이어싱 전압으로 바이어싱되고, 따라서, "+"로 표시되고, 제1 바이어싱 전압 부분들(22A)은 로우 바이어싱 전압으로 바이어싱되고, 따라서, "-"로 표시된다.
TG0이 하이 상태에 있을 때, 인가된 바이어싱이 반전되어 제1 바이어싱 전압 부분들(22A)이 하이 바이어싱 전압으로 바이어싱되고 제2 바이어싱 전압 부분들(22B)이 로우 바이어싱 전압으로 바이어싱된다.
도 8은 광 검출 부분(40)의 일 실시예를 예시하고, 여기서, 도 2 내지 도 6의 참조 하에 논의된 바와 같이, 복수의 픽셀들(21A 및 21B)이 교호로 제공된다. 그러나, 이 실시예에서는, 제1 및 제3 행에서, 픽셀들이 180°의 회전 각도로 배열된다(그리고 제1 및 제3 행이 동일하다).
제1 행은 교호 픽셀들(21B 및 21A)(180'°로 회전됨)을 가지며 그것은 픽셀(21B)로 시작하여, 그 다음에 픽셀(21A)이 뒤이어지고, 그 다음에 픽셀(21B)이 뒤이어지고, 그 다음에 픽셀(21A)이 뒤이어진다.
도 7의 제1 행에 대응하는 제2 행은 교호 픽셀들(21A 및 21B)을 가지며, 그것은 픽셀(21A)로 시작하여, 그 다음에 픽셀(21B)이 뒤이어지고, 그 다음에 픽셀(21A)이 뒤이어지고, 그 다음에 픽셀(21B)이 뒤이어진다.
제1 행의 픽셀들(21A 및 21B)이 180°로 회전됨에 따라, 제1 행 및 제2 행(그리고, 유사하게, 제3 행 및 제4 행 등)의 픽셀들의 트랜스퍼 게이트들(TG0 및 TG1)은 이들이 서로 대향하도록 배열된다.
따라서, 제1 행의 제1 픽셀(21B)의 제2 트랜스퍼 게이트(TG1), 제1 행의 제2 픽셀(21A)의 제2 트랜스퍼 게이트(TG1), 제2 행의 제1 픽셀(21A)의 제2 트랜스퍼 게이트(TG1) 및 제2 행의 제2 픽셀(21B)의 제2 트랜스퍼 게이트(TG1)가 서로 마주하고 공통 영역을 둘러싸며, 여기서 제2 바이어싱 전압 부분(22B)이 공통 영역의 중앙에 배열되어, 그것이 4개의 둘러싸는 제2 트랜스퍼 게이트들(TG1)에 의해 공유된다.
제1 바이어싱 전압 부분들(22A) 및 제2 바이어싱 전압 부분들(22B)은, 공통 영역을 둘러싸는 4개의 이웃하는 픽셀들의 연관된 트랜스퍼 게이트들에 의해 둘러싸인 공통 영역의 중앙에 교호로 배열된다.
도 8에서, 제1 행의 제2 픽셀(21A)의 제1 트랜스퍼 게이트(TG0), 제1 행의 제3 픽셀(21B)의 제1 트랜스퍼 게이트(TG0), 제2 행의 제2 픽셀(21B)의 제1 트랜스퍼 게이트, 및 제2 행의 제3 픽셀(21A)의 제1 트랜스퍼 게이트(TG0)가 공통 영역을 둘러싸고, 여기서 이 영역의 중앙에 제1 바이어싱 전압 부분(22A)이 배열된다.
제1 및 제2 행의 제3 및 제4 픽셀의 TG1 (제2) 트랜스퍼 게이트들에 의해 둘러싸인 다음 공통 영역에는, 제2 바이어싱 전압 부분(22B)이 배열된다.
도 8은 제1 트랜스퍼 게이트들(TG1)이 하이이고, 따라서, 제2 전압 부분들(22B)이 하이 바이어싱 전압 "+"로 바이어싱되고 제1 전압 부분들(22A)이 로우 바이어싱 전압 "-"로 바이어싱된 상태의 광 검출 부분(40)을 예시한다.
도 9는 도 8의 광 검출 부분(40)에 기본적으로 대응하는 광 검출 부분(50)을 예시하고, 여기서 광 검출 부분(50)에서 제1 및 제2 행은 도 8의 광 검출 부분(40)의 제1 및 제2 행들과 동일하다.
