KR20210157193A - Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof - Google Patents

Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof Download PDF

Info

Publication number
KR20210157193A
KR20210157193A KR1020200075168A KR20200075168A KR20210157193A KR 20210157193 A KR20210157193 A KR 20210157193A KR 1020200075168 A KR1020200075168 A KR 1020200075168A KR 20200075168 A KR20200075168 A KR 20200075168A KR 20210157193 A KR20210157193 A KR 20210157193A
Authority
KR
South Korea
Prior art keywords
chs
protein
emodin
gene
gly
Prior art date
Application number
KR1020200075168A
Other languages
Korean (ko)
Other versions
KR102463948B1 (en
Inventor
강상호
송재경
프라사드 판데이 라메스
Original Assignee
대한민국(농촌진흥청장)
선문대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장), 선문대학교 산학협력단 filed Critical 대한민국(농촌진흥청장)
Priority to KR1020200075168A priority Critical patent/KR102463948B1/en
Publication of KR20210157193A publication Critical patent/KR20210157193A/en
Application granted granted Critical
Publication of KR102463948B1 publication Critical patent/KR102463948B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to Senna tora-derived CHS-L protein having polyketide synthase activity and a gene thereof. The Senna tora-derived CHS-L of the present invention has activity in biosynthesis of atrochrysome carboxylic acid, which is an emodin precursor, or/and endocrosine anthrone and can be usefully used in developing a crop with an increased anthraquinone (emodin) content or in synthesizing the emodin precursor and emodin.

Description

안트라퀴논 생합성 기능을 가지는 결명자 유래 유전자 및 이의 용도{Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof}Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof

본 발명은 안트라퀴논 생합성에 관여하는 결명자 유래 CHS-L 단백질, 이의 유전자 및 이들의 용도에 관한 것이다.The present invention relates to anthraquinone biosynthesis-derived CHS-L protein, a gene thereof, and uses thereof.

결명자는 콩과에 속하는 한해살이 초본으로 초결명자(Senna obtusifolia)와 결명자(Senna tora)의 두 품종이 알려져 있다. 이의 성숙한 종자는 눈을 맑게 한다는 의미에서 결명자라 알려져 있다. 약리성분으로는 비타민A의 전구체인 카로틴(carotene), 알로에 향과 쓴맛을 내는 알로인(Alloin), 레인(Rhein), 에모딘(emodin), 크리소판올(Chrysophanol), 알로에-에모딘(Aloe-emodin), 피션(Physcion), 오브튜신(Obtusin), 아우란티오-오브튜신(Aurantio-obtusin), 루브로퓨산리(Rubrofusrin), 토라크리손(Torachryson), 토라락톤(Tora lactone) 등이 있다. 이들 성분들 중 에모딘(Emodin)은 안트라퀴논(Anthraquinone)계 화합물로써, 탄소수 14개의 C6-C2-C6의 기본 골격을 갖고 있으며 1,3,8-트리히드록시-6-메틸-9,10-안트라세네디온(1,3,8-trihydroxy-6-methyl-9,10-anthracenedione)이라는 화학명을 갖는다. 에모딘은 항암, 항염, 항균, 이뇨와 면역억제 같은 다양한 생물학적 활성이 보고되어 있다.Kyeomyeongja is an annual herb belonging to the legume family, and two varieties are known : Senna obtusifolia and Senna tora. Its mature seeds are known as Kyeomyeongja in the sense of clearing the eyes. Pharmacological ingredients include carotene, a precursor of vitamin A, alloin, Rhein, emodin, chrysophanol, and aloe-emodin. -emodin), Physcion, Obtusin, Aurantio-obtusin, Rubrofusrin, Torachryson, Tora lactone, etc. have. Among these components, Emodin is an anthraquinone-based compound and has a C 6 -C 2 -C 6 basic skeleton of 14 carbon atoms and 1,3,8-trihydroxy-6-methyl- It has the chemical name 9,10-anthracenedione (1,3,8-trihydroxy-6-methyl-9,10-anthracenedione). Various biological activities such as anticancer, anti-inflammatory, antibacterial, diuretic and immunosuppressive have been reported.

결명자 추출물로부터 안트라퀴논(Anthraquinone)계의 생리활성물질의 구조분석이나 생리활성 효과를 보는 연구는 많이 보고 되었다. 그러나 결명자 추출물 중 안트라퀴논계의 생리활성물질들에 대한 미생물에서의 생합성 연구는 크리소파놀(chrysophanol) 외에는 거의 없는 실정이다. 동맥경화에 효과가 있는 크리소파놀의 생합성 연구는 2008년 The journal of antibiotics에서 방선균에서 크리소파놀 중간체의 합성에 대한 연구와 2009년에 phytochemistry에서 생합성에 관련된 연구가 개시된바 있다. 그러나 에모딘 생합성에 대한 연구는 상당히 미비한 실정이다.Many studies have been reported on structural analysis or physiological effects of anthraquinone-based physiologically active substances from the extract of kaleidoscope. However, biosynthesis studies in microorganisms for anthraquinone-based physiologically active substances among the extracts of Kaleidoscope are scarce except for chrysophanol. A study on the biosynthesis of chrysophanol, which is effective in arteriosclerosis, was initiated in 2008 in The Journal of Antibiotics , in the study on the synthesis of chrysophanol intermediates in actinomycetes, and in phytochemistry in 2009, in phytochemistry. However, studies on the biosynthesis of emodin are quite incomplete.

대한민국 등록특허 제 10-2072017 호Republic of Korea Patent Registration No. 10-2072017

본 발명의 해결하고자 하는 과제는 폴리케타이드합성효소(polyketide synthase) 활성을 가지는 결명자 유래 CHS-L 단백질, 상기 CHS-L 단백질을 암호화 하는 CHS-L 유전자 및 상기 유전자를 포함하는 재조합 벡터 등을 제공하는 것이다. The problem to be solved by the present invention is to provide a CHS-L protein derived from C. C. C. synthase having polyketide synthase activity, a CHS-L gene encoding the CHS-L protein, and a recombinant vector including the gene will do

상기의 과제를 해결하기 위해 본 발명은 폴리케타이드합성효소(polyketide synthase) 활성을 가지는 서열번호2의 아미노산 서열로 표시되는 결명자 유래 CHS-L 단백질을 제공한다.In order to solve the above problems, the present invention provides a CHS-L protein derived from C. C., represented by the amino acid sequence of SEQ ID NO: 2 having polyketide synthase activity.

상기 폴리케타이드합성효소(polyketide synthase)는 말로닐코에이(malonyl-CoA) 기질을 이용하여 에모딘 전구체를 합성하는 것일 수 있다.The polyketide synthase may be to synthesize an emodin precursor using a malonyl-CoA substrate.

상기 에모딘 전구체는 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 또는 엔도크로신 안트론(endocrocin anthrone)일 수 있다.The emodin precursor may be atrochrysome carboxylic acid or endocrocin anthrone.

또한 본 발명은 상기 CHS-L 단백질을 암호화 하는 서열번호1로 표시되는 CHS-L 유전자를 제공한다.The present invention also provides a CHS-L gene represented by SEQ ID NO: 1 encoding the CHS-L protein.

또한 본 발명은 상기 CHS-L 유전자를 포함하는 재조합 벡터를 제공한다.The present invention also provides a recombinant vector comprising the CHS-L gene.

또한 본 발명은 상기 재조합 벡터로 형질전환된 형질전환체를 제공한다.The present invention also provides a transformant transformed with the recombinant vector.

상기 형질전환체는 대장균 BL21(DE3) 균주일 수 있다.The transformant may be an E. coli BL21 (DE3) strain.

또한 본 발명은 서열번호1로 표시되는 CHS-L 유전자를 특이적으로 증폭할 수 있는 서열번호5 및 서열번호6으로 표시되는 프라이머 세트를 제공한다.In addition, the present invention provides a primer set represented by SEQ ID NO: 5 and SEQ ID NO: 6 capable of specifically amplifying the CHS-L gene represented by SEQ ID NO: 1.

또한 본 발명은 CHS-L 단백질과 말로닐코에이(malonyl-CoA)를 반응시키는 단계를 포함하는 에모딘 전구체의 생산방법을 제공한다.The present invention also provides a method for producing an emodin precursor comprising the step of reacting CHS-L protein with malonyl-CoA.

상기 생산방법은 NADPH 보조 인자를 추가하는 단계를 더 포함할 수 있다.The production method may further comprise adding a NADPH cofactor.

상기 에모딘 전구체는 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 또는 엔도크로신 안트론(endocrocin anthrone)일 수 있다.The emodin precursor may be atrochrysome carboxylic acid or endocrocin anthrone.

본 발명에 따르면, 결명자 유래 CHS-L를 활용하여 에모딘 전구체를 생산할 수 있으며, 안트라퀴논(에모딘) 함량이 증진된 작물을 개발할 수 있다.According to the present invention, it is possible to produce an emodin precursor by utilizing the CHS-L derived from Kyomyungja, and it is possible to develop a crop with an improved anthraquinone (emodin) content.

도 1은 폴리케타이드 합성효소에 의한 안트라퀴논 예상 생합성 경로이다.
도 2는 결명자 및 다른 4종의 콩과 식물 유전체(C. fasciculata, A. hypogaea, M. truncatula, G. max)에서 CHS-L 유전자 계통의 계통적 특이성을 확인한 결과이다.
도 3은 결명자 CHS-L(Sto07g228250) 또는 CHS(Sto03g054970) 재조합 단백질의 발현을 SDS-PAGE로 확인한 결과이다. (a) Sto07g228250 SDS-PAGE 분석결과로, 레인 1: 표준 단백질 마커; 레인 2: 가용성 단백질; 레인 3: 불용성 단백질; 레인 4 및 5: 정제된 단백질이다. (b) Sto03g054970 SDS-PAGE 분석결과로, 레인 1: 가용성 단백질; 레인 2: 불용성 단백질; 레인 3 및 4: 정제된 단백질; 레인 5: 표준 단백질 마커이다.
도 4는 결명자 CHS-L에 효소 반응 결과물의 TOF ESI-MS 분석결과이다.
1 is an anthraquinone predicted biosynthesis pathway by polyketide synthetase.
2 is a result of confirming the phylogenetic specificity of the CHS-L gene line in the genomes of four other legumes ( C. fasciculata , A. hypogaea , M. truncatula , G. max).
Figure 3 shows the results of confirming the expression of the recombinant protein CHS-L (Sto07g228250) or CHS (Sto03g054970) by SDS-PAGE. (a) Sto07g228250 SDS-PAGE analysis result, lane 1: standard protein marker; lane 2: soluble protein; lane 3: insoluble protein; Lanes 4 and 5: Purified protein. (b) Sto03g054970 SDS-PAGE analysis, lane 1: soluble protein; lane 2: insoluble protein; lanes 3 and 4: purified protein; Lane 5: standard protein marker.
4 is a result of TOF ESI-MS analysis of the result of the enzymatic reaction in CHS-L of Kyomyungja.

본 발명은 폴리케타이드합성효소(polyketide synthase) 활성을 가지는 서열번호2의 아미노산 서열로 표시되는 결명자 유래 CHS-L 단백질을 제공한다.The present invention provides a polyketide synthase (polyketide synthase)-derived CHS-L protein represented by the amino acid sequence of SEQ ID NO: 2 having activity.

또한, 상기 서열번호2의 아미노산 서열을 이루는 단백질과 기능적 동등물이 본 발명의 범위 내에 포함될 수 있다. 상기 "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다.In addition, functional equivalents of proteins constituting the amino acid sequence of SEQ ID NO: 2 may be included within the scope of the present invention. The "functional equivalent" means at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably the amino acid sequence represented by SEQ ID NO: 2 as a result of the addition, substitution or deletion of amino acids. It refers to a protein having substantially the same physiological activity as the protein represented by SEQ ID NO: 2 as having 95% or more sequence homology.

본 발명에서 결명자는 콩과에 속하는 한해살이 초본으로 결명속(Senna) 식물로, 초결명자(Senna obtusifolia)와 결명자(Senna tora)의 두 품종이 알려져 있다. 과거에는 초결명자 및 결명자를 카시아속(Cassia)으로 분류하였으나, 현재는 결명속(Senna)으로 분류한다. 결명자는 초결명, 긴강남차라고도 한다. 초결명자는 중앙아메리카 원산으로 일본 등지에서 결명자는 열대아시아산으로 중국, 우리나라 등지에서 재배된다.In the present invention, Kyeomyeongja is an annual herb belonging to the legume family, and as a plant of the genus Gyeomyeong ( Senna ), two varieties are known: Senna obtusifolia and Kyeomyeongja ( Senna tora). In the past, Chogyeolmyeongja and Kyeomyeongja were classified as Cassia , but now they are classified as Senna. Gyeolmyeongja is also called Chogyeolmyeong or Gingangnamcha. Chogyeomyeongja is native to Central America and is cultivated in Japan and other places in tropical Asia, such as China and Korea.