그러나, 제3 행(그리고, 따라서, 예시되지 않은 제4 행)은 도 8의 광 검출 부분(40)의 제3 행과 상이한데, 이는 도 9의 광 검출 부분(50)의 제3 행이 제1 행에 대응하지 않지만, 픽셀(21A)로 시작하여, 그 다음에 픽셀(21B)이 뒤이어지고, 그 다음에 픽셀(21A)이 뒤이어지고, 그 다음에 픽셀(21B)이 뒤이어지기 때문이다(이들 모두는 180°로 회전된다).
이것은 홀수 행들도 또한 일부 실시예들에서 픽셀들(21A 및 21B)의 배열의 교번 패턴을 가질 수도 있고, 따라서, 제1 및 제2 바이어싱 전압 부분들(22A 및 22B)도 또한 행 단위로 교번 패턴을 가질 수도 있다는 것을 보여준다.
물론, 상기에 논의된 교번 패턴들은 주어진 예들로 제한되는 것이 아니라, 다른 패턴들이 구현될 수도 있고, 물론, 패턴들은, 예를 들어, 열 단위 등으로 또한 적용될 수도 있다.
상기에 논의된 실시예들에서 픽셀들은 단지 2개의 트랜스퍼 게이트들(또는 2개의 복조 부분들)만을 갖지만, 본 발명은 그와 관련하여 제한되는 것이 아니라, 픽셀들은 임의의 다른 수의 트랜스퍼 게이트들(복조 부분들)을 가질 수도 있다.
도 10은 어레이에 배열되는 다수의 픽셀들(61)을 갖는 광 검출 부분(60)을 예시하고, 여기서 픽셀들(61) 각각은, 상부 좌측, 상부 우측, 하부 좌측 및 하부 우측 코너들 상에 배열되는 4개의 트랜스퍼 게이트들(TG0, TG1, TG2 및 TG3)을 가지며, 여기서 트랜스퍼 게이트들(TG0) 각각은 TG3과 대향하고 트랜스퍼 게이트들(TG1)은 TG2와 대향한다.
광 검출 부분(60)에는 2개의 타입들의 픽셀들(61), 즉, TG0, TG1, TG3 및 TG2의 순서로(TG0에서 시작하여 시계방향 방식으로) 트랜스퍼 게이트들을 갖는 제1 타입 픽셀들(61A), 및 TG0, TG2, TG3, 및 TG1의 순서로(TG0에서 시작하여 시계방향 방식으로) 트랜스퍼 게이트들을 갖는 제2 타입 픽셀들(61B)이 있다.
픽셀들(61)은 어레이에, 즉, 행들 및 열들에 배열되고, 여기서 도 10에는 단지 3개의 행들 및 4개의 열들만이 도시되어 있다.
제1 타입 픽셀들(61A) 및 제2 타입 픽셀들(61B)은 행들에서 그리고 열들에서 교번하여 배열되고, 여기서 제1 및 제3 행이 동일하다(즉, 홀수 행들이 동일하다).
제1 행은 제1 타입 픽셀(61A)로 시작하고, 여기서 픽셀(61A)은 트랜스퍼 게이트(TG3)가 상부 좌측에(그 후에 시계방향 방식으로 TG2, TG0, 및 TG1) 있도록 배열된다. 제1 행에서의 제1 픽셀 위치에 있는 제1 타입 픽셀(61A)의 다음 우측 상에는, 트랜스퍼 게이트(TG2)가 상부 좌측에(그 후에 시계방향 방식으로 TG3, TG1, TG0) 있도록 배열되는 픽셀(61B)이 배열되어, 제1 픽셀(61A) 및 제2 픽셀(61B)의 TG2 및 TG0 트랜스퍼 게이트들이 서로 마주한다. 다음으로 제1 픽셀(61A)과 동일한 배향을 갖는 픽셀(61A)이 제1 행에 배열되고(그래서 제2 픽셀(61B) 및 제3 픽셀(61A)의 트랜스퍼 게이트들(TG3 및 TG1)이 서로 마주한다), 그 다음에 제1 행의 제2 픽셀(61B)과 동일한 배향을 갖는 픽셀(61B)이 뒤이어진다.
제2 행에서는 제1 타입 픽셀들(61A)과 제2 타입 픽셀들(61B)도 또한 교번 방식으로 배열되어 있지만, 제2 행은 제2 타입 픽셀(61B)로 시작하고, 제2 행의 제1 타입 픽셀들(61A)과 제2 타입 픽셀들(61B)이 제1 행과 비교하여 180°로 회전된다.