결명자의 열매의 모양은 불규칙한 육각주상으로 한쪽은 뾰족하다. 외면의 색깔은 황갈 내지 흑갈색이고, 길이 3 내지 6mm, 지름 2 내지 3.5mm이다. 종피는 견고하고 윤택하며, 좌우 양측에 광택이 있는 폭이 좁은 한 줄의 패어진 무늬가 있고, 약간 특이한 냄새가 난다. 초결명자는 종자가 대립이고, 결명자는 소립이다.The shape of the fruit of Kyeolmyungja is irregular hexagonal columnar shape and one side is pointed. The color of the outer surface is yellowish brown to blackish brown, and the length is 3 to 6 mm, and the diameter is 2 to 3.5 mm. The seed coat is firm and glossy, and has a single narrow line of glossy patterns on the left and right sides, and has a slightly peculiar smell. Chogyeomyeongja is the opposite of seeds, and Kyolmyungja is small.

본 발명의 실시예에서 결명자에서 서열번호1의 CHS-L(Sto07g228250) 유전자를 분리하였으며, 분리된 CHS-L 단백질이 폴리케타이드합성효소(polyketide synthase) 활성을 가져 에모딘 생합성 경로에 관여하며, 구체적으로 말로닐코에이(malonyl-CoA) 기질을 이용하여 에모딘 전구체인 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 및 엔도크로신 안트론(endocrocin anthrone)을 합성함을 확인하였다. In an embodiment of the present invention, the CHS-L (Sto07g228250) gene of SEQ ID NO: 1 was isolated from the coleoptera, and the isolated CHS-L protein has polyketide synthase activity and is involved in the biosynthetic pathway of emodin, Specifically, it was confirmed that emodin precursor atrochrysome carboxylic acid and endocrocin anthrone were synthesized using a malonyl-CoA substrate.

따라서 본 발명의 결명자는 결명자(Senna tora) 품종일 수 있다. Therefore, the gyeolmyeongja of the present invention may be a gyeolmyeongja (Senna tora) variety.

본 발명의 실시예에서 결명자 유래 CHS-L 단백질이 폴리케타이드합성효소(polyketide synthase) 활성을 가져, 말로닐코에이(malonyl-CoA) 기질을 이용하여 에모딘 전구체인 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 또는 엔도크로신 안트론(endocrocin anthrone)를 합성함을 확인하였는바, 본 발명의 CHS-L 단백질은 폴리케타이드합성효소(polyketide synthase) 활성을 가진다. In an embodiment of the present invention, the CHS-L protein derived from Kyomyungja has polyketide synthase activity, and atrochrysome carboxylic acid (atrochrysome carboxylic acid), a precursor of emodin, using a malonyl-CoA substrate acid) or endocrocin anthrone was confirmed to be synthesized, the CHS-L protein of the present invention has polyketide synthase activity.

본 발명에서 폴리케타이드합성효소(polyketide synthase)는 말로닐코에이(malonyl-CoA) 기질을 이용하여 에모딘 전구체 또는 에모딘을 합성하는 효소이다. In the present invention, polyketide synthase is an enzyme for synthesizing an emodin precursor or emodin using a malonyl-CoA substrate.

본 발명에서 에모딘은 안트라퀴논(Anthraquinone)계 화합물로써, 탄소수 14개의 C6-C2-C6의 기본 골격을 갖고 있으며 1,3,8-트리히드록시-6-메틸-9,10-안트라세네디온(1,3,8-trihydroxy-6-methyl-9,10-anthracenedione)이라는 화학명을 갖는다.In the present invention, emodin is an anthraquinone-based compound, has a C6-C2-C6 basic skeleton of 14 carbon atoms, and 1,3,8-trihydroxy-6-methyl-9,10-anthracenedione It has the chemical name (1,3,8-trihydroxy-6-methyl-9,10-anthracenedione).

본 발명에서 전구체는 어떤 물질대사나 반응에서 특정 물질이 되기 전 단계의 물질로, 말로닐코에이(malonyl-CoA)가 폴리케타이드합성효소(polyketide synthase)에 의해 에모딘으로 생합성되는 경로에 생산되는 중산산물을 의미한다. In the present invention, a precursor is a substance in a stage before becoming a specific substance in any metabolism or reaction, and is produced in the pathway in which malonyl-CoA is biosynthesized into emodin by polyketide synthase. means middle-class products.

본 발명에서 에모딘 전구체는 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 또는 엔도크로신 안트론(endocrocin anthrone)일 수 있다. In the present invention, the emodin precursor may be atrochrysome carboxylic acid or endocrocin anthrone.

또한 본 발명은 상기 CHS-L 단백질을 암호화 하는 서열번호1로 표시되는 CHS-L 유전자를 제공한다. The present invention also provides a CHS-L gene represented by SEQ ID NO: 1 encoding the CHS-L protein.

본 발명의 CHS-L 유전자는 서열번호2의 CHS-L 단백질을 암호화하는 유전자로 서열번호1로 표시된다. The CHS-L gene of the present invention is a gene encoding the CHS-L protein of SEQ ID NO: 2 and is represented by SEQ ID NO: 1.

상기 CHS-L 유전자는 서열번호1의 염기서열에 한정되지 않으며, 기능적으로 균등한 코돈 또는 동일한 아미노산을 코딩하는 코돈, 또는 생물학적으로 균등한 아미노산을 코딩하는 코돈을 포함하는 염기서열을 포함한다. 생물학적으로 균등 활성을 갖는 변이를 고려한다면, 본 발명에서 이용되는 염기서열은 서열목록에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 60%의 상동성, 보다 구체적으로는 70%의 상동성, 보다 더 구체적으로는 80%의 상동성, 가장 구체적으로는 90%의 상동성을 나타내는 서열을 의미한다.The CHS-L gene is not limited to the nucleotide sequence of SEQ ID NO: 1, and includes a functionally equivalent codon or a nucleotide sequence including a codon encoding the same amino acid, or a codon encoding a biologically equivalent amino acid. In consideration of mutations having biologically equivalent activity, the nucleotide sequence used in the present invention is interpreted to include a sequence showing substantial identity to the sequence described in the sequence listing. The substantial identity is at least 60% when the sequence of the present invention and any other sequences are aligned as much as possible, and the aligned sequence is analyzed using an algorithm commonly used in the art. It means a sequence that exhibits homology, more specifically 70% homology, even more specifically 80% homology, and most specifically 90% homology.

본 발명의 실시예에서 결명자 유래 CHS-L 유전자를 15종의 식물체(콩과 14종, 포도과 1종)의 유전자와 비교분석한 결과, 11종의 CHS-L 서브 패밀리 유전자가 없었다. 반면, 결명자(Senna tora)는 16개, C. fasciculata는 5개, A. hypogaea는 2개, M. truncatula는 1개, G. max는 1개의 CHS-L 서브 패밀리 유전자를 포함함을 확인하였다. In the example of the present invention, as a result of comparative analysis of the CHS-L gene derived from C. C. plant species with the genes of 15 plants (14 species of legumes, 1 type of grape family), there were no 11 kinds of CHS-L subfamily genes. On the other hand, it was confirmed that 16 genes of Senna tora , 5 of C. fasciculata , 2 of A. hypogaea , 1 of M. truncatula , and 1 of G. max contained CHS-L subfamily genes. .

즉, 결명자는 다른 15종의 식물종의 유전체와 비교하여 CHS-L 계열 유전자가 특별히 많이 존재하고 있음을 확인하였다. 따라서 본 발명의 CHS-L 유전자는 결명자에서 유래된 유전자일 수 있다. In other words, compared to the genomes of 15 other plant species, Kyushu Myeongja confirmed that there are especially many CHS-L series genes. Therefore, the CHS-L gene of the present invention may be a gene derived from Kyomyungja.

또한 본 발명은 CHS-L 유전자를 포함하는 재조합 벡터를 제공한다. The present invention also provides a recombinant vector comprising the CHS-L gene.

본 발명의 재조합 벡터는 CHS-L 단백질을 암호화 하는 서열번호1로 표시되는 CHS-L 유전자를 포함한다. The recombinant vector of the present invention includes a CHS-L gene represented by SEQ ID NO: 1 encoding a CHS-L protein.

전술한 실시예에서 결명자 유래 CHS-L 단백질이 에모딘 전구체 합성에 관여하는 것을 확인하였는바, 본 발명의 재조합 벡터는 에모딘 전구체의 생합성을 촉진 또는 증진시키는 재조합 벡터일수 있다. As it has been confirmed that the CHS-L protein derived from K. C. C. in the above-described embodiment is involved in the synthesis of the emodin precursor, the recombinant vector of the present invention may be a recombinant vector that promotes or enhances the biosynthesis of the emodin precursor.

본 발명에서 용어 “재조합”은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term “recombinant” refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by the heterologous nucleic acid. Recombinant cells can express genes or gene segments not found in the native form of the cell, either in sense or antisense form. Recombinant cells can also express genes found in cells in a natural state, but the genes are modified and re-introduced into cells by artificial means.

본 발명에서 "형질전환용 재조합 벡터"란 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 제작물로, 플라스미드 벡터, 코스미드 벡터, 박테리오파지 벡터 및 바이러스 벡터 등을 포함한 통상의 모든 벡터를 포함한다.In the present invention, the term "recombinant vector for transformation" refers to a gene construct including essential regulatory elements operably linked to express a gene insert, and includes all common vectors including plasmid vectors, cosmid vectors, bacteriophage vectors and viral vectors. include

본 발명의 "형질전환용 재조합 벡터"는 상기 CHS-L 유전자가 발현될 수 있도록, 발현조절 서열과 기능적으로 연결되어 있다. 예를 들어, 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 또한, 벡터는 선택성 마커를 포함할 수 있으며, 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다. 본 발명의 벡터는 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.The "recombinant vector for transformation" of the present invention is functionally linked to an expression control sequence so that the CHS-L gene can be expressed. For example, the vector includes a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as a promoter, operator, initiation codon, stop codon, polyadenylation signal, and enhancer, and may be prepared in various ways depending on the purpose. . In addition, the vector may include a selectable marker, and the vector may be self-replicating or integrated into host DNA. The vector of the present invention can be prepared using a genetic recombination technique well known in the art, and site-specific DNA cleavage and ligation are performed using enzymes generally known in the art.

본 발명의 일실시예에서는 pET28a(+) 대장균 발현 벡터에 CHS-L 유전자를 재조합하여 대장균 발현용 재조합 벡터를 제조하였다. In an embodiment of the present invention, a recombinant vector for E. coli expression was prepared by recombination of the CHS-L gene in the pET28a(+) E. coli expression vector.

또한 본 발명은 상기 재조합 벡터로 형질전환된 형질전환체를 제공한다. The present invention also provides a transformant transformed with the recombinant vector.

본 발명에서 용어 "형질전환"은, 유전물질인 DNA를 다른 계통의 살아 있는 세포에 주입했을 때, DNA가 그 세포에 들어가 유전형질(遺傳形質)을 변화시키는 현상으로, 형질변환, 형전환, 또는 형변환이라고도 한다.As used herein, the term "transformation" refers to a phenomenon in which DNA enters the cell and changes the genetic trait when DNA, which is a genetic material, is injected into a living cell of another lineage. Or also called type conversion.

본 발명에서 상기 벡터로 미생물 또는 식물체를 "형질전환"하는 것은 당업자에게 공지된 형질전환기술에 의해 수행될 수 있다. In the present invention, "transformation" of a microorganism or plant with the vector can be performed by transformation techniques known to those skilled in the art.

구체적으로는, 아그로박테리움을 이용한 형질전환방법, 미세사출법(microprojectile bombardment), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method), 인-플란타 형질전환법(In planta transformation), 진공 침윤법(Vacuum infiltration method), 화아침지법(floral meristem dipping method) 또는 아그로박테리아 분사법(Agrobacterium spraying method)을 이용할 수 있다.Specifically, transformation method using Agrobacterium, microprojectile bombardment, electroporation, PEG-mediated fusion, microinjection, liposome-mediated method ( liposome-mediated method, In planta transformation, Vacuum infiltration method, floral meristem dipping method, or Agrobacterium spraying method can be used. have.

본 발명에서 용어 "식물체"는, 성숙한 식물체뿐만 아니라 성숙한 식물로 발육할 있는 식물 세포, 식물 조직 및 식물의 종자 등을 모두 포함하는 의미이다. In the present invention, the term "plant" is meant to include not only mature plants, but also plant cells, plant tissues, and seeds of plants that can develop into mature plants.

본 발명에서 상기 식물체는 특별히 제한되지 않으며, 일례로서 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리 또는 수수를 포함하는 식량 작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 또는 당근을 포함하는 채소 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 또는 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 또는 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 또는 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 또는 페레니얼라이그라스를 포함하는 사료작물류로 이루어진 군으로부터 선택된 어느 하나일 수 있다.In the present invention, the plant is not particularly limited, and as an example, food crops including rice, wheat, barley, corn, soybean, potato, wheat, red bean, oat or sorghum; vegetable crops including Arabidopsis thaliana, Chinese cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion or carrot; special crops including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut or rapeseed; fruit trees including apple trees, pear trees, jujube trees, peaches, poplars, grapes, tangerines, persimmons, plums, apricots or bananas; flowers including roses, gladiolus, gerberas, carnations, chrysanthemums, lilies or tulips; And it may be any one selected from the group consisting of forage crops including ryegrass, red clover, orchard grass, alpha alpha, tall fescue or perennial ryegrass.

본 발명에서 상기 형질전환된 식물체는 CHS-L 유전자 또는 이의 단백질을 발현하므로, 상기 CHS-L 유전자를 포함하는 재조합 벡터를 도입함으로써 식물체에 존재하는 CHS-L 유전자의 발현을 증진시킬 수 있다. 따라서 에모딘 전구체의 생합성을 촉진할 수 있으며, 또한, 에모딘 전구체의 생합성을 촉진 또는 증진하여 에모딘 생산을 촉진할 수 있다. Since the transformed plant in the present invention expresses the CHS-L gene or a protein thereof, the expression of the CHS-L gene present in the plant can be enhanced by introducing a recombinant vector containing the CHS-L gene. Accordingly, it is possible to promote the biosynthesis of the emodin precursor, and also promote or enhance the biosynthesis of the emodin precursor to promote the production of emodin.

본 발명의 실시예에서 대장균 BL21(DE3) 균주에 CHS-L 재조합 벡터를 도입하여, CHS-L의 발현을 촉진하고, 이들 발현된 단백질을 분리하였으며, 분리된 CHS-L 단백질을 이용하여 malonyl-CoA 기질을 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 또는 엔도크로신 안트론(endocrocin anthrone)로 합성하였다. In an embodiment of the present invention, the CHS-L recombinant vector was introduced into the E. coli BL21 (DE3) strain, to promote the expression of CHS-L, and these expressed proteins were isolated, and malonyl- using the isolated CHS-L protein CoA substrate was synthesized with atrochrysome carboxylic acid or endocrocin anthrone.

따라서 본 발명의 형질전환체는 미생물일 수 있으며, 구체적으로 대장균 BL21(DE3)일 수 있다. Therefore, the transformant of the present invention may be a microorganism, specifically E. coli BL21 (DE3).

또한 본 발명은 서열번호1로 표시되는 CHS-L 유전자를 특이적으로 증폭할 수 있는 서열번호5 및 서열번호6로 표시되는 프라이머 세트를 제공한다. In addition, the present invention provides a primer set represented by SEQ ID NO: 5 and SEQ ID NO: 6 capable of specifically amplifying the CHS-L gene represented by SEQ ID NO: 1.

본 발명의 실시예에서 CHS-L을 암호화하는 Sto07g228250(1,173 bp, 서열번호1) 유전자를 서열번호5 및 서열번호6로 표시되는 프라이머 세트를 이용하여 증폭하였다. In an embodiment of the present invention, the Sto07g228250 (1,173 bp, SEQ ID NO: 1) gene encoding CHS-L was amplified using a primer set represented by SEQ ID NO: 5 and SEQ ID NO: 6.

따라서 본 발명의 프라이머 세트는 서열번호5 및 서열번호6로 표시되는 프라이머를 포함한다. 상기 프라이머 세트는 CHS-L 유전자를 특이적으로 증폭하는 것으로, 구체적으로 서열번호1의 CHS-L 유전자를 특이적으로 증폭하는 것일 수 있다. Accordingly, the primer set of the present invention includes the primers represented by SEQ ID NO: 5 and SEQ ID NO: 6. The primer set specifically amplifies the CHS-L gene, and may specifically amplify the CHS-L gene of SEQ ID NO: 1.

본 발명에서 프라이머 세트는 표적 유전자 서열을 인지하는 정방향 및 역방향의 프라이머로 이루어진 모든 조합의 프라이머 세트를 포함하나, 바람직하게는, 특이성 및 민감성을 가지는 분석 결과를 제공하는 프라이머 세트이다. 프라이머의 핵산 서열이 시료내 존재하는 비-표적 서열과 불일치하는 서열이어서, 상보적인 프라이머 결합 부위를 함유하는 표적 유전자 서열만 증폭하고 비특이적 증폭을 유발하지 않는 프라이머일 때, 높은 특이성을 부여할 수 있다.In the present invention, the primer set includes all combinations of primer sets consisting of forward and reverse primers recognizing a target gene sequence, but preferably, a primer set that provides analysis results with specificity and sensitivity. Since the nucleic acid sequence of the primer is a sequence that does not match the non-target sequence present in the sample, high specificity can be conferred when the primer amplifies only the target gene sequence containing the complementary primer binding site and does not cause non-specific amplification. .

또한 본 발명은 상기 CHS-L 단백질과 말로닐코에이(malonyl-CoA)를 반응시키는 단계를 포함하는 에모딘 전구체의 생산방법을 제공한다. The present invention also provides a method for producing an emodin precursor comprising the step of reacting the CHS-L protein with malonyl-CoA.

본 발명의 에모딘 전구체의 생산방법은 서열번호2의 아미노산 서열로 표시되는 결명자 유래 CHS-L 단백질과 말로닐코에이(malonyl-CoA)을 반응시키는 단계를 포함한다. The method for producing an emodin precursor of the present invention includes the step of reacting the CHS-L protein derived from K. seigenji represented by the amino acid sequence of SEQ ID NO: 2 with malonyl-CoA.

상기 반응시키는 단계는 CHS-L 단백질과 말로닐코에이를 혼합하고 20 내지 40℃에서 효소반응을 진행하는 것으로, 구체적으로 CHS-L 단백질과 말로닐코에이를 혼합하고 25 내지 35℃에서 3 내지 12시간 동안 효소반응을 진행시키는 것일 수 있다. The step of reacting is to mix CHS-L protein and malonyl CoA and perform an enzymatic reaction at 20 to 40 ° C. Specifically, mix CHS-L protein and malonyl CoA and 3 to 12 hours at 25 to 35 ° C. It may be to proceed with the enzymatic reaction.

본 발명의 실시예에서 대장균 형질전환체에서 분리한 CHS-L 재조합 단백질을 이용하여 malonyl-CoA 기질을 30℃에서 6시간 동안 효소반응 시킨 결과, 아트로크리좀 카르복시산(atrochrysome carboxylic acid)이 합성됨을 확인하였으며, 1 mM NADPH 보조 인자를 추가한 효소반응 malonyl-CoA 기질을 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 또는 엔도크로신 안트론(endocrocin anthrone)이 합성됨을 확인하였다. As a result of enzymatic reaction of malonyl-CoA substrate at 30 ° C. for 6 hours using CHS-L recombinant protein isolated from E. coli transformants in an example of the present invention, atrochrysome carboxylic acid was synthesized. It was confirmed, and it was confirmed that atrochrysome carboxylic acid or endocrocin anthrone was synthesized from the enzymatic reaction malonyl-CoA substrate to which 1 mM NADPH cofactor was added.

따라서 본 발명의 에모딘 전구체의 생산방법은 NADPH 보조 인자를 추가하는 단계를 더 포함할 수 있다. Accordingly, the method for producing an emodin precursor of the present invention may further include adding a NADPH cofactor.

이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.

1. 결명자의 안트라퀴논 생합성 과정 경로 분석1. Analysis of the anthraquinone biosynthetic pathway of Kyeongmyungjae

폴리케타이드합성효소(Polyketide synthase)에 의해 생합성되는 안트라퀴논은 8개의 말로닐코에이(malonyl-CoA) 분자가 축합반응을 거쳐 옥타케타이드(octaketide)가 생성되고, 옥타케디트(octaketide)는 고리화(cyclization)와 에놀화(enolization) 등의 순차적 반응을 거쳐 polyketide synthase로 부터 atrochrysome carboxylic acid와 같은 안트라노이드(anthranoid) 계열의 물질이 생합성되는 것으로 예상된다. 이후 탈카복실반응(decarboxylation)과 산화(oxidation) 과정을 거쳐 안트라퀴논 중 한 종류인 에모딘(emodin)이 생성되고, 또 다른 생합성 과정은 dehydration 및 enolization 등을 거쳐 크리소파놀(chrysophanol)과 이슬란디신(islandicin)과 같은 안트라퀴논이 생합성되는 것으로 예상된다(도 1). Anthraquinone, which is biosynthesized by polyketide synthase, undergoes a condensation reaction of eight malonyl-CoA molecules to produce octaketide, and octaketide is a ring It is expected that anthranoid-type substances such as atrochrysome carboxylic acid will be biosynthesized from polyketide synthase through sequential reactions such as cyclization and enolization. After that, emodin, one of anthraquinones, is produced through decarboxylation and oxidation processes, and another biosynthetic process undergoes dehydration and enolization to produce chrysophanol and Islandi. Anthraquinones such as islandicin are expected to be biosynthesized ( FIG. 1 ).

2. 결명자 유래 CHS-L 유전자의 진화 분석2. Evolutionary analysis of CHS-L gene derived from K.

2.1. 칼콘합성효소(chalcone synthase, CHS) 및 chalcone synthase-like, CHS-L 비교 분석2.1. Comparative analysis of chalcone synthase (CHS) and chalcone synthase-like, CHS-L

칼콘합성효소(Chalcone synthase, CHS) 및 chalcone synthase-like(CHS-L) 유전자는 식물의 생물학적 과정에서 다양한 천연물 생합성에 관여한다. 이에 결명자, 콩과 14종 및 포도 1종(총 16종)의 유전체에서 칼콘합성효소(Chalcone synthase, CHS) 또는 chalcone synthase-like(CHS-L)의 서브 패밀리 유전자를 비교 분석하였다. Chalcone synthase (CHS) and chalcone synthase-like (CHS-L) genes are involved in the biosynthesis of various natural products in plant biological processes. Accordingly, subfamily genes of chalcone synthase (CHS) or chalcone synthase-like (CHS-L) were compared and analyzed in the genomes of 14 types of kaleidoscope, 14 types of legumes, and 1 type of grape (16 types in total).

표 1은 상기 16종의 식물 유전체에서 CHS-L 및 CHS 유전자 서브 패밀리(subfamily)를 분석한 결과이다. 표 1을 참조하면 미모사(Mimosa pudica, MIMPU), 겨울가시 아카시아 나무(Faidherbia albida, FAIAL), 병아리콩(Cicer arientinum, CICAR), 시서 레티쿨라툼(Cicer reticulatum, CICRE), 완두콩(Pisum sativum, PISSA), 비둘기콩(Cajanus cajan, CAJCA), 강낭콩(Phaseolus vulgaris, PHAVU), 녹두(Vigna radiata, VIGRA), 팥(Vigna angularis, VIGAN), 동부콩(Vigna unguiculata, VIGUN), 포도나무(Vitis vinifera, VITVI)의 유전체에서는 CHS-L 계열 유전자가 나타나지 않았다. 반면 결명자(Senna tora, SETOT)는 16개, 파트리지 콩(Partridge pea; Chamaecrista fasciculata, CHAFA)은 5개, 땅콩(Arachis hypogaea, ARHYP)은 2개, 메디카고 트룬카룰라(Medicago truncatula, MEDTR)는 1개, 콩(Glycine max, GLYMA)는 1개의 CHS-L 계열 유전자를 포함함을 확인하였다. Table 1 shows the results of analysis of CHS-L and CHS gene subfamily in the 16 plant genomes. Referring to Table 1, mimosa ( Mimosa pudica , MIMPU ), winter thorn acacia tree ( Faidherbia albida , FAIAL), chickpea ( Cicer arientinum , CICAR) , cicer reticulatum ( Cicer reticulatum , CICRE), pea ( Pisum sativum , PISSA ) ), pigeon beans ( Cajanus cajan , CAJCA), kidney beans ( Phaseolus vulgaris , PHAVU), mung beans ( Vigna radiata , VIGRA), red beans ( Vigna angularis , VIGAN), dong beans ( Vigna unguiculata , VIGUN), grapevines ( Vitis vinifera , VITVI), the CHS-L family gene did not appear in the genome. On the other hand, Senna tora (SETOT) is 16, Partridge pea ( Chamaecrista fasciculata , CHAFA) is 5, peanut ( Arachis hypogaea , ARHYP) is 2, Medicago truncatula (MEDTR) It was confirmed that one, soybean (Glycine max, GLYMA) contains one CHS-L family gene.