따라서, 제2 행에서는 제1 타입 픽셀(61A)(제2 행에서의 제2 픽셀 위치에 있음)이 트랜스퍼 게이트(TG0)가 상부 좌측에(그 후에 시계방향 방식으로 TG1, TG3, 및 TG2) 있도록 배열되고, 그 다음에 트랜스퍼 게이트(TG1)가 상부 좌측에(그 후에 시계방향 방식으로 TG0, TG2, 및 TG3) 있도록 배열되는 제2 타입 픽셀(61B)(제2 행에서의 제3 픽셀 위치에 있음)이 뒤이어져서, 제1 타입 픽셀(61A) 및 제2 타입 픽셀(61B)의 트랜스퍼 게이트들(TG0 및 TG2)이 제1 타입 픽셀들(61A)의 좌측과 제2 타입 픽셀들(16B)의 우측 사이에서 서로 마주한다(그리고 제2 타입 픽셀들(61B)의 좌측 상의 트랜스퍼 게이트들(TG1 및 TG3)이 제1 타입 픽셀들(61A)의 우측 상의 트랜스퍼 게이트들(TG1 및 TG3)과 마주한다). 제2 행의 제3 픽셀 위치에 있는 제2 타입 픽셀(61B)은, 제2 행의 제1 픽셀 위치에 있는 제2 타입 픽셀(61B)에 대응하고, 제2 행의 제4 픽셀 위치에 있는 픽셀(61A)은, 제2 행의 제2 픽셀 위치에 있는 픽셀(61A)에 대응한다.
이 배열에 의하면, 제1 행의 제1 픽셀 위치에 있는 제1 타입 픽셀(61A) 및 제2 픽셀 위치에 있는 제2 타입 픽셀(61B) 그리고 제2 행의 제2 픽셀 위치에 있는 제1 타입 픽셀(61A) 및 제1 픽셀 위치에 있는 제2 타입 픽셀(61B)은 이들의 TG0 트랜스퍼 게이트들이 공통 영역을 둘러싸도록 배열되고, 여기서 이 공통 영역의 중앙에는 연관된 제1 바이어싱 전압 부분(62A)이 배열된다.
제1 행의 제2 픽셀 위치에 있는 제2 타입 픽셀(61B) 및 제1 행의 제3 픽셀 위치에 있는 제1 타입 픽셀(61A) 그리고 제2 행의 제2 픽셀 위치에 있는 제1 타입 픽셀(61A) 및 제2 행의 제3 픽셀 위치에 있는 제2 타입 픽셀(61B)은 이들의 TG1 트랜스퍼 게이트들이 공통 영역을 둘러싸도록 배열되고, 여기서 이 공통 영역의 중앙에는 연관된 제2 바이어싱 전압 부분(62B)이 배열된다.
제1 및 제2 행들의 제3 픽셀 위치에 있는 픽셀들(61A, 61B) 및 제4 픽셀 위치에 있는 픽셀들(61B, 61A)의 TG0 게이트들이 공통 영역을 둘러싸고, 여기서 이 공통 영역의 중앙에는 연관된 제1 바이어싱 전압 부분(62A)이 배열된다.
따라서, 제1 및 제2 행의 픽셀들(61A 및 61B)은 이들이 TG0 및 TG1 트랜스퍼 게이트들 각각으로 공통 영역들을 교번 방식으로 둘러싸도록 배열되고, 여기서 TG0으로 둘러싸인 영역은 제1 바이어싱 전압 부분(62A)을 포함하고, TG1로 둘러싸인 영역은 제2 바이어싱 전압 부분(62B)을 포함한다.
도 10으로부터 취득될 수 있는 바와 같이, 제2 행과 제3 행 사이에서, 제2 및 제3 행의 픽셀들(61A 및 61B)은 이들이 TG2 트랜스퍼 게이트들 및 TG3 트랜스퍼 게이트들 각각으로 공통 영역을 교번 방식으로 둘러싸도록 배열된다.
제2 및 제3 행의 제1 및 제2 픽셀 위치들에 있는 제1 타입 및 제2 타입 픽셀들(61A, 61B)은 이들의 TG2 트랜스퍼 게이트들이 공통 영역을 둘러싸도록 배열되고, 여기서 이 영역의 중앙에는 연관된 제3 바이어싱 전압 부분(62C)이 배열된다.
제2 및 제3 행의 제2 및 제3 픽셀 위치들에 있는 픽셀들(61A, 61B)은 이들의 TG3 트랜스퍼 게이트들이 공통 영역을 둘러싸도록 배열되고, 여기서 중앙에는 연관된 제4 바이어싱 전압 부분(62D)이 배열된다.