즉, 결명자는 다른 15종의 식물종의 유전체와 비교하여 CHS-L 계열 유전자가 특별히 많이 존재하고 있음을 확인하였다. In other words, compared to the genomes of 15 other plant species, Kyushu Myeongja confirmed that there are especially many CHS-L series genes.

CHS 유전자는 결명자 유전체에 12개가 존재하였으며, 완두콩(Pisum sativum, PISSA)에는 존재하지 않고, 그 외 14종의 식물종의 유전체에서 6 내지 48개가 존재함을 확인하였다. Twelve CHS genes were present in the genus of Kyomyungja, not in peas ( Pisum sativum , PISSA), and it was confirmed that 6 to 48 were present in the genomes of 14 other plant species.

Figure pat00001
Figure pat00001

*E/C represents expansion/contraction. *E/C represents expansion/contraction.

† Rapid_E and Rapid_C indicate rapid expansion and rapid contraction. † Rapid_E and Rapid_C indicate rapid expansion and rapid contraction.

‡ 종명: 결명자(Senna tora, SETOT), 파트리지 콩(Partridge pea; Chamaecrista fasciculata, CHAFA), 미모사(Mimosa pudica, MIMPU), 겨울가시 아카시아 나무(Faidherbia albida, FAIAL), 땅콩(Arachis hypogaea, ARHYP), 메디카고 트룬카룰라(Medicago truncatula, MEDTR), 병아리콩(Cicer arientinum, CICAR), 시서 레티쿨라툼(Cicer reticulatum, CICRE), 완두콩(Pisum sativum, PISSA), 콩(Glycine max, GLYMA), 비둘기콩(Cajanus cajan, CAJCA), 강낭콩(Phaseolus vulgaris, PHAVU), 녹두(Vigna radiata, VIGRA), 팥(Vigna angularis, VIGAN), 동부콩(Vigna unguiculata, VIGUN), 포도나무(Vitis vinifera, VITVI).‡ Species name: Senna tora ( SETOT ), Partridge pea ( Chamaecrista fasciculata , CHAFA ), Mimosa ( Mimosa pudica , MIMPU ), Winter thorn acacia ( Faidherbia albida , FAIAL), Peanut ( Arachis hypogaea , ARHYP) , Medicago truncatula ( MEDTR ), chickpea ( Cicer arientinum , CICAR ) , cicer reticulatum , CICRE , pea ( Pisum sativum , PISSA ), soybean ( Glycine max , GLYMA ), pigeon Beans ( Cajanus cajan , CAJCA ), kidney beans ( Phaseolus vulgaris , PHAVU ), mung beans ( Vigna radiata , VIGRA ), red beans ( Vigna angularis , VIGAN ), dong beans ( Vigna unguiculata , VIGUN ), grapevines ( Vitis vinifera , VITVI ).

다음으로 결명자((Senna tora)와 콩과 식물 4종(Chamaecrista fasciculata, Arachis hypogaea, Medicago truncatula, Glycine max)에 포함된 각 CHS-L 계열 유전자의 계통적 특이성을 확인하였다. 그 결과, 결명자의 CHS-L 유전자 16개 중 1개는 염색체 2에 위치하였으며, 나머지 15개 유전자는 염색체 7에 분포하고 있음을 확인하였다(도 2). Next, the phylogenetic specificity of each CHS-L family gene included in K. senna tora and four legumes ( Chamaecrista fasciculata , Arachis hypogaea , Medicago truncatula , Glycine max ) was confirmed. As a result, the CHS- One of 16 L genes was located on chromosome 2, and it was confirmed that the remaining 15 genes were distributed on chromosome 7 (FIG. 2).

2.2. 결명자 유래 CHS-L 및 CHS 유전자 서열 확보2.2. Securing of the CHS-L and CHS gene sequences derived from Kyomyungja

결명자 전사체 데이터베이스를 통해 결명자 유래 타입 Ⅲ 폴리케타이드 합성효소의 cDNA 서열을 확보하였다. CHS-L 유전자를 암호화하는 Sto07g228250(서열번호1)와 CHS 유전자를 암호화하는 Sto03g054970(서열번호3)의 ORF를 선택하여 기능을 분석하였다. The cDNA sequence of the type III polyketide synthetase derived from Kyomyungja was obtained through the Kyomyungja transcript database. ORFs of Sto07g228250 (SEQ ID NO: 1) encoding the CHS-L gene and Sto03g054970 (SEQ ID NO: 3) encoding the CHS gene were selected and their functions were analyzed.

염기/아미노산 서열base/amino acid sequence CHS-L 유전자CHS-L gene
(서열번호1)(SEQ ID NO: 1)
ATGGAGAGTGCTGCAGAAAAGAAGGGATTCGCCACAGTGCTTGCTATTGGCACTGCAAATCCCCCAAACATTTATCTTCAATCTGAGTTTCCTGATTTCTTCTTCAGAGTCACCAATAGTGAGCATCATGTCCAACTCAAGCAGAAGTTCAAGCGCATGTGTGACAACTCCAATATCAGGAAGCGCCATTTTCTTGTTGATGAAGATATTCTTAAAGAGCATCCAAACATCAGCACCTATGGAGCTCCTTCGTTGGATACACGCAGAGAAATAGTAACTAAGTACATTCCTAAGCTTGGGAAGGAAGCAGCCTTGAAATGTATTAAAGAATGGGGCCAACCTTTATCTAAGATCACACATCTCATCTTCTGCACATCTTCATGCATCAACAGCATTCCTGGACCTGATTTCTACCTTGCCAGAGAAATTGGCCTCCCAGCCACTTGTAACCGCCTTGTGATTTATGATCATGGTTGTCACGCTGGTGGTTCAGTCATTCGTGTAGCCAAGGCTCTTGCTGAGAGCATCCCTGGCTCACGTGTGCTCACTGTGTGTGCTGAGACCATGCTTACTTCCTTCCAAGCCCCAAGTCCGTCACATATGGACATTGTGGTTGGGCACGCCTTGTTTGGAGATGGTGCTGCTGCCATGATTGTCGGTACAGATCCTATCCCCAATGTTGAACGTCCACTGTTTGAGTTTGTGTTGGCTGCACAACAGACAGTGGGAGGATCTGAGGAGGCAATTCATGGACATGCAACTGAAAGAGGTCAAACTTACTTTTTAGGAAAAGAGATTCCAAATGTTGTTGCTGGTAATGTGAAGAAGTGTATGCATGATGCATTTGGGACGCTTGGTATGACAATCAATGAAGGAGAGTGGAATTCGTTGTTCTACGTGGTGCATCCTGGTGGGAAGGCAGTACTGAATGGGATGGAAGAGGTGCTTGAGTTGAAGGAAGAGAAGCTTGCTGCGAGTAGGACTATTTTGAGAGAGTACGGAAACATGTGGAGTCCATGTGTGTTCTTCGTGTTGGATGAAATGAGAAAGAAATCTTCCAACGAAGGGAAGTCCACAACCGGAGAAGGACATGACTGGGGTGCTTTGATGACCTTTGGACCAGGTTTGACGGTTGAAACAATTGTTTTGCATTCCATTTCCCTGAAGGACTAGATGGAGAGTGCTGCAGAAAAGAAGGGATTCGCCACAGTGCTTGCTATTGGCACTGCAAATCCCCCAAACATTTATCTTCAATCTGAGTTTCCTGATTTCTTCTTCAGAGTCACCAATAGTGAGCATCATGTCCAACTCAAGCAGAAGTTCAAGCGCATGTGTGACAACTCCAATATCAGGAAGCGCCATTTTCTTGTTGATGAAGATATTCTTAAAGAGCATCCAAACATCAGCACCTATGGAGCTCCTTCGTTGGATACACGCAGAGAAATAGTAACTAAGTACATTCCTAAGCTTGGGAAGGAAGCAGCCTTGAAATGTATTAAAGAATGGGGCCAACCTTTATCTAAGATCACACATCTCATCTTCTGCACATCTTCATGCATCAACAGCATTCCTGGACCTGATTTCTACCTTGCCAGAGAAATTGGCCTCCCAGCCACTTGTAACCGCCTTGTGATTTATGATCATGGTTGTCACGCTGGTGGTTCAGTCATTCGTGTAGCCAAGGCTCTTGCTGAGAGCATCCCTGGCTCACGTGTGCTCACTGTGTGTGCTGAGACCATGCTTACTTCCTTCCAAGCCCCAAGTCCGTCACATATGGACATTGTGGTTGGGCACGCCTTGTTTGGAGATGGTGCTGCTGCCATGATTGTCGGTACAGATCCTATCCCCAATGTTGAACGTCCACTGTTTGAGTTTGTGTTGGCTGCACAACAGACAGTGGGAGGATCTGAGGAGGCAATTCATGGACATGCAACTGAAAGAGGTCAAACTTACTTTTTAGGAAAAGAGATTCCAAATGTTGTTGCTGGTAATGTGAAGAAGTGTATGCATGATGCATTTGGGACGCTTGGTATGACAATCAATGAAGGAGAGTGGAATTCGTTGTTCTACGTGGTGCATCCTGGTGGGAAGGCAGTACTGAATGGGATGGAAGAGGTGCTTGAGTTGAAGGAAGAGAAGCTTGCTGCGAGTAGGACTATTTTGAGAGAGTACG GAAACATGTGGAGTCCATGTGTGTTCTTCGTGTTGGATGAAATGAGAAAGAAATCTTCCAACGAAGGGAAGTCCACAACCGGAGAAGGACATGACTGGGGTGCTTTGATGACCTTTGGACCAGGTTTGACGGTTGAAACAATTGTTTTGCATTCCATTTCCCTGAAGGACTAG
CHS-L 단백질CHS-L protein
(서열번호2)(SEQ ID NO:2)
MESAAEKKGFATVLAIGTANPPNIYLQSEFPDFFFRVTNSEHHVQLKQKFKRMCDNSNIRKRHFLVDEDILKEHPNISTYGAPSLDTRREIVTKYIPKLGKEAALKCIKEWGQPLSKITHLIFCTSSCINSIPGPDFYLAREIGLPATCNRLVIYDHGCHAGGSVIRVAKALAESIPGSRVLTVCAETMLTSFQAPSPSHMDIVVGHALFGDGAAAMIVGTDPIPNVERPLFEFVLAAQQTVGGSEEAIHGHATERGQTYFLGKEIPNVVAGNVKKCMHDAFGTLGMTINEGEWNSLFYVVHPGGKAVLNGMEEVLELKEEKLAASRTILREYGNMWSPCVFFVLDEMRKKSSNEGKSTTGEGHDWGALMTFGPGLTVETIVLHSISLKD*MESAAEKKGFATVLAIGTANPPNIYLQSEFPDFFFRVTNSEHHVQLKQKFKRMCDNSNIRKRHFLVDEDILKEHPNISTYGAPSLDTRREIVTKYIPKLGKEAALKCIKEWGQPLSKITHLIFCTSSCINSIPGPDFYLAREIGLPATCNRLVIYDHGCHAGGSVIRVAKALAESIPGSRVLTVCAETMLTSFQAPSPSHMDIVVGHALFGDGAAAMIVGTDPIPNVERPLFEFVLAAQQTVGGSEEAIHGHATERGQTYFLGKEIPNVVAGNVKKCMHDAFGTLGMTINEGEWNSLFYVVHPGGKAVLNGMEEVLELKEEKLAASRTILREYGNMWSPCVFFVLDEMRKKSSNEGKSTTGEGHDWGALMTFGPGLTVETIVLHSISLKD *
CHS유전자CHS gene
(서열번호3)(SEQ ID NO:3)
ATGGTGAATGTGGAAGAGATCCGTAAGGCACAACGAGCGGAAGGTGCTGCTACAGTAATGGCTATCGGTACAGCGACCCCAACAAACTGTATAGAACAAAGTACCTATCCAGATTACTATTTTCGTATTACAAACAGTGAGCACATGACAGAGTTGAAAGAGAAATTCCAGCGCATGTGTGATAAGTCAATGATAAAAAAGAGATATATGCACTTGACAGAGGAGATCTTAAAGGAGAACCCTAATATGTGTGCTTACATGGCACCTTCTATTGATGCAAGGCAAGATATAGTGGTTTTGGAAGTACCAAAGCTTGGAAAAGAGGCTGCAACAAAGGCCATTAAGGAATGGGGCCAACCCAAATCCAAAATTACGCACTTGATCTTTTGCACTACAAGTGGTGTGGACATGCCAGGAGCTGACTACCAACTCACAAAGCTCTTAGGTCTTCGCCCATCTGTGAAGCGATACATGATGTACCAACAAGGTTGCTTTGCAGGCGGTACGGTGCTCCGTTTAGCCAAAGACTTGGCTGAGAATAACAAAGGAGCACGTGTACTTGTGGTTTGTTCTGAGATTACTGCAGTTACATTCCGTGGGCCTACTGATACCCATCTTGACAGCCTTGTGGGCCAAGCATTGTTTGGCGATGGGGCAGCTGCTGTTATTGTTGGATCTGACCCAATCCCACAAGTTGAGAAGCCTTTATTTGAACTTGTATGGACAGCACAAACTATTCTTCCCGATAGTGAAGGGGCTATTGATGGGCATCTTCGTGAAGTTGGGCTCACATTCCATCTTCTGAAAGATGTTCCTGGGCTCATCTCAAAGAACATTGAGAAAGCCTTGGTTGAAGCCTTCAAACCATTGGGAATTTCTGATTATAACTCAATTTTCTGGATTGCTCACCCAGGTGGGCCTGCAATTTTGGACCAAGTTGAGGCCAAATTAGAGTTGAAGCCCGAAAAGATGCAGGCCACTAGACACGTGCTTAGTGAGTATGGAAACATGTCCAGTGCATGCGTGTTATTCATTTTGGATGAAATGAGGAGAAAATCAGCAAAAGATGGACTTGGCACAACAGGTGAAGGACTTGAGTGGGGTGTTCTATTTGGATTTGGGCCTGGCCTTACTGTTGAGACCGTTGTGCTCCACAGTATTGCTATTTAAATGGTGAATGTGGAAGAGATCCGTAAGGCACAACGAGCGGAAGGTGCTGCTACAGTAATGGCTATCGGTACAGCGACCCCAACAAACTGTATAGAACAAAGTACCTATCCAGATTACTATTTTCGTATTACAAACAGTGAGCACATGACAGAGTTGAAAGAGAAATTCCAGCGCATGTGTGATAAGTCAATGATAAAAAAGAGATATATGCACTTGACAGAGGAGATCTTAAAGGAGAACCCTAATATGTGTGCTTACATGGCACCTTCTATTGATGCAAGGCAAGATATAGTGGTTTTGGAAGTACCAAAGCTTGGAAAAGAGGCTGCAACAAAGGCCATTAAGGAATGGGGCCAACCCAAATCCAAAATTACGCACTTGATCTTTTGCACTACAAGTGGTGTGGACATGCCAGGAGCTGACTACCAACTCACAAAGCTCTTAGGTCTTCGCCCATCTGTGAAGCGATACATGATGTACCAACAAGGTTGCTTTGCAGGCGGTACGGTGCTCCGTTTAGCCAAAGACTTGGCTGAGAATAACAAAGGAGCACGTGTACTTGTGGTTTGTTCTGAGATTACTGCAGTTACATTCCGTGGGCCTACTGATACCCATCTTGACAGCCTTGTGGGCCAAGCATTGTTTGGCGATGGGGCAGCTGCTGTTATTGTTGGATCTGACCCAATCCCACAAGTTGAGAAGCCTTTATTTGAACTTGTATGGACAGCACAAACTATTCTTCCCGATAGTGAAGGGGCTATTGATGGGCATCTTCGTGAAGTTGGGCTCACATTCCATCTTCTGAAAGATGTTCCTGGGCTCATCTCAAAGAACATTGAGAAAGCCTTGGTTGAAGCCTTCAAACCATTGGGAATTTCTGATTATAACTCAATTTTCTGGATTGCTCACCCAGGTGGGCCTGCAATTTTGGACCAAGTTGAGGCCAAATTAGAGTTGAAGCCCGAAAAGATGCAGGCCACTAGACACGTGCTTAGTGAGT ATGGAAACATGTCCAGTGCATGCGTGTTATTCATTTTGGATGAAATGAGGAGAAAATCAGCAAAAGATGGACTTGGCACAACAGGTGAAGGACTTGAGTGGGGTGTTCTATTTGGATTTGGGCCTGGCCTTACTGTTGAGACCGTTGTGCTCCACAGTATTGCTATTTAA
CHS 단백질CHS protein
(서열번호4)(SEQ ID NO: 4)
MVNVEEIRKAQRAEGAATVMAIGTATPTNCIEQSTYPDYYFRITNSEHMTELKEKFQRMCDKSMIKKRYMHLTEEILKENPNMCAYMAPSIDARQDIVVLEVPKLGKEAATKAIKEWGQPKSKITHLIFCTTSGVDMPGADYQLTKLLGLRPSVKRYMMYQQGCFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPTDTHLDSLVGQALFGDGAAAVIVGSDPIPQVEKPLFELVWTAQTILPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKALVEAFKPLGISDYNSIFWIAHPGGPAILDQVEAKLELKPEKMQATRHVLSEYGNMSSACVLFILDEMRRKSAKDGLGTTGEGLEWGVLFGFGPGLTVETVVLHSIAI*MVNVEEIRKAQRAEGAATVMAIGTATPTNCIEQSTYPDYYFRITNSEHMTELKEKFQRMCDKSMIKKRYMHLTEEILKENPNMCAYMAPSIDARQDIVVLEVPKLGKEAATKAIKEWGQPKSKITHLIFCTTSGVDMPGADYQLTKLLGLRPSVKRYMMYQQGCFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPTDTHLDSLVGQALFGDGAAAVIVGSDPIPQVEKPLFELVWTAQTILPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKALVEAFKPLGISDYNSIFWIAHPGGPAILDQVEAKLELKPEKMQATRHVLSEYGNMSSACVLFILDEMRRKSAKDGLGTTGEGLEWGVLFGFGPGLTVETVVLHSIAI *