제2 및 제3 행의 제3 및 제4 픽셀 위치들에 있는 픽셀들(61A, 61B)은 이들의 TG2 트랜스퍼 게이트들이 공통 영역을 둘러싸도록 배열되고, 여기서 중앙에는 연관된 제4 바이어싱 전압 부분(62C)이 배열된다.
도 10은 TG0 트랜스퍼 게이트들이 하이 상태에 있는 광 검출 부분의 상태를 예시한다. 따라서, 제1 바이어싱 전압 부분들(62A)은 하이 바이어싱 전압 "+"로 바이어싱되고, 제2, 제3 및 제4 바이어싱 전압 부분들(62B, 62C, 및 62D)은 로우 바이어싱 전압 "-"로 바이어싱된다.
제2 트랜스퍼 게이트들(TG1)이 하이인 경우, 제2 트랜스퍼 게이트들(62B)과 연관된 제2 전압 부분(62B)은 하이이고, 나머지는 로우인 것 등으로 된다.
단순화의 이유들로, 이 실시예에서는, OFG가 부가되지 않았지만, 다른 실시예들에서는, 멀티-트랜스퍼 게이트 광 검출 부분들에 대해 OFG 게이트들이 또한 제공된다.
다음에는, 본 명세서에서 논의되는 바와 같은 타임-오브-플라이트 디바이스를 제어하기 위한 방법(70)이, 방법(70)의 흐름도를 도시하는 도 11의 참조 하에서 설명된다.
71에서, 본 명세서에서 논의되는 바와 같이, 제1 및 제2 바이어싱 전압 부분들에(또는 또한 도 10의 실시예의 경우에서는 제3 및 제4 바이어싱 전압 부분들에) 전압을 인가함으로써 바이어싱 전압이 인가된다.
72에서, 본 명세서에서 논의되는 바와 같이, 검출된 광 신호의 복조를 수행하기 위해 제1 및 제2 트랜스퍼 게이트(그리고, 예를 들어, 제3 및 제4 트랜스퍼 게이트들)가 연속적으로 제어된다.
도 12는 도 8의 실시예의 변형을 예시하고, 여기서 도 12의 실시예에는 도 8의 광 검출 부분(40)과 동일한 구조 및 배열의 픽셀들(21A 및 21B)을 일반적으로 가지며, 도 8의 광 검출 부분(40)과 동일한 배열의 제1 바이어싱 전압 부분들(22A) 및 제2 바이어싱 전압 부분들(22B)을 또한 갖는 광 검출 부분(80)이 도시되어 있다.
도 8의 실시예와 도 12의 실시예 사이의 유일한 차이점은, 도 12의 광 검출 부분(80)에서 부가적으로 MIXR(MIX_reset) 주입 바이어싱 전압 부분(22C)이 제2 픽셀 행과 제3 픽셀 행 사이에 제공된다는 점이고, 여기서 바이어싱 전압 부분들(22C) 각각은 4개의 픽셀들에 의해 둘러싸여 있다. 다시 말해, 도 12에 도시된 3개의 바이어싱 전압 부분들(22C) 각각은, TG0측과 대향하는 측이 중앙에서의 바이어싱 전압 부분(22C)의 방향으로 마주하도록 배열되는 제2 및 제3 행의 픽셀들(21A 및 21B)에 의해 대칭적으로 둘러싸인 중앙 영역에 배열된다.
이 실시예에서, 바이어싱 전압 부분 주입물들(22C) 각각은, TG0 및 TG1이 변조되고 있을 때, 노출 동안 저 전압으로 바이어싱된다.
게다가, 바이어싱 전압 부분(22C)은, 이웃하는 픽셀들(21A 및 21B)의 TG1을 향하는 방향으로 전계를 생성하는 것을 또한 가능하게 할 수도 있다.
부가적으로, 바이어싱 전압 부분(22C)은 또한 판독 기간 동안(제1 및 제2 바이어싱 전압 부분들(22A 및 22B)이 로우일 때) 고 전압으로 바이어싱될 수 있다.
따라서, 일부 실시예들에서, 바이어싱 전압 부분들(22C)은 리셋 기능성을 개선시킬 수도 있다.
일부 실시예들에서, TG에 더 호의적인 TG 대 OFG 기능성의 설계 트레이드오프도 또한 해결되는데, 이는 하이 바이어싱 전압으로 MIXR(22C)을 바이어싱함으로써 OFG 기능성이 회복될 수 있기 때문이다.