3. 결명자 CHS-L 및 CHS 유전자 클로닝 및 발현3. Cloning and expression of C. C. CHS-L and CHS genes

3.1. CHS-L 및 CHS 유전자 클로닝3.1. CHS-L and CHS gene cloning

CHS-L을 암호화하는 Sto07g228250(1,173 bp, 서열번호1) 및 CHS를 암호화하는 Sto03g054970(1,170 bp, 서열번호3)을 클로닝하기 위해 표 3과 같이 프라이머를 디자인하였다. Primers were designed as shown in Table 3 to clone Sto07g228250 (1,173 bp, SEQ ID NO: 1) encoding CHS-L and Sto03g054970 (1,170 bp, SEQ ID NO: 3) encoding CHS.

유전자명gene name 정방향(forward)forward 역방향(reverse)reverse CHS-L
Sto07g228250
CHS-L
Sto07g228250
AAGGATCCATGGAGAGTGCTGGAG
(서열번호5)
AAGGATCCATGGAGAGTGCTGGAG
(SEQ ID NO: 5)
AACTCGAGCTAGTCTCTCAGAGGG
(서열번호6)
AACTCGAGCTAGTCTCTCAGAGGG
(SEQ ID NO: 6)
CHS
Sto03g054970
CHS
Sto03g054970
GGATCCATGGTGAATGTGGAAGAGATC
(서열번호7)
GGATCCATGGTGAATGTGGAAGAGATC
(SEQ ID NO: 7)
GAATTCTTAGACAGCCACACTATGGAG
(서열번호8)
GAATTCTTAGACAGCCACACTATGGAG
(SEQ ID NO:8)

상기 프라이머를 이용하여 하기 조건으로 RT-PCR 후, CHS-L은 BamHI 및 XhoI 제한효소 자리를 사용하여 pET28a(+) 대장균 발현 벡터에 재조합하였으며, CHS은 BamHI 및 EcoRI 제한효소 자리를 이용하여 pET28a(+) 대장균 발현 벡터에 재조합하였다. 발현 벡터에 재조합된 플라스미드를 각각 pET28a(+)_Sto07g228250와 pET28a(+)_Sto03g054970라 명명하였다.After RT-PCR using the primers under the following conditions, CHS-L was recombined into pET28a(+) E. coli expression vector using BamHI and XhoI restriction enzyme sites, and CHS was pET28a ( +) was recombined into an E. coli expression vector. The plasmids recombined in the expression vector were named pET28a(+)_Sto07g228250 and pET28a(+)_Sto03g054970, respectively.

RT-PCR 조건: RT-PCR conditions:

94℃ 7분 1 cycle, 94℃ 7 minutes 1 cycle,

94℃ 1분, 58-62℃ 1분 30 cycles,94 1 min, 58-62 1 min 30 cycles,

72℃ 1분, 72℃ 7분 1 cycle72 1 min, 72℃ 7 min 1 cycle

3.2. CHS-L 및 CHS 유전자 발현3.2. CHS-L and CHS gene expression

대장균 BL21(DE3) 균주에 상기 pET28a(+)_Sto07g228250 또는 pET28a(+)_Sto03g054970 플라스미드를 형질도입하여 재조합 균주를 제조하고, 이들 균주에서 CHS-L 및 CHS 단백질을 발현시켰다. E. coli BL21(DE3) strain was transduced with the pET28a(+)_Sto07g228250 or pET28a(+)_Sto03g054970 plasmid to prepare a recombinant strain, and CHS-L and CHS proteins were expressed in these strains.

구체적으로, 재조합 균주를 LB 배지에 접종한 후 0.4 mM IPTG로 발현을 유도한 후 20℃에서 20 내지 24시간 동안 배양하여 재조합 단백질(CHS-L 또는 CHS)을 발현시켰다. 재조합 단백질을 분리하고자, 재조합 균주의 배양액을 원심 분리하여 균체만 모은 후, 10% 글리세롤을 함유하는 100mM 포스페이트 완충용액 (pH 7.5)으로 2회 세척 후 초음파 처리하여 세포벽을 파괴하였다. 그 후 4℃, 12,000 rpm (13,475 × g)에서 30분간 원심 분리하여 침전물(불용성 균체 파편)을 제거하고 상등액을 수득하였다. Specifically, the recombinant protein (CHS-L or CHS) was expressed by inoculating the recombinant strain in the LB medium and incubating for 20 to 24 hours at 20° C. after inducing expression with 0.4 mM IPTG. To isolate the recombinant protein, the culture medium of the recombinant strain was centrifuged to collect only the cells, washed twice with 100 mM phosphate buffer (pH 7.5) containing 10% glycerol, and then sonicated to destroy the cell wall. Thereafter, the precipitate (insoluble cell debris) was removed by centrifugation at 4° C., 12,000 rpm (13,475 × g) for 30 minutes to obtain a supernatant.

다음으로 상등액에서 발현된 단백질을 정제하였다. 정제 컬럼에 수득된 상층액을 넣고 1 ㎖의 His6 Ni-Superflow Resin(Takara, Japan)과 100 mM 포스페이트 완충용액(pH 7.5, 500 mM NaCl, 5 mM 이미다졸, 1 mM 디티오트레이톨 및 10% 글리세롤 포함) 존재 하에 1시간 이상 단백질을 His-태그 레진에 결합시켰다. 6X His-태그에 결합한 재조합 단백질을 컬럼 부피의 8배의 50mM 및 250mM의 이미다졸을 함유하는 포스페이트 완충용액을 흘려 정제된 재조합 단백질을 수득하였다. Next, the expressed protein from the supernatant was purified. Put the obtained supernatant into the purification column, 1 ml of His6 Ni-Superflow Resin (Takara, Japan) and 100 mM phosphate buffer (pH 7.5, 500 mM NaCl, 5 mM imidazole, 1 mM dithiothreitol, and 10% In the presence of glycerol), the protein was bound to His-tag resin for at least 1 hour. The recombinant protein bound to 6X His-tag was flowed through a phosphate buffer containing 8 times the column volume of 50 mM and 250 mM imidazole to obtain a purified recombinant protein.

정제된 단백질을 아미콘 울트라 15(Amicon Ultra 15, Millipore, 30 K NMWL centrifugal filters)를 사용하여 농축하였다. 단백질 농도는 브래드포드 분석(Bradford assay, Protein Assay Dc, Bio-Rad, Hercules, CA, USA)을 수행하였으며, 표준 단백질로 알부민 사용하였다. The purified protein was concentrated using Amicon Ultra 15 (Millipore, 30 K NMWL centrifugal filters). Protein concentration was analyzed by Bradford assay (Bradford assay, Protein Assay Dc, Bio-Rad, Hercules, CA, USA), and albumin was used as a standard protein.

분리한 재조합 단백질의 순도 및 분자질량은 12% SDS-PAGE를 이용하여 확인하였다. CHS-L(Sto07g228250) 및 CHS(Sto03g054970)로부터 His-tag이 수식된 재조합 단백질을 발현하여 확인한 결과 ~48 kDa임을 확인하였다(도 3). Purity and molecular mass of the isolated recombinant protein were confirmed using 12% SDS-PAGE. As a result of confirming the expression of the His-tag-modified recombinant protein from CHS-L (Sto07g228250) and CHS (Sto03g054970), it was confirmed that it was ~48 kDa (FIG. 3).