예를 들어, TG들이 PD의 중앙에 수평으로 배치되는 실시예들에서, 바이어싱 전압 부분들(22C)은 (특히, 제3 바이어싱 전압 부분(22C)이, 제1 및 제2 바이어싱 전압들(22A 및 22B) 각각과 각각 연관된 제1 MIXR0 및 제2 MIXR1로 추가로 분리될 때) 제1 및 제2 바이어싱 전압 부분들(22A 및 22B)을 향한 전계를 개선/향상시키기 위해 또한 사용될 수 있다.
도 13은 도 12의 광 검출 부분(80)의 제1 및 제2 바이어싱 전압 부분들(22A 및 22B)과 TG0 및 TG1 게이트들을 구동하기 위한 타이밍 다이어그램(도 3과 유사함)을 예시하고, 여기서 도 13에서는 제1 바이어싱 전압 부분들이 "MIX0"이라고 지칭되고 제2 바이어싱 전압 부분들이 "MIX1"이라고 지칭된다.
도 13의 타이밍 다이어그램은 가로좌표 상에서는 시간을 그리고 세로좌표 상에서는 TG0, TG1, MIX0 및 MIX1에 대한 상이한 구동 신호들의 전압들을 예시한다. 부가적으로, OFG 및/또는 MIXR 바이어싱 전압 부분(22C)에 대한 (임의적인) 전압 신호들이 예시되어 있다.
도 13은 3개의 시간 간격들, 즉, 픽셀들(21A 및 21B)이 리셋되는 "리셋" 시간 간격, 광원이 구동되고 반사된 광이 픽셀들(21A 및 21B)에 의해 검출되는 "노출" 시간 간격, 및 노출 시간 간격 동안 PD에 의해 생성된 전자들이 판독되는 "판독" 시간 간격을 예시한다.
도 13으로부터 취득될 수 있는 바와 같이, 노출 시간 간격 동안, 구동 신호가 제1 트랜스퍼 게이트들(TG0)에 인가될 때, 제1 바이어싱 전압 부분들(22A) "MIX0"도 또한 구동되고, 구동 신호가 제2 트랜스퍼 게이트들(TG1)에 인가될 때, 제2 바이어싱 전압 부분들(22B) "MIX1"도 또한 구동된다.
더욱이, OFG/MIXR 신호는 리셋 동안 그리고 또한 판독 시간 간격 동안 하이이지만, 그것은 노출 시간 간격 동안에는 로우여서, 그에 의해 상기에 논의된 바와 같은 효과들을 야기시킨다.
본 명세서에서 설명되고 첨부된 청구범위에서 청구되는 모든 유닛들 및 엔티티들이, 달리 명시되지 않는 경우, 예를 들어 칩 상의 집적 회로 로직으로서 구현될 수 있고, 그러한 유닛들 및 엔티티들에 의해 제공되는 기능성이, 달리 명시되지 않는 경우, 소프트웨어로 구현될 수 있다.
상술된 본 개시내용의 실시예들이, 적어도 부분적으로, 소프트웨어 제어 데이터 프로세싱 장치를 사용하여 구현되는 한, 그러한 소프트웨어 제어를 제공하는 컴퓨터 프로그램 및 그러한 컴퓨터 프로그램이 제공되게 하는 송신, 저장 또는 다른 매체가 본 개시내용의 양태들로서 고려된다는 것이 인식될 것이다.
본 기술은 아래에 설명되는 바와 같이 또한 구성될 수 있다는 것에 주목한다.
(1) 타임-오브-플라이트 디바이스로서,
적어도 하나의 광변환 부분, 및 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분
을 포함하는, 타임-오브-플라이트 디바이스.
(2) (1)에 있어서, 적어도 하나의 광변환 부분은 제1 트랜스퍼 게이트 및 제2 트랜스퍼 게이트를 포함하는, 타임-오브-플라이트 디바이스.
(3) (2)에 있어서, 제1 및 제2 바이어싱 전압 부분들에 인가된 전계는 제1 게이트 및 제2 게이트와 정렬되는, 타임-오브-플라이트 디바이스.
(4) (3)에 있어서, 전계는 적어도 하나의 광변환 부분에 입사된 광자들에 의해 생성되는 전기 캐리어들이 제1 게이트 및 제2 게이트로 각각 지향되도록 인가되는, 타임-오브-플라이트 디바이스.
(5) (1) 내지 (4) 중 어느 하나에 있어서, 광 검출 부분은, 어레이에 배열되는 다수의 광변환 부분들을 포함하는, 타임-오브-플라이트 디바이스.
(6) (5)에 있어서, 제1 및 제2 바이어싱 전압 부분들은 각각, 인접한 광변환 부분들 사이에 위치되어, 바이어싱 전압 부분들이, 중간 구역에서 한 라인 상에 배열된 광변환 부분들과 교차되는 중간 라인 상에 있도록 하는, 타임-오브-플라이트 디바이스.
(7) (5)에 있어서, 제1 및 제2 바이어싱 전압 부분들은 각각 4개의 광변환 부분들에 인접하게 배열되는, 타임-오브-플라이트 디바이스.
(8) (7)에 있어서, 제3 및 제4 트랜스퍼 게이트를 더 포함하는, 타임-오브-플라이트 디바이스.
(9) (8)에 있어서, 다수의 변환 부분들은 4개의 광변환 부분들의 제1 트랜스퍼 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분들의 제2 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분의 제3 트랜스퍼 게이트들이 서로 옆에 위치되며 4개의 광변환 부분들의 제4 트랜스퍼 게이트들이 서로 옆에 위치되도록 배열되는, 타임-오브-플라이트 디바이스.
(10) (1) 내지 (9) 중 어느 하나에 있어서, 적어도 하나의 광변환 부분은 전류 보조 광자 복조기로서 구성되는, 타임-오브-플라이트 디바이스.
(11) 적어도 하나의 광변환 부분, 및 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분을 포함하는 타임-오브-플라이트 디바이스를 제어하기 위한 방법으로서,
제1 및 제2 바이어싱 전압 부분들에 전압을 인가함으로써 바이어싱 전압을 인가하는 단계
를 포함하는, 방법.
(12) (11)에 있어서, 적어도 하나의 광변환 부분은 제1 트랜스퍼 게이트 및 제2 트랜스퍼 게이트를 포함하고, 방법은, 검출된 광 신호의 복조를 수행하기 위해 연속적으로 제1 및 제2 트랜스퍼 게이트를 제어하는 단계를 더 포함하는, 방법.
(13) (12)에 있어서, 제1 및 제2 바이어싱 전압 부분들에 인가된 전계는 제1 게이트 및 제2 게이트와 정렬되는, 방법.
(14) (13)에 있어서, 전계는 적어도 하나의 광변환 부분에 입사된 광자들에 의해 생성되는 전기 캐리어들이 제1 게이트 및 제2 게이트로 각각 지향되도록 인가되는, 방법.
(15) (11) 내지 (14) 중 어느 하나에 있어서, 광 검출 부분은, 어레이에 배열되는 다수의 광변환 부분들을 포함하는, 방법.
(16) (15)에 있어서, 제1 및 제2 바이어싱 전압 부분들은 각각, 인접한 광변환 부분들 사이에 위치되어, 바이어싱 전압 부분들이, 중간 구역에서 한 라인 상에 배열된 광변환 부분들과 교차되는 중간 라인 상에 있도록 하고, 바이어싱 전압의 인가는 2개의 이웃하는 광변환 부분들의 트랜스퍼 게이트들의 구동에 적응되는, 방법.
(17) (15)에 있어서, 제1 및 제2 바이어싱 전압 부분들은 각각 4개의 광변환 부분들과 인접하게 배열되고, 바이어싱 전압의 인가는 4개의 이웃하는 광변환 부분들의 트랜스퍼 게이트들의 구동에 적응되는, 방법.
(18) (17)에 있어서, 제3 및 제4 트랜스퍼 게이트를 더 포함하는, 방법.
(19) (18)에 있어서, 다수의 변환 부분들은 4개의 광변환 부분들의 제1 트랜스퍼 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분들의 제2 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분의 제3 트랜스퍼 게이트들이 서로 옆에 위치되며 4개의 광변환 부분들의 제4 트랜스퍼 게이트들이 서로 옆에 위치되도록 배열되고, 바이어싱 전압의 인가는 4개의 이웃하는 광변환 부분들의 제1 내지 제4 트랜스퍼 게이트들의 구동에 적응되는, 방법.
(20) (11) 내지 (19) 중 어느 하나에 있어서, 적어도 하나의 광변환 부분은 전류 보조 광자 복조기로서 구성되는, 방법.
(21) 컴퓨터 상에서 실행될 때, 컴퓨터로 하여금 (11) 내지 (20) 중 어느 하나에 따른 방법을 수행하게 하는 프로그램 코드를 포함하는, 컴퓨터 프로그램.
(22) 프로세서에 의해 실행될 때, (11) 내지 (20) 중 어느 하나에 따른 방법이 수행되게 하는 컴퓨터 프로그램 제품을 저장하는, 비일시적 컴퓨터 판독가능 기록 매체.