4. CHS-L 및 CHS 효소 반응 및 검정4. CHS-L and CHS Enzyme Reaction and Assay

4.1. CHS-L 및 CHS의 폴리케타이드합성효소(polyketide synthase) 활성 4.1. Polyketide synthase activity of CHS-L and CHS

다음으로 안트라퀴논 생합성 과정에서의 CHS-L(Sto07g228250) 또는 CHS(Sto03g054970) 단백질의 역할을 분석하고자, 정제한 CHS-L 또는 CHS의 재조합 단백질의 폴리케타이드합성효소(polyketide synthase) 활성을 분석하였다.Next, to analyze the role of CHS-L (Sto07g228250) or CHS (Sto03g054970) protein in the anthraquinone biosynthesis process, the polyketide synthase activity of purified CHS-L or CHS recombinant protein was analyzed. .

CHS-L 단백질의 폴리케타이드합성효소(polyketide synthase) 활성을 분석하고자, 5mM의 malonyl-CoA, 10mM의 MgCl2, 100mM phosphate buffer(pH 7.5), 10㎍/㎖의 정제된 단백질을 사용하여 1㎖ 부피로 반응을 진행하였다. 또한, 대조 반응으로 위와 동일한 조건에서 열에 의해 불활성화된 재조합 단백질을 이용하여 반응을 진행하였다. 반응 혼합물에 추가 1 mM NADPH 보조 인자를 갖는 유사한 반응 성분으로 별도의 반응을 수행하였다. 또한, 위와 같은 반응조건을 이용하여 malonyl-CoA 대신 방사성 동위원소로 표지된 13C3-malonyl-CoA로 반응을 진행하였다. To analyze the polyketide synthase activity of CHS-L protein, 5 mM malonyl-CoA, 10 mM MgCl 2 , 100 mM phosphate buffer (pH 7.5), and 10 μg/ml purified protein were used. The reaction was carried out in ml volume. In addition, as a control reaction, the reaction was carried out using a recombinant protein inactivated by heat under the same conditions as above. Separate reactions were performed with similar reaction components with an additional 1 mM NADPH cofactor to the reaction mixture. In addition, the reaction was carried out with 13C3-malonyl-CoA labeled with a radioisotope instead of malonyl-CoA using the above reaction conditions.

반응 시간은 30℃에서 6 시간 동안 반응하였고, 반응 후 85℃에서 3 분간 열처리를 통하여 반응을 종료시켰다. The reaction time was 30° C. for 6 hours, and after the reaction, the reaction was terminated by heat treatment at 85° C. for 3 minutes.

CHS(Sto03g054970) 효소 반응의 경우, 반응 출발 물질(기질)로는 p-coumaroyl-CoA를 사용하였고, 탄소 골격을 확장해 주는 기질로는 malonyl-CoA 및 13C3-malonyl-CoA을 사용하여 반응을 진행하였으며, 반응은 각각 3번씩 반복하여 진행하였다. In the case of the CHS (Sto03g054970) enzyme reaction, p-coumaroyl-CoA was used as the reaction starting material (substrate), and malonyl-CoA and 13C3-malonyl-CoA were used as the substrate to extend the carbon skeleton. , the reaction was repeated 3 times each.

4.2. CHS-L(Sto07g228250) 및 CHS(Sto03g054970) 효소 검정4.2. CHS-L (Sto07g228250) and CHS (Sto03g054970) enzyme assays

CHS-L 또는 CHS 단백질의 효소 반응 결과물을 TOF ESI-MS가 연결된 UPLC로 분석하였다. 이온크로마토그램(EIC)을 통해 CHS-L(Sto07g228250) 효소와의 반응 결과물을 분석한 결과, 분자 질량이 319.08 Da 및 301.07 Da 결과를 얻었다(도 4a (i), b(i)). 그러나 CHS(Sto03g054970) 및 열변성 CHS-L (Sto07g228250 대조군) 효소에서는 같은 질량을 가진 반응 결과물이 검출되지 않았다.The result of the enzymatic reaction of CHS-L or CHS protein was analyzed by UPLC coupled with TOF ESI-MS. As a result of analyzing the reaction product with the CHS-L (Sto07g228250) enzyme through ion chromatogram (EIC), molecular masses of 319.08 Da and 301.07 Da were obtained ( FIGS. 4a (i), b (i)). However, reaction products having the same mass were not detected in the CHS (Sto03g054970) and heat-denatured CHS-L (Sto07g228250 control) enzymes.

구체적으로, 도 4a(i)에서 머무름 시간(retention time, tR) 4.45분에서 m/z+ 319.0827의 결과 값을 나타내었다. 이는 도 1의 폴리케타이드합성효소 반응의 결과물 중 에모딘 합성 전구체인 카복실산 아트로크리좀 카르복시산(atrochrysome carboxylic acid, 분자식 C16H14O7)의 이론적 분자량(319.0818)과 동일하였다. 따라서 효소반응에 의해 생성된 물질은 atrochrysome carboxylic acid임을 알 수 있다. 또한, 동위원소로 처리된 기질(13C3-malonyl-CoA)과 반응한 결과물의 이론적 질량값과 실제 동위 원소를 이용한 실험한 결과물의 질량값이 정확히 일치함을 확인하였다(도 4a(ⅱ)). Specifically, the result value of m/z + 319.0827 at 4.45 minutes of retention time (tR) is shown in FIG. 4a(i). This was the same as the theoretical molecular weight (319.0818) of carboxylic acid atrochrysome carboxylic acid (molecular formula C 16 H 14 O 7 ), which is a precursor of emodin synthesis among the results of the polyketide synthetase reaction of FIG. 1 . Therefore, it can be seen that the substance produced by the enzymatic reaction is atrochrysome carboxylic acid. In addition, it was confirmed that the theoretical mass value of the product reacted with the isotope-treated substrate ( 13 C 3 -malonyl-CoA) and the mass value of the experimental result using the actual isotope exactly match (Fig. 4a(ii)) ).

또한, 1 mM NADPH 보조 인자를 추가한 효소반응 결과물의 ESI-MS 스펙트럼 분석하였다. 분석결과, atrochrysome carboxylic acid 이외의 머무름 시간 4.62분에서 m/z+ 301.0715의 결과 값을 나타내었다. 이는 도 1의 폴리케타이드합성효소 반응의 결과물 중 에모딘 합성 전구체인 엔도크로신 안트론(endocrocin anthrone, 분자식 C16H12O6)의 이론적 분자량(301.0712)과 동일하였다. 따라서 효소반응에 의해 생성된 물질은 endocrocin anthrone이다(도 4b(ⅰ)). 또한, 동위원소로 처리된 기질(13C3-malonyl-CoA)과 반응한 결과물의 이론적 질량값과 실제 동위 원소를 이용한 실험한 결과물의 질량값이 정확히 일치함을 확인하였다(도 4b(ⅱ)).In addition, ESI-MS spectrum analysis of the result of the enzymatic reaction to which 1 mM NADPH cofactor was added. As a result of the analysis, it showed a result value of m/z + 301.0715 at a retention time of 4.62 minutes other than atrochrysome carboxylic acid. This was the same as the theoretical molecular weight (301.0712) of endocrocin anthrone (molecular formula C 16 H 12 O 6 ), which is an emodin synthesis precursor, among the results of the polyketide synthetase reaction of FIG. 1 . Therefore, the substance produced by the enzymatic reaction is endocrocin anthrone (Fig. 4b(i)). In addition, it was confirmed that the theoretical mass value of the product reacted with the isotope-treated substrate ( 13 C 3 -malonyl-CoA) and the actual mass value of the experimental result using the isotope exactly match (Fig. 4b(ii)) ).

상기 결과를 통해 CHS-L(Sto07g228250)이 폴리케타이드합성효소 활성을 가지며, malonyl-CoA 기질로 이용하여 에모딘 전구체인 atrochrysome carboxylic acid 또는 endocrocin anthrone을 합성함을 확인하였다. From the above results, it was confirmed that CHS-L (Sto07g228250) has polyketide synthetase activity and synthesizes atrochrysome carboxylic acid or endocrocin anthrone, which is an emodin precursor, by using it as a malonyl-CoA substrate.

또한, Atrochrysome carboxylic acid 및 endocrocin anthrone 대사산물을 제외한 탈카복시화(decarboxylation), 산화(oxidation)의 추가 반응이 필요한 에모딘 안트론(emodin anthrone), 엔도크로친(endocrocin), 에모딘(emodin), 크리소파놀(chrysophanol), 또는 이슬란디신(islandicin) 등의 산물은 검출되지 않았다. In addition, emodin anthrone, endocrocin, emodin, which require additional reactions of decarboxylation and oxidation except for atrochrysome carboxylic acid and endocrocin anthrone metabolites; No products such as chrysophanol or islandicin were detected.

결론적으로 결명자 유래 CHS-L(Sto07g228250) 단백질이 타입 Ⅲ polyketide의 생합성 경로를 통해서 에모딘 전구체인 Atrochrysome carboxylic acid 및 endocrocin anthrone의 생합성을 하며, 안트라퀴논의 일종인 에모딘 생합성 경로에 관여함을 확인하였다. In conclusion, it was confirmed that the CHS-L (Sto07g228250) protein derived from Kaleidoscope was involved in the biosynthesis pathway of emodin, a type of anthraquinone, through the biosynthesis pathway of type III polyketide, atrochrysome carboxylic acid and endocrocin anthrone, which are precursors of emodin. .