Claims (20)

  1. 타임-오브-플라이트 디바이스(time-of-flight device)로서,
    적어도 하나의 광변환 부분(photo conversion portion), 및 상기 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 상기 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분(light detection portion)
    을 포함하는, 타임-오브-플라이트 디바이스.
  2. 제1항에 있어서,
    상기 적어도 하나의 광변환 부분은 제1 트랜스퍼 게이트(first transfer gate) 및 제2 트랜스퍼 게이트를 포함하는, 타임-오브-플라이트 디바이스.
  3. 제2항에 있어서,
    상기 제1 및 제2 바이어싱 전압 부분들에 인가된 전계는 상기 제1 게이트 및 상기 제2 게이트와 정렬되는, 타임-오브-플라이트 디바이스.
  4. 제3항에 있어서,
    상기 전계는 상기 적어도 하나의 광변환 부분에 입사된 광자들에 의해 생성되는 전기 캐리어들이 상기 제1 게이트 및 제2 게이트로 각각 지향되도록 인가되는, 타임-오브-플라이트 디바이스.
  5. 제1항에 있어서,
    상기 광 검출 부분은, 어레이에 배열되는 다수의 광변환 부분들을 포함하는, 타임-오브-플라이트 디바이스.
  6. 제5항에 있어서,
    상기 제1 및 제2 바이어싱 전압 부분들은 각각, 인접한 광변환 부분들 사이에 위치되어, 상기 바이어싱 전압 부분들이, 중간 구역에서 한 라인 상에 배열된 광변환 부분들과 교차되는 중간 라인 상에 있도록 하는, 타임-오브-플라이트 디바이스.
  7. 제5항에 있어서,
    상기 제1 및 제2 바이어싱 전압 부분들은 각각 4개의 광변환 부분들에 인접하게 배열되는, 타임-오브-플라이트 디바이스.
  8. 제7항에 있어서,
    제3 및 제4 트랜스퍼 게이트를 더 포함하는, 타임-오브-플라이트 디바이스.
  9. 제8항에 있어서,
    상기 다수의 변환 부분들은 4개의 광변환 부분들의 제1 트랜스퍼 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분들의 제2 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분의 제3 트랜스퍼 게이트들이 서로 옆에 위치되며 4개의 광변환 부분들의 제4 트랜스퍼 게이트들이 서로 옆에 위치되도록 배열되는, 타임-오브-플라이트 디바이스.
  10. 제1항에 있어서,
    상기 적어도 하나의 광변환 부분은 전류 보조 광자 복조기(current assisted photonic demodulator)로서 구성되는, 타임-오브-플라이트 디바이스.
  11. 적어도 하나의 광변환 부분, 및 상기 적어도 하나의 광변환 부분에 걸쳐 전계를 생성하기 위해 상기 적어도 하나의 광변환 부분에 인접한 제1 바이어싱 전압 부분 및 제2 바이어싱 전압 부분을 포함하는 광 검출 부분을 포함하는 타임-오브-플라이트 디바이스를 제어하기 위한 방법으로서,
    상기 제1 및 제2 바이어싱 전압 부분들에 전압을 인가함으로써 바이어싱 전압을 인가하는 단계
    를 포함하는, 방법.
  12. 제11항에 있어서,
    상기 적어도 하나의 광변환 부분은 제1 트랜스퍼 게이트 및 제2 트랜스퍼 게이트를 포함하고, 상기 방법은, 검출된 광 신호의 복조를 수행하기 위해 연속적으로 상기 제1 및 제2 트랜스퍼 게이트를 제어하는 단계를 더 포함하는, 방법.
  13. 제12항에 있어서,
    상기 제1 및 제2 바이어싱 전압 부분들에 인가된 전계는 상기 제1 게이트 및 상기 제2 게이트와 정렬되는, 방법.
  14. 제13항에 있어서,
    상기 전계는 상기 적어도 하나의 광변환 부분에 입사된 광자들에 의해 생성되는 전기 캐리어들이 상기 제1 게이트 및 제2 게이트로 각각 지향되도록 인가되는, 방법.
  15. 제11항에 있어서,
    상기 광 검출 부분은, 어레이에 배열되는 다수의 광변환 부분들을 포함하는, 방법.
  16. 제15항에 있어서,
    상기 제1 및 제2 바이어싱 전압 부분들은 각각, 인접한 광변환 부분들 사이에 위치되어, 상기 바이어싱 전압 부분들이, 중간 구역에서 한 라인 상에 배열된 광변환 부분들과 교차되는 중간 라인 상에 있도록 하고, 바이어싱 전압의 인가는 2개의 이웃하는 광변환 부분들의 트랜스퍼 게이트들의 구동에 적응(adapt)되는, 방법.
  17. 제15항에 있어서,
    상기 제1 및 제2 바이어싱 전압 부분들은 각각 4개의 광변환 부분들과 인접하게 배열되고, 바이어싱 전압의 인가는 4개의 이웃하는 광변환 부분들의 트랜스퍼 게이트들의 구동에 적응되는, 방법.
  18. 제17항에 있어서,
    제3 및 제4 트랜스퍼 게이트를 더 포함하는, 방법.
  19. 제18항에 있어서,
    상기 다수의 변환 부분들은 4개의 광변환 부분들의 제1 트랜스퍼 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분들의 제2 게이트들이 서로 옆에 위치되고, 4개의 광변환 부분의 제3 트랜스퍼 게이트들이 서로 옆에 위치되며 4개의 광변환 부분들의 제4 트랜스퍼 게이트들이 서로 옆에 위치되도록 배열되고, 바이어싱 전압의 인가는 4개의 이웃하는 광변환 부분들의 제1 내지 제4 트랜스퍼 게이트들의 구동에 적응되는, 방법.
  20. 제11항에 있어서,
    상기 적어도 하나의 광변환 부분은 전류 보조 광자 복조기로서 구성되는, 방법.
KR1020217034917A 2019-05-06 2020-04-30 타임-오브-플라이트 디바이스 및 방법 KR20220004647A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19172765 2019-05-06
EP19172765.0 2019-05-06
PCT/EP2020/062035 WO2020225094A1 (en) 2019-05-06 2020-04-30 Time-of-flight device and method

Publications (1)

Publication Number Publication Date
KR20220004647A true KR20220004647A (ko) 2022-01-11

Family

ID=66429260

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217034917A KR20220004647A (ko) 2019-05-06 2020-04-30 타임-오브-플라이트 디바이스 및 방법

Country Status (5)

Country Link
US (1) US20220214433A1 (ko)
EP (1) EP3966589A1 (ko)
KR (1) KR20220004647A (ko)
CN (1) CN113795768A (ko)
WO (1) WO2020225094A1 (ko)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA99002142A (es) * 1996-09-05 2004-08-27 Rudolf Schwarte Metodo y aparato para determinar la informacion defase y/o amplitud de una onda electromagnetica.
DE102009037596B4 (de) * 2009-08-14 2014-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pixelstruktur, System und Verfahren zur optischen Abstandsmessung sowie Steuerschaltung für die Pixelstruktur
US10861888B2 (en) * 2015-08-04 2020-12-08 Artilux, Inc. Silicon germanium imager with photodiode in trench

Also Published As

Publication number Publication date
US20220214433A1 (en) 2022-07-07
CN113795768A (zh) 2021-12-14
WO2020225094A1 (en) 2020-11-12
EP3966589A1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US11762073B2 (en) Three-dimensional (3D) image sensors including polarizer, and depth correction methods and 3D image generation methods based on 3D image sensors
JP5566621B2 (ja) 距離測定センサ及びそれを備えた立体カラーイメージセンサ
KR102311615B1 (ko) 다수 전류 및 분리 수단을 갖는 검출기 디바이스
KR20090118795A (ko) 이중 트랜스퍼 게이트를 구비한 거리측정 센서 및 그를구비한 입체 컬러 이미지 센서
CN115428152A (zh) 一种单光子雪崩二极管及其制造方法、光检测器件及系统
US11218657B2 (en) Pixel and image sensor including the same
US11885912B2 (en) Sensor device
US11652123B2 (en) Image sensing device
KR20220004647A (ko) 타임-오브-플라이트 디바이스 및 방법
US20220208815A1 (en) Image sensing device
US20220278163A1 (en) Image sensing device
US20220415942A1 (en) Image sensing device
US11942492B2 (en) Image sensing device
US20220254818A1 (en) Image sensing device
US20210305310A1 (en) Image sensing device
KR20230055605A (ko) 이미지 센싱 장치
KR20210125744A (ko) 이미지 센싱 장치
KR20220072257A (ko) 이미지 센싱 장치
KR20230091862A (ko) 센서 장치, 센싱 모듈
JP2021513747A (ja) 可視撮像アレイにおけるクロストーク緩和のためのセグメント化チャネルストップグリッド
KR20200089144A (ko) 고속 전하 전송을 이용한 이미지 센서의 픽셀