<110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) Industry-University Cooperation Foundation Sunmoon University <120> Senna tora-derived gene having anthoraquinone biosynthesis function and use thereof <130> DP20200066 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 1173 <212> DNA <213> Artificial Sequence <220> <223> CHS-L gene <400> 1 atggagagtg ctgcagaaaa gaagggattc gccacagtgc ttgctattgg cactgcaaat 60 cccccaaaca tttatcttca atctgagttt cctgatttct tcttcagagt caccaatagt 120 gagcatcatg tccaactcaa gcagaagttc aagcgcatgt gtgacaactc caatatcagg 180 aagcgccatt ttcttgttga tgaagatatt cttaaagagc atccaaacat cagcacctat 240 ggagctcctt cgttggatac acgcagagaa atagtaacta agtacattcc taagcttggg 300 aaggaagcag ccttgaaatg tattaaagaa tggggccaac ctttatctaa gatcacacat 360 ctcatcttct gcacatcttc atgcatcaac agcattcctg gacctgattt ctaccttgcc 420 agagaaattg gcctcccagc cacttgtaac cgccttgtga tttatgatca tggttgtcac 480 gctggtggtt cagtcattcg tgtagccaag gctcttgctg agagcatccc tggctcacgt 540 gtgctcactg tgtgtgctga gaccatgctt acttccttcc aagccccaag tccgtcacat 600 atggacattg tggttgggca cgccttgttt ggagatggtg ctgctgccat gattgtcggt 660 acagatccta tccccaatgt tgaacgtcca ctgtttgagt ttgtgttggc tgcacaacag 720 acagtgggag gatctgagga ggcaattcat ggacatgcaa ctgaaagagg tcaaacttac 780 tttttaggaa aagagattcc aaatgttgtt gctggtaatg tgaagaagtg tatgcatgat 840 gcatttggga cgcttggtat gacaatcaat gaaggagagt ggaattcgtt gttctacgtg 900 gtgcatcctg gtgggaaggc agtactgaat gggatggaag aggtgcttga gttgaaggaa 960 gagaagcttg ctgcgagtag gactattttg agagagtacg gaaacatgtg gagtccatgt 1020 gtgttcttcg tgttggatga aatgagaaag aaatcttcca acgaagggaa gtccacaacc 1080 ggagaaggac atgactgggg tgctttgatg acctttggac caggtttgac ggttgaaaca 1140 attgttttgc attccatttc cctgaaggac tag 1173 <210> 2 <211> 390 <212> PRT <213> Artificial Sequence <220> <223> CHS-L protein <400> 2 Met Glu Ser Ala Ala Glu Lys Lys Gly Phe Ala Thr Val Leu Ala Ile 1 5 10 15 Gly Thr Ala Asn Pro Pro Asn Ile Tyr Leu Gln Ser Glu Phe Pro Asp 20 25 30 Phe Phe Phe Arg Val Thr Asn Ser Glu His His Val Gln Leu Lys Gln 35 40 45 Lys Phe Lys Arg Met Cys Asp Asn Ser Asn Ile Arg Lys Arg His Phe 50 55 60 Leu Val Asp Glu Asp Ile Leu Lys Glu His Pro Asn Ile Ser Thr Tyr 65 70 75 80 Gly Ala Pro Ser Leu Asp Thr Arg Arg Glu Ile Val Thr Lys Tyr Ile 85 90 95 Pro Lys Leu Gly Lys Glu Ala Ala Leu Lys Cys Ile Lys Glu Trp Gly 100 105 110 Gln Pro Leu Ser Lys Ile Thr His Leu Ile Phe Cys Thr Ser Ser Cys 115 120 125 Ile Asn Ser Ile Pro Gly Pro Asp Phe Tyr Leu Ala Arg Glu Ile Gly 130 135 140 Leu Pro Ala Thr Cys Asn Arg Leu Val Ile Tyr Asp His Gly Cys His 145 150 155 160 Ala Gly Gly Ser Val Ile Arg Val Ala Lys Ala Leu Ala Glu Ser Ile 165 170 175 Pro Gly Ser Arg Val Leu Thr Val Cys Ala Glu Thr Met Leu Thr Ser 180 185 190 Phe Gln Ala Pro Ser Pro Ser His Met Asp Ile Val Val Gly His Ala 195 200 205 Leu Phe Gly Asp Gly Ala Ala Ala Met Ile Val Gly Thr Asp Pro Ile 210 215 220 Pro Asn Val Glu Arg Pro Leu Phe Glu Phe Val Leu Ala Ala Gln Gln 225 230 235 240 Thr Val Gly Gly Ser Glu Glu Ala Ile His Gly His Ala Thr Glu Arg 245 250 255 Gly Gln Thr Tyr Phe Leu Gly Lys Glu Ile Pro Asn Val Val Ala Gly 260 265 270 Asn Val Lys Lys Cys Met His Asp Ala Phe Gly Thr Leu Gly Met Thr 275 280 285 Ile Asn Glu Gly Glu Trp Asn Ser Leu Phe Tyr Val Val His Pro Gly 290 295 300 Gly Lys Ala Val Leu Asn Gly Met Glu Glu Val Leu Glu Leu Lys Glu 305 310 315 320 Glu Lys Leu Ala Ala Ser Arg Thr Ile Leu Arg Glu Tyr Gly Asn Met 325 330 335 Trp Ser Pro Cys Val Phe Phe Val Leu Asp Glu Met Arg Lys Lys Ser 340 345 350 Ser Asn Glu Gly Lys Ser Thr Thr Gly Glu Gly His Asp Trp Gly Ala 355 360 365 Leu Met Thr Phe Gly Pro Gly Leu Thr Val Glu Thr Ile Val Leu His 370 375 380 Ser Ile Ser Leu Lys Asp 385 390 <210> 3 <211> 1170 <212> DNA <213> Artificial Sequence <220> <223> CHS gene <400> 3 atggtgaatg tggaagagat ccgtaaggca caacgagcgg aaggtgctgc tacagtaatg 60 gctatcggta cagcgacccc aacaaactgt atagaacaaa gtacctatcc agattactat 120 tttcgtatta caaacagtga gcacatgaca gagttgaaag agaaattcca gcgcatgtgt 180 gataagtcaa tgataaaaaa gagatatatg cacttgacag aggagatctt aaaggagaac 240 cctaatatgt gtgcttacat ggcaccttct attgatgcaa ggcaagatat agtggttttg 300 gaagtaccaa agcttggaaa agaggctgca acaaaggcca ttaaggaatg gggccaaccc 360 aaatccaaaa ttacgcactt gatcttttgc actacaagtg gtgtggacat gccaggagct 420 gactaccaac tcacaaagct cttaggtctt cgcccatctg tgaagcgata catgatgtac 480 caacaaggtt gctttgcagg cggtacggtg ctccgtttag ccaaagactt ggctgagaat 540 aacaaaggag cacgtgtact tgtggtttgt tctgagatta ctgcagttac attccgtggg 600 cctactgata cccatcttga cagccttgtg ggccaagcat tgtttggcga tggggcagct 660 gctgttattg ttggatctga cccaatccca caagttgaga agcctttatt tgaacttgta 720 tggacagcac aaactattct tcccgatagt gaaggggcta ttgatgggca tcttcgtgaa 780 gttgggctca cattccatct tctgaaagat gttcctgggc tcatctcaaa gaacattgag 840 aaagccttgg ttgaagcctt caaaccattg ggaatttctg attataactc aattttctgg 900 attgctcacc caggtgggcc tgcaattttg gaccaagttg aggccaaatt agagttgaag 960 cccgaaaaga tgcaggccac tagacacgtg cttagtgagt atggaaacat gtccagtgca 1020 tgcgtgttat tcattttgga tgaaatgagg agaaaatcag caaaagatgg acttggcaca 1080 acaggtgaag gacttgagtg gggtgttcta tttggatttg ggcctggcct tactgttgag 1140 accgttgtgc tccacagtat tgctatttaa 1170 <210> 4 <211> 389 <212> PRT <213> Artificial Sequence <220> <223> CHS protein <400> 4 Met Val Asn Val Glu Glu Ile Arg Lys Ala Gln Arg Ala Glu Gly Ala 1 5 10 15 Ala Thr Val Met Ala Ile Gly Thr Ala Thr Pro Thr Asn Cys Ile Glu 20 25 30 Gln Ser Thr Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asn Ser Glu His 35 40 45 Met Thr Glu Leu Lys Glu Lys Phe Gln Arg Met Cys Asp Lys Ser Met 50 55 60 Ile Lys Lys Arg Tyr Met His Leu Thr Glu Glu Ile Leu Lys Glu Asn 65 70 75 80 Pro Asn Met Cys Ala Tyr Met Ala Pro Ser Ile Asp Ala Arg Gln Asp 85 90 95 Ile Val Val Leu Glu Val Pro Lys Leu Gly Lys Glu Ala Ala Thr Lys 100 105 110 Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Ile 115 120 125 Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu 130 135 140 Thr Lys Leu Leu Gly Leu Arg Pro Ser Val Lys Arg Tyr Met Met Tyr 145 150 155 160 Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp 165 170 175 Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser Glu 180 185 190 Ile Thr Ala Val Thr Phe Arg Gly Pro Thr Asp Thr His Leu Asp Ser 195 200 205 Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Val Ile Val 210 215 220 Gly Ser Asp Pro Ile Pro Gln Val Glu Lys Pro Leu Phe Glu Leu Val 225 230 235 240 Trp Thr Ala Gln Thr Ile Leu Pro Asp Ser Glu Gly Ala Ile Asp Gly 245 250 255 His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu Lys Asp Val Pro 260 265 270 Gly Leu Ile Ser Lys Asn Ile Glu Lys Ala Leu Val Glu Ala Phe Lys 275 280 285 Pro Leu Gly Ile Ser Asp Tyr Asn Ser Ile Phe Trp Ile Ala His Pro 290 295 300 Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys Leu Glu Leu Lys 305 310 315 320 Pro Glu Lys Met Gln Ala Thr Arg His Val Leu Ser Glu Tyr Gly Asn 325 330 335 Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Arg Lys 340 345 350 Ser Ala Lys Asp Gly Leu Gly Thr Thr Gly Glu Gly Leu Glu Trp Gly 355 360 365 Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr Val Val Leu 370 375 380 His Ser Ile Ala Ile 385 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CHS-L forward primer <400> 5 aaggatccat ggagagtgct ggag 24 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CHS-L reverse primer <400> 6 aactcgagct agtctctcag aggg 24 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CHS forward primer <400> 7 ggatccatgg tgaatgtgga agagatc 27 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CHS reverse primer <400> 8 gaattcttag acagccacac tatggag 27 <110> REPUBLIC OF KOREA (MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) Industry-University Cooperation Foundation Sunmoon University <120> Senna tora-derived gene having anthoraquinone biosynthesis function and use thereof <130> DP20200066 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 1173 <212> DNA <213> Artificial Sequence <220> <223> CHS-L gene <400> 1 atggagagtg ctgcagaaaa gaagggattc gccacagtgc ttgctattgg cactgcaaat 60 cccccaaaca tttatcttca atctgagttt cctgatttct tcttcagagt caccaatagt 120 gagcatcatg tccaactcaa gcagaagttc aagcgcatgt gtgacaactc caatatcagg 180 aagcgccatt ttcttgttga tgaagatatt cttaaagagc atccaaacat cagcacctat 240 ggagctcctt cgttggatac acgcagagaa atagtaacta agtacattcc taagcttggg 300 aaggaagcag ccttgaaatg tattaaagaa tggggccaac ctttatctaa gatcacacat 360 ctcatcttct gcacatcttc atgcatcaac agcattcctg gacctgattt ctaccttgcc 420 agagaaattg gcctcccagc cacttgtaac cgccttgtga tttatgatca tggttgtcac 480 gctggtggtt cagtcattcg tgtagccaag gctcttgctg agagcatccc tggctcacgt 540 gtgctcactg tgtgtgctga gaccatgctt acttccttcc aagccccaag tccgtcacat 600 atggacattg tggttgggca cgccttgttt ggagatggtg ctgctgccat gattgtcggt 660 acagatccta tccccaatgt tgaacgtcca ctgtttgagt ttgtgttggc tgcacaacag 720 acagtgggag gatctgagga ggcaattcat ggacatgcaa ctgaaagagg tcaaacttac 780 tttttaggaa aagagattcc aaatgttgtt gctggtaatg tgaagaagtg tatgcatgat 840 gcatttggga cgcttggtat gacaatcaat gaaggagagt ggaattcgtt gttctacgtg 900 gtgcatcctg gtgggaaggc agtactgaat gggatggaag aggtgcttga gttgaaggaa 960 gagaagcttg ctgcgagtag gactattttg agagagtacg gaaacatgtg gagtccatgt 1020 gtgttcttcg tgttggatga aatgagaaag aaatcttcca acgaagggaa gtccacaacc 1080 ggagaaggac atgactgggg tgctttgatg acctttggac caggtttgac ggttgaaaca 1140 attgttttgc attccatttc cctgaaggac tag 1173 <210> 2 <211> 390 <212> PRT <213> Artificial Sequence <220> <223> CHS-L protein <400> 2 Met Glu Ser Ala Ala Glu Lys Lys Gly Phe Ala Thr Val Leu Ala Ile 1 5 10 15 Gly Thr Ala Asn Pro Pro Asn Ile Tyr Leu Gln Ser Glu Phe Pro Asp 20 25 30 Phe Phe Phe Arg Val Thr Asn Ser Glu His His Val Gln Leu Lys Gln 35 40 45 Lys Phe Lys Arg Met Cys Asp Asn Ser Asn Ile Arg Lys Arg His Phe 50 55 60 Leu Val Asp Glu Asp Ile Leu Lys Glu His Pro Asn Ile Ser Thr Tyr 65 70 75 80 Gly Ala Pro Ser Leu Asp Thr Arg Arg Glu Ile Val Thr Lys Tyr Ile 85 90 95 Pro Lys Leu Gly Lys Glu Ala Ala Leu Lys Cys Ile Lys Glu Trp Gly 100 105 110 Gln Pro Leu Ser Lys Ile Thr His Leu Ile Phe Cys Thr Ser Ser Cys 115 120 125 Ile Asn Ser Ile Pro Gly Pro Asp Phe Tyr Leu Ala Arg Glu Ile Gly 130 135 140 Leu Pro Ala Thr Cys Asn Arg Leu Val Ile Tyr Asp His Gly Cys His 145 150 155 160 Ala Gly Gly Ser Val Ile Arg Val Ala Lys Ala Leu Ala Glu Ser Ile 165 170 175 Pro Gly Ser Arg Val Leu Thr Val Cys Ala Glu Thr Met Leu Thr Ser 180 185 190 Phe Gln Ala Pro Ser Pro Ser His Met Asp Ile Val Val Gly His Ala 195 200 205 Leu Phe Gly Asp Gly Ala Ala Ala Met Ile Val Gly Thr Asp Pro Ile 210 215 220 Pro Asn Val Glu Arg Pro Leu Phe Glu Phe Val Leu Ala Ala Gln Gln 225 230 235 240 Thr Val Gly Gly Ser Glu Glu Ala Ile His Gly His Ala Thr Glu Arg 245 250 255 Gly Gln Thr Tyr Phe Leu Gly Lys Glu Ile Pro Asn Val Val Ala Gly 260 265 270 Asn Val Lys Lys Cys Met His Asp Ala Phe Gly Thr Leu Gly Met Thr 275 280 285 Ile Asn Glu Gly Glu Trp Asn Ser Leu Phe Tyr Val Val His Pro Gly 290 295 300 Gly Lys Ala Val Leu Asn Gly Met Glu Glu Val Leu Glu Leu Lys Glu 305 310 315 320 Glu Lys Leu Ala Ala Ser Arg Thr Ile Leu Arg Glu Tyr Gly Asn Met 325 330 335 Trp Ser Pro Cys Val Phe Phe Val Leu Asp Glu Met Arg Lys Lys Ser 340 345 350 Ser Asn Glu Gly Lys Ser Thr Thr Gly Glu Gly His Asp Trp Gly Ala 355 360 365 Leu Met Thr Phe Gly Pro Gly Leu Thr Val Glu Thr Ile Val Leu His 370 375 380 Ser Ile Ser Leu Lys Asp 385 390 <210> 3 <211> 1170 <212> DNA <213> Artificial Sequence <220> <223> CHS gene <400> 3 atggtgaatg tggaagagat ccgtaaggca caacgagcgg aaggtgctgc tacagtaatg 60 gctatcggta cagcgacccc aacaaactgt atagaacaaa gtacctatcc agattactat 120 tttcgtatta caaacagtga gcacatgaca gagttgaaag agaaattcca gcgcatgtgt 180 gataagtcaa tgataaaaaa gagatatatg cacttgacag aggagatctt aaaggagaac 240 cctaatatgt gtgcttacat ggcaccttct attgatgcaa ggcaagatat agtggttttg 300 gaagtaccaa agcttggaaa agaggctgca acaaaggcca ttaaggaatg gggccaaccc 360 aaatccaaaa ttacgcactt gatcttttgc actacaagtg gtgtggacat gccaggagct 420 gactaccaac tcacaaagct cttaggtctt cgcccatctg tgaagcgata catgatgtac 480 caacaaggtt gctttgcagg cggtacggtg ctccgtttag ccaaagactt ggctgagaat 540 aacaaaggag cacgtgtact tgtggtttgt tctgagatta ctgcagttac attccgtggg 600 cctactgata cccatcttga cagccttgtg ggccaagcat tgtttggcga tggggcagct 660 gctgttattg ttggatctga cccaatccca caagttgaga agcctttatt tgaacttgta 720 tggacagcac aaactattct tcccgatagt gaaggggcta ttgatgggca tcttcgtgaa 780 gttgggctca cattccatct tctgaaagat gttcctgggc tcatctcaaa gaacattgag 840 aaagccttgg ttgaagcctt caaaccattg ggaatttctg attataactc aattttctgg 900 attgctcacc caggtgggcc tgcaattttg gaccaagttg aggccaaatt agagttgaag 960 cccgaaaaga tgcaggccac tagacacgtg cttagtgagt atggaaacat gtccagtgca 1020 tgcgtgttat tcattttgga tgaaatgagg agaaaatcag caaaagatgg acttggcaca 1080 acaggtgaag gacttgagtg gggtgttcta tttggatttg ggcctggcct tactgttgag 1140 accgttgtgc tccacagtat tgctatttaa 1170 <210> 4 <211> 389 <212> PRT <213> Artificial Sequence <220> <223> CHS protein <400> 4 Met Val Asn Val Glu Glu Ile Arg Lys Ala Gln Arg Ala Glu Gly Ala 1 5 10 15 Ala Thr Val Met Ala Ile Gly Thr Ala Thr Pro Thr Asn Cys Ile Glu 20 25 30 Gln Ser Thr Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asn Ser Glu His 35 40 45 Met Thr Glu Leu Lys Glu Lys Phe Gln Arg Met Cys Asp Lys Ser Met 50 55 60 Ile Lys Lys Arg Tyr Met His Leu Thr Glu Glu Ile Leu Lys Glu Asn 65 70 75 80 Pro Asn Met Cys Ala Tyr Met Ala Pro Ser Ile Asp Ala Arg Gln Asp 85 90 95 Ile Val Val Leu Glu Val Pro Lys Leu Gly Lys Glu Ala Ala Thr Lys 100 105 110 Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Ile 115 120 125 Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu 130 135 140 Thr Lys Leu Leu Gly Leu Arg Pro Ser Val Lys Arg Tyr Met Met Tyr 145 150 155 160 Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp 165 170 175 Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser Glu 180 185 190 Ile Thr Ala Val Thr Phe Arg Gly Pro Thr Asp Thr His Leu Asp Ser 195 200 205 Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Val Ile Val 210 215 220 Gly Ser Asp Pro Ile Pro Gln Val Glu Lys Pro Leu Phe Glu Leu Val 225 230 235 240 Trp Thr Ala Gln Thr Ile Leu Pro Asp Ser Glu Gly Ala Ile Asp Gly 245 250 255 His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu Lys Asp Val Pro 260 265 270 Gly Leu Ile Ser Lys Asn Ile Glu Lys Ala Leu Val Glu Ala Phe Lys 275 280 285 Pro Leu Gly Ile Ser Asp Tyr Asn Ser Ile Phe Trp Ile Ala His Pro 290 295 300 Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys Leu Glu Leu Lys 305 310 315 320 Pro Glu Lys Met Gln Ala Thr Arg His Val Leu Ser Glu Tyr Gly Asn 325 330 335 Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Arg Lys 340 345 350 Ser Ala Lys Asp Gly Leu Gly Thr Thr Gly Glu Gly Leu Glu Trp Gly 355 360 365 Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr Val Val Leu 370 375 380 His Ser Ile Ala Ile 385 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CHS-L forward primer <400> 5 aaggatccat ggagagtgct ggag 24 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CHS-L reverse primer <400> 6 aactcgagct agtctctcag aggg 24 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CHS forward primer <400> 7 ggatccatgg tgaatgtgga agatc 27 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CHS reverse primer <400> 8 gaattcttag acagccacac tatggag 27

Claims (11)

폴리케타이드합성효소(polyketide synthase) 활성을 가지는 서열번호2의 아미노산 서열로 표시되는 결명자 유래 CHS-L 단백질.A polyketide synthase (polyketide synthase) derived CHS-L protein represented by the amino acid sequence of SEQ ID NO: 2 having activity. 제 1항에 있어서,
상기 폴리케타이드합성효소(polyketide synthase)는 말로닐코에이(malonyl-CoA) 기질을 이용하여 에모딘 전구체를 합성하는 것인, 단백질.
The method of claim 1,
The polyketide synthase (polyketide synthase) is to synthesize the emodin precursor using a malonyl-CoA (malonyl-CoA) substrate, protein.
제 2항에 있어서,
상기 에모딘 전구체는 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 또는 엔도크로신 안트론(endocrocin anthrone)인 것인, 단백질.
3. The method of claim 2,
The emodin precursor is atrochrysome carboxylic acid (atrochrysome carboxylic acid) or endocrosine anthrone (endocrocin anthrone) will, the protein.
제 1항의 CHS-L 단백질을 암호화하는 서열번호1로 표시되는 CHS-L 유전자.The CHS-L gene represented by SEQ ID NO: 1 encoding the CHS-L protein of claim 1. 제 4항의 CHS-L 유전자를 포함하는 재조합 벡터. A recombinant vector comprising the CHS-L gene of claim 4. 제 5항의 재조합 벡터로 형질전환된 형질전환체.A transformant transformed with the recombinant vector of claim 5 . 제 6항에 있어서,
상기 형질전환체는 대장균 BL21(DE3) 균주인 것인, 형질전환체.
7. The method of claim 6,
The transformant is an Escherichia coli BL21 (DE3) strain, the transformant.
서열번호1로 표시되는 CHS-L 유전자를 특이적으로 증폭할 수 있는 서열번호5 및 서열번호6으로 표시되는 프라이머 세트.A primer set represented by SEQ ID NO: 5 and SEQ ID NO: 6 capable of specifically amplifying the CHS-L gene represented by SEQ ID NO: 1. 제 1항의 단백질과 말로닐코에이(malonyl-CoA)를 반응시키는 단계를 포함하는, 에모딘 전구체의 생산방법.A method for producing an emodin precursor, comprising the step of reacting the protein of claim 1 with malonyl-CoA. 제 9항에 있어서,
NADPH 보조 인자를 추가하는 단계를 더 포함하는, 생산방법.
10. The method of claim 9,
Further comprising the step of adding a NADPH cofactor.
제 9항에 있어서,
상기 에모딘 전구체는 아트로크리좀 카르복시산(atrochrysome carboxylic acid) 또는 엔도크로신 안트론(endocrocin anthrone)인 것인, 생산방법.
10. The method of claim 9,
The emodin precursor is atrochrysome carboxylic acid (atrochrysome carboxylic acid) or endocrosine anthrone (endocrocin anthrone) will, the production method.
KR1020200075168A 2020-06-19 2020-06-19 Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof KR102463948B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200075168A KR102463948B1 (en) 2020-06-19 2020-06-19 Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200075168A KR102463948B1 (en) 2020-06-19 2020-06-19 Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof

Publications (2)

Publication Number Publication Date
KR20210157193A true KR20210157193A (en) 2021-12-28
KR102463948B1 KR102463948B1 (en) 2022-11-07

Family

ID=79178347

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200075168A KR102463948B1 (en) 2020-06-19 2020-06-19 Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof

Country Status (1)

Country Link
KR (1) KR102463948B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047337A (en) * 2017-10-27 2019-05-08 선문대학교 산학협력단 New Alkoxide Derivatives of Alizarin and Use Thereof
KR102072017B1 (en) 2018-09-05 2020-01-31 선문대학교 산학협력단 A Recombinant Microorganism for producing Anthraquinone-O-glucosides and a Method for Producing the Same
KR20200144077A (en) * 2020-09-01 2020-12-28 대한민국(농촌진흥청장) Composition for discrimination of Cynanchum wilfordii and Cynanchum auriculatum and method for use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047337A (en) * 2017-10-27 2019-05-08 선문대학교 산학협력단 New Alkoxide Derivatives of Alizarin and Use Thereof
KR102072017B1 (en) 2018-09-05 2020-01-31 선문대학교 산학협력단 A Recombinant Microorganism for producing Anthraquinone-O-glucosides and a Method for Producing the Same
KR20200144077A (en) * 2020-09-01 2020-12-28 대한민국(농촌진흥청장) Composition for discrimination of Cynanchum wilfordii and Cynanchum auriculatum and method for use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. AGRIC. FOOD CHEM. 2004, VOL.52, P.6096_6100 [10.1021/JF049379P] *
PLOS ONE, 2020, VOL.15(5); E0225564. [DOI.ORG/10.1371/JOURNAL.PONE.0225564] *
석사학위논문, 정하영, 선문대학교 일반대학원, 생명공학과 2019. 2 *

Also Published As

Publication number Publication date
KR102463948B1 (en) 2022-11-07

Similar Documents

Publication Publication Date Title
US11535856B2 (en) Stilbenoid prenyltransferases from plants
CA2939981A1 (en) Bhlh25 transcription factors for increased plant secondary metabolite production
AU2008341227B2 (en) Glycosyltransferases, polynucleotides encoding these and methods of use
KR102463948B1 (en) Senna-tora derived gene having anthoraquinone biosynthesis function and use thereof
CN110396522A (en) Regulate and control the application technology that lignin improves root crop yield
Perassolo et al. Biosynthesis of sesquiterpene lactones in plants and metabolic engineering for their biotechnological production
CN116083451A (en) Method for synthesizing betanin from carrots
KR102026764B1 (en) Recombinant vectors for enhancing anthocyanin biosysthesis and thereof uses
KR102266998B1 (en) BrZHD10 gene with salt tolerance and use thereof
KR100990369B1 (en) Loss-of-function atubph1 and atubph2 mutant plants increasing resistance against plant stress and transgenic plants transformed by AtUBPH1 and AtUBPH2 promoting plant growth
KR101594985B1 (en) A RcLPAT299 genes derived from Ricinus communis L. and their uses in ricinoleic fatty acid
KR101064590B1 (en) A phosphate starvation-induced rice purple acid phosphatase gene and transgenic plants
CN114657195B (en) Gene capable of hydrolyzing fruit-bound benzaldehyde and application thereof
KR102579955B1 (en) Photoreceptor gene derived from Brassica rapa for increasing vitamin C content and uses thereof
ES2701354A1 (en) METHOD OF OBTAINING COMPOUNDS DERIVED FROM APOCAROTENOIDS IN MICROORGANISMS AND PLANTS FOR USE IN AGRICULTURAL AND PHARMACEUTICAL APPLICATIONS (Machine-translation by Google Translate, not legally binding)
KR20230026185A (en) OsF3H gene increasing insect resistance of plant and uses thereof
KR102072276B1 (en) Novel gene related to plant cold stress tolerance and use thereof
CN117467636A (en) Gene involved in formation of tomato flavonol 3-O-glucoside and application thereof
Matvieieva Agrobacterium-mediated transformation of Сompositae plants. I. construction of transgenic plants and «Hairy» roots with new properties
CN117165623A (en) Application of tomato SlMYB32 gene as negative regulatory factor in improving rutin content of tomato fruits
KR20230047248A (en) OsCM9 gene increasing insect resistance of plant and uses thereof
KR100973997B1 (en) Recombinant vector comprising polynucleotide encoding isoflavone synthase and transformants transformed thereby
Wang et al. Synthesis of betanin by expression of the core betalain biosynthetic pathway in carrot
CA3175043A1 (en) Use of flavonoid glycoside substance and glycosyltransferase gene therefor in regulating resistance of plant to weeds
KR20050027838A (en) Recombinant human growth hormone expressed in plants

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